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We investigate the statistical properties, based on numerical simulations and analytical
calculations, of a recently proposed stochastic model for the velocity field (Chevillard
et al., Europhys. Lett., vol. 89, 2010, 54002) of an incompressible, homogeneous,
isotropic and fully developed turbulent flow. A key step in the construction of this
model is the introduction of some aspects of the vorticity stretching mechanism
that governs the dynamics of fluid particles along their trajectories. An additional
further phenomenological step aimed at including the long range correlated nature
of turbulence makes this model dependent on a single free parameter, γ , that can
be estimated from experimental measurements. We confirm the realism of the model
regarding the geometry of the velocity gradient tensor, the power-law behaviour
of the moments of velocity increments (i.e. the structure functions) including the
intermittent corrections and the existence of energy transfer across scales. We quantify
the dependence of these basic properties of turbulent flows on the free parameter γ
and derive analytically the spectrum of exponents of the structure functions in a
simplified non-dissipative case. A perturbative expansion in power of γ shows that
energy transfer, at leading order, indeed take place, justifying the dissipative nature
of this random field.
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1. Introduction

Fluid turbulence is an archetypal phenomenon belonging to out-of-equilibrium and
nonlinear classical physics. Starting probably with the work of Reynolds, the complex
and multiscale nature of turbulent velocity fluctuations is usually apprehended in a
statistical way. In this spirit, Kolmogorov (1941) proposed in his seminal article a
dimensional based argument explaining the spatial two-point correlation structure of
velocity fluctuations, i.e. the 2/3-law (see for instance classical textbooks Batchelor
1953; Tennekes & Lumley 1972; Frisch 1995; Pope 2000), as it was observed in early
experimental measurements of laboratory flows. Furthermore, he derived rigorously
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from the Navier–Stokes equations, using the stationary solution of the von Kármán
and Howarth equation, the behaviour at infinite Reynolds number and vanishing scale
of the third-order moment of velocity increments, known as the 4/5-law (Frisch
1995), reminiscent of a non-vanishing mean energy transfer across scales. This gives
solid ground to the following phenomenology of three-dimensional homogeneous,
isotropic and incompressible turbulence: energy is injected at large scale L, the
so-called integral length scale (typically the mesh size of a grid generated turbulence
in a wind tunnel, or the typical scale of propellers, etc.), that is then transferred to
smaller scales via a direct cascading process, until it is dissipated by viscosity.

In this context, a more complete picture could be given while proposing a stochastic
representation of a velocity field able to reproduce in probability law the formerly
described spatial structure of turbulence. In other words, we ask whether it is possible
to build a random vector field u, incompressible, statistically homogeneous and
isotropic, seen as a statistically stationary solution of the Navier–Stokes equations,
that reproduces in particular the observed 2/3- and 4/5-law.

The very first idea would be to consider a Gaussian approximation. This was
first considered by Kolmogorov himself, and the respective process belongs to the
more general class of fractional Brownian motions (Mandelbrot & Van Ness 1968).
Unfortunately, such a Gaussian model fails to reproduce the observed and derived
mean energy transfer encoded in the third-order moment of the velocity increments, as
previously mentioned. However, an underlying Gaussian velocity field is an appealing
starting point, and we will see in the following how to modify it in order to obtain
a more realistic picture that includes energy transfer.

Hereafter, we consider homogeneous, isotropic and incompressible velocity fields in
three-dimensional space, i.e. uε(x)= (uεi (x))16i63 and x∈R3, with ε > 0 a regularizing
scale that plays the role, in a schematic way, of the Kolmogorov dissipative length
scale. In a Gaussian framework, let us call ug,ε such a field. To fully determine this
Gaussian velocity field, we have to prescribe its velocity components covariance,
that will in particular take into account the self-similar law of Kolmogorov (i.e. the
2/3-law). Homogeneity, isotropy, incompressibility and the self-similar property can
be modelled as a stochastic integral (Robert & Vargas 2008) in the following way

ug,ε(x)=−
∫
R3
ϕL(x− z)

x− z
|x− z|5/2−H

ε

∧W (dz), (1.1)

where W (dz) = (W1 (dz), W2 (dz), W3 (dz)) is a zero-average vector Gaussian white
noise whose components are independent with variance equal to the infinitesimal
volume dz, and ϕL(x) is a large-scale cutoff of characteristic extension L (i.e. the
integral length scale) ensuring a finite variance of this random velocity field. It is
chosen radially symmetric to ensure isotropy, that is, for any vector x, ϕL(x)=ϕL(|x|).
The singular kernel x/|x|ε is regularized over the scale ε such that |x|ε is proportional
to ε when |x| → 0 (see § 3 and Robert & Vargas 2008 for further details). This
gives differentiability to the vector field ug,ε(x) for any ε > 0. The vector product ∧
entering (1.1) recalls the structure of the Biot–Savart law and ensures incompressibility
(i.e. a divergence-free vector field). Using standard rescaling techniques (as done in
Robert & Vargas (2008), using similar techniques from Mandelbrot & Van Ness
(1968)), it can be shown that the limiting process ug= limε→0 ug,ε , which corresponds
in a turbulent context to the limit of vanishing viscosity, is a finite variance random
vector field when the so-called Hurst (or Hölder) exponent H is strictly positive,
i.e. H > 0. Let us introduce the velocity increments in order to make a connection
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A dissipative random velocity field for fully developed fluid turbulence 371

with turbulence phenomenology and comment on the free parameter H entering the
definition of the field from (1.1). As is usually done in the turbulence literature
(see for instance classical textbooks such as Batchelor (1953), Frisch (1995)), it is
convenient to define the longitudinal δ‖`uε and transverse δ⊥` uε velocity increments.
Note uε‖ and uε⊥, the projections of the vector uε onto the direction of ` and,
correspondingly, onto any perpendicular direction. The longitudinal and transverse
velocity increments are given by

δ
‖
`u
ε(x)= uε‖(x+ `/2)− uε‖(x− `/2) and δ⊥` uε(x)= uε⊥(x+ `/2)− uε⊥(x− `/2).

(1.2a,b)

It can be shown, for 0 < H < 1, that the limiting Gaussian random field ug, as we
will recall in this article, is scale invariant in the sense that moments of velocity
increments, the so-called structure functions, behave as power laws, i.e. for q ∈N,

E[(δ‖`ug)2q] ∼
`→0

Cg,‖
2q `

2qH and E[(δ⊥` ug)2q] ∼
`→0

Cg,⊥
2q `

2qH, (1.3a,b)

with Cg,‖
2q and Cg,⊥

2q two strictly positive constants that are universal in the sense
that they depend on the order q and only on the value of the cutoff function at
the origin ϕL(0) (and not on its entire shape). Based on dimensional arguments,
Kolmogorov phenomenology predicts H = 1/3, that is E(δ‖`ug)2 ∼

`→0
Cg,‖

2 `2/3, justifying
the terminology of the 2/3-law. We gather the proofs in appendix B. Roughly
speaking, the scale-invariance property comes from the singular power-law shape
of the kernel entering the definition of the Gaussian velocity field in (1.1). We
can see that, as far as Kolmogorov’s 2/3-law is concerned, we can give a clear
meaning (1.1) to a stochastic representation of a turbulent homogeneous, isotropic
and incompressible velocity field. Unfortunately, such a representation is too naive
to reproduce the 4/5-law, that requires a non-vanishing (strictly negative) third-order
moment of velocity increments, whereas the Gaussian random field (1.1) is such that

E[(δ‖`ug)3] =E[(δ⊥` ug)3] = 0. (1.4)

As noted, the Gaussian velocity field (1.1) fails to give a realistic picture of K41
phenomenology since the Gaussian structure leads to vanishing odd-order correlators
and thus, to a vanishing mean energy transfer across scales. Furthermore, higher-order
even correlators are themselves poorly predicted. This intrinsic non-Gaussianity of
the small scales was observed in early experimental measurements (Batchelor 1953;
Monin & Yaglom 1971). This was taken into account by Kolmogorov (1962) and
Obukhov (1962) (hereafter referred to as KO62) while refining the K41 theory
and setting a very peculiar statistical structure of the dissipation field. This is the
so-called intermittency, i.e. multifractal phenomenon (see Frisch 1995 for a review
on the subject).

Various approaches were developed in the past to provide a stochastic representation
of such a dissipation field, starting probably with the discrete cascades models
initiated by the Russian school (Monin & Yaglom 1971, see also Benzi et al.
1993; Arneodo, Bacry & Muzy 1998). We will prefer here to follow a continuous
version of these discrete cascade models that ensures homogeneity, known as the
limit-lognormal model of Mandelbrot (1972), rigorously studied in the framework
of Gaussian multiplicative chaos by Kahane (1985) (see Rhodes & Vargas 2014
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for recent developments on this matter). The aim is to model the dissipation field
as a lognormal process with a long range correlation structure of the fluctuations,
as observed in experiments (Monin & Yaglom 1971; Gagne & Hopfinger 1979;
Antonia, Phan Thien & Satyaprakash 1981). Gaussian multiplicative chaos consists
in defining such a scalar lognormal process as the exponential of a Gaussian field
X(x) with logarithmic covariance, i.e. E[X(x)X(y)] ∼ ln(L/|x− y|), with L being the
integral length scale. It is then possible to give a clear meaning to the scalar field eµX

(Kahane 1985), where µ is a dimensionless free parameter of the theory. In particular,
in three-dimensional space, it is then possible to show that the local average of this
scalar field ε` ∝ (1/`3)

∫
|x−y|<` eµX(y) dy over a ball of size ` is a well-posed random

field whose moments are scale invariant in the sense that Eεq
` behaves as `τq , with

τq = (µ2/2)q(1 − q) a nonlinear (quadratic) function of the order q. As we said,
such a construction is defined up to a dimensionless free parameter µ known as the
intermittency coefficient that can be precisely estimated on experimental signals (see
for instance Chevillard et al. (2012) and references therein).

Until now, the statistical properties of turbulence that we have mentioned concern
mainly the fluctuations of the longitudinal velocity profile which is accessible with
traditional experimental techniques, hot-wire anemometry in particular, and do not
characterize the vector nature of the velocity field. For example, at this stage, nothing
is said about the peculiar correlation structure of the components of the velocity
gradients tensor Aij = ∂jui. We are thus asking if, furthermore, it is possible to build
up a differentiable velocity field (at a finite ε) consistent with two important properties
of the velocity gradient tensor that are (i) the teardrop shape of the joint density of
the invariants Q = −(tr(A2))/2 and R = −(tr(A3))/3 (Tsinober 2001; Wallace 2009;
Meneveau 2011) and (ii) the preferential alignment of the vorticity vector ω=∇ ∧ u
with the eigenframe of the rate-of-strain matrix.

Going beyond the Gaussian approximation (1.1) is a difficult matter since the
mathematical theory of non-Gaussian processes is far more sophisticated. In this
direction, some recent attempts by Çağlar (2007) and Hedevang & Schmiegel (2014)
are interesting but it is not clear whether these vector fields exhibit energy transfer.
Let us also mention the iterative procedure of Rosales & Meneveau (2008) that gives a
realistic picture but which is not explicit, making analytical results out of reach at the
present time. In a one-dimensional context, several models have been proposed in the
literature in order to apply the discrete cascade models to reproduce synthetically the
observed fluctuations of longitudinal velocity profiles, including a model for energy
transfer (Juneja et al. 1994) with additional parameters and propositions to extend
to spatio-temporal (Biferale et al. 1998) and Levy-based (Schmiegel et al. 2004)
stochastic representations. In a different spirit, Nawroth & Peinke (2006) propose to
reconstruct velocity time series, starting from a time series at a given (small) scale and
assuming a Markov property in scale. As far as we know, Robert & Vargas (2008)
are the first to have proposed a compressible velocity field with non-symmetrical
probability laws. To generalize their approach to incompressible velocity fields, they
propose to modify the Gaussian field (1.1) in order to include energy transfer and
intermittency effects. This was done while disturbing the vector white noise field W
by the scalar multifractal measure given by the multiplicative chaos. Unfortunately, for
symmetry reasons, Robert & Vargas (2008) show that this incompressible intermittent
velocity field has a vanishing mean energy transfer. It is tempting to think that the
present picture is too heuristic to represent the complex local structure of turbulence.
A further step in this direction was proposed by Chevillard, Robert & Vargas (2010)
in which the Euler equations, and more precisely the vorticity stretching mechanism,
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is used in order to motivate the exponentiation of a homogeneous field of isotropic
symmetric trace-free Gaussian matrices, that eventually lead to energy transfer.

Let us recall how to include some aspects of the vorticity stretching mechanism in
the present picture. The Euler equations reads, in the vorticity formulation,

Dω

Dt
= ∂ω
∂t
+ (u · ∇)ω= Sω, (1.5)

where u is the velocity field, solution of the Euler equation and given by the Biot–
Savart law, i.e.

u(x)=− 1
4π

∫
x− z
|x− z|3 ∧ω(z) dz, (1.6)

and the deformation field S(x) is defined as the symmetric part of the velocity
gradient tensor, namely S = (A + AT)/2, where T stands for matrix transpose. In
incompressible flows, the deformation field is fully determined by the vorticity field
and the explicit form reads (Constantin 1994; Majda & Bertozzi 2002)

S(x)= 3
8π

P.V.
∫ [

(x− z)⊗ [(x− z)∧ω(z)]
|x− z|5 + [(x− z)∧ω(z)] ⊗ (x− z)

|x− z|5
]

dz, (1.7)

where the integral is understood as a Cauchy Principal Value (P.V.) and ⊗ is the
tensor product, i.e. (x ⊗ z)ij = xizj. The first underlying idea of Chevillard et al.
(2010) is to study the implication of a linearization of the previous formulation of
the Euler equation on the velocity field generated by the stretching of an initial
Gaussian vorticity field (with a K41 structure) by the initial deformation field. This
first motivates the use of the exponentiation of a Gaussian random field of symmetric
matrices, although it was not expected from this short-time study of the Euler
equations to reproduce the peculiar intermittent nature of the velocity field. This
structure was introduced by hand using the Gaussian multiplicative chaos that is
naturally obtained while modifying the integration kernel of the deformation field
(1.7). This heuristic procedure, motivated by the short-time dynamics of the Euler
equations, leads to the following proposition of a velocity field representing a realistic
local structure of turbulence:

uε(x)=−
∫
R3
ϕL(x− z)

x− z
|x− z|5/2−H

ε

∧ eγX ε (z)W (dz), (1.8)

where X ε(z) is an isotropic trace-free symmetric random matrix, whose structure
recalls the one of the deformation field (1.7), given explicitly by a tensor Wiener
integral that we will specify later. The non-dimensional constant γ governs the
level of intermittency. Let us finally remark that a crucial step of this construction, as
dictated by the short-time dynamics of the Euler equations, is the intrinsic dependence
of this statistically isotropic matrix X ε on the vector white noise W. We can see,
given a Hurst exponent that we will take to be H = 1/3 to be consistent with K41
phenomenology, that the proposed stochastic model (1.8) does depend on a single
free parameter γ that can be determined empirically. Therefore, if this vector field
is to provide a realistic picture of the local structure of turbulence, this unique free
parameter should govern at the same time both the intermittency phenomenon and the
physics of the energy transfer, which is, as far as we know, a new type of relationship
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between these phenomena. We will indeed derive from a perturbative approach (§ 6)
that the third-order moment of velocity increments is proportional to the scale, with
a multiplicative factor that is itself proportional to this free parameter γ .

The purpose of this article is to go beyond the results obtained by Chevillard
et al. (2010) in which the field (1.8) has been proposed for the first time and studied
mostly numerically for a single value of the intermittency coefficient γ representing
in a satisfactory manner the statistical properties of turbulence. As we will see in the
following quick description of the various sections of the article, the proposed new
material include (i) an extensive numerical study of the statistical properties of the
velocity field at the smallest ε resolutions we were able to reach, for several values
of the free parameter γ , (ii) an analytical derivation of the spectrum of exponents of
the structure functions in the asymptotic limit of vanishing resolutions ε → 0 of a
simplified ersatz of the field named uind and (iii) a perturbative approach for small γ
able to capture some aspects of the energy transfer taking place while reconsidering
the field uε(x) (1.8).

In § 2, we set our notation and define the field of random matrices X ε .
In § 3, we describe the numerical procedure in order to obtain realizations of

the velocity field (1.8). In short, uε is simulated in a periodic box of size (2π)3.
We rely then on the discrete Fourier transform to perform the convolutions. The
matrix exponential is evaluated at each point of space using a Padé approximant with
scaling and squaring. The fast Fourier transform (FFT) algorithm is used in its fully
parallel form. We study then the numerical properties of the velocity field based on
realizations up to 20483 collocation points.

In § 4, we use these numerical simulations to compute the joint density of
the invariants Q and R at various intermittency coefficients γ and discuss their
comparison with what is obtained in laboratory and numerical flows. Similarly, we
show the preferential alignment of vorticity with the intermediate eigendirection of
the eigenframe of the deformation, and quantify its dependence on γ .

Section 5 is devoted to a joint numerical and analytical study of the intermittency
phenomenon observed in the velocity field (1.8). We will indeed observe that this field
is intermittent (in a sense that we will make precise in the devoted section), and its
level of intermittency is given in terms of the coefficient γ . A rigorous derivation of
the behaviour of the structure functions of the velocity field is mathematically very
demanding, and even obtaining the variance of the components is a difficult task. The
reason is related to the strong correlation between the exponentiated Gaussian field of
matrices X ε and the underlying vector white noise W. To obtain analytical results, we
study an ersatz, which has the same structure as the proposed field (1.8) but assuming
the independence of the matrix X ε and vector W fields. We will call this case the
independent case and note the respective velocity field uind,ε . We will show in § 5
that, indeed, when properly renormalized, the velocity field uind,ε converges towards a
finite-variance process uind when ε→ 0 and we will compute its respective structure
functions, obtaining

E(δ‖`uind)2q ∼
`→0

Cind,‖
2q

`2qH−2q(q−1)γ 2(
ln

1
`

)q−1 and E(δ⊥` uind)2q ∼
`→0

Cind,⊥
2q

`2qH−2q(q−1)γ 2(
ln

1
`

)q−1 , (1.9a,b)

with Cind,‖
2q and Cind,⊥

2q two strictly positive constants. Note that asymptotically
higher-order longitudinal and transverse structure functions share similar scaling
behaviour. Note also that we do not obtain perfect power laws since an additional
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logarithmic factor appears in the asymptotic behaviour. This factor is related to the
matrix nature of the chaos and was already observed in Chevillard, Rhodes & Vargas
(2013). This former scale dependence of the structure functions is based on an exact
calculation for q 6 2, and has been extended to higher orders q > 2 based on a
conjecture proposed in Chevillard et al. (2013). Thus, this field uind allows us to
understand the intermittent corrections to the scaling behaviour with respect to the
Gaussian case ug. The independence assumption leads on the other side to vanishing
third- and more generally odd-order structure functions, namely

E(δ‖`uind)3 = 0, (1.10)

missing all the physics of energy transfer and showing that the intrinsic correlation
between the matrix X ε and vector W fields in the velocity field uε (1.8) is crucial
to reproduce non-vanishing third-order moment. Nonetheless, we show numerically
that, to fourth order, the ersatz uind,ε and the full velocity field (1.8) share similar
intermittent properties. Furthermore, an analytical study that takes into account finite-
scale corrections is performed in order to interpret with high precision the numerical
results. From the behaviour of the velocity increment flatness that we will define later
on (5.1), taking into account non-trivial finite-scale corrections, we are led to propose
the very particular value γ 2= 0.067 for turbulent applications in order to be consistent
with experimental measurements and numerical simulations.

Section 6 is devoted to the physics of energy transfer. As we said, a rigorous study
of the statistical properties of the proposed velocity field (1.8) is a difficult task. In
order to discuss the important physics of the energy transfer, as required by the 4/5-
law (Frisch 1995), we will rely on a perturbative analysis of this field, at a finite
resolution ε > 0, using the intermittency parameter γ as the small parameter, which is
indeed the case as far as turbulence is concerned. We show that such a perturbative
expansion of the longitudinal third-order velocity structure function is given by

E(δ‖`uε)3 = γDε(`)`
3H + oε(γ ), (1.11)

where oε(γ ) stands for a term that depends on ε but depends on a higher power of
γ than 1 (typically this term is of order γ 3 by symmetry). We are then able to show
that the dominating term linked to Dε(`) converges when ε→ 0 towards a non-trivial
function D(`) which is such that

lim
ε→0

Dε(`)=D(`)−→
`→0

D(0)=D, (1.12)

with D a constant. Numerical simulations show indeed such a linear behaviour, with
D< 0, of the third-order structure function with both the intermittency coefficient γ
and the scale ` when γ is small and when we use the Hurst of K41, namely H= 1/3.
This shows, up to first order in γ , that the proposed velocity field (1.8) exhibits energy
transfer according to Kolmogorov phenomenology.

We gather in § 7 our conclusion and perspectives.

2. Notations and basic properties of the velocity field
In what follows, δij will denote the Kronecker delta and εijk the Levi-Civita symbol.

We adopt Einstein’s convention of sum over repeated indices, unless explicitly stated,
and we note that εijkεipq = δjpδkq − δjqδkp.
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The full vector field (1.8) reads, with index notation,

uεi (x)=
∫
φεik(x− z)(eγX ε (z))klWl (dz), (2.1)

where the kernel φik encodes the structure of the underlying Gaussian velocity field
(1.1) and is given by

φεik(x)=−εijkϕL(x)
xj

|x|5/2−H
ε

, (2.2)

and the following matrix field built from the very same vector white noise W that
enters the construction of the underlying structure:

X ε(x) =
√

15
32π

∫
|x−y|6L

x− y
|x− y|7/2ε

⊗ [(x− y)∧W (dy)]

+ [(x− y)∧W (dy)] ⊗ x− y
|x− y|7/2ε

, (2.3)

which is inspired by the tensor structure of the rate-of-strain matrix S (1.7) that
stretches the vorticity vector along its path. We will motivate the use of the
multiplicative factor

√
15/32π when we give the variance and covariance of the

elements of the matrix X ε . At this stage, we remark that this matrix is Gaussian
since it is defined through a linear operation on a Gaussian measure W (2.3). It is
indeed symmetric, and it is easy to check that it is trace free, according to

tr(X ε)=
√

15
32π

∫
|x−y|6L

2
x− y
|x− y|7/2ε

· [(x− y)∧W (dy)] = 0. (2.4)

The free parameter γ entering the velocity field uε (2.1) plays the same role as the
free parameter λ used in the field given by equation (12) of Chevillard et al. (2010),
and their relation is γ 2 = (8/3)λ2.

The Gaussian white vector field Wi(x), for 16 i6 3, follows the following rules of
calculation. For any suitable deterministic function f (x, y), (x, y) ∈ (R3)2 such that it
is integrable along its diagonal, we have

E
∫

f (x, y)Wi (dx)=
∫

f (x, y)E[Wi (dx)] = 0, (2.5)

and

E
∫

f (x, y)Wi (dx)Wj (dy)=
∫

f (x, y)E[Wi (dx)Wj (dy)] = δij

∫
f (x, x) dx. (2.6)

2.1. Covariance structure of the field of isotropic matrices
Let us first show that the matrix field X ε (2.3) is indeed homogeneous and isotropic.
Homogeneity of the field X ε(x) follows from the convolution with the homogeneous
white measure W. Consider now a rotation matrix R ∈O3(R) such that RRT= I , where
I the 3× 3 identity matrix. Then, it can be shown that for any rotation matrix R, we
have X ε(x) law= RX ε(x)RT. The equality in law law= stands for equality in probability. This
shows that, in that sense, the matrix field is statistically isotropic.
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As an important further characterization of the homogeneous field of matrices X ε ,
we want to obtain its covariance structure, component by component. Let us first
remark that all of the elements (X ε

ij)16i6j63 are of zero mean, which follows from
the definition of the field as a convolution with a zero-mean white noise E[Wi] = 0.
We gather all the proofs of the following results in appendix A.

We have seen that the field of matrices X ε is statistically isotropic. Recall that
each element is a Gaussian random variable, and X ε is a symmetric matrix. Thus, the
covariance structure of its elements is given by the general framework developed in
Chevillard et al. (2013). We recall several key properties of this random matrix.

The first property of the elements of X ε is the divergence of their variance with
the regularizing parameter ε. Henceforth, we focus only on the element X ε

11 of the
matrix. See appendix A for a general discussion on the statistical behaviour of the
other elements. Defining the variance of this element as σ 2

ε , then it is easy to obtain
its asymptotic behaviour when ε→ 0 as

σ 2
ε =E[(X ε

11)
2] ∼
ε→0

ln
L
ε
. (2.7)

Thus, the variance of the elements of X ε diverge logarithmically with ε. This situation
is classically encountered in the context of multiplicative chaos (see a review on this
topic by Rhodes & Vargas 2014). Similarly, the covariance of the element X ε

11 can be
computed and we find, taking first the limit ε→ 0 and then looking for an equivalent
at small distances,

σ 2
|x−y| = lim

ε→0
E[X ε

11(x)X
ε
11(y)] ∼|x−y|→0

ln
L
|x− y| . (2.8)

In other words, the Gaussian random variable X ε
11 converges when ε → 0 towards

a random Gaussian distribution whose covariance behaves logarithmically at small
distances. We remark that the factor

√
15/(32π) entering the definition of X ε (2.3)

ensures a unit factor in front of the logarithmic behaviours seen in (2.7) and (2.8).
The very purpose of the theory of multiplicative chaos (Rhodes & Vargas 2014) is to
give a meaning to the exponential of such a field.

2.2. Homogeneity and isotropy
Let us now show that the velocity field (2.1), defined with the field of matrices X ε

(2.3), is indeed homogeneous and isotropic. Again, homogeneity of the vector field uε
follows from the convolution with the homogeneous field eγX ε (z)W (dz). Consider again
a rotation matrix R ∈O3(R). Then, for any rotation matrix R, we have uε(x) law= Ruε(x).
Thus, the velocity field is statistically isotropic. As a consequence, the velocity field
is of zero mean, i.e. for any ε > 0

Euε = 0. (2.9)

3. Numerical procedure
As we will see in the following, a rigorous derivation of the statistical properties of

the velocity field uε is a difficult matter. When analytical results are not possible, we
will rely on numerical simulations. To do so, we perform a numerical approximation
of uε in the periodic domain [0, 2π]3. Define N as the number of collocation
points in one direction. We will typically present results for N = 2048, using a fully
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parallelized algorithm of the fast Fourier transform (Frigo & Johnson 2005). The
elementary volume is given by dx= (2π/N)3. Standard algorithms allow to generate
3N3 independent realizations of a zero-mean Gaussian variable of variance dx in
order to define the vector white noise W (dz). The elements of the matrix exponential
entering the construction are calculated with the Expokit tool (Sidje 1998) using the
irreducible rational Padé approximant. The remaining convolutions are performed in
the Fourier space.

We choose as an isotropic cutoff function the following C∞, compactly supported
function

ϕL(x)= e−(|x|
2/(L2−|x|2))1|x|6L, (3.1)

and we will consider the particular value L = π/2 in order to obtain a couple of
integral scales in our simulations. The precise shape of this function is not important,
besides its characteristic length scale L, and only the large-scale statistical quantities
such as the variance depend on it. We will see that at small scales, explored as an
example by velocity increments, only the value at the origin ϕL(0) matters.

As a regularization mechanism, we use the following regularized norm

|x|2ε = |x|2 + ε2. (3.2)

This regularization procedure makes the continuous field uε (2.1) differentiable, and
divergence free in particular. In the discrete approximation, we cannot choose ε

arbitrarily small, since it is bounded from below by the finiteness of the smallest
accessible scale (dx)1/3 = 2π/N. As mentioned, ε plays the role, in a schematic
way, of the Kolmogorov scale, and therefore should depend on the Reynolds number.
As far as the Gaussian field is concerned (1.1), we can relate ε to the kinematic
viscosity ν and the Hurst exponent H in such a way that the average dissipation per
unit of mass remains finite and strictly positive when ν→ 0 (Chevillard 2015). In the
following, we will work numerically at a finite viscosity, and we will be interested
theoretically in the asymptotic limit ε→ 0, which corresponds to the infinite Reynolds
number limit. We thus have to take ε greater than (dx)1/3= 2π/N. When ε� (dx)1/3,
then the numerical field is smooth and gradients are well approximated. In particular,
in standard deviation, the divergence of the field div(uε) is much smaller than the
gradient of one of its components. When ε ≈ (dx)1/3, the numerical field is rough,
and gradients are poorly approximated. In other words, the divergence of the field
can be of the order of the gradient of one of its components (in standard deviation).
We are also interested in simulations where the inertial range is wide, i.e. we would
like to maximize the ratio L/ε. In § 4, since we will focus on velocity gradients, we
will use ε = 3 (dx)1/3. In the following sections, we will use ε = (dx)1/3. Once again,
the precise regularization procedure is not important as long as |x|ε is of order ε at
the origin, and equal to |x| at a distance � ε from the origin. We can rigorously
show that this is the case for the matrix multiplicative chaos (Chevillard et al. 2013).

4. Statistical structure of the velocity gradient tensor

As an important characterization of the velocity gradient tensor Aij= ∂juεi , we study
its two non-vanishing invariants. For instance, the second invariant Q is given by

Q=− 1
2 tr(A2)= 1

4 |ω|2 − 1
2 tr(S2), (4.1)
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FIGURE 1. (Colour online) Logarithmic representation of the joint probability density
P(Q∗, R∗) of R∗ = R/〈SijSij〉3/2 and Q∗ = Q/〈SijSij〉 calculated from the simulation of
the field uε using L = π/2, N = 2048 and ε = 3 (dx)1/3. (a) γ 2 = 0 (Gaussian case),
(b) γ 2 = 0.033, (c) γ 2 = 0.067 and (d) γ 2 = 0.133. Contour lines are the same in all
cases, logarithmically spaced by a factor of 10, and start at 1 near the origin. The thick
line represents the zero discriminant (or Vieillefosse) line: (27/4)R2 +Q3 = 0.

where ω is the vorticity vector and S the symmetric part of A, and can be interpreted
as the competition between enstrophy and dissipation (per unit viscosity). Then,
positive Q represents rotation-dominated regions and negative Q dissipation-dominated
regions. Analogously, the third invariant R is given by

R=− 1
3 tr(A3)=− 1

4ωiSijωj − 1
3 tr(S3) (4.2)

representing competition between enstrophy production and dissipation production. See
Tsinober (2001), Wallace (2009), Meneveau (2011) for a discussion on this topic. We
simulate the vector field uε for four different values of intermittency coefficients γ ,
with L = π/2, N = 2048 and ε = 3 (dx)1/3 (see discussion in § 3) and represent the
numerical estimation of the joint density of the invariants Q and R in figure 1.

As is well known, a Gaussian velocity field corresponding to ug,ε (1.1), or equiva-
lently the velocity field uε (1.8) with γ = 0, predicts a joint density of the invariants
symmetrical with respect to the R = 0 line. This is what we obtain in figure 1(a).
In figure 1(b–d), we study the effect of increasing γ . We can see that the bigger
the value of γ , the more elongated is the joint density along the right tail of the
zero discriminant (or Vieillefosse) line, where (27/4)R2 +Q3 = 0 (Vieillefosse 1982).
We will see that increasing γ corresponds to increasing the level of intermittency.
As justified in § 5, we choose the very particular value γ 2 = 0.067 for turbulence
applications whose corresponding joint density of R and Q is displayed in figure 1(c).
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FIGURE 2. (Colour online) Probability densities of cos(θ), where θ is the angle between
vorticity and the eigenvectors of the rate-of-strain tensor, estimated from the same
numerical simulation as in figure 1. We represent alignments with the eigenvectors
associated to the most negative (a), intermediate (b) and most positive (c) eigenvalues,
for the Gaussian case γ = 0 (solid lines), γ 2 = 0.033 (dashed), γ 2 = 0.067 (dot-dashed)
and γ 2 = 0.133 (dotted).

Another striking property of turbulence is the preferential alignment of vorticity
with the strain eigendirection associated to the intermediate eigenvalue. We refer again
to Tsinober (2001), Wallace (2009) and Meneveau (2011) for further discussions. We
represent in figure 2 the probability density of the cosine of the angle θ between
vorticity and the eigenvectors of the strain. Figure 2(b) indicates the preferential
alignment of vorticity with the correct eigenvector, as observed already in Chevillard
et al. (2010) for a single value of γ 2 = 0.067. Here, we can see that this alignment
is governed by the intermittency coefficient γ : no preferential alignment is observed
when γ =0, as expected from a Gaussian velocity field, and this preferential alignment
increases with increasing γ . We observe also in figure 2(a) that the density of the
preferential orthogonality of vorticity with the eigendirection associated to the smallest
(negative) eigenvalue is barely sensitive to γ , except in the Gaussian case γ = 0. As
for the angle between vorticity and the eigendirection associated to the biggest
(positive) eigenvalue (figure 2c), as observed in real flows, the density is almost flat,
with a slight dependence on the parameter γ , showing no preferential orientation.

Overall, as far as velocity gradient statistics are concerned, the velocity field uε
predicts non-trivial facts of fluid turbulence. In this picture, at least for the range
of γ values studied, the dependence on this parameter is weak. We will study in
the following section the influence of the parameter γ on the scaling of structure
functions, where it will play a key role.

5. Numerical and theoretical study of the intermittent properties
As we have seen in § 4, at a finite ε (or finite Reynolds number), the velocity field

uε (1.8) predicts realistic velocity gradient statistics. In particular, at any γ > 0, we
reproduce the teardrop shape of the RQ-plane (figure 1) and the preferential alignment
of vorticity (figure 2). The precise value of γ representing realistic turbulent statistics
has not been selected yet. This is the purpose of this section.

We focus now on the intermittency phenomenon, and explore the influence of the
parameter γ on the anomalous scaling of the structure functions (Frisch 1995). To
do so, we will discuss this phenomenon based on the flatness of velocity increments
(defined in (1.2)), namely

F ‖,⊥
ε (`)= E(δ‖,⊥` uε)4

[E(δ‖,⊥` uε)2]2 , (5.1)
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FIGURE 3. (Colour online) Logarithmic representation of the flatness of longitudinal (a,b)
and transverse (c,d) velocity increments (5.1) as a function of scales: (a,c) dependent case;
(b,d) independent case. The parameters of the simulation are N = 2048, L = π/2 and
ε = (dx)1/3 ≈ 0.00307 (see discussion in § 3). We use several values for the parameter
γ 2 = 0, 0.01, 0.02, 0.04, 0.067, 0.08, 0.10, 0.12, that give in all cases and any scale `
an increasing value of the flatness. In (a) (respectively (c)) we represent the flatnesses
of the longitudinal (transverse) increments corresponding to the vector field uε (1.8). We
represent in a similar way in (b) and (d) the flatnesses but for the velocity field uind,ε

(5.3). The power laws observed at moderate scales are superimposed on the same plots.

in both the longitudinal (i.e. ‖) and transverse cases (⊥). We perform first simulations
of the field for N = 2048, L=π/2 and several γ . We choose ε = (dx)1/3 in order to
maximize the extend of the inertial range, and represent the results of the estimation
of the flatness in figure 3.

5.1. Numerical estimations
We display in figure 3(a) (respectively figure 3c) the flatness of the longitudinal
(transverse) velocity increments as a function of the scale ` for selected values of
the parameter γ 2, including the Gaussian case γ 2 = 0. We indeed notice that in the
Gaussian case the flatnesses F ‖

ε and F⊥
ε do not depend on scale and equal 3. Then,

as γ increases, for any fixed scale, the flatness increases. We observe a power law
with the scale within a limited range, i.e.

F ‖,⊥
ε (`) ∼

ε�`<L
`β
‖,⊥(γ ), (5.2)

the regularization over the scale ε polluting a large part of the accessible scales. We
represent in figure 4(a) the obtained value for β‖,⊥ as a function of γ 2. We indeed see
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FIGURE 4. (Colour online) Estimation of the power-law exponents β‖,⊥(γ ) defined in
(5.2) from the fits performed in figure 3 as a function of γ 2. We represent in (a) the
results in the dependent case (corresponding to the fits of figure 3a,c), using the symbols
× for longitudinal, and ◦ for the transverse velocity increments. In (b), similar study
for the independent case corresponding to the fits of figure 3(b,d). We superimpose
in (b) the result of our theoretical predictions: (dashed line) the asymptotic prediction
β‖,⊥(γ )=−4γ 2 considering that the exponents β‖,⊥(γ ) have been measured at vanishing
scales `→ 0, and (solid line) a prediction that takes into account corrections implied by
the finiteness of the scale ` (see § 5.2.5).

that the scaling exponents β‖,⊥ decrease when γ increases, showing the augmentation
on the level of intermittency (Frisch 1995). We observe also, in this context, that
the level of intermittency of transverse velocity increments is higher than the one
observed on longitudinal velocity increments. In laboratory and numerical flows
(see for instance Chevillard et al. 2012), we find a universal behaviour (independent
of the flow geometry and the Reynolds number) for the longitudinal case, with
β‖=−0.1. Thus, turbulence statistics seem to be well reproduced for a very particular
small value of the parameter γ 2= 0.067, which was already found in Chevillard et al.
(2010).

The present velocity field (1.8) is an example of random process that exhibits a
higher level of intermittency for the transverse case than for the longitudinal case.
This is indeed a surprising effect, also observed in real flows (see discussions in Chen
et al. (1997), Dhruva, Tsuji & Sreenivasan (1997), Grauer, Homann & Pinton (2012)).
In our model, only an analytical study could give a clear answer to this observed
discrepancy, in particular in the asymptotic limit `→ 0. Unfortunately, the underlying
mathematical structure of this field is subtle, the strong correlation between the field
X ε and the white measure W is difficult to handle. In the following, we will study
both numerically and theoretically an ersatz uind,ε of the velocity field uε (1.8) that
follows the same rules of construction, except that the field of matrices X ε is built
independently of the underlying white measure W. This ersatz is amenable to exact
derivations of its statistical properties.

5.2. The hypothesis of independence
Consider now the following velocity field

uind,ε
i (x)= 1

cε

∫
φεik(x− z)(eγX ε (z))klWl (dz), (5.3)
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where again

φεik(x)=−εijkϕL(x)
xj

|x|(5/2)−H
ε

, (5.4)

and the following matrix field:

X ε(x) =
√

15
32π

∫
|x−y|6L

x− y
|x− y|7/2ε

⊗ [(x− y)∧W′ (dy)]

+ [(x− y)∧W′ (dy)] ⊗ x− y
|x− y|7/2ε

, (5.5)

where now the vector noise W′ is independent of the vector noise W of the underlying
Gaussian structure (5.3), namely for any (x, y) ∈ (R3)2, and any components k and l,
we have E[Wk(x)W ′l (y)] = 0. As we show in appendix C, the field (5.3) needs to be
renormalized in order to converge, when ε→ 0, towards a finite-variance process. This
deterministic normalization constant cε (which diverges when ε→ 0) is given by

c2
ε = 1

3E[tr e2γX ε ]. (5.6)

This is a standard way to renormalize the multiplicative chaos and this situation is
well understood as far as multiplicative chaos is concerned (Chevillard et al. 2013;
Rhodes & Vargas 2014). We can see that the difference between the full vector field
(1.8) and the one just mentioned (5.3) is that the matrix-free field X ε and the vector
white noise W are independent. This is a strong simplification but we can get simple
exact results.

5.2.1. Numerical simulations
We perform similar simulations of the velocity field uind,ε (5.3) as we did for the

(dependent) velocity field uε (2.1) and compare the estimation of velocity increment
flatnesses. We display our results in figures 3(b,d) and 4(b).

Overall, at any value of the parameter γ , both velocity fields uε and uε,ind share
qualitatively similar levels of intermittency. This gives confidence in explaining the
intermittent properties of uε (2.1) using results from the intermittent nature of the
velocity field ersatz uind,ε (5.3), which is amenable to analytical derivation. The main
difference, as far as intermittency is concerned, comes from the behaviour of the
flatness of transverse velocity increments. We observe indeed that in the independent
case, the observed power laws of the flatnesses F ‖

ε and F⊥
ε (5.1) have the same

scaling exponent β‖(γ ) = β⊥(γ ) (5.2), a property that we show in the following
sections. Also, as we will see, the velocity field ersatz uind,ε does not exhibit energy
transfer. In other words, uind,ε is a good ersatz to study the intermittent nature of the
velocity field uε , but fails at describing the physics of energy transfer. This reveals
also the great importance of building up the matrix field X ε from the very same
white measure W in order to predict energy transfer. We will come back to this point
in § 6.

5.2.2. Mean and covariance
Since W and X ε are independent, we easily get (see appendix C)

E[uind,ε
i (x)] = 0. (5.7)
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Thus, the vector field (5.3) has zero average, as expected from an isotropic vector
field. As for the covariance, we find

E[uind,ε
i (0)uind,ε

p (h)] = (φεik ? φεpk)(h), (5.8)

where ? is the correlation product defined in (B 3). We can see that the covariance
structure of the vector field uind,ε (5.3) is the same as the one obtained from the
underlying Gaussian field ug,ε (1.1). In particular, the field (5.3) converges in a L2
sense when ε→0, and it has same variance and covariance as the underlying Gaussian
field (see appendix B for the properties of the covariance of the underlying Gaussian
field). We will note the corresponding limiting process as uind= limε→0 uind,ε . Similarly,
the Gaussian field ug and the field uind share the same second-order structure functions
(both longitudinal and transverse).

5.2.3. Fourth-order structure function and Flatnesses
We define the velocity increment δ`ui as

δ`uind,ε
i = uind,ε

i (`/2)− uind,ε
i (−`/2)= 1

cε

∫
Φ
ε,`
ik (z)(e

γX ε (z))klWl (dz), (5.9)

where we have defined the even function

Φ
ε,`
ik (x)= φεik(x+ `/2)− φεik(x− `/2). (5.10)

Of special interest is the fourth-order structure function E(δ`uεi )4 (longitudinal and
transverse cases), and the respective flatnesses, i.e. F ‖ and F⊥ (5.1). We get (no
summation over repeated index i implied)

E(δ`uε,ind
i )4 = 3

c4
ε

∫
Φ
ε,`
ik1
(z2)Φ

ε,`
ik2
(z2)Φ

ε,`
ik3
(z4)Φ

ε,`
ik4
(z4)

×E[(e2γX ε (z2))k1k2(e
2γX ε (z4))k3k4] dz2 dz4, (5.11)

entering therefore the covariance of the matrix multiplicative chaos e2γX ε , which is
analytically derived in Chevillard et al. (2013). In appendix C, we show that the
fourth-order structure function converges when ε → 0 if we choose γ 2 < H/2, and
behaves asymptotically in the limit of vanishing scale `→ 0 as

E(δ`uind
i )

4 ∼
`→0

Cind
4
`4H−4γ 2

ln
1
`

, (5.12)

where the multiplicative constant Cind
4 is derived in appendix C. This shows that

longitudinal and transverse fourth-order structure functions have the same scaling
behaviours. More precisely, we obtain

E(δ‖`uind)4 ∼
`→0

Cind,‖
4

`4H−4γ 2

ln
1
`

and E(δ⊥` uind)4 ∼
`→0

Cind,⊥
4

`4H−4γ 2

ln
1
`

, (5.13a,b)

where the different constants Cind,‖
4 and Cind,⊥

4 are also given in appendix C. This
shows that the velocity field uind (5.3), built assuming independence of X and W,
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is intermittent, and the respective flatnesses (5.1) behave as power laws times a
logarithmic correction with the scale ` (see appendix C):

F ‖(`) ∼
`→0

Cind,‖
4

(Cind,‖
2 )2

`−4γ 2

ln
1
`

and F⊥(`) ∼
`→0

Cind,⊥
4

(Cind,⊥
2 )2

`−4γ 2

ln
1
`

. (5.14a,b)

Thus, according to this asymptotic prediction (5.14), the power-law exponents of the
flatness are the same and related to the parameter γ , namely β‖(γ )= β⊥(γ )=−4γ 2.

As we can observe in figure 4, this asymptotic prediction performs poorly against
our numerical results. We will see in § 5.2.5 that this quantitative discrepancy can be
explained while taking into account finite scale ` > 0 corrections, as it is necessarily
done while fitting power laws of flatnesses estimated in numerical simulations.

5.2.4. Heuristics for higher-order structure functions
It is easy to see, and shown in appendix C, that all odd-order structure functions

vanish under the hypothesis of independence: the assumption of independence
prevents us from studying the physics of energy transfer. Let us study now the
even higher-order structure functions and let us consider the 2n-order moment of
velocity increments E(δ`uε,ind

i )2n, for n ∈ N, given in (C 17). Doing so, we are left
considering the nth-correlator of the matrix exponential of 2γX ε:

E

[
n∏

q=1

(e2γX ε (z2q))k2q−1k2q

]
. (5.15)

For n > 2 calculations are tedious, but, based on a conjecture of Chevillard et al.
(2013) and an appropriate range of orders q, we can write that the structure functions
behave as

lim
`→0

ln E(δ‖`uind,‖,⊥)2q

ln `
= ζ ind

2q , (5.16)

with a similar spectrum of exponents for both longitudinal and transverse structure
functions given by a quadratic function of the order q, namely

ζ ind
q = qH − q(q− 2)

2
γ 2, (5.17)

showing that indeed, the parameter γ fully determines the intermittent properties of
the velocity field.

5.2.5. Finite-size corrections and interpretation of numerics
As far as flatnesses are concerned, we have found in our numerical simulations, for

which results are displayed in figure 3(b,d), a power-law exponent β‖,⊥(γ ), defined
in (5.2), much smaller (in magnitude) than our prediction 4γ 2 (5.14). This is shown
in figure 4(b). In this section we propose to explain this surprising fact while taking
into account finite-size corrections based on our predictions before looking at the
asymptotic limit `→ 0.

We have seen while deriving the flatnesses of velocity increments (§ 5.2.3 and
appendix C) that the covariance of the matrix chaos e2γX ε enters the expression of the
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fourth-order structure function, as shown in (5.11). The mathematical theory developed
in Chevillard et al. (2013) allows us not only to derive its asymptotic structure in the
double limits ε→ 0 and then `→ 0 as we have already seen, but also in the limit
ε→ 0 at a finite scale `. Recall that in the double limits, we have found a remaining
logarithmic correction to the power laws of the flatnesses (see (5.14)). The purpose
of this section is to explore the behaviour of the matrix chaos covariance when the
scale ` is finite, after taking the limit ε→ 0, that eventually leads to intermittency
with logarithmic corrections at vanishing scales `.

Clearly, the dependence on the scale ` of the flatnesses is linked to this matrix
chaos covariance. Under the hypothesis of isotropy, we can show that the matrix chaos
covariance depends on only two scalar functions f (`) and g(`) defined as

1
c4
ε

E[(e2γX ε (0))k1k2(e
2γX ε (h))k3k4] →

ε→0
f (h)δk1k2δk3k4 + g(h)[δk1k3δk2k4 + δk1k4δk2k3]. (5.18)

We give the expressions of f and g in (C 32) and (C 33), that are intermediate steps
before taking the limit `→ 0. As we show in appendix C, the quantities f and g
are responsible for the intermittent correction of the fourth-order structure functions,
the remaining kernels Φ` entering the expressions of the full structure functions (5.11)
participate mainly to the scaling 4H. When renormalizing by the square of the second-
order structure function, defining thus the respective flatnesses, we focus only on the
intermittent corrections. Thus, we will approximate the flatness exponent β‖,⊥(γ ) by
the logarithmic derivative of the contribution associated to f and g, to write

∂ ln F ‖,⊥(`)
∂ ln `

= β‖,⊥(γ )≈ ∂ ln[3f (`)+ 6g(`)]
∂ ln `

. (5.19)

As we have seen also, a key quantity that enters the expression of f and g (C 32) and
(C 33) is the covariance of the diagonal elements of X , i.e. σ 2

h (C 35), and we will
write it as

σ 2
` = ln

(
L
`

)
+ α, (5.20)

where α is a constant independent of the scale ` (it is more generally a bounded
function of the scale, but we will neglect this functional dependence). Obviously, the
constant α is negligible in front of the logarithm (5.20) when `→ 0. It is not the
case when ` is finite. We have estimated this constant in our numerical simulation
and we find α ≈ −0.5 (data not shown). Using (5.19), we evaluate the logarithmic
derivative at the scale `= 0.2, using the form of the covariance given in (5.20) with
thus α=−0.5. We display the result of this fit, as a function of γ , in figure 4(b). The
comparison with numerical data is fairly good at low values of γ and deteriorates
at higher values. Several remarks can be made at this stage to justify the level of
adequacy of our fit with numerical data. First, the model used to fit our data has
been obtained in the limit of vanishing resolutions ε→ 0, whereas it can remain some
finite-ε corrections when looking at a numerical simulation. Secondly, the parameter
α rigorously should be seen as a bounded function of the scales `. We took it as a
constant for the sake of simplicity. Thirdly, relation (5.19) is only an approximation,
and there could be additional finite-scale corrections related to the underlying Gaussian
velocity field. Recall indeed, as shown in appendix B, that the Gaussian velocity field
exhibits exact power laws in the double limits ε→ 0 and `→ 0, whereas we focus
here on finite-scale corrections. On the theoretical side, these corrections are difficult
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to obtain and will depend on the precise shape of the large-scale cutoff function ϕL
entering the definition of the velocity field (5.3). Finally, let us note that the influence
of the free parameter α entering (5.20) is only quantitatively substantial for higher
values of γ . We explain in this way the surprising fact that the estimated values
of β‖,⊥(γ ) based on our simulations differ from the asymptotic prediction −4γ 2 by
taking into account finite-size corrections.

Under the independence assumption, we are thus able to quantify finite-size
corrections to the scalings. Going back to the full vector field (1.8), we observe
in figure 4(a) that, likewise, longitudinal and transverse structure functions seem
to be affected by finite-size corrections. We furthermore observe a slight difference
between the longitudinal and transverse cases: according to our numerical simulations,
it seems that transverse intermittency corrections are bigger than the longitudinal ones.
The underlying strong correlation between the chaos and the white noise prevents us
from deriving analytically the asymptotic regime and thus, we cannot conclude at this
stage whether this slight difference will remain at vanishing resolution and vanishing
scale.

6. Energy transfer: skewness phenomenon
Let us now turn back to the full (i.e. correlated) vector field (1.8) that we recall

here for convenience,

uεi (x)=
∫
φεik(x− z)(eγX ε (z))klWl (dz), (6.1)

where

φεik(x)=−εijkϕL(x)
xj

|x|(5/2)−H
ε

, (6.2)

and the following field (2.3) is built from the very same vector white noise W that
enters the definition of the velocity field (6.1):

X ε(x) =
√

15
32π

∫
|x−y|6L

x− y
|x− y|7/2ε

⊗ [(x− y)∧W (dy)]

+ [(x− y)∧W (dy)] ⊗ x− y
|x− y|7/2ε

. (6.3)

The same vector noise W enters both the velocity field equation (6.1) and the matrix
field implying peculiar correlations, fully given by the correlators Γ p

ε , that read, for
1 6 p 6 3,

Γ p
ε (x− y) = E

[
X ε(x)

Wp (dy)
dy

]
=
√

15
32π

[
x− y
|x− y|7/2ε

⊗ [(x− y)∧ ep] + [(x− y)∧ ep] ⊗ x− y
|x− y|7/2ε

]
, (6.4)

where we have defined the unit vector ep with (ep)i = δip. Let us also remark that at
a given finite ε > 0,

Γ p
ε (0)= 0. (6.5)

The components of the 3× 3 matrices Γ p
ε are noted Γ p

ε,ij.
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Obtaining the exact statistical properties of the velocity field uε (6.1) is a difficult
task. The very peculiar correlation between X ε and W, fully encoded in the correlator
Γ p
ε (6.4), and the non-commutative nature of the field of matrices X ε make the

calculation out of reach at the present time. As an example, we do not know today
how to perform such a calculation even for the variance of the field uε . Instead, in
order to interpret the numerical evidences of energy transfer observed in Chevillard
et al. (2010), we propose to do a simpler calculation, namely a perturbative expansion
in power of γ that we hope will capture several key ingredients of the physics of
energy transfer. Making such an expansion prevents the analysis of intermittent
corrections since, in nature, the intermittency phenomenon cannot be treated, as far
as we know, with such an expansion.

As in the independent case uε,ind (5.3), we expect for the full vector field uε (6.1)
a normalization constant such that uε is of finite variance. Recall that the elements
of X ε are Gaussian random variables whose variance diverges logarithmically with
ε (cf. (2.7)). Indeed, for the independent case, we have shown that the velocity
field uε,ind has to be normalized by a constant cε that itself diverges with ε. It has
been shown in Chevillard et al. (2013) that the multiplicative chaos eγX ε has to be
renormalized in order to define a proper random variable (see also Rhodes & Vargas
(2014) for a review on this topic). As far as uε (6.1) is concerned, since we do not
know how to get the variance, we cannot make such a normalization constant explicit,
but is expected to be of the order of E[tr(eγX ε )] (as it has been proved for the chaos
in Chevillard et al. 2013) or

√
E[tr(e2γX ε )] (as we have shown for the independent

case). In the following perturbative expansion, we expect then a contribution of order
γ 2 (and all the following even powers of γ ) from this constant. Since we do not
know it explicitly, we will limit ourselves to a first-order expansion in γ , which will
not have any contribution from this possible unknown renormalizing constant. We
will see then that such a first-order expansion exhibit energy transfer.

6.1. First-order expansion of the covariance
At a given finite ε, the covariance of the vector field is given by

E[uεi (0)uεp(h)] =
∫
φεik(−z1)φ

ε
pq(h− z2)E[(eγX ε (z1))kl(eγX ε (z2))qrWl (dz1)Wr (dz2)]. (6.6)

Expanding the matrix exponentials up to first order gives

E[(eγX ε (z1))kl(eγX ε (z2))qrWl (dz1)Wr (dz2)] =E[Wk (dz1)Wq (dz2)]
+ γ (E[X ε

kl(z1)Wl (dz1)Wq (dz2)] +E[X ε
qr(z2)Wk (dz1)Wr (dz2)])+ oε(γ ). (6.7)

The 0th-order term E[Wk (dz1)Wp (dz2)] gives rise to the underlying Gaussian
contribution. It obviously converges when ε→ 0. The first-order term proportional to
γ vanishes, since the expectation of the product of an odd number of zero-average
Gaussian random variables always vanishes. We are thus left with

E[uεi (0)uεp(h)] = (φεik ? φεpq)(h)+ oε(γ ), (6.8)

which is the covariance of the underlying Gaussian velocity field (see appendix B).
There remains a possible dependence on ε in the remaining contributions oε(γ ). We
will neglect it and assume that the following limit when ε→ 0 makes sense:

E[ui(0)up(h)] = (φik ? φpq)(h)+ o(γ ). (6.9)

Thus, at first order in γ , the velocity field uε (6.1) has the same covariance as the
underlying Gaussian field ug,ε .
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6.2. First-order expansion of the third-order structure function
We recall that the velocity increment δ`ui is defined as

δ`uεi = uεi (`/2)− uεi (−`/2)=
∫
Φ
ε,`
ik (z)(e

γX ε (z))klWl (dz), (6.10)

where we have defined the even function

Φ
ε,`
ik (x)= φεik(x+ `/2)− φεik(x− `/2). (6.11)

Assuming no summation over the index i, we find

E(δ`uεi )
3=
∫
Φ
ε,`
ik1
(z1)Φ

ε,`
ik2
(z2)Φ

ε,`
ik3
(z3)

×E[(eγX ε (z1))k1l1(e
γX ε (z2))k2l2(e

γX ε (z3))k3l3Wl1 (dz1)Wl2 (dz2)Wl3 (dz3)]. (6.12)

Performing similar expansions as for the covariance case, we obtain, up to first order
in γ ,

E[(eγX ε (z1))k1l1(e
γX ε (z2))k2l2(e

γX ε (z3))k3l3Wl1 (dz1)Wl2 (dz2)Wl3 (dz3)]
= γE [X ε

k1l1(z1)Wl1 (dz1)Wk2 (dz2)Wk3 (dz3)+ X ε
k2l2(z2)Wk1 (dz1)Wl2 (dz2)Wk3 (dz3)

+X ε
k3l3(z3)Wk1 (dz1)Wk2 (dz2)Wl3 (dz3)] + oε(γ ). (6.13)

The three terms on the right-hand side of the former development give similar
contributions once inserted in the expression of E(δ`uεi )3. Focusing for example on
the first term, using the fact that the product of a even number of zero-averaged
Gaussian variables factorizes into pair products under an expectation value (Isserlis’
theorem) and omitting for convenience the obvious dependence of Γ on ε, we obtain

E[X ε
k1l1(z1)Wl1 (dz1)Wk2 (dz2)Wk3 (dz3)]
= Γ k2

k1l1(z1 − z2)E[Wl1 (dz1)Wk3 (dz3)]dz2 + Γ k3
k1l1(z1 − z3)E[Wl1 (dz1)Wk2 (dz2)]dz3,

(6.14)

where we have used that Γ l1
k1l1(0) = 0. Once again, the two terms on the right-hand

side of the former equality give similar contributions once inserted in the expression
of E(δ`uεi )3. We end up with, using the change of variable h= z1− z2 and performing
the remaining integration over z1,

E(δ`uεi )
3 = 6γ

∫
(Φ

ε,`
ik1
Φ
ε,`
il1 ? Φ

ε,`
ik2
)(−h)Γ k2

k1l1(h)dh+ oε(γ ). (6.15)

Note that because of the parity of the function Φε,`
ik1

, the function (Φε,`
ik1
Φ
ε,`
il1 ?Φ

ε,`
ik2
)(h)

is even. Thus, if the correlator Γ p(h) was odd, which is the case when X ε is
proportional to the identity matrix (i.e. considering a scalar multiplicative chaos), the
third-order moment of velocity increments would have vanished. This is consistent
with the conclusions of Robert & Vargas (2008). In our case, the use of a matrix field
X ε ensures a non-trivial third-order moment. Without loss of generality, we work for
instance with the first velocity component i= 1, and we rename repeated indices as

E(δ`uε1)
3 = 6γ

∫
(Φ

ε,`
1i Φ

ε,`
1j ? Φ

ε,`
1k )(h)Γ

k
ij (h) dh+ oε(γ ). (6.16)
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We can write

Γ k
ij (h)=

√
15

32π

hp

|h|7/2ε

(εjpkhi + εipkhj), (6.17)

to obtain

E(δ`uε1)
3 = 12γ

√
15

32π
εipk

∫
(Φ

ε,`
1i Φ

ε,`
1j ? Φ

ε,`
1k )(h)

hphj

|h|7/2ε

dh+ oε(γ ). (6.18)

Consider now a longitudinal velocity increment, define the unit vector e1 along the
first direction such that `= `e1, i.e. (e1)i = δ1i. We have

Φ
ε,`e1
1k (x)=−ε1jkxj

[
ϕL(x+ `e1/2)

|x+ `e1/2|5/2−H
ε

− ϕL(x− `e1/2)

|x− `e1/2|5/2−H
ε

]
, (6.19)

and we obtain
E(δ‖`uε)3 = γDε(`)`

3H + oε(γ ), (6.20)

with

Dε(`)= 12`−3H

√
15

32π
εipk

∫
(Φ

ε,`e1
1i Φ

ε,`e1
1j ? Φ

ε,`e1
1k )(h)

hphj

|h|7/2ε

dh. (6.21)

In this expression for Dε(`), take now the limit ε→ 0, assuming that all the integrals
converge. Noticing that

Φ
`e1
1k (`x) ∼

`→0
`H−3/2Φ̃

e1
1k(x) (6.22)

with

Φ̃
e1
1k(x)≡−ε1qkϕL(0)xq

[
1

|x+ e1/2|5/2−H
− 1
|x− e1/2|5/2−H

]
=−ε1qkϕL(0)xqHH(x),

(6.23)

we obtain

D(`)= lim
ε→0

Dε(`) = 12`−3H

√
15

32π
εipk

∫
(Φ

`e1
1i Φ

`e1
1j ? Φ

`e1
1k )(h)

hphj

|h|7/2 dh

∼
`→0

12

√
15

32π
εipk

∫
(Φ̃

e1
1i Φ̃

e1
1j ? Φ̃

e1
1k)(h)

hphj

|h|7/2 dh, (6.24)

which shows that

D = lim
`→0

D(`)=D(0)

= −12

√
15

32π
ϕ3

L(0)εipkε1qiε1ljε1mk

∫
zqzl(zm + hm)H

2
H (z)HH(z+ h)

hphj

|h|7/2 dz dh

= 12

√
15

32π
ϕ3

L(0)ε1qmε1lj

∫
zqzl(zm + hm)H

2
H (z)HH(z+ h)

h1hj

|h|7/2 dz dh

= 12

√
15

32π
ϕ3

L(0)
∫

H 2
H (z)HH(z+ h)

h1[(z∧ h)1]2
|h|7/2 dz dh. (6.25)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.166


A dissipative random velocity field for fully developed fluid turbulence 391

10010–110–210–3 101 0 0.1 0.2 0.3

 0

 –0.2

 –0.3

 –0.1

 0

 –0.2

 –0.3

 –0.1

(a) (b)

FIGURE 5. (Colour online) (a) Skewness of longitudinal velocity increments S (`) (6.27)
as a function of the scale `, estimated from the same type of numerical simulations as the
ones used in figure 3, for γ 2 = 0.0001, 0.0009, 0.0025, 0.005, 0.01, 0.02, 0.067. (b) Value
of the skewness at the origin S (0) as a function of γ . We superimpose a straight line
to show the linear behaviour of S (0) at small γ , as predicted by (6.28).

This shows that up to first order in γ , the third-order moment of velocity increments
(6.20), if the term oε(γ ) remains bounded when ε→ 0, behaves as

E(δ‖`u)3 ∼
`→0

γD`3H + o(γ ), (6.26)

where the constant D given in (6.25) is not trivially zero.

6.2.1. Numerical study of the skewness
We use the same kind of simulations as those displayed in figure 3 to estimate

the numerical value of this constant D (6.25). Recall that the explicit value of the
constant D (6.25) involves a six-dimensional integral which is tricky to estimate
through numerical integration. Instead, we use the randomness of the velocity
field in order to get an estimation of it. More precisely, in order to get rid of
the non-universal factor ϕL(0), we show in figure 5 the results for the skewness
S (`), i.e. the non-dimensionalized ratio of the third-order moment and the power
3/2 of the second-order moment, namely

S (`)= E(δ`u1)
3

[E(δ`u1)2]3/2 . (6.27)

According to the former γ -expansion (6.26), we predict, at small γ , a skewness
S (`)=S (0) independent of the scale `, and we get

S (0)= γD

[Cg,‖
2 ]3/2

+ o(γ ), (6.28)

where the constant Cg,‖
2 is given in appendix B (B 19). We remark that, at this stage,

the value of S (0) at first order in γ is universal, in the sense that it does not depend
on the large-scale quantity ϕL(0) and on the precise underlying regularization model
given in (3.2).

In figure 5(a) we display the numerical estimation of the skewness obtained from
simulations of the velocity field uε (1.8). We indeed see that, for small values of γ ,
the skewness S is independent of the scale `. Remark also that the skewness is
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negative for any γ , as it is observed in turbulence. We gather in figure 5(b) values
of the skewness at vanishing scale S (0). We observe a linear dependence of S on
γ , which shows (numerically) that at first order in γ , the proposed velocity field
uε (1.8) gives a non-trivial, non-vanishing and strictly negative skewness. Fitting the
linear behaviour of S (0) at small γ , we find S (0)≈−2.6γ + o(γ ), showing that, at
first order in γ , our prediction (6.28) makes sense. As far as turbulence is concerned,
we have found in § 5.1 that the particular value γ 2 = 0.067 gives a fairly realistic
behaviour of the flatness when compared against empirical findings. When inserted
into our first-order prediction (6.28), we obtain S (0) ≈ −0.67, which overestimates
typical values obtained in experiments (see Frisch (1995) and Chevillard et al. (2012)).
Let us comment on this discrepancy. First of all, real turbulence exhibits intermittent
corrections, making the skewness (6.27) slightly dependent on the scale ` and a
skewness of derivatives S (0) dependent on the Reynolds number (or on ε in the
present picture). These corrections cannot be seen with such a perturbative expansion
as proposed in (6.28). Furthermore, the typical intermittency parameter γ 2 = 0.067,
or equivalently γ = 0.26, is out of the range of observed linear behaviour of S (0)
with γ (figure 5b). These two facts can explain this discrepancy. If now we take a
look at the value of the skewness we are obtaining in the numerical simulation for
the parameter γ = 0.26, without invoking the perturbative expansion (see figure 5b),
we find S (0) ≈ −0.28 which is very close to what is obtained in real flows (see
Chevillard et al. 2012). This theoretical and numerical study shows that indeed the
proposed velocity field uε (1.8), and for the first time as far as we know, exhibits
non-vanishing and realistic energy transfer.

7. Conclusion and perspectives
We have studied the statistical properties of an explicit random velocity field (1.8)

able to reproduce the main properties of a fully developed turbulent flow, as observed
in experiments and numerical simulations. To do so, we have performed simulations
up to 20483 grid points, and developed analytical techniques when calculations were
possible. This claimed realistic picture of homogeneous and isotropic turbulence
includes the teardrop shape of the joint density of the invariants of the velocity
gradient tensor and the preferential alignment of vorticity with the eigenframe of
the deformation matrix (§ 4). Furthermore, assuming independence of the building
block of the intermittency phenomenon, i.e. the matrix multiplicative chaos (eγX ε ), on
the underlying Gaussian white measure (W), we are able to derive the spectrum of
exponents ζq = qH − q(q− 2)γ 2/2 (see § 5.2), which is thus found to be a nonlinear
function of the order q and gives full meaning to the free parameter γ . As we
explained, such a strong simplification forbids energy transfer. In order to obtain
some insights in the physics of energy transfer, we perform a perturbative expansion
of the full vector field in powers of γ and show that, at first order, the field exhibits a
non-vanishing third-order moment of longitudinal velocity increments, establishing the
dissipative nature of the field. This behaviour is consistent with Kolmogorov’s 4/5-law,
although the precise value of the prefactor 4/5 is not predicted since it requires a link
(and thus an additional free parameter) between the regularization scale ε and the
kinematic viscosity ν. Nonetheless, we are led to the conclusion that the proposed
velocity field is realistic of turbulence when we set γ 2 = 0.067, a value that has
been obtained when comparing the power-law behaviour of the flatness (see (5.2))
with experimental findings, taking into account finite-size corrections to the scalings.

As far as we know, the velocity field uε (1.8) is the first stochastic process proposed
in the literature that is able to predict a non-vanishing mean energy transfer across
scales. At least numerically, and supported by the perturbative expansion performed in
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§ 6, it seems that the non-vanishing nature of the third-order moment of longitudinal
velocity increments remains in the asymptotic limit ε → 0. This justifies the term
dissipative used in the title of the present article and gives hope to define one day
rigorously the limiting velocity field u = limε→0 uε as a stochastic representation of
weak solutions of the Euler equations, as they are depicted in Onsager’s contribution
to turbulence (see the review article Eyink & Sreenivasan (2006) on this subject). In
particular, the modern view of energy transfer of Duchon & Robert (2000) shows that
standard local energy budget is possibly violated by an additional dissipative term,
independent of viscosity, related to the non-differential nature of the velocity field. It
would be interesting to relate this view to the statistical properties of the proposed
field u. To do so, new mathematical techniques are needed in order to handle the
tricky correlated nature of the matrix X ε and vector W fields.

As perspectives, let us mention first the usefulness of such a random field in the
context of mean square estimation (Papoulis 1991) and related conditional averages
as far as turbulent applications are concerned (see for example Adrian & Moin
1988). Indeed, such a procedure can be used to provide new types of closures of the
subgrid stress tensor while performing a large eddy simulation (Langford & Moser
1999). More recently, it was shown that a Gaussian velocity field is able to reproduce
non-trivial properties of the pressure Hessian that enters the dynamics of the velocity
gradient tensor (see Meneveau 2011). More precisely, it is shown numerically in
Chevillard et al. (2011) that the following average of the Hessian of the pressure p
conditioned on the local velocity gradient tensor A, i.e.

E
[
∂2p(x)
∂xi∂xj

∣∣∣∣ A(x)
]
, (7.1)

is well approximated, when compared against direct numerical simulations of the
Navier–Stokes equations, if one assumes the velocity field to be Gaussian, such as ug

(1.1). Further analytical work in this direction by Wilczek & Meneveau (2014) shows
that indeed the prediction of this conditional average starting from a Gaussian velocity
field is able, when slightly modified, to regularize the finite-time divergence implied
by the self-stretching term. These results could then be extended while assuming for
the velocity field a stochastic structure such as the one we are proposing (1.8). A
first step in this direction could be reached assuming furthermore independence of
the multiplicative chaos on the underlying white measure because this simplification
makes calculations tractable (§ 5.2).

Finally let us comment on the remaining free parameter γ that governs both energy
transfer and the intermittency phenomenon in our velocity field uε (1.8). It would be
much welcome to use further constraints from the equations of motion in order to set
its value that would compare in an appropriate way against experiments. Constraints
on structure functions of order higher than the third one have been derived by Hill
(2001) and Yakhot (2001). They involve the pressure field p which is fully determined
by the corresponding velocity field through the Poisson equation. We could inquire if
these constraints, which include pressure gradient increments, can be used to give a
precise range of possible values for the intermittency coefficient γ . We keep these
perspectives for future investigations.
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Appendix A. Covariance structure of the field of matrices
A.1. General description

The homogeneous field of matrices as defined in (2.3) takes on the following structure:

(i) the diagonal entries (X ε
11, X ε

22, X ε
33) are independent of the off-diagonal entries

(X ε
ij) for 1 6 i< j 6 3,

(ii) the covariance matrix of the diagonal entries E[X ε
ii(0)X

ε
jj(0)], for 1 6 i, j 6 3, is

given by (3/2)σ 2
ε I − (σ 2

ε P3)/2 where σ 2
ε = E[(X ε

11)
2], I the 3× 3 identity matrix

and P3= (1)16i,j63 stands for the 3× 3 matrix filled with the coefficient 1 in all
entries. As ε gets smaller, we get the following asymptotic structure:

σ 2
ε ∼
ε→0

ln
L
ε
. (A 1)

(iii) the off-diagonal entries (X ij)i<j are mutually independent with variance (3/4)σ 2
ε .

This covariance structure is peculiar to isotropic matrices, as it is demonstrated
in Chevillard et al. (2013) where it corresponds to the particular case of trace-free
matrices. Let us now turn to the characterization of the Gaussian field of matrices
(2.3). It is enough, since it is Gaussian, to give the covariance structure. Up to an
additive independent Gaussian matrix with a bounded covariance structure as ε→ 0,
we obtain the following asymptotic covariance of the field X ε:

(i) the diagonal entries (X ε
11(x), X ε

22(x), X ε
33(x))x∈R3 are independent of the off-

diagonal entries ((X ε
ij(x))16i<j63)x∈R3 ,

(ii) When ε→ 0, the 3× 3 covariance matrix of the diagonal entries E[X ε
ii(x)X

ε
jj(y)],

for 1 6 i, j 6 3, is given by σ 2
|x−y|((3/2)I − (P3)/2), where

σ 2
|x−y| = lim

ε→0
E[X ε

11(x)X
ε
11(y)] ∼|x−y|→0

ln
L
|x− y| . (A 2)

(iii) the off-diagonal entries ((X ε
ij(x))i<j)x∈R3 are mutually independent, each of which

with covariance given by, for i 6= j,

E[X ε
ij(x)X

ε
ij(y)] ∼

ε→0

3
4σ

2
|x−y|. (A 3)

A.2. Proofs
The field of isotropic matrices X ε(x) is given by

X ε(x) =
√

15
32π

∫
|x−y|6L

x− y
|x− y|7/2ε

⊗ [(x− y)∧W (dy)]

+ [(x− y)∧W (dy)] ⊗ x− y
|x− y|7/2ε

. (A 4)

Next, we are showing that indeed this explicit field leads asymptotically (ε→ 0) to
the structure previously described in § A.1.
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A.2.1. Diagonal elements
Let us consider first the diagonal components (X ε

ii(x))16i63 of the random matrix-
valued field (A 4). For instance, consider the X ε

11(h) at the spatial location h:

X ε
11(h)= 2

√
15

32π

∫
h1 − y1

|h− y|7/2ε

[(h2 − y2)W3 (dy)− (h3 − y3)W2 (dy)]. (A 5)

We get

σ 2
ε,h =E[X ε

11(h)X
ε
11(0)] =

15
8π

∫
(h1 − y1)y1

|h− y|7/2ε |y|7/2ε

[(h2 − y2)y2 + (h3 − y3)y3] dy. (A 6)

Taking h = 0 in the previous integral, we find, using a spherical integration and the
explicit form of the regularized norm (3.2)

σ 2
ε =E[(X ε

11)
2] = 15

4π

∫
y2

1y2
2

|y|7ε
dy

= 15
4π

∫ π

θ=0

∫ 2π

ϕ=0
cos2(θ) sin3(θ) sin2(ϕ) dθ dϕ

∫ L

0

ρ6 dρ
[ρ2 + ε2]7/2

=
∫ L

0

ρ6 dρ
[ρ2 + ε2]7/2

∼
ε→0

ln
L
ε
, (A 7)

which entails (A 1). The asymptotic logarithmic behaviour can be easily obtained
while performing the change of variable ρ = εr. Let us remark that the asymptotic
variance of the diagonal elements of the matrix X ε is independent of the precise
regularization procedure.

Take now h 6= 0. Every integral converges when ε→ 0 and we obtain

σ 2
h = lim

ε→0
E[X ε

11(h)X
ε
11(0)] =

15
8π

∫
(h1 − y1)y1

|h− y|7/2|y|7/2 [(h2 − y2)y2 + (h3 − y3)y3] dy. (A 8)

We will now compute the equivalent of the former correlation function as h→ 0.
Performing the change of variable hz= y, i.e. h3 dz= dy, we find

σ 2
h =

15
8π

∫ (
h1

|h| − z1

)
z1∣∣∣∣ h

|h| − z
∣∣∣∣7/2 |z|7/2

[(
h2

|h| − z2

)
z2 +

(
h3

|h| − z3

)
z3

]
dz, (A 9)

where the integration domain is over |z| 6 L/h. As h→ 0, we can always choose a
constant C such that for C 6 |z| 6 L/h, we have |h/|h| − z| ≈ |z|. In the previous
integrals, the contribution resulting from the integration over the finite domain |z|6C
gives a bounded function of the norm h. The remaining contributions diverge with
h→ 0. Thus, we get
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σ 2
h ∼h→0

15
8π

∫ (
h1

|h| − z1

)
z1

|z|7
[(

h2

|h| − z2

)
z2 +

(
h3

|h| − z3

)
z3

]
dz

= 15
8π

∫
C6|z|6L/h

z2
1z2

2

|z|7 dz

∼
h→0

ln
L
h
, (A 10)

which entails (A 2).
Of great importance is also the cross-covariance of diagonal components, say

E[X ε
11(0)X

ε
22(h)]. Recall that

X ε
11(h)= 2

√
15

32π

∫
h1 − y1

|h− y|7/2ε

[(h2 − y2)W3 (dy)− (h3 − y3)W2 (dy)] (A 11)

and

X ε
22(h)= 2

√
15

32π

∫
h2 − y2

|h− y|7/2ε

[(h3 − y3)W1 (dy)− (h1 − y1)W3 (dy)]. (A 12)

In the same manner as followed to compute the correlation of a diagonal component,
we get

E[X ε
11(0)X

ε
22(h)] =−

15
8π

∫
(h1 − y1)(h2 − y2)y1y2

|h− y|7/2ε |y|7/2ε

dy, (A 13)

which leads to

E[X ε
11(0)X

ε
22(0)] =−

15
8π

∫
y2

1y2
2

|y|7ε
dy ∼

ε→0
− 1

2
ln

L
ε
. (A 14)

In the same spirit, the cross-covariance of the diagonal element is given by

lim
ε→0

E[X ε
11(0)X

ε
22(h)] =E[X 11(0)X 22(h)] ∼

h|→0
− 1

2
ln

L
h
. (A 15)

A.2.2. Off-diagonal elements
Consider now an off-diagonal element such as X ε

12. We have

X ε
12(h) =

√
15

32π

∫
1

|h− y|7/2ε

[(h1 − y1)(−(h1 − y1)W3 (dy)+ (h3 − y3)W1 (dy))

+ ((h2 − y2)W3 (dy)− (h3 − y3)W2 (dy))(h2 − y2)] . (A 16)

In particular

X ε
12(0)=

√
15

32π

∫
1

|y|7/2ε

[−y1(y1W3 (dy)− y3W1 (dy))− (−y2W3 (dy)+ y3W2 (dy))y2],
(A 17)
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such that

E[(X ε
12)

2] = 15
32π

∫
1
|y|7ε
[y4

1 + y4
2 + y2

1y2
3 + y2

2y2
3 − 2y2

1y2
2] dy

= 15
16π

∫
y4

1

|y|7ε
dy= 15

8

∫ π

0
cos4(θ) sin(θ) dθ

∫ L

0

ρ6

[ρ2 + ε2]7/2 dρ

= 3
4

∫ L

0

ρ6

[ρ2 + ε2]7/2 dρ

∼
ε→0

3
4

ln
L
ε
. (A 18)

In the same spirit, the cross-covariance of the off-diagonal element is given by

lim
ε→0

E[X ε
12(0)X

ε
12(h)] =E[X 12(0)X 12(h)] ∼

h→0

3
4

ln
L
h
. (A 19)

It can furthermore be shown that the off-diagonal elements are mutually independent,
for example

E[X ε
12(0)X

ε
13(0)] = 0, (A 20)

independent of the diagonal elements, i.e.

E[X ε
11(0)X

ε
12(0)] = 0, (A 21)

and the respective cross-correlation functions, i.e. E[X 12(0)X 13(h)] and E[X 11(0)X 12(h)]
are bounded functions of their argument h, in particular they do not diverge
logarithmically with h.

Appendix B. The underlying Gaussian velocity field
Consider the non-intermittent case (i.e. γ =0). We are left considering the following

Gaussian isotropic and homogeneous incompressible velocity field (uε,gi )16i63 (1.1):

uε,gi (x)=
∫
φεik(x− z)Wk (dz), (B 1)

where the kernel φεik is given by

φεik(x)=−εijkϕL(x)
xj

|x|5/2−H
ε

. (B 2)

B.1. Covariance and variance
It is easily seen that the covariance of this field is (considering only the covariance
between the null vector and h by homogeneity)

E[uε,gi (0)u
ε,g
p (h)] = (φεik ? φεpk)(h)=

∫
φεik(x)φ

ε
pk(x+ h) dx, (B 3)

which defines the correlation product ?. The kernel φεik(x) is singular for x= 0 when
ε → 0. Thus, the limiting integral exists if the strongest singularity obtained while
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considering the variance (i.e. h= 0) is integrable in three dimensions. This singularity
1/|x|2(5/2−H−1) is integrable in three dimensions for H> 0. In particular, for this range
of Hurst exponent H > 0, the variance of the velocity field converges and we can
write

lim
ε→0

E|uε,g|2 =E|ug|2 = (φik ? φik)(0)

= εijkεipk

∫
ϕ2

L(x)
xjxp

|x|5−2H
dx

= 2
∫
ϕ2

L(x)
|x|2
|x|5−2H

dx

= 8π

∫ +∞
0

ϕ2
L(ρ)ρ

2H−1 dρ, (B 4)

since we have assumed that ϕL is a radially symmetric function. Remark also that the
rapid decay of the cutoff function ϕL ensures a finite variance of the process. In the
sequel, we will drop the dependence on ε and consider the limiting process ug.

More generally, as expected from an isotropic velocity field and following the
notations of Batchelor (1953), the covariance structure of this Gaussian velocity field
can be written as

E[ug
i (0)ug

p(h)] = δip

∫
ϕL(x)ϕL(x+ h)

x · (x+ h)
|x|5/2−H|x+ h|5/2−H

dx

−
∫
ϕL(x)ϕL(x+ h)

xp(xi + hi)

|x|5/2−H|x+ h|5/2−H
dx

= F(|h|)hihp +G(|h|)δip, (B 5)

where the functions F and G are radially symmetric functions.
At this stage, as it is usually done in turbulence literature (Batchelor 1953), it is

convenient to decompose the covariance of the field in terms of the longitudinal and
transverse velocity correlations defined as

Rg
‖(h)=E[ug

‖(0)u
g
‖(h)] and Rg

⊥(h)=E[ug
⊥(0)u

g
⊥(h)], (B 6a,b)

where ug
‖ and ug

⊥ denote velocity components parallel and normal respectively to
the vector separation h. In homogeneous and isotropic turbulence, the correlations
Rg
‖(h) and Rg

⊥(h) are functions of the norm h only, and Rg
‖(0) = Rg

⊥(0) = (E|ug|2)/3.
Furthermore we have the following decomposition:

Rg
ip(h)=E[ug

i (0)u
g
p(h)] = (φik ? φpk)(h)= Rg

‖(h)− Rg
⊥(h)

h2
hihp + Rg

⊥(h)δip. (B 7)

The incompressible condition, i.e. ∂Rg
ip(h)/∂hp = 0, finally implies that the velocity

covariance Rg
ip(h) depends on a single scalar function since

Rg
⊥(h)= Rg

‖(h)+
h
2

dRg
‖(h)
dh

. (B 8)
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B.2. Structure functions

The velocity increment δ`u
g
i reads

δ`u
g
i (x)= ug

i (x+ `/2)− ug
i (x− `/2)=

∫
Φ`

ik(x− z)Wk (dz), (B 9)

where we have defined

Φ`
ik(x) = φik(x+ `/2)− φik(x− `/2)

= −εijk

[
ϕL(x+ `/2)

xj + `j/2

|x+ `/2|5/2−H
ε

+ ϕL(`/2− x)
`j/2− xj

|`/2− x|5/2−H
ε

]
. (B 10)

Note that so defined, the kernel Φ`
ik(x) is an even function of its argument (recall that

ϕL is a radially symmetric function), i.e.

Φ`
ik(x)=Φ`

ik(−x). (B 11)

Also, in order to simplify the following expressions, since the field is homogeneous,
we will only consider velocity increments at the position x= 0 and note

δ`u
g
i ≡ δ`ug

i (0)= ug
i (`/2)− ug

i (−`/2)=
∫
Φ`

ik(z)Wk (dz). (B 12)

Without loss of generality (by isotropy), consider only the first component ug
1 of the

Gaussian vector field ug. We get:

E(δ`ug
1)

2 = (Φ`
1k ? Φ

`
1k)(0)

=
∑
j6=1

∫ (
ϕL(z+ `/2)

zj + `j/2
|z+ `/2|5/2−H

+ ϕL(`/2− z)
`j/2− zj

|`/2− z|5/2−H

)2

dz.

(B 13)

Take e as a unit vector, consider then the displacement `= `e. We find, making the
change of variables z= `y:

E(δ`ug
1)

2 = `2H
∑
j6=1

∫ (
ϕL[`(y+ e/2)] yj + ej/2

|y+ e/2|5/2−H

+ ϕL[`(e/2− y)] ej/2− yj

|e/2− y|5/2−H

)2

dy. (B 14)

To conclude regarding scaling behaviour, we need to discuss the remaining `
dependence in the cutoff functions ϕL. Hereafter, we will assume that H < 1 which
ensures that the integrals converge without the need of cutoff functions. Thus, for this
range of parameters H ∈ ]0, 1[ , longitudinal and transverse velocity increments have
the same scaling behaviour given by the spectrum of exponents ζ ‖(2)= ζ⊥(2)= 2H.
Considering for instance the unit vectors for the longitudinal case e = e1 = (1, 0, 0)
and e= e2 = (0, 1, 0) for the transverse one, we finally obtain

E(δ‖`ug)2 ∼
`→0

Cg,‖
2 `ζ

‖(2) and E(δ⊥` ug)2 ∼
`→0

Cg,⊥
2 `ζ

⊥(2) (B 15a,b)
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with

Cg,‖
2 = ϕL(0)2

∑
j6=1

∫ (
yj

|y+ e1/2|5/2−H
− yj

|e1/2− y|5/2−H

)2

dy (B 16)

and

Cg,⊥
2 = ϕL(0)2

∑
j6=1

∫ (
yj + δj2/2
|y+ e2/2|5/2−H

+ δj2/2− yj

|e2/2− y|5/2−H

)2

dy. (B 17)

Notice that the constants Cg,‖
2 and Cg,⊥

2 are non-null and positive. Using the notation

HH(y)= 1
|y+ e1/2|5/2−H

− 1
|e1/2− y|5/2−H

, (B 18)

we can write the constant Cg,‖
2 in the following convenient way

Cg,‖
2 = 2ϕL(0)2

∫
y2

2H
2

H (y) dy. (B 19)

Since the field is Gaussian, it is straightforward to get the higher-order structure
functions as:

E(δ‖`ug)2q ∼
`→0

(2q)!
2qq! (C

g,‖
2 )q`ζ

‖(2q) and E(δ⊥` u)2q ∼
`→0

(2q)!
2qq! (C

g,⊥
2 )q`ζ

⊥(2q) (B 20a,b)

with

ζ ‖(q)= ζ⊥(q)= qH. (B 21)

We observe also that all odd moments vanish for a Gaussian process, i.e. for n ∈N
E(δ`ug

1)
2n+1 = 0. (B 22)

Appendix C. Statistical properties in the independent case

We recall the definition of the velocity field uε,ind (5.3)

uε,ind
i (x)= 1

cε

∫
φεik(x− z)(eγX ε (z))klWl (dz), (C 1)

where again

φεik(x)=−εijkϕL(x)
xj

|x|5/2−H
ε

, (C 2)

and the following matrix field:

X ε(x) =
√

15
32π

∫
|x−y|6L

x− y
|x− y|7/2ε

⊗ [(x− y)∧W′ (dy)]

+ [(x− y)∧W′ (dy)] ⊗ x− y
|x− y|7/2ε

, (C 3)
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where now the vector noise W′ is independent of the vector noise W, namely for any
(x, y) ∈ (R3)2 and any components k and l we have EWk(x)W ′l (y) = 0. As we will
see in the following, the field (C 1) needs to be renormalized in order to converge,
when ε→ 0, towards a finite-variance process. To ensure such a finite variance, we
introduce a deterministic normalization constant (which depends on ε)

c2
ε = 1

3E[tr e2γX ε ]. (C 4)

This is a standard way to renormalize the multiplicative chaos (Rhodes & Vargas
2014).

C.1. Mean, covariance and L2-convergence
Since W and X ε are independent, we easily obtain

Euind,ε
i (x) = 1

cε

∫
φεik(x− z)E[(eγX ε (z))klWl (dz)]

= 1
cε

∫
φεik(x− z)E[(eγX ε (z))kl]E[Wl (dz)]

= 0. (C 5)

Thus, the vector field (C 1) is of zero average, as expected for an isotropic vector field.
For the covariance we get

E[uind,ε
i (0)uind,ε

p (h)]
= 1

c2
ε

∫
φεik(−z1)φ

ε
pq(h− z2)E[(eγX ε (z1))kl(eγX ε (z2))qrWl (dz1)Wr (dz2)]

= 1
c2
ε

∫
φεik(−z1)φ

ε
pq(h− z2)E[(eγX ε (z1))kl(eγX ε (z2))qr]E[Wl (dz1)Wr (dz2)]

= 1
c2
ε

∫
φεik(−z)φεpq(h− z)E[(e2γX ε (z))kq] dz. (C 6)

The field of matrices X ε is isotropic, thus, according to Chevillard et al. (2013), we
get

E[(e2γX ε (z))kq] = c2
εδkq, (C 7)

where the renormalizing constant is given in (C 4). We can see that the covariance
structure of the vector field (C 1) is the same as the one obtained from the underlying
Gaussian field (1.1), namely

E[uind,ε
i (0)uind,ε

p (h)] =E[ug,ε
i (0)u

g,ε
p (h)] = (φεik ? φεpk)(h). (C 8)

In particular, the field (C 1) converges in a L2 sense when ε→ 0, and it has same
variance and covariance as the underlying Gaussian field. In the sequel, we note uind=
limε→0 uε,ind.

C.2. Structure functions
In a similar way, we define the velocity increment δ`ui as

δ`uind,ε
i = uind,ε

i (`/2)− uind,ε
i (−`/2)= 1

cε

∫
Φ
ε,`
ik (z)(e

γX ε (z))klWl (dz), (C 9)

where we have defined the even function

Φ
ε,`
ik (x)= φεik(x+ `/2)− φεik(x− `/2). (C 10)
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As we have seen, the covariance of the vector field (C 1) is the same as the one
obtained from the underlying Gaussian field. Thus it has also the same second-order
structure functions, both longitudinal and transverse (see appendix B). Take n ∈ N∗.
Using the independence between X ε and W, we can write (hereafter, no summation
over the index i),

E(δ`uind,ε
i )n = 1

cn
ε

∫ n∏
q=1

Φ
ε,`
ikq
(zq)E

[
n∏

q=1

(eγX ε (zq))kqlq

]
E

[
n∏

q=1

Wlq (dzq)

]
. (C 11)

We can see that all odd-order structure functions vanish since the expectation of an
odd product of the vector white noise components is always zero, i.e.

E

[
2n+1∏
q=1

Wlq (dzq)

]
= 0. (C 12)

Thus

E(δ`uind,ε
i )2n+1 = 0. (C 13)

This field (C 1) is not dissipative, and does not exhibit energy transfer. We consider
in the sequel only even-order structure functions to get:

E(δ`uind,ε
i )2n = 1

c2n
ε

∫ 2n∏
q=1

Φ
ε,`
ikq
(zq)E

[
2n∏

q=1

(eγX ε (zq))kqlq

]
E

[
2n∏

q=1

Wlq (dzq)

]
. (C 14)

Factorizing the 2n-product of the white noise vector (Isserlis’ theorem) as

E

[
2n∏

q=1

Wlq (dzq)

]
= 1

2nn!
∑

S∈S2n

n∏
i=1

E[WlS (2i−1) (dzS (2i−1))WlS (2i) (dzS (2i))]

= 1
2nn!

∑
S∈S2n

n∏
i=1

δlS (2i−1),lS (2i)δzS (2i−1),zS (2i) dzS (2i), (C 15)

where S2n is the permutation ensemble of {1, . . . , 2n}, which has cardinality (2n)!
Thus

E(δ`uind,ε
i )2n = 1

2nn!c2n
ε

∑
S∈S2n

∫ n∏
q=1

Φ
ε,`
ikS (2q−1)

(zS (2q))Φ
ε,`
ikS (2q)

(zS (2q))

×E

[
n∏

q=1

(e2γX ε (zS (2q)))kS (2q−1)kS (2q)

]
n∏

q=1

dzS (2q). (C 16)

It is clear that the sum over the permutations gives (2n)! equal contributions, and we
are left with

E(δ`uind,ε
i )2n = (2n)!

2nn!c2n
ε

∫ n∏
q=1

Φ
ε,`
ik2q−1

(z2q)Φ
ε,`
ik2q
(z2q)E

[
n∏

q=1

(e2γX ε (z2q))k2q−1k2q

]
n∏

q=1

dz2q.

(C 17)
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Note that, in the Gaussian case, i.e. γ = 0, which is equivalent to (e2γX ε (z2q))k2q−1k2q =
δk2q−1k2q and cε = 1, we recover the statistics obtained for the underlying Gaussian field
(see appendix B), namely

E(δ`uind,ε
i )2n γ=0= E(δ`uε,gi )

2n

= (2n)!
2nn!

∫ n∏
q=1

Φ
ε,`
ik2q
(z2q)Φ

ε,`
ik2q
(z2q)

n∏
q=1

dz2q

= (2n)!
2nn!

[∫
Φ
ε,`
ik (z)Φ

ε,`
ik (z) dz

]n

= (2n)!
2nn! [(Φ

ε,`
ik ? Φ

ε,`
ik )(0)]n =

(2n)!
2nn! [E(δ`u

ind,ε
i )2]n = (2n)!

2nn! [E(δ`u
ε,g
i )

2]n. (C 18)

C.2.1. Fourth-order structure functions and flatnesses
Of special interest are the fourth-order structure functions E(δ`uεi )4 (longitudinal and

transverse cases), and the respective flatnesses, i.e. F ‖ and F⊥ (5.1). We get (no
summation over repeated index i implied)

E(δ`uε,ind
i )4 = 3

c4
ε

∫
Φ
ε,`
ik1
(z2)Φ

ε,`
ik2
(z2)Φ

ε,`
ik3
(z4)Φ

ε,`
ik4
(z4)

×E[(e2γX ε (z2))k1k2(e
2γX ε (z4))k3k4] dz2 dz4. (C 19)

Let us massage slightly the covariance of the matrix exponentials that enters the
former expression. To do so, we will use the theory developed by Chevillard et al.
(2013). The field of isotropic symmetric matrices X ε is homogeneous, and furthermore,
the joint density of two matrices at the locations z2 and z4 depends only on the
distance |z4 − z2|. Thus, it can be shown that

1
c4
ε

E[(e2γX ε (0))k1k2(e
2γX ε (h))k3k4] = fε(h)δk1k2δk3k4 + gε(h)[δk1k3δk2k4 + δk1k4δk2k3], (C 20)

where

fε(h)= 1
15c4

ε

[2E(tr e2γX ε (0)tr e2γX ε (h))−E(tr e2γX ε (0)e2γX ε (h))] (C 21)

and

gε(h)= 1
30c4

ε

[3E(tr e2γX ε (0)e2γX ε (h))−E(tr e2γX ε (0)tr e2γX ε (h))]. (C 22)

We remark that if X ε is proportional to the identity, the function gε vanishes. Using
this isotropic form of a fourth-order tensor, we obtain

E(δ`uind,ε
i )4 = 3

∫
Φε,`

ip (z2)Φ
ε,`
ip (z2)Φ

ε,`
iq (z4)Φ

ε,`
iq (z4)fε(|z2 − z4|) dz2 dz4

+ 6
∫
Φε,`

ip (z2)Φ
ε,`
iq (z2)Φ

ε,`
ip (z4)Φ

ε,`
iq (z4)gε(|z2 − z4|) dz2 dz4. (C 23)
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Using the results of Chevillard et al. (2013), we get

E[tr e2γX ε (0)e2γX ε (h)] ∼
ε→0

4(2γ σε)4
(

1+ 1
2

)2

e4γ 2σ 2
ε e−4(1/2)γ 2σ 2

h

×
∫

O3(R)
|O11|2e4(1+(1/2))γ 2σ 2

h |O11|2 dO, (C 24)

and similarly,

E[tr e2γX ε (0)tr e2γX ε (h)] ∼
ε→0

4(2γ σε)4
(

1+ 1
2

)2

e4γ 2σ 2
ε e−4(1/2)γ 2σ 2

h

∫
O3(R)

e4(1+(1/2))γ 2σ 2
h |O11|2 dO,

(C 25)
where the remaining integration is performed over the orthogonal group O3(R), and
recall that asymptotically σ 2

ε ∼ ln L/ε (when ε→ 0) and σ 2
h ∼ ln L/h (when ε→ 0 and

after h→ 0). In the same fashion, we can find

c2
ε =E[ 13 tr e2γX ε ] ∼

ε→0

8
3γ

2σ 2
ε (1+ 1

2)e
2γ 2σ 2

ε . (C 26)

Thus,

lim
ε→0

1
c4
ε

E[tr e2γX ε (0)e2γX ε (h)] = 32e−4(1/2)γ 2σ 2
h

∫
O3(R)
|O11|2e4(1+(1/2))γ 2σ 2

h |O11|2 dO, (C 27)

and similarly,

lim
ε→0

1
c4
ε

E[tr e2γX ε (0)tr e2γX ε (h)] = 32e−4(1/2)γ 2σ 2
h

∫
O3(R)

e4(1+(1/2))γ 2σ 2
h |O11|2 dO. (C 28)

This shows that the quantities fε and gε converge when ε→ 0. We will note f and g
their respective limits. Thus,

f (h)= 32

15
e−4(1/2)γ 2σ 2

h

[
2
∫

O3(R)
e4(1+(1/2))γ 2σ 2

h |O11|2 dO−
∫

O3(R)
|O11|2e4(1+(1/2))γ 2σ 2

h |O11|2 dO
]
,

(C 29)

and

g(h)= 32

30
e−4(1/2)γ 2σ 2

h

[
3
∫

O3(R)
|O11|2e4(1+(1/2))γ 2σ 2

h |O11|2 dO−
∫

O3(R)
e4(1+(1/2))γ 2σ 2

h |O11|2 dO
]
.

(C 30)

Introducing the Dawson integral G

z ∈R 7→ G (z)= e−z2
∫ z

0
ey2

dy (C 31)
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we can obtain an explicit expression of former angular integrals at a finite scale ` as

f (h)= 1
5

e4γ 2σ 2
h

4γ 2σ 2
h

[
4
√

6γ σhG (
√

6γ σh)−
√

6γ σh − G (
√

6γ σh)√
6γ σh

]
, (C 32)

and

g(h)= 1
5

e4γ 2σ 2
h

4γ 2σ 2
h

[
3
2

√
6γ σh − G (

√
6γ σh)√

6γ σh
−√6γ σhG (

√
6γ σh)

]
. (C 33)

Using the asymptotic behaviour of the Dawson integral, namely 2xG (x)→ 1 when
x→∞, we get the asymptotic behaviour of the functions f and g, that is

f (h) ∼
h→0

g(h) ∼
h→0

1
5

e4γ 2σ 2
h

4γ 2σ 2
h
. (C 34)

Recall that asymptotically, the covariance of the diagonal elements of X is logarithmic
(see (2.8)). We can thus write it as

σ 2
h = ln

(
L
h

)
+ α(h), (C 35)

where α(h) is a bounded function of its argument, showing that

f (h) ∼
h→0

g(h) ∼
h→0

1
5

e4γ 2α(0)

4γ 2 ln
(

L
h

) (L
h

)4γ 2

. (C 36)

If the integrals exist, we can obtain the limit ε→ 0 of the fourth-order moment of
velocity increments as

E(δ`uind
i )

4 = lim
ε→0

E(δ`uind,ε
i )4, (C 37)

with

E(δ`uind
i )

4 = 3
∫
Φ`

ip(z2)Φ
`
ip(z2)Φ

`
iq(z4)Φ

`
iq(z4)f (|z2 − z4|) dz2 dz4

+ 6
∫
Φ`

ip(z2)Φ
`
iq(z2)Φ

`
ip(z4)Φ

`
iq(z4)g(|z2 − z4|) dz2 dz4

= 3
∫
(Φ`

ipΦ
`
ip ? Φ

`
iqΦ

`
iq)(h)f (h) dh

+ 6
∫
(Φ`

ipΦ
`
iq ? Φ

`
ipΦ

`
iq)(h)g(h) dh. (C 38)

We must still to make sure that the integrals exist. Clearly, the strongest singularities
are obtained when the integration variable h is such that its modulus is zero. While
performing the integration over h in the asymptotic form of E(δ`ui)

4, we thus
encounter the singularity 1/h4γ 2+3−2H which is integrable in three dimensions only if

2γ 2 <H. (C 39)
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Let us get the scaling behaviour of the fourth-order structure function. Define first the
unit vector e and write `= `e. Recall too that (see the scaling arguments developed
in appendix B)

Φ`
ip(`z) ∼

`→0
`H−3/2Φ̃e

ip(z) (C 40)

with

Φ̃e
ip(z)= εijpϕL(0)

[
zj + ej/2
|z+ e/2|5/2−H

+ ej/2− zj

|e/2− x|5/2−H

]
. (C 41)

In the same spirit, the intermittent correction to the fourth-order structure function
comes from the asymptotic behaviour of f and g at small arguments, namely

f (`h) ∼
`→0

g(`h) ∼
`→0

1
5

1

4γ 2 ln
1
`

(
L
h

)4γ 2 (
1
`

)4γ 2

e4γ 2α(0). (C 42)

We thus obtain the following scaling behaviour of the fourth-order structure function

E(δ`uind
i )

4 ∼
`→0

`4H−4γ 2

20γ 2 ln
1
`

e4γ 2α(0)

×
∫
[3(Φ̃e

ipΦ̃
e
ip ? Φ̃

e
iqΦ̃

e
iq)+ 6(Φ̃e

ipΦ̃
e
iq ? Φ̃

e
ipΦ̃

e
iq)](h)

(
L
h

)4γ 2

dh. (C 43)

This shows that longitudinal and transverse fourth-order structure functions have the
same scaling behaviours. More precisely, without loss of generality, consider the first
velocity component u1 and the two unit vectors e= e1= (1, 0, 0) and e= e2= (0, 1, 0)
for the transverse one, we finally get

E(δ‖`uind)4 ∼
`→0

Cind,‖
4

`4H−4γ 2

ln
1
`

and E(δ⊥` uind)4 ∼
`→0

Cind,⊥
4

`4H−4γ 2

ln
1
`

, (C 44a,b)

with

Cind,‖
4 = e4γ 2α(0)

20γ 2

∫
[3(Φ̃e1

1pΦ̃
e1
1p ? Φ̃

e1
1qΦ̃

e1
1q)+ 6(Φ̃e1

1pΦ̃
e1
1q ? Φ̃

e1
1pΦ̃

e1
1q)](h)

(
L
h

)4γ 2

dh (C 45)

and

Cind,⊥
4 = e4γ 2α(0)

20γ 2

∫
[3(Φ̃e2

1pΦ̃
e2
1p ? Φ̃

e2
1qΦ̃

e2
1q)+ 6(Φ̃e2

1pΦ̃
e2
1q ? Φ̃

e2
1pΦ̃

e2
1q)](h)

(
L
h

)4γ 2

dh. (C 46)

This shows that the velocity field uind (5.3), built assuming independence of X and
W, is intermittent, and the respective flatnesses (5.1) behave as power laws times a
logarithmic correction with (see appendix B for the expression of the second-order
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structure functions that are the same as the ones obtained from the underlying
Gaussian velocity field)

F ‖(`) ∼
`→0

Cind,‖
4

(Cind,‖
2 )2

`−4γ 2

ln
1
`

and F⊥(`) ∼
`→0

Cind,⊥
4

(Cind,⊥
2 )2

`−4γ 2

ln
1
`

. (C 47a,b)
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