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Abstract. A description of the evolution of the initial disturbance in the fast
magnetosonic (FMS) waveguide in transversely inhomogeneous plasma, given a
weak coupling between FMS and Alfven modes, is made. It is shown that the Fourier
transform of the FMS waveguide disturbance with respect to the coordinates along
which plasma is homogeneous can be presented as a superposition of collective
modes of the leading approximation with respect to the weak FMS–Alfven wave
coupling from the initial instant of time. Frequencies of such collective modes
and dependence of their structures on the coordinate along the inhomogeneity are
found without taking the FMS–Alfven resonance into consideration, and the mode
decrements are calculated using the perturbation technique. On the basis of such a
representation of the FMS waveguide disturbance, the evolution of Alfven waves
generating with waveguide mode packets produced by the initial disturbance of
an arbitrary longitudinal structure is described. It is shown that the longitudinal
structure of the Alfven disturbance generated by the collective mode packet is
determined by the ratio between longitudinal scales of the initial disturbance and
scales specified by resonance conditions (the resonance longitudinal wave number
and the width of the range of the resonance longitudinal wave numbers). The
structures of Alfven disturbances for the cases of such different ratios are described.

1. Introduction
In this paper we consider evolution of a disturbance
that takes place at an instant of time, in a region near
the surface where the Alfven velocity is minimum in
the direction transverse to the magnetic field. There
are conditions for the waveguide propagation of fast
magnetosonic (FMS) waves in such a region. The ini-
tial disturbance therefore leads to the arising FMS
disturbance whose propagation along the direction of
the Alfven velocity inhomogeneity is limited. At the
same time, the disturbance propagates freely along two
other coordinates. As a result of the FMS–Alfven wave
coupling, the waveguide disturbance is gradually mode
converted into Alfven waves. After a while, it propagates
as an Alfven disturbance.

Magnetohydrodynamic (MHD) disturbances whose
evolution follows this scenario can take place in many
inhomogeneous space plasma structures. One of these
is magnetotail. The magnetotail can be considered as
the FMS waveguide extended along the magnetic field
(Allan and Wright 1998; Allan 2000; Mills et al. 2000;
Lysak et al. 2009; Mazur et al. 2010). Disturbances asso-
ciated with different processes in the distant magnetotail
(e.g. processes related to reconnection) can excite FMS
waves. When propagating along the waveguide, FMS
waves are mode converted into Alfven waves that reach
the Earth, leading to geomagnetic field disturbances and

particle precipitation (Wright and Allan 2008). Disturb-
ances in open solar structures give another example of
waveguide propagation of FMS waves (Deforest and
Gurman 1998; Verwichte et al. 2005).

We suggest that the initial disturbance is localized near
the waveguide axis, and will consider the formation of
the Alfven disturbance in the region where the resonance
between FMS and Alfven waves takes place (i.e. in
the opaque region for the waveguide disturbance). The
initial disturbance is supposed to be absent in this
region, so the Alfven disturbances are excited there
only due to mode conversion of the waveguide FMS
disturbance.

We start by considering evolution of the waveguide

disturbance. As is well known from the study of different

problems, including first the coupling of electromagnetic

and plasma electrostatic oscillation (Barston 1964; Sed-

lachek 1971a, b), and then the coupling of FMS and

Alfven waves (Uberoi 1972; Grossmann and Tataronis
1973; Tataronis and Grossmann 1973; Zhu and Kivelson
1988), the waveguide modes have discrete spectrum
of real frequencies when neglecting mode conversion.

In this approximation, the initial disturbance can be
represented as a sum of modes whose amplitudes are

constant in time. On the other hand, if the mode con-
version is taken into account, the discrete spectrum is
replaced by the continuous one (Barston 1964; Uberoi
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1972) and the discrete frequencies separate only when
t → ∞ (Sedlachek 1971a, b; Grossmann and Tataronis
1973; Tataronis and Grossmann 1973; Zhu and Kivelson
1988). In this paper we suggest that the FMS–Alfven
wave coupling is weak due to smallness of wave numbers
corresponding to the y-coordinate (in the coordinate
system x is along the inhomogeneity direction, and z is
along the undisturbed magnetic field). The weakness of
the FMS–Alfven wave coupling results in the slowness
of the mode conversion of FMS waves into Alfven
ones, i.e. smallness of the decrement of FMS waves
as compared with their frequency. We show that the
Fourier transform of the FMS disturbance (with respect
to the coordinates along which plasma is homogeneous)
can be presented as a superposition of collective modes
of the leading approximation from the initial instant
of time. These are the modes whose frequencies and
structures with respect to the x-coordinate coincide
with the frequencies and structures of waveguide modes
obtained without taking account of the FMS–Alfven
wave coupling. Decrements of such collective modes are
calculated using the perturbation technique.

In the coordinate representation, the waveguide FMS
disturbance caused by the initial disturbance of an
arbitrary longitudinal structure is represented as a su-
perposition of packets of the leading approximation
collective mode with the same number. Therefore, to
have description of space-time evolution of the Alfven
disturbance, we need to obtain that of Alfven disturb-
ances produced by such packets. For this purpose we
use the solution to the equation that describes mode
conversion of the FMS disturbance into the Alfven one
in terms of the Fourier transform. Applying the inverse
Fourier transform to this solution, we find the Alfven
disturbance into which a certain waveguide packet is
transformed.

The formulae obtained for space-time evolution of
Alfven disturbances relate its parameters to the para-
meters of the initial disturbance and to the parameters
specified by resonance conditions (resonance longitud-
inal wave number and width of range of resonance
longitudinal wave numbers). Using these formulae, we
analyze the dependence of space-time structure of the
Alfven disturbance on ratios of scales of the initial
disturbance to resonance scales.

2. Input equations
Let us denote the undisturbed magnetic field by B0. We
will assume that it is homogeneous and directed along
the z-axis. We will assume that the undisturbed density
n0 is inhomogeneous along x. Then the Alfven velocity
Va = B0/(4πmin0)

1/2 is inhomogeneous along x too. Let
us denote disturbance of the magnetic field by B and
plasma velocity in disturbance by v. We will consider
waves with the given wave number ky .

Linear MHD disturbances are described by equations

∂tB = ∇ × [v × B0] , ∂tv =
1

4π

1

min0
[∇ × B] × B0.

From these we have

∂2
t v =

1

4π

1

min0
[∇ × ∇ × [v × B0]] × B0.

This equation can be written in the form

V−2
a ∂2

t vx − ∂2
z vx = ∂xψ,

V−2
a ∂2

t vy − ∂2
z vy = ikyψ,

(2.1)

where ψ = ∂xvx + ikyvy. We will pass to dimensionless
variables and functions with the use of some parameters
l0 and t0 (dimension l0 is length and t0 is time) t → tt0,

x → xl0, z → zl0, y → yl0, and vx → vxl0/t0, vy →
vyl0/t0, ψ → ψ/t0. By using notation ky for kyl0 and
Va for the dimensionless Alfven velocity Val

−1
0 t0, we still

have equations in the form of (2.1) as input ones; these
are, however, for dimensionless variables and functions.

We will assume that when t = 0, there is a dis-
placement and acceleration of plasma in the direction
perpendicular to the magnetic field: v⊥(t = 0) = v⊥(0),
∂tv⊥ = ∂tv⊥(0), where the initial disturbances v⊥(0) and
∂tv⊥(0) are functions of x and z.

Let us now perform the Fourier transform with respect
to z:

v⊥k =

∫ ∞

−∞
e−ikzv⊥dz.

The inverse transform is as follows:

v⊥ = (2π)−1

∫ ∞

−∞
eikzv⊥kdk.

We perform the Laplace transform with respect to
time:

v⊥kω =

∫ ∞

0

eiωtv⊥kdt.

The inverse transform is given by

v⊥k = (2π)−1

∫ ∞+ic

−∞+ic

e−iωtv⊥kωdω,

where the contour of integration should lay above all
singular points of integrand.

We multiply both parts of (2.1) by exp(−ikz) exp(iωt);
we then integrate from −∞ to ∞ over z and from 0 to
∞ over t. Denoting

U⊥ = −∂tv⊥k (0) + iωv⊥k (0)

and

la = ω2V−2
a − k2,

we obtain the following equations from (2.1):

lavxkω = −∂xψkω +Ux, (2.2)

lavykω = −ikyψkω +Uy, (2.3)

ψkω = ∂xvxkω + ikyvykω. (2.4)

From these equations, we have for ψkω

∂x
(
l−1
a ∂xψkω

)
+

(
1 − k2

yl
−1
a

)
ψkω = F, (2.5)
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where F = ∂x(l
−1
a Ux)+ ikyl

−1
a Uy . The velocity divergence

ψ describes a compressible part of the disturbance. Thus,
we have (2.5) as an equation for the FMS disturbance.
For the sake of definiteness, we will suppose that the
Alfven velocity has one minimum when x = 0 and
increases monotonically as function |x| when x > 0 and
x < 0, therefore Va → ∞ when |x| → ∞. Then la → −k2

as |x| → ∞. In this case we can choose the disturbance
vanishing when |x| → ∞ as boundary conditions for
(2.5).

The solution to (2.5) can be represented as

ψkω =

∫ ∞

−∞
F (ξ, ω)G (x, ξ, ω) dξ,

where G(x, ξ, ω) is Green’s function. It satisfies equation

∂x
(
l−1
a ∂xG (x, ξ, ω)

)
+

(
1 − k2

yl
−1
a

)
G (x, ξ, ω) = δ (x− ξ)

and boundary conditions when |x| → ∞. The only
variables we give as arguments for F and G are those
that will take part in transforms with the use of F
and G.

The inverse Laplace transform with respect to ω

provides time evolution of the FMS disturbance pro-
duced by v⊥k(0) and ∂tv⊥k(0). We have

ψk (x) =
1

2π

∫ ∞+ic

−∞+ic

e−iωt
∫ ∞

−∞
F (ξ, ω)G (x, ξ, ω) dξdω.

(2.6)
The Green’s function can be written in the form

G (x, ξ, ω) =
1

l−1
a (x, ω)W (x, ω)

g (x, ξ, ω),

g (x, ξ, ω) =ψ1 (x, ω)ψ2 (ξ, ω) θ (ξ − x)

+ψ2 (x, ω)ψ1 (ξ, ω) θ (x− ξ) . (2.7)

Functions ψ1 and ψ2 are the solutions to the homogen-
eous equation corresponding to (2.5):

∂x
(
l−1
a ∂xψkω

)
+

(
1 − k2

yl
−1
a

)
ψkω = 0. (2.8)

The solution ψ1 satisfies the boundary conditions when
x → −∞, and the solution ψ2 satisfies the boundary con-
ditions when x → ∞.W (ψ1, ψ2) in (2.7) is the Wronskian
of functions ψ1 and ψ2: W (ψ1, ψ2) = ψ1∂xψ2 − ψ2∂xψ1;
the product l−1

a (x, ω)W (x, ω) is independent of the x-
coordinate. The function θ in (2.7) is the Heaviside Unit
Step Function: θ = 1 when x � 0, θ = 0 when x < 0.

Representation of the evolving disturbance through
solution to the inhomogeneous equation for the Laplace
transform of this disturbance using Green’s function was
applied, for instance, in Sedlachek (1971a, b),
Grossmann and Tataronis (1973), and Tataronis and
Grossmann (1973). An analysis of the expression of
the form (2.6) in Sedlachek (1971a), Grossmann and
Tataronis (1973), and Tataronis and Grossmann (1973)
made it possible to determine the asymptotic behavior
of the FMS disturbance as t → ∞, when the FMS–
Alfven wave coupling takes place. We want to obtain at
first the description of temporal behavior of the FMS
disturbance with given k at all moments of time t > 0

and then to determine temporal behavior of the Alfven
disturbance with given k, using (2.3). The description
of longitudinal evolution of the Alfven disturbance will
be then obtained with the use of the inverse Fourier
transform over k.

In order to obtain the description of temporal be-
havior of the FMS disturbance with the given k at all
moments of time, using the inverse Laplace transform,
we preliminarily transform the integrand in (2.6). Taking
account of the weak FMS–Alfven wave coupling, we
pass from solutions of (2.5) to solutions of the cor-
responding leading order equation with respect to the
FMS–Alfven wave coupling.

3. Waveguide modes without FMS–Alfven
wave coupling, dispersion equation, and
decrement

We will describe evolution of disturbance in the case
when only small ky values are significant in the initial
disturbance. In this case, the FMS–Alfven wave coupling
can be considered weak, and we will make use of this
fact. In this paragraph we will obtain relations for
the leading approximation with respect to the FMS–
Alfven wave coupling in order to use them in the next
paragraph. We will denote the leading approximation
by superscript (0).

We have from (2.5) the following equation for the
velocity divergence at ky = 0:

∂x
(
l−1
a ∂xψ

(0)
kω

)
+ ψ

(0)
kω = F (0), (3.1)

where F (0) = ∂x(l
−1
a Ux). This equation does not take

account of the FMS–Alfven wave coupling; although
it possesses a singular point, its solutions are regular.
This can be easily confirmed using, for instance, the
Frobenius method. Equation for v(0)

xkω has even simpler
form; we will use its solutions to express solutions to
(3.1). As the velocity divergence is determined only by
the x component of velocity at ky = 0,

ψ
(0)
kω = ∂xv

(0)
xkω. (3.2)

We have the following equation for v(0)
xkω from (3.1):

∂2
xv

(0)
xkω + lav

(0)
xkω = Ux. (3.3)

The boundary conditions for this equation are vanishing
for |v(0)

xkω| when |x| → ∞. The homogeneous equation
corresponding to (3.3) –

∂2
xv

(0) + lav
(0) = 0, (3.4)

– with the boundary conditions of disturbance vanishing
and given k2 is ω2 eigenvalue problem – the Sturm–
Liouville problem over an infinite interval.

Let us denote eigenfunctions of (3.4) corresponding
to Ω2

n eigenvalues by v̄(0)
n . It is easy to prove that

problem (3.4) has the same properties as the Sturm–
Liouville problem over a finite interval: eigenfunctions
v̄(0)
n corresponding to different values Ω2

n are orthogonal
with weight V−2

a and constitute a complete system on
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the real axis; eigenvalues Ω2
n are real. Note that there is

no continuous spectrum because Va → ∞ when |x| → ∞.
Eigenfunctions can be chosen as the real ones. We

will assume that v̄(0)
n are real and normalized as follows:∫ ∞

−∞
V−2
a (x) v̄(0)n (x) v̄(0)m (x) dx = δnm, (3.5)

where δnm is the Kronecker symbol. In consequence of
(3.2), eigenfunctions ψ̄(0)

n of homogeneous equation

∂x
(
l−1
a ∂xψ

(0)
)

+ ψ(0) = 0, (3.6)

corresponding to (3.3), related to v̄(0)
n through equality

ψ̄(0)
n = ∂xv̄

(0)
n . (3.7)

Let us use notation W (ψ(0)
1 , ψ

(0)
2 ) for the Wronskian

of functions ψ(0)
1 and ψ

(0)
2 , which are solutions to (3.6)

satisfying the boundary conditions when x → −∞ and
x → ∞, respectively. Let us use designation W (v(0)

1 , v
(0)
2 )

for the Wronskian of functions v(0)
1 and v

(0)
2 , which are

solutions to (3.4) satisfying the boundary conditions
when x → −∞ and x → ∞, respectively. We have

W
(
ψ

(0)
1 , ψ

(0)
2

)
=ψ

(0)
1 ∂xψ

(0)
2 − ψ

(0)
2 ∂xψ

(0)
1 and

W
(
v
(0)
1 , v

(0)
2

)
= v

(0)
1 ∂xv

(0)
2 − v

(0)
2 ∂xv

(0)
1 .

As (3.2) and (3.6) yield

ψ
(0)
1,2 = ∂xv

(0)
1,2, l

−1
a ∂xψ

(0)
1,2 = −v(0)1,2, (3.8)

then

W
(
ψ

(0)
1 , ψ

(0)
2

)
= laW

(
v
(0)
1 , v

(0)
2

)
. (3.9)

FunctionsW (v(0)
1 , v

(0)
2 ) and l−1

a W (ψ(0)
1 , ψ

(0)
2 ) are independ-

ent of x.
The WronskianW (v(0)

1 , v
(0)
2 ) and the function l−1

a W (ψ(0)
1 ,

ψ
(0)
2 ), identically equal to it, become zero at such ω2

values that solutions ψ(0)
1 , ψ(0)

2 coincide with ψ̄(0)
n and

v
(0)
1 , v(0)

2 coincide with v̄(0)
n , i.e. when ω2 = Ω2

n . Thus,

equations W (v(0)
1 , v

(0)
2 ) = 0 and l−1

a W (ψ(0)
1 , ψ

(0)
2 ) = 0 are

the different forms of the dispersion equation of the
leading approximation with respect to the FMS–Alfven
wave coupling. Solutions to this dispersion equation
determine real Ω2

n as functions of k2.
Equation (3.6) has real eigenvalues ω2 = Ω2

n , since,
unlike (2.8), there is no term with k2

y that could describe
the FMS–Alfven wave coupling. Taking this term in
(2.8) into consideration as a small correction and using
the standard procedure of the perturbation theory, we
can determine imaginary parts of frequencies at which
there are solutions to (2.8) – ψ̄n– satisfying the boundary
conditions of disturbance vanishing as |x| → ∞. Differ-
entiating both parts of (2.8) with respect to x and using
notation v̄n ( v̄n = −l−1

a ∂xψ̄n) in the first two terms, we
obtain

∂2
xv̄n + lav̄n = −k2

y∂x(l
−1
a ψ̄n).

The right-hand side of this equation takes account
of the FMS–Alfven wave coupling. We write complex
frequencies, corresponding to ψ̄n, as follows:

ωn± = ±Ωn − iγn, (3.10)

where the positive value has been chosen for Ωn at real k.
The decrement value is not dependent of signs of k or of
real part of ωn. Let us write the sequence of calculations
of γn only for Reωn = Ωn, k > 0. Representing ψ̄n and
v̄n in the form

ψ̄n = ψ̄(0)
n + ψ̄(1)

n ,
∣∣ψ̄(1)

n

∣∣ �
∣∣ψ̄(0)

n

∣∣ ,
v̄n = v̄(0)n + v̄(1)n ,

∣∣v̄(1)n ∣∣ �
∣∣v̄(0)n ∣∣ ,

we have

∂2
xv̄n + la

(
Ω2
n

)
v̄n − 2iΩnγnV

−2
a v̄(0)n = −k2

y∂x
(
l−1
a ψ̄(0)

n

)
.

Multiplication of both parts of this equation by v̄(0)n and
integration between −∞ and ∞ yields

2iΩnγn

∫ ∞

−∞
V−2
a

(
v̄(0)n

)2
dx = k2

yIm

×
∫ ∞

−∞
v̄(0)n ∂x

((
la

(
Ω2
n

))−1
ψ̄(0)
n

)
dx.

Let us use normalization conditions of (3.5) and the fact
that ∫ ∞

−∞
v̄(0)n ∂x

((
la

(
Ω2
n

))−1
ψ̄(0)
n

)
dx = −

∫ ∞

−∞

(
∂xv̄

(0)
n

)2

×
(
la

(
Ω2
n

))−1
dx.

We also put l−1
a = Va(2k(ω − kVa))

−1 and Va =
Va(xn1,2) + (∂xVa)(xn1,2)(x − xn1,2), where xn1,2 are the co-
ordinates of the surfaces where the resonant condition
la(Ω

2
n ) = 0 is satisfied. The bypass rule of singular points

when integrating over x is defined by the relation
Imxn1,2 = −Imω/(k(∂xVa)(xn1,2)) and the fact that Imω >

0 due to Laplace transform. We obtain

γn = π
k2
y

4k2Ωn

∑
i=1,2

((
∂xv̄

(0)
n

)2 |(Va/(∂xVa))|
)
(xni)

. (3.11)

In conclusion, we write Green’s function for (3.4).
Let us denote it by G

(0)
(x). It can be represented as an

expansion in eigenfunctions v̄(0)n . Actually, if we suppose
that the solution to equation

∂2
xG

(0)
(x) + laG

(0)
(x) = δ (x− ξ)

is represented in the form

G
(0)
(x) =

∑
n
anv̄

(0)
n ,

we get ∑
n
an

[
1

V 2
a

[
ω2 − Ω2

n

]]
v̄(0)n = δ (x− ξ) .

Multiplication of both parts by v̄(0)m and integration using
the normalization conditions (3.5) yield

G
(0)
(x) =

∑
n

1[
ω2 − Ω2

n

] v̄(0)n (x) v̄(0)n (ξ) . (3.12)
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4. Evolution of waveguide FMS disturbance
In this paper, description of evolution of the initial
disturbance for the case of weak FMS–Alfven wave
coupling is based on the method that has been used to
study evolution in the general case of an arbitrary coup-
ling in Sedlachek (1971a, b), Grossmann and Tataronis
(1973), and Tataronis and Grossmann (1973), and which
originates from Landau’s problem of electromagnetic
wave damping in plasma. The key point of this method
is the analytic continuation of Green’s function from
the region of values ω with a positive imaginary part
(for which the Laplace transform has been made) to the
region of values ω with a negative imaginary part, while
keeping the bypass rule of the singular point obtained
in the upper half-plane. The subsequent deformation
of the contour of integration over ω in the inverse
Laplace transform allows to obtain the asymptotic de-
scription of initial disturbance when t → ∞ (Sedlachek
1971a, b; Grossmann and Tataronis 1973; Tataronis and
Grossmann 1973). The difference between the method
employed in this paper and the classical examination of
an integral in the inverse Laplace transform is as follows:
To describe evolution from the initial moment of time,
we transform the integrand in (2.6) using the slowness
of resonance absorption resulting from the weak FMS–
Alfven wave coupling before performing its analytic
continuation.

Let us write ψ1,2 in the form

ψ1,2 (x, ω) = ψ
(0)
1,2 (x, ω) + ψ

(1)
1,2 (x, ω) .

As the FMS–Alfven wave coupling is weak, we can
assume ∣∣ψ(1)

1,2 (x, ω)
∣∣ �

∣∣ψ(0)
1,2 (x, ω)

∣∣.
Neglecting small differences between ψ1,2 (x, ω) and

ψ
(0)
1,2 (x, ω), we obtain in (2.6)

G (x, ξ, ω) =
1

l−1
a W (ψ1, ψ2)

g(0) (x, ξ, ω), (4.1)

where

g(0) (x, ξ, ω) =ψ
(0)
1 (x, ω)ψ(0)

2 (ξ, ω) θ (ξ − x)

+ψ
(0)
2 (x, ω)ψ(0)

1 (ξ, ω) θ (x− ξ) .

Function g(0) has no singularities due to resonance, then
singular points of Green’s function G in the form of (4.1)
as a function of ω are dependent on the denominator of
(4.1) only. So function G has poles at such ω values that
the denominator in (4.1) is zero. Function l−1

a W (ψ1, ψ2)
is independent of x; it equals to zero at such ω values
that the Wronskian is zero. We have for zeros formulae
(3.10) and (3.11). The bypass rule corresponding to the
analytic continuation of ψ1 and ψ2 from the upper half-
plane of complex ω was used to obtain (3.11). Zeros
of the Wronskian are in the range of ω values with a
negative imaginary part: ω = ωn+ = Ωn − iγn and ω =
ωn− = −Ωn − iγn. Thus, integral over ω in the inverse
Laplace transform with Green’s function in the form of

(4.1) can be reduced to the summation of contributions
from the poles at ω = ωn+ and ω = ωn− by closing
the integration contour in the lower half-plane when
t > 0. Prior to calculating integral over ω, we transform
integral over ξ being its part. We first put F = F (0) =
∂x(l

−1
a Ux) in it. Then we use equalities∫ ∞

−∞
F (0) (ξ, ω)G (x, ξ, ω) dξ = − 1

l−1
a W (ψ1, ψ2)

×
∫ ∞

−∞
l−1
a (ξ, ω)Ux (ξ, ω) ∂ξg

(0) (x, ξ, ω) dξ (4.2)

and

∂ξg
(0) (x, ξ, ω) = θ (ξ − x)ψ(0)

1 (x, ω) ∂ξψ
(0)
2 (ξ, ω)

+ θ (x− ξ)ψ(0)
2 (x, ω) ∂ξψ

(0)
1 (ξ, ω) .

Taking (3.8) into consideration, we have

l−1
a ∂ξg

(0) (x, ξ, ω) = −θ (ξ − x)
(
∂xv

(0)
1 (x, ω)

)
v
(0)
2 (ξ, ω)

−θ (x− ξ)
(
∂xv

(0)
2 (x, ω)

)
v
(0)
1 (ξ, ω),

and

θ(ξ − x)v(0)
1 (x, ω)v(0)

2 (ξ, ω)+θ(x− ξ)v(0)
2 (x, ω)v(0)

1 (ξ, ω)

= W
(
v
(0)
1 , v

(0)
2

)
G

(0)
(x)(x, ξ, ω),

then

l−1
a (ξ)∂ξg

(0) (x, ξ, ω) = −W
(
v
(0)
1 , v

(0)
2

)
∂xG

(0)
(x) (x, ξ, ω) .

Notation G(0)
(x) was introduced above for the Green’s func-

tion of (3.4). As W (v(0)1 (ξ) , v(0)2 (ξ)) is independent of ξ,

we substitute W (v(0)1 (x) , v(0)2 (x)) for W (v(0)1 (ξ) , v(0)2 (ξ)).
Taking (3.12) into account, we get

l−1
a (ξ) ∂ξg

(0) (x, ξ, ω) = −W
(
v
(0)
1 , v

(0)
2

)∑
n

1(
ω2 − Ω2

n

)
×

(
∂xv̄

(0)
n (x, k2)

)
v̄(0)n (ξ) . (4.3)

By substituting (4.3) in the right-hand side of (4.2) and
taking account of (3.9) and (3.7), we obtain, instead
of

∫ ∞
−∞ F (ξ, ω, k)G (x, ξ, ω) dξ in (2.6), the following ex-

pression:

W
(
ψ

(0)
1 , ψ

(0)
2

)
W (ψ1, ψ2)

∑
n

1(
ω2 − Ω2

n

) ψ̄(0)
n (x)

×
∫ ∞

−∞
Ux (ξ, ω) v̄(0)n (ξ) dξ.

The inverse Laplace transform (2.6) is as follows:

ψk =
1

2π

∫ ∞

−∞
e−iωtW

(
ψ

(0)
1 , ψ

(0)
2

)
W (ψ1, ψ2)

∑
n

1(
ω2 − Ω2

n

) ψ̄(0)
n (x)

×
∫ ∞

−∞
Ux (ξ, ω) v̄(0)n (ξ) dξdω.
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12 I. S. Dmitrienko

There are no singularities when ω2 − Ω2
n = 0, since

W (0)(ψ(0)
1 , ψ

(0)
2 ) = 0 when ω2 − Ω2

n = 0. As we can put[
dW (ψ1, ψ2)

dω2

]
(ω2

n±)
=

[
dW

(
ψ

(0)
1 , ψ

(0)
2

)
dω2

]
(Ω2

n)

,

we have

W
(
ψ

(0)
1 , ψ

(0)
2

)
W (ψ1, ψ2)

1(
ω2 − Ω2

n

) =
1(

ω2 − ω2
n±

)
near poles of W (ψ1, ψ2); for the denominator, we have
(ω2 − ω2

n) = ±2Ωn(ω − ωn±). We should also put
Ux(ξ, ωn±) = Ux (ξ,±Ωn). By closing contour in the
lower half-plane when t > 0, we replace integration
with summation of contributions from residues and get

ψk = θ (t)
∑

n

(
ψkn+e

−iωn+t + ψkn−e
−iωn−t

)
,

where

ψkn± = cn±(k2)ψ̄(0)
n (x, k2) (4.4)

and

cn±(k2) = ∓ i

2Ωn

∫ ∞

−∞
Ux(ξ,±Ωn, k2)v̄(0)n (ξ, k2)dξ.

As ψkn± will be then used in the Fourier transform of
k, we write down the argument k2, which was omitted
before, in their expressions. In view of the determination
of Ux, we have

cn± =
1

2

∫ ∞

−∞

(
vxk (0) ± i

1

Ωn
∂tvxk (0)

)
v̄(0)n (ξ, k2)dξ.

Thus, the Fourier transform of the FMS disturbance is
the superposition of collective modes from the initial
instant of time. Structure of these collective modes with
respect to coordinates along the inhomogeneity and real
parts of frequencies are determined from the leading
order of (2.8), i.e. with neglecting of the FMS–Alfven
wave coupling, but they have decrements due to this
coupling. So these modes are collective modes of the
leading approximation.

5. Evolution of Alfven disturbance
The Alfven disturbance is incompressible: its compon-
ents of velocity v(a)x and v(a)y are related by equation

∂xv
(a)
x = −ikyv(a)y . It therefore suffices to determine v(a)y .

Let us use (2.3) for this purpose. We are interested in
the Alfven disturbance resulting from mode conversion
of the FMS disturbance in the waveguide rather than in
the Alfven disturbance caused by the initial disturbance.
Thus, we suggest that there is no initial disturbance
in the mode conversion region and put Uy = 0 there.
As we calculate y-component of velocity only for the
Alfven disturbance, we will not write index (a) in what
follows. To abridge notation, we will consider the Alfven
disturbance produced by the collective mode packet
with one number n; such a disturbance will be denoted
by inferior index n. Let us first determine the Alfven
disturbance in k-representation. Equation (2.3) yields:

vykωn = −ikyl−1
a ψkωn. The inverse Laplace transform

yields

vykn = −iky
1

2π

∫ ∞+ic

−∞+ic

e−iωt ψkωn
la

dω.

Writing ψkωn as

ψkωn =

∫ ∞

0

eiωτ
(
ψkpn+e

−iωn+t + ψkpn−e
−iωn−t

)
dτ

and reducing integral over ω to summation of pole
contributions by contour closures in the lower half-
plane when (t− τ) > 0 and in the upper half-plane
when (t− τ) < 0, we get

vykn = iky
Va

2k

∑
±
ψkn±

[
1

kVa − ωn±
[e−iωn±t − e−ikVat]

+
1

kVa + ωn±

[
e−iωn±t − eikVat

]]
, (5.1)

where
∑

± denotes summation of expressions with upper
and lower signs. The Alfven disturbance vykn consists of
induced and eigen oscillations:

v
(I)
ykn = iky

Va

2k

∑
±
ψkn±

[
1

kVa − ωn±
+

1

kVa + ωn±

]
e−iωn±t,

v
(E)
ykn = −iky

Va

2k

∑
±
ψkn±

×
[

1

kVa − ωn±
e−ikVat +

1

kVa + ωn±
eikVat

]
.

When γnt� 1, induced oscillations v(I)ykn decay and only

undamped eigen Alfven oscillations v(E)
ykn remain. As we

see, vykn as function of k has poles whose positions in
the plane of complex k are determined by the following
equations:

kVa = ωn± (5.2)

and

kVa = −ωn±. (5.3)

Let us denote the value of k 2 which is the root of
equation

Ω2
n (k

2) − k2V 2
a (x) = 0 (5.4)

by K2
n . For the sake of simplicity, we assume that there

is only one root for every n. We choose Kn > 0. It is
clear that Kn is the function of only variable x.

Let us denote solutions to (5.2) by kn±. Disturbances
with kn± have positive phase velocity and propagate
toward z = ∞. Solutions to (5.3) are k = −kn±. Disturb-
ances corresponding them propagate toward z = −∞.

Let us write solutions to (5.2) as follows: kn± = ±Kn−
iΛn. Let us write ωn±(kn±) in the form of expansion near

k = ±Kn : ωn±(kn±) = ±Ωna−±
dΩn

(
K2
n

)
dk

∣∣∣∣∣
k=±Kn

iΛn−iΓn.

We noted

Ωna = Ωn
(
K2
n

)
and Γn = γn

(
K2
n

)
.
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According to (3.11),

Γn = π
k2
y

4K2
nΩna

∑
i=1,2

((∂xVn)
2 |Va/ (∂xVa)|)(Xni),

where Xn1,2 are the x-coordinates of the surfaces where
the condition

Ω2
n

(
K2
n (x)

)
−K2

n (x)V 2
a

(
Xn1,2

)
= 0

is satisfied. There are two such coordinates as we as-
sumed above the Alfven velocity to have one minimum.
One of Xn1,2 equals to the chosen x-coordinate. Thus,
decrement Γn is the function of x only.

Let us denote dΩn
dk

∣∣
k=Kn

by Vgn. It is clear that Vgn
is equal to the absolute value of group velocity of
resonant mode, given k = Kn. Since Ωn is determined
from equation W (v(0)1 , v

(0)
2 ) = 0, where W is independent

of x, we can write W (Ω2
n , k

2) = 0. Differentiating this
equality with respect to k, we get

dω

dk
= − k

ω

dW

dk2

/dW

dω2
;

thus,

d (Ωn)

dk

∣∣∣∣
−Kn

= −Vgn.

Consequently,

ωn±(kn±) = ±Ωna − VgniΛn − iΓn.

Substitution of ωn±(kn±) in this form into (5.2) yields
Λn = Γn/(Va − Vgn).

Thus, we have obtained that there is an ensemble
of collective modes being in resonance with Alfven
waves on surfaces (or, taking account of collectivity
of modes, near surfaces) where the Alfven velocity is
Va (x). Width of the range of longitudinal wave numbers
of these modes near k = Kn or k = −Kn is Λn. It
is small due to smallness of Γn. Therefore, the only
significant contribution in the disturbance produced by
nth collective mode packet is the contribution made by
modes with real k such that |k ±Kn| � Λn. So we can
substitute ωn± by their expansions near k = Kn and
k = −Kn or their equivalent (by virtue of smallness
of Λn) expansions near kn± and −kn± . As we have
ωn± = kn±Va + Vgn(k − kn±) at k near to kn±, and
ωn± = kn±Va − Vgn(k + kn±) at k near to −kn±, we
obtain

vykn =
ikyVa

2k(Va − Vgn)

∑
±
ψkn±

×
[
exp(−i(kn±Va + Vgn(k − kn±))t) − exp(−ikVat)

(k − kn±)

+
1

(k + kn±)

(
e−i(kn±Va−Vgn(k+kn±))t − eikVat

)]
instead of (5.1), after having used these expansions.

Disturbance vykn consists of waves v(+)
ykn and v

(−)
ykn that

propagate toward z = ∞ and z = −∞, respectively. We

have v(+)
ykn = vykn

(I)(+) + vykn
(E)(+), where

vykn
(I)(+) =

ikyVa

2k(Va − Vgn)

×
∑

±
ψkn±

exp(−i(kn±Va + Vgn(k − kn±))t)

(k − kn±)
,

vykn
(E)(+) = − ikyVa

2k(Va − Vgn)

∑
±
ψkn±

− exp (−ikVat)
(k − kn±)

;

and

v
(−)
ykn = v

(I)(−)
ykn + v

(E)(−)
ykn ,

where

v
(I)(−)
ykn =

ikyVa

2k(Va − Vgn)

×
∑

±
ψkn±

1

(k + kn±)
e−i(kn±Va−Vgn(k+kn±))t,

v
(E)(−)
ykn = − ikyVa

2k(Va − Vgn)

∑
±
ψkn±

1

(k + kn±)
eikVat.

Induced and eigen oscillations are denoted by (I) and
(E) as above.

To obtain formula describing longitudinal structure of
the disturbance, we should perform the inverse Fourier
transform of function vykn over k. Let us first do it for
vykn

(I)(+). We have

v(I)(+)
yn =

ikyVa

4π(Va − Vgn)

∑
±

∫ ∞

−∞
eikzcn±ψ̄

(0)
n (x, k2)

×
[

1

k(k − kn±)
e[−ikn±Va−iVgn(k−kn±)]t

]
dk. (5.5)

In (5.5), we wrote ψkn± like in (4.4)
Let us write ∂tvxk (0) and vxk (0) in the form of the

Fourier transform: vxk (t = 0) =
∫ ∞

−∞ e
−iklvx (0) dl and

∂tvxk (0) =
∫ ∞

−∞ e
−ikl∂tvx (0) dl. Substitution of these in-

tegrals in cn± yields

cn± =

∫ ∞

−∞
e−ikl c̃n±dl,

where

c̃n± =
1

2

(∫ ∞

−∞
vx (0) ± i

1

Ωn(k2)
∂tvx (0)

)
v̄(0)n (ξ, k2)dξ.

As there are initial disturbances ∂tvx (0) and vx (0) on
the right-hand side, c̃n± functions are dependent on the
longitudinal coordinate ( l ), and presence of Ωn and v̄(0)n
implies dependence of c̃n± on k2, so c̃n± are the functions
of l and k2. Using c̃n±, instead of (5.5) we get

v(I)(+)
yn =

ikyVa

4π(Va − Vgn)

×
∑

±

∫ ∞

−∞

∫ ∞

−∞
eik(z−l)c̃n±dlψ̄

(0)
n (x, k2)

×
[

1

k(k − kn±)
e[−ikn±Va−iVgn(k−kn±)]t

]
dk.
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14 I. S. Dmitrienko

To perform k integration, we use the fact that the
integrand has poles at k = kn±. As kn± = ±Kn − iΛn,

Λn > 0, the poles are in the lower part of the complex
plane. Let us close the contour of k integration below,
including the poles, when (z − l − Vgnt) < 0; and close
the contour of integration in the upper half-plane when
(z − l − Vgnt) > 0. Therefore, the integral over k is
reduced to the summation of residue contribution. We
can put Ωn(k

2
n±) = Ωna, and ψ̄(0)

n (x, k2
n±) = ψ̄(0)

n (x,K2
n ),

v̄(0)
n (x, k2

n±) = v̄(0)
n (x,K2

n ) at the poles at k = kn± due

to smallness of the imaginary part of kn±. As K2
n is a

function of only variable x, ψ̄(0)
n (x,K2

n ) and v̄(0)
n (x,K2

n )
are functions of only variable x too. Let us denote these
by Ψn and Vn, respectively. These describe structure
of the disturbances of velocity divergence and the x-
component of velocity in resonant collective modes with
respect to the x-coordinate. Let us denote c̃n± by Cn±
when k2 = K2

n . We have

Cn± =
1

2

∫ ∞

−∞
vx (0)Vn (ξ) dξ ± i

1

2Ωna

∫ ∞

−∞
∂tvx (0)Vn (ξ) dξ.

(5.6)

Thus, we get the following equality for induced
oscillations:

v(I)(+)
yn =

kyVa

2Kn

(
Va − Vgn

)Ψn

×
∫ ∞

(z−Vgnt)

(
eikn+(z−l−Vat)Cn+ − eikn−(z−l−Vat)Cn−

)
dl.

By analogy, we get

v(E)(+)
yn = − kyVa

2Kn

(
Va − Vgn

)Ψn

×
∫ ∞

(z−Vat)

(
eikn+(z−l−Vat)Cn+ − eikn−(z−l−Vat)Cn−

)
dl

(5.7)

for eigen oscillations. As Vgn < Va, the entire disturbance
v(+)
yn = v(I)(+)

yn + v(E)(+)
yn propagating toward z = ∞ is

described by

v(+)
yn = − kyVa

2Kn

(
Va − Vgn

)Ψn

×
∫ (z−Vgnt)

(z−Vat)

(
eikn+(z−l−Vat)Cn+ − eikn−(z−l−Vat)Cn−

)
dl.

The substitution Cn+ and Cn− from (5.7) yields

v(+)
yn = −i ky

2Kn

Va(
Va − Vgn

)Ψn

×
∫ (z−Vgnt)

(z−Vat)
eΛn(z−l−Vat) (Cn1 (sin (Kn (z − l − Vat)))

+
1

Ωna
Cn2 (cos (Kn (z − l − Vat)))

)
dl. (5.8)

where

Cn2 =

∫ ∞

−∞
∂tvx (0)Vn (ξ) dξ andCn1 =

∫ ∞

−∞
vx (0)Vn (ξ) dξ.

Coefficients Cn1 and Cn2 are the coefficients of expansion
of the initial disturbance in eigenfunction Vn; these are
the functions of z. Thus, packet (5.8) consists of two
components: the first is determined by the initial plasma
shift at velocity vx(0) at the initial moment of time; and
the second is determined by the acceleration ∂tvx(0) that
plasma obtained when shifting.

Formula (5.8) describes the formation, growth, and
propagation of the Alfven disturbance. When t = 0,
there is no Alfven disturbance; it starts growing when the
integration interval increases with increasing t. Factor
exp(Λn(z − l − Vat)), decreasing with increasing integra-
tion variable from its lower limit, constrains the domain
of integration, which contributes significantly to the
integral. Thus, given Λn(Va −Vgn)t � 1 (i.e. Γnt � 1), the
upper limit of integration in (5.8) can be substituted
by ∞; this yields (5.7) (i.e. eigen oscillations only).
Therefore, formula (5.7) describes the Alfven disturbance
after vanishing of its generating waveguide disturbance.

Let us use (5.8)) to study the dependence of space-time
structure of the Alfven wave packet on relation between
scales of the initial disturbance and longitudinal scales
specified by resonance conditions. There are two latter
scales. The first is specified by the resonant wave number
Kn. This is wavelength λn of resonant collective modes,
λn ∼ K−1

n . The second is specified by the width of the
range of the resonance longitudinal wave numbers. This
is the scale of the order of Λ−1

n .
Let us consider the initial disturbances with different

ratios of their scales to the resonance scales.
(1) The Alfven disturbance from the initial disturb-

ance of large longitudinal scale:
Let us consider the case when the initial disturbance,

being a function of the longitudinal coordinate, is a
harmonics with wave number k0 and with envelope of
a large longitudinal scale so that Cn1 and Cn2 can be
represented in the form

Cn1 = cos (k0z)An1

(
y,

(z − z0)

Sn

)
,

Cn2 = cos (k0z)An2

(
y,

(z − z0)

Sn

)
,

where Sn �Λ−1
n . If the initial disturbance is the product

of two functions each of which depends on only one
coordinate x or z, the scale Sn is the same at all
values of n. Factor exp(Λn(z − l − Vat)) in the integrand
decreases with increasing integration variable from its
lower limit; dimensions of the domain of integration
(contributing significantly to the integral) are thus lim-
ited to the dimensions of about Λ−1

n . As Sn �Λ−1
n , we

can neglect variation of An1 and An2 on the scale of
the domain of integration and put in the integrand
An1,2(y,

(l−z0)
Sn

) = An1,2(y,
(z−Vat−z0)

Sn
).
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We thus get

v(+)
yn = − i

ky

2Kn

VaΨn

×
(
An1

(
y,

(z − Vat− z0)

Sn

)
I1

+
1

Ωna
An2

(
y,

(z − Vat− z0)

Sn

)
I2

)
, (5.9)

where

I1 =
1

2
(
Va − Vgn

) exp (−Γnt)

×
((

− |k0| +Kn

)
cos (ϕ0 + φn) − Λn sin (ϕ0 + φn)( (

|k0| −Kn

)2
+ Λ2

n

)
+

(
|k0| +Kn

)
cos (ϕ0 − φn) + Λn sin (ϕ0 − φn)( (

|k0| +Kn

)2
+ Λ2

n

)
)

− 1

2
(
Va − Vgn

) [
− |k0| +Kn(

|k0| −Kn

)2
+ Λ2

n

+
|k0| +Kn(

|k0| +Kn

)2
+ Λ2

n

]
cosϕ0

− 1

2

[
−Λn(

|k0| −Kn

)2
+ Λ2

n

+
Λn(

|k0| +Kn

)2
+ Λ2

n

]
sinϕ0,

I2 =
1

2
(
Va − Vgn

) exp (−Γnt)

×
(

−Λn cos (ϕ0 + φn) +
(
|k0| −Kn

)
sin (ϕ0 + φn)(

|k0| −Kn

)2
+ Λ2

n

+
−Λn cos (ϕ0 − φn) +

(
|k0| +Kn

)
sin (ϕ0 − φn)

Λ2
n +

(
|k0| +Kn

)2

)

+
1

2
(
Va − Vgn

) (
Λn cosϕ0 −

(
|k0| −Kn

)
sinϕ0(

|k0| −Kn

)2
+ Λ2

n

+
Λn cosϕ0 − (k0 +Kn) sinϕ0(

|k0| +Kn

)2
+ Λ2

n

)
.

We denoted |k0|(z − Vat) = ϕ0, Kn(Vgn − Va)t = φn.

Formulae for I1 and I2 describe the formation and
growth of Alfven waves in the packet as follows: when
t = 0, functions I1 and I2 are zero, since the induced
oscillations (terms with factor exp(−Γnt)) and eigen
oscillations (terms without this factor) compensate each
other; damping of induced oscillations leads to increase
in total disturbance; when Γnt � 1, induced oscillations
become small, and only eigen oscillations remain.

Region of the Alfven wave localization with respect
to the longitudinal coordinate is specified by An1 and
An2 in (5.9). As these are the functions of the lon-
gitudinal coordinate and time only through (z − Vat),
An1 and An2 describe propagation of the Alfven wave
packet at the local Alfven velocity. Besides, according
to (5.9), envelope structure of the Alfven wave packet
with respect to the longitudinal coordinate is determined
by envelope structure of the initial disturbance; thus,
the envelope of packet has longitudinal scale Sn. If
the initial disturbance is a harmonic disturbance with
k = k0 without envelope (i.e. An1,2 are independent of z),
Alfven waves propagating in opposite directions make
up a standing wave with respect to the longitudinal
coordinate.

According to expressions for I1 and I2, the disturbance
is localized along the x-coordinate near the surface
where |k0| = Kn. Using the inequality

1(
|k0| −Kn

)2
+ Λ2

n

�
1(

|k0| +Kn

)2
+ Λ2

n

,

we can rewrite I1 and I2 in the form

I1 = I (ϕ0, φn) and I2 = I
(
ϕ0 − π

2
, φn − π

2

)
,

I = exp (−Γnt)

×
[(

− |k0| +Kn

)
cos (ϕ0 + φn) − Λn sin (ϕ0 + φn)

2
(
Va − Vgn

) ( (
|k0| −Kn

)2
+ Λ2

n

)
]

+

(
|k0| −Kn

)
cosϕ0 + Λn sinϕ0

2
(
Va − Vgn

) ( (
|k0| −Kn

)2
+ Λ2

n

) .
On the surface x = xn, where equality |k0| = Kn is
satisfied, I takes on the following values:

I =
1

2Γn
(− exp (−Γnt) sin (ϕ0 + φn) + sinϕ0) .

We have Kn(x) = |k0| + K
′
n(xn)(x − xn) near xn; thus,

the width of the layer where the Alfven disturbance is
localized is Δn ∼ Λn(xn)/|K ′

n(xn)|.
(2) The Alfven disturbance from the initial disturb-

ance of small longitudinal scale:
Let us first consider the case when the initial dis-

turbance takes place only on surface z = z0. Suppose
Cn1 = αn1δ (z − z0) and Cn2 = αn2δ (z − z0), we obtain
from (5.8)

v(+)
yn = − i

kyVa

2Kn(Va − Vgn)
Ψne

Λn(z−z0−Vat)

× θ (− (z − z0 − Vat)) θ((z − z0 − Vgnt))

×
(
Cn1 (sin (Kn (z − z0 − Vat)))

+
1

Ωna
Cn2 (cos (Kn (z − z0 − Vat)))

)
.
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Formation of the Alfven disturbance and expansion of
its region along the longitudinal coordinate is described
by product of θ functions. Product of θ functions also
describes propagation of the leading edge of the Alfven
wave packet (let us denote its coordinate by z1) with
the Alfven velocity along the longitudinal coordinate,
z1 = z0 + Vat. Since the beginning (when t = 0), the
disturbance has a finite amplitude on surface z = z1, and
the subsequent energy loss by the waveguide disturbance
does not lead to its increase. There is, however, an
increase in dimensions of the Alfven wave packet along
the longitudinal coordinate: It increases with time from
zero to L = (Va − Vgn)t. When Λn(Va − Vgn)t � 1 (i.e.
when Γnt � 1, after the damping of resonant collective
modes), the packet stops increasing in longitudinal size.
Consequently, the maximum longitudinal scale of the
packet is Lmax ∼ Λn, and the form of the envelope as a
function of the longitudinal coordinate is determined by
the factor θ(−(z − z0 − Vat))e

Λn(z−z0−Vat) when Γnt � 1.
Let us now consider the case of the initial disturb-

ance localized on a small but finite scale s along the
longitudinal coordinates: Cn1 = αn1(x, y,

z−z0
sn

) and Cn2 =

αn2(x, y,
z−z0
sn

). If the initial disturbance is the product of
functions of x and z, then sn = s. We assume that the
functions an1 (x, y, z−z0

sn
) and an2(x, y,

z−z0
sn

) have scale
sn along the longitudinal coordinate in the sense that
these may be considered as zero when | z−z0

sn
| � 1. Let us

suppose that scale sn is much smaller than the resonance
wavelength: Knsn � 1. In this case, we can put that all
integrand functions, except for αn1,2, are equal to their
values when l = z0.
Consequently,

v(+)
yn = − ikyVa

Ψn

2Kn

(
Va − Vgn

)eΛn(z−z0−Vat)

×
(

cos (Kn (z − z0 − Vat))
1

Ωna
ãn2

+ sinKn (z − z0 − Vat) ãn1

)
, (5.10)

where

ãn1,2 =

∫ (z−Vgnt)

(z−Vat)
an1,2dl.

As an1,2 (x, y, z−z0
sn

) can be put to zero when | z−z0
s

| � 1,
then ãn1,2 = 0 when z−z0 � Vat+sn and z−z0 � Vgnt−sn.
When the induced oscillations are damped, i.e. when
Γnt � 1, we get

ãn1,2 =

∫ ∞

(z−Vat)
an1,2dl.

The integrals on interval z : |z − Vat| � sn vary from 0
to some finite values that they have when z < Vat − sn.
Consequently, width of the packet’s leading edge is of
the order of sn and its structure is given by ãn1 and
ãn2. If scale sn is much smaller than Λ−1

n , but greater or
of about their longitudinal wavelength (Knsn � 1), then
only exponents can be put to be equal to their values

when l = z0. We thus get

v(+)
yn = −iky

1

2Kn

Ψn

Va(
Va − Vgn

)eΛn(z−z0−Vat)

×
((

ã
(c)
n1 +

1

Ωna
ã

(s)
n2

)
sin (Kn (z − z0 − Vat))

−
(
ã

(s)
n1 − 1

Ωna
ã

(c)
n2

)
cos (Kn (z − z0 − Vat))

)
,

where

ã
(c)
n1,2 =

∫ (z−z0−Vgnt)

(z−z0−Vat)
Cn1,2 cos (Knη) dη,

ã
(s)
n1,2 =

∫ (z−z0−Vgnt)

(z−z0−Vat)
Cn1,2 sin (Knη) dη

and η = l−z0. When the induced oscillations are damped
(Γnt � 1), we get

ã
(c)
n1,2 =

∫ ∞

(z−z0−Vat)
cos (Knη) an1,2 (x, y, η) dη,

ã
(s)
n1,2 =

∫ ∞

(z−z0−Vat)
sin (Knη) an1,2 (x, y, η) dη.

Functions ã
(c)
n1,2 and ã

(s)
n1,2 determine structure of the

leading edge of the Alfven wave packet. The leading
edge has scale sn.

In conclusion, we note that we assumed that resonance
equation (5.4) had only one root. It is clear from above
that the solutions obtained (both (5.8) and its corollaries)
correspond to the one root, which is not necessarily
the only one; if there are several roots, the solutions
corresponding to different roots should be summed up.

6. Conclusion
We have obtained description of evolution of the initial
disturbance in the FMS waveguide: initiation of the
waveguide FMS disturbance, its dumpimg due to mode
conversion into Alfven waves, and arising and growth
of the Alfven disturbance.

We have shown that the Fourier transform of the FMS
disturbance with respect to the coordinates along which
plasma is inhomogeneous can be presented, starting
from the initial instant of time, as a superposition
of collective modes of the leading approximation with
respect to the weak FMS–Alfven wave coupling. Fre-
quency of such a mode and its structural dependence
on the coordinate along the inhomogeneity are found
without considering the FMS–Alfven coupling, and the
mode decrement is calculated using the perturbation
technique.

Using such a representation, we described evolution
of the Alfven disturbance mode converting from the
FMS waveguide disturbance produced by the initial
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disturbance of an arbitrary longitudinal structure. Such
an initial disturbance is divided into the superposition of
waveguide packets, each of which consists of collective
modes with one number n and different wave numbers.
Mode conversion of these packets of collective modes
into Alfven waves leads to formation of Alfven wave
packets.

We have obtained an analytic description of the
evolving Alfven wave packet as a function of time, the
coordinate along direction of inhomogeneity (x), and
the coordinate along the undisturbed magnetic field (z).
The formulae obtained are used to study the dependence
of space-time structure of the Alfven wave packet on
relation between scales of the initial disturbance and
longitudinal scales specified by resonance conditions.
There are two latter scales. The first is specified by res-
onant wave number Kn – it is a wavelength of collective
modes resonantly absorbed on surfaces where the Alfven
velocity is equal to Va(x). The second is specified by
the width of the range of resonance longitudinal wave
numbers and is of the order of Λ−1

n . The resonance
width with respect to k is related to time decrement of
resonant modes Γn by equality Λn = Γn/(Va(x)−Vgn(x)),
where Vgn (x) is the absolute value of group velocity of
resonant modes. Decrements Γn and Λn, as well as Kn,
are the functions of the x -coordinate only.

When the initial disturbance as function of the lon-
gitudinal coordinate is a harmonic (e.g. the entire de-
pendence of the longitudinal coordinate can be specified
as cos (k0z)), each waveguide packet has a resonance
surface x = xn whereon the wave number of reson-
ant modes coincides with k0. In the course of time
inversely proportional to time decrement Γn(xn), the
waveguide packet with number n mode converts into
standing Alfven wave (with respect to the longitudinal
coordinate) in the layer near surface x = xn. The layer
width is determined by longitudinal decrement Λn (xn).
Amplitude of the Alfven wave is inversely proportional
to time decrement Γn(xn).

If the initial disturbance as a function of the lon-
gitudinal coordinate is a harmonic with wave number
k0 and with envelope whose longitudinal scale is much
larger than Λ−1

n , then structure of the Alfven disturbance
with respect to coordinate k0 coincides with that in
the case of harmonic disturbance (i.e. it divides into
layers localized near surfaces x = xn). Envelopes of
Alfven packets propagate with the Alfven velocity in
opposite directions along the longitudinal coordinate.
Longitudinal scales of envelopes are determined by
the coefficients of expansion of the initial disturbance

in eigenfunctions Vn (x) that correspond to resonant
collective modes.

If the longitudinal scale of the initial disturbance is
much smaller, then Λ−1

n , the waveguide packet conver-
ted into the Alfven wave packet whose amplitude damps
exponentially behind its leading edge with exponential is
equal to Λn. Thus, the packet’s longitudinal size is equal
to Λ−1

n . Width of the leading edge, wherein the envelope
increases from zero to maximum, is finite; its scale is
determined by the scale of the initial disturbance.
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