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1. Introduction

Let F be a non-Archimedean local field, possibly of non-zero characteristic, and let G

be a reductive algebraic group over F, briefly called a reductive p-adic group. Let π

be an admissible representation of G on a complex vector space V . Since V K has finite
dimension for every compact open subgroup K ⊆ G, the operator π(f) has finite rank for
all test functions f . The resulting distribution θπ(f) := tr(π(f), V ) is called the character
of π. Since V usually has infinite dimension, the operators π(g) need not be trace-class
for g ∈ G. Nevertheless, Harish-Chandra could show that the character is described by
a locally integrable function.

Theorem 1.1 (Harish-Chandra). Let π : G → Aut(V ) be an admissible representa-
tion of a reductive p-adic group.

(a) The operator π(g) has a well-defined trace trπ(g) when g belongs to the set Grss of
regular semisimple elements.

(b) The function trπ : Grss → C is locally constant.

(c) The function trπ, extended by 0 on G \ Grss, is locally integrable with respect to
the Haar measure µ on G, and for any test function f ,

θπ(f) =
∫

G

f(g) trπ(g) dµ(g).

(d) Let D(g) for g ∈ Grss be the determinant of Ad(g) − 1 acting on LieF(G)/ LieF(T )
for a maximal torus T in G containing g. The function G � g �→ |D(g)|1/2 trπ(g) is
locally bounded.

The original proof of this deep theorem is distributed over various papers of Harish-
Chandra collected in [7]. A complete account of it can be found in [8]. The proofs of (c)
and (d) use the exponential mapping for G, which only works well if the characteristic
of F is zero. It is reasonable to expect that (c) and (d) are valid in non-zero characteristic
as well, but the authors are not aware of a proof. According to [24, Paragraph E.4.4],
Harish-Chandra’s proof of (a) and (b) remains valid if one replaces C by an algebraically
closed field of characteristic unequal to p.

In this article we generalize part of Theorem 1.1 to representations on modules over
unital rings in which p is invertible. In this purely algebraic setting, we can only define
the character as a function where it is locally constant. To prove (a) and (b), we describe
explicit neighbourhoods on which trπ is constant. In characteristic 0, similar results are
due to Adler and Korman [1].

Parts (c) and (d) seem specific to real or complex representations because they involve
analysis. Unfortunately, our methods are insufficient to (re)prove them, as we discuss in
the last section.

As a substitute we estimate the dimension of invariant subspaces V K for certain com-
pact open subgroups K in G. The authors have not found growth estimates for these

https://doi.org/10.1017/S1474748011000120 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000120


Characters and growth of admissible representations 291

dimensions in the literature. Since V K is the range of an idempotent 〈K〉 in the Hecke
algebra associated to K, we get

dim V K =
1

|K|

∫
K

trπ(g) dµ(g).

But the estimate in (d) is not strong enough to control these integrals.
Our methods are of a geometric nature and involve the affine building of G. Thus

we will make extensive use of Bruhat–Tits theory, including some hard parts. At the
same time, we use only little representation theory. Both of our main results use the
resolutions constructed by Schneider and Stuhler [18]. These resolutions are based on a
family of compact open subgroups U

(e)
x for e ∈ N, indexed by vertices of the affine Bruhat–

Tits building. These generate subgroups U
(e)
σ indexed by polysimplices in the building.

The invariant subspaces V U(e)
σ in an admissible representation V form a locally finite-

dimensional coefficient system on the building. It is shown in [11] that this coefficient
system is acyclic on any convex subcomplex of the building. In particular, it provides a
resolution of V of finite type.

Here we need acyclicity also for finite subcomplexes of the building because this pro-
vides chain complexes of finite-dimensional vector spaces, which are used in [11] to
express the character of V as a sum over contributions of polysimplices in the build-
ing. We use this formula to find for each regular semisimple element γ and each vertex x

in the building a number r such that the character is constant on U
(r)
x γ; the constant r

depends on the distance between x and a subset of the building corresponding to the
maximal torus containing γ, on the (ir)regularity of γ, and on the level of the represen-
tation V , that is, on the smallest e ∈ N such that V is generated by the U

(e)
y -invariants

for all vertices y.
Along the way, we also prove some auxiliary results that may be useful in other

contexts. We prove that the parabolic subgroup contracted by an element of a reduc-
tive p-adic group is indeed parabolic and, in particular, algebraic (Proposition 2.3). We
describe which points in the building are fixed by a semisimple element in § 4. We estab-
lish that the level of representations is preserved by Jacquet induction and restriction
(Proposition 5.8). The relationship between character function and distribution is made
precise in an algebraic setting in § 6.

2. The structure of reductive algebraic groups

We fix our notation and recall some general facts from the theory of linear algebraic
groups. Nothing in this section is new and most of it can be found in several textbooks:
see, for example, [20].

Let G be a linear algebraic group defined over a field F. The collections of characters
and cocharacters of G are denoted by X∗(G) and X∗(G), respectively. Let G := G(F)
be its group of F-rational points. By definition, an algebraic (co)character of G is a
(co)character of G that is defined over F. The corresponding sets are denoted by X∗(G)
and X∗(G). Let Z(G) be the centre of G and let Zc(G) be the maximal connected algebraic
subgroup of Z(G). We denote the centralizer in G of an element g ∈ G by ZG(g).
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We will assume throughout that G is connected and reductive. An algebraic subgroup P
of G is parabolic if G/P is a complete algebraic variety. We denote the unipotent radical
of P by Ru(P). A Levi factor of P is a reductive subgroup M such that P = M�Ru(P).

We write Z(G), Zc(G), P , Ru(P ), and M for the groups of F-points of Z(G), Zc(G),
P, Ru(P), and M, respectively. We denote the space of F-points of the Lie algebra of G
by LieF(G).

We say that an algebraic torus T splits over F if T (F) ∼= (F×)dim T as F-groups. We
say that G splits (over F) if there is a maximal torus T of G that splits over F.

Proposition 2.1. There is a finite Galois extension of F over which G splits.

Proof. For tori this was first proven by Ono [14, Proposition 1.2.1]. This implies the
result for general reductive groups. �

Let S be maximal among the tori in G that split over F and let S := S(F). We call S a
maximal split torus in G. Notice that every algebraic (co)character of S is defined over F,
as S is split. Let Φ = Φ(G,S) ⊂ X∗(S) be the root system of G with respect to S, and
let Φ∨ ⊂ X∗(S) be the dual root system. Let ZG(S) and NG(S) denote the centralizer
and the normalizer of S in G and let ZG(S) and NG(S) be their groups of F-points. The
Weyl group of Φ is

W (Φ) := NG(S)/ZG(S).

The root system Φ need not be reduced if G is not split. The corresponding reduced root
system is

Φred := {α ∈ Φ(G,S) : α/2 /∈ Φ(G,S)}. (2.1)

For every root α ∈ Φ(G,S) there is a unipotent algebraic subgroup Uα ⊂ G with group
of F-points Uα, characterized by the following two conditions:

• ZG(S) normalizes Uα,

• LieF(Uα) is the sum of the S-weight spaces for α and 2α, with respect to the adjoint
action of S on LieF(G).

If α, 2α ∈ Φ then U2α � Uα, and it is convenient to write U2α = {1} if α ∈ Φ but 2α /∈ Φ.
The groups Uα/U2α and U2α are naturally endowed with the structure of an F-vector
space and are isomorphic to their respective Lie algebras. The subset

⋃
α∈Φred Uα ∪ ZG(S)

generates the group G.
Let Φ+ be a system of positive roots in Φ and let ∆ ⊆ Φred be the corresponding basis.

Any subset D ⊆ ∆ is a basis of a root system ΦD := ZD∩Φ. The algebraic subgroup PD

of G generated by ZG(S) and the Uα with α ∈ ΦD ∪ Φ+ is parabolic. Its unipotent
radical is generated by the Uα with α ∈ Φ+ \ Φ+

D. The group MD that is generated by⋃
α∈ΦD

Uα ∪ ZG(S) is a Levi subgroup of PD. Moreover, MD = ZG(SD), where SD is
the connected component of ⋂

α∈ΦD

ker α ⊆ Z(MD).

We note that P∆ = M∆ = G, and that S∆(F) is the unique maximal split torus of Z(G).
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Definition 2.2. Groups of the form PD are called standard parabolic (with respect to
S and Φ+).

Every parabolic subgroup of G is conjugate to exactly one standard parabolic subgroup.
Let Φ− := −Φ+ be the set of negative roots and let P̄D be the subgroup of G generated
by ZG(S) and the Uα with α ∈ ΦD ∪ Φ−. The parabolic subgroup P̄D is opposite to PD

in the sense that PD ∩ P̄D = MD is a Levi subgroup of both. Moreover,

LieF(G) = LieF(Ru(PD)) ⊕ LieF(MD) ⊕ LieF(Ru(P̄D)).

We shall also need the pseudo-parabolic subgroup

P (χ) :=
{

p ∈ G : lim
λ→0

χ(λ)pχ(λ)−1 exists
}

(2.2)

for an algebraic cocharacter χ : F× → G. This limit is meant purely algebraically, by
definition it exists if and only if the corresponding map F× → G extends to an algebraic
morphism F → G. In a reductive group, any pseudo-parabolic subgroup is the group of
F-points of a parabolic subgroup by [20, Lemma 15.1.2].

From now on we assume that the field F is endowed with a non-trivial discrete valuation
v : F → Q ∪ {∞}. We fix a real number q > 1 and we define a metric on F by

d(λ, µ) = q−v(λ−µ).

Via an embedding G → GLn, the metric d yields a metric on G = G(F) as well. Even
though there is no unique way to do this, the resulting collection of bounded subsets of G

is canonical. This bornology on G is compatible with the group structure, in the sense
that B−1

1 B2 is bounded for all bounded subsets B1 and B2 of G.
It follows directly from the properties of a valuation that every finitely generated sub-

group of (F, +) is bounded, and this implies that every unipotent element of G generates
a bounded subgroup.

Following Deligne [6], we assign to any g ∈ G the parabolic subgroup contracted by g,

Pg := {p ∈ G : {gnpg−n : n ∈ N} is bounded} (2.3)

and
Mg := Pg ∩ Pg−1 = {p ∈ G : {gnpg−n : n ∈ Z} is bounded}. (2.4)

The following result, which will be needed in § 7.2, was proved in [15, Lemma 2] under
the additional assumptions that G is semisimple and almost F-simple. Although it is
apparently well known that it holds for general reductive groups, the authors have not
found a good reference for this.

Proposition 2.3. The subgroups Pg and Mg for g ∈ G have the following properties:

(a) Pg is a parabolic subgroup of G;

(b) Ru(Pg) = {p ∈ G : limn→∞ gnpg−n = 1};
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(c) the parabolic subgroup Pg−1 is opposite to Pg and Mg is a Levi subgroup of Pg;

(d) gZ(Mg) is contained in a bounded subgroup of Mg/Z(Mg).

Proof. We first establish (a). Clearly, Pg is a subgroup of G that contains g. The diffi-
culty is to show that Pg is an algebraic subgroup of G, although it is defined in topological
terms. Choose a finite field extension Fg of F which contains the roots of the character-
istic polynomial of g. Then we have a Jordan decomposition g = gsgu = gugs in G(Fg),
see [20, § 2.4]. Let T be a maximal torus in G defined over Fg that contains gs, and let F̃

be a finite field extension of Fg over which T splits (Proposition 2.1). We may and will
assume that F̃ is normal over F. According to [19, § I.4] the valuation v extends to a
valuation ṽ on F̃. We abbreviate G(F̃) = G̃, and similarly for its algebraic subgroups.
Let Φ̃ be the root system of G with respect to T .

Since gu is unipotent, K̃ := {gn
u : n ∈ Z} is a bounded subgroup of G̃, and it central-

izes gs. For α ∈ Φ̃ and p ∈ Ũα \ {1}, the following are equivalent:

• {gnpg−n : n ∈ N} is bounded,

• K̃{gn
s pg−n

s : n ∈ N}K̃ is bounded,

• {gn
s pg−n

s : n ∈ N} is bounded,

• gspg−1
s = λp with {λn : n ∈ N} ⊆ F̃ bounded,

• ṽ(α(gs)) � 0.

We may choose a system of positive roots Φ̃+ with ṽ(α(gs)) � 0 for all α ∈ Φ̃+. Let D ⊆ ∆̃
be the set of simple roots with ṽ(α(gs)) = 0. The group P̃g is generated by T̃ := T (F̃) and
all Ũα with α ∈ Φ̃+ ∪ΦD. Thus P̃g is the group of F̃-points of the parabolic subgroup PD

of G, and the collection of non-zero weights of T̃ in Lie
F̃
(PD) equals

{α ∈ Φ̃ : ṽ(α(gs)) � 0} =: Φ(Pg, T ). (2.5)

As mentioned above, P̃g is also a pseudo-parabolic subgroup of G̃, so there is a cochar-
acter χ̃ ∈ X∗(G) with P̃g = P̃ (χ̃). In fact, any χ̃ ∈ X∗(T̃ ) with

{α ∈ Φ̃ : 〈α, χ̃〉 � 0} = Φ(Pg, T ) (2.6)

will do. To prove that Pg = P̃g ∩ G is a parabolic subgroup of G, we must find a cocharac-
ter χ that satisfies (2.6) and is defined over F. Then Pg = P (χ) will be pseudo-parabolic
and hence parabolic.

Let Γ be the group of field automorphisms of F̃ over F. Since g ∈ G(F) and Γ acts
continuously, the subgroup P̃g is Γ -invariant by (2.3), so that γ ◦ χ̃ ◦ γ−1 satisfies (2.6)
for all γ ∈ Γ . Since the set of solutions of (2.6) forms a cone in the free abelian group
X∗(T̃ ), it contains

χ̃Γ : λ �→
∏
γ∈Γ

γ(χ̃(γ−1λ)).
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Thus P̃g = P̃ (χ̃Γ ). The cocharacter χ̃Γ is defined over F̃Γ . The field extension F ⊆ F̃Γ is
finite and purely inseparable (see, for example, [10, § 7.7]). Hence some positive multiple χ

of χ̃Γ is defined over F and still satisfies (2.6). This yields P̃g = P̃ (χ) and finishes the
proof of (a).

Now we prove (b). Lie
F̃
(Pg) is spanned by the vectors X ∈ Lie

F̃
(G) with Ad(gs)X = λX

with ṽ(λ) � 0. Similarly, Lie
F̃
(Ru(Pg)) is spanned by the root subspaces Lie

F̃
(Uα) with

α ∈ Φ(Pg, T ) but −α /∈ Φ(Pg, T ). These are precisely the α ∈ Φ with ṽ(α(gs)) > 0.
Therefore,

lim
n→∞

gn
s hg−n

s = 1 ⇐⇒ h ∈ Ru(P̃g).

Since all powers of gu are contained in the bounded subgroup K̃, these statements are
also equivalent to limn→∞ gnhg−n = 1. Now (b) follows because Ru(Pg) = Ru(P̃g) ∩ Pg.

Next we establish (c). Let χ be a cocharacter of G defined over F with Pg = P (χ). The
same reasoning as in the proof of (a) shows that Pg−1 = P (−χ). The assertion (c) now
follows by applying [20, Theorem 13.4.2] to Pg and Pg−1 .

Finally, we turn to (d). The eigenvalues of Ad(gs) acting on Lie
F̃
(Mg) all have valuation 0.

Hence Ad(g) lies in a bounded subgroup of the adjoint group of M̃g. Equivalently, the
image of g in M̃g/Z(M̃g) generates a bounded subgroup. Finally, we note that Mg/Z(Mg)
can be identified with a subgroup of M̃g/Z(M̃g). �

3. Some Bruhat–Tits theory

We keep the notation from § 2. Let F be a non-Archimedean local field with a discrete
valuation v. We normalize v by v(F×) = Z. Let O ⊂ F be the ring of integers and
P ⊂ O its maximal ideal. The cardinality q of the residue field O/P is a power of a
prime number p. We briefly call F a p-adic field.

Bruhat and Tits [3,4,21] constructed an affine building for any reductive p-adic group
G = G(F). More precisely, they constructed two buildings, one corresponding to G and
one corresponding to the maximal semisimple quotient of G. We call the latter the
Bruhat–Tits building of G and denote it by B(G, F). Relying on [18, § 1.1] and [23, § 1],
we now recall its construction. The main ingredients are certain subgroups Uα,r and Hr

of G.

3.1. The prolonged valuated root datum

Let 〈·, ·〉 : X∗(S) × X∗(S) → Z be the canonical pairing. There is a unique group
homomorphism

ν : ZG(S) → X∗(S) ⊗Z R

such that 〈ν(z), χ|S〉 = −v(χ(z)) for all χ ∈ X∗(ZG(S)). Let

H := ker(ν) = {z ∈ ZG(S) : v(χ(z)) = 0 for all χ ∈ X∗(ZG(S))}

be the maximal compact subgroup of ZG(S).
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Bruhat and Tits [4] defined discrete decreasing filtrations of H and Uα by compact open
subgroups Hr and Uα,r, respectively. These groups satisfy the properties of a ‘prolonged
valuated root datum’ [3, § 6.2]. We first describe these subgroups in the special case
where G splits over F. Then each Uα is a one-dimensional vector space over F, and a
Chevalley basis of LieF(G) gives rise to an isomorphism Uα

∼= F. Chevalley bases are
known to exist but they are not unique. We fix one, and we use suitable subsets as
bases of LieF(PD) and LieF(MD), for any standard parabolic subgroup PD with Levi
factor MD. Thus Uα is endowed with a discrete valuation vα and one defines

Uα,r := v−1
α ([r, ∞]) for r ∈ R. (3.1)

By assumption, the maximal split torus is a maximal torus, that is, S = ZG(S). For
r < 0 we may put Hr = H, but H0 is more difficult to define. According to [4, 5.2.1]
there is a canonical smooth affine O-group scheme Z such that Z(F) = ZG(S). Let Zc be
the neutral component of Z and put H0 := Zc(O). The inclusions

H0 ⊆ Z(O) ⊆ H

are all of finite index. We define

Hr := {z ∈ H0 : v(χ(z) − 1) � r for all χ ∈ X∗(ZG(S))} (3.2)

for r > 0 as in [18, Proposition I.2.6].
Now we extend the above construction to a non-split group G. Proposition 2.1 provides

a finite Galois extension F̃ of F over which G splits. The strategy of descent is explained
in [3, Chapitre 9]; the basic idea is to construct the required groups first in G(F̃) and
then to intersect them with G(F). This does not work as such because the root system
of G(F̃) is usually larger than that of G(F), so that must be taken into account as well.
Bruhat and Tits descend in two steps: first from split to quasi-split, then from there to
the general case. This is, in all probability, necessary for the proof, but the conclusions
can be written down in one step. Of course it is by no means obvious that the groups we
will define below form a (prolonged) valuated root datum: proving this is precisely what
most of the work in [4] is dedicated to.

If X is any object constructed over F, then we will denote the corresponding object
over F̃ by X̃. According to [19, Proposition I.2.3] F̃ is also a local field, and there is a
unique discrete valuation ṽ : F̃ → Q ∪ {∞} that extends v. By definition,

ṽ(F̃×) = e−1
F̃/F

Z,

where e
F̃/F

∈ N is the ramification index of F̃ over F. The constructions above still work
for this non-normalized valuation ṽ.

Let S̃ ⊆ G(F̃) be a maximal F̃-split torus that contains S(F̃). Since S̃ ⊇ S, restriction
of characters defines a surjection

ρS : Φ̃ ∪ {0} → Φ ∪ {0}. (3.3)
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For α ∈ Φred and r ∈ R the descent [4, 4.2.2, 5.1.16] boils down to

Uα,r := Uα ∩
( ∏

β∈ρ−1
S {α}

Ũβ,r ×
∏

β∈ρ−1
S {2α}

Ũβ,2r

)
,

U2α,r := U2α ∩ Uα,r/2.

⎫⎪⎪⎬
⎪⎪⎭ (3.4)

These groups do not depend on the chosen ordering of the factors. For a standard Levi
subgroup MD ⊆ G and α ∈ ΦD, our consistent choice of Chevalley bases ensures that it
does not matter whether we consider the groups Uα,r in G or MD.

We can use (3.4) to define a valuation on Uα by

vα(uα) := sup{r ∈ R : uα ∈ Uα,r}. (3.5)

Clearly, this reproduces (3.1) in the split case. Let Γα be the set of r ∈ R at which Uα,r

jumps, or equivalently the set of values of vα (except vα(1) = ∞). By construction,
Γ̃β = e−1

F̃/F
Z for all β ∈ Φ̃, which implies

Z ⊆ Γα ⊆ e−1
F̃/F

Z for all α ∈ Φ.

More precisely, [3, 6.2.23] and [18, Lemma I.2.10] yield nα ∈ N for α ∈ Φ with the
following properties:

• Γα = n−1
α Z;

• nwα = nα for w ∈ W (Φ);

• n2α = nα or n2α = nα/2 whenever α, 2α ∈ Φ.

Similar to (3.4) one defines for r ∈ R (see [18, I.2.6] and [23, § 1]):

Hr := ZG(S) ∩
(

H̃r ×
∏

β∈ρ−1
S {0}

Ũβ,r

)
. (3.6)

A particularly useful property of the above groups, which holds more or less by the
definition of a prolonged valuated root datum [3, Proposition 6.4.41], is as follows. Let
α, β ∈ Φ ∪ {0} and let r, s ∈ R, with r � 0 if α = 0 and s � 0 if β = 0. Then

[Uα,r, Uβ,s] ⊆ subgroup generated by
⋃

n,m∈Z>0

Unα+mβ,nr+ms, (3.7)

where U0,t = Ht and Uδ,t = {1} if δ /∈ Φ ∪ {0}. We will need an iterated version of this,
which must have been known already to Bruhat and Tits, but for which the authors did
not find a reference.

Lemma 3.1. Let αi ∈ Φ+ ∪ {0}, ri ∈ R and ui ∈ Uαi,ri for i = 1, 2, . . . , n. Assume that
ri � 0 whenever αi = 0. Then

[u1, [u2, [· · · [un−1, un] · · · ]]]

lies in the group generated by the U∑n
i=1 kiαi,

∑n
i=1 kiri

, where the ki run over Z>0.
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Proof. Let us call the group in question K. Suppose that yj ∈ U∑n
i=2 kiαi,

∑n
i=2 kiri

for
some ki ∈ Z>0 (depending on j). Notice that

∑n
i=2 kiαi cannot be a negative root, and

that
∑n

i=2 kiri � 0 if
∑n

i=2 kiαi = 0. We will show by induction on l ∈ N that

[u1, y1y2 · · · yl] is an element of K.

For l = 1 this is (3.7). For l � 2 we can rewrite it as

[u1, y1y2 · · · yl] = u1y1u
−1
1 [u1, y2 · · · yl]y−1

1 = [u1, y1]y1[u1, y2 · · · yl]y−1
1 .

By the induction hypothesis all terms on the right are in K.
For the actual lemma we use another induction, with respect to n. The case n = 1 is

trivial. For n > 1, the induction hypothesis provides yj as above, such that

[u1, [u2, [· · · [un−1, un] · · · ]]] = [u1, y1y2 · · · yl],

which by the above lies in K. �

3.2. The affine Bruhat–Tits building

The image of any cocharacter F× → Zc(G) lies in S∆ ⊆ S, the maximal F-split torus
in Zc(G). Hence X∗(Zc(G)) = X∗(S∆). The standard apartment is

AS := (X∗(S)/X∗(Zc(G))) ⊗Z R = (X∗(S)/X∗(S∆)) ⊗Z R.

The affine Bruhat–Tits building B(G, F) will be defined as G × AS/∼ for a suitable
equivalence relation ∼.

Let 〈·, ·〉AS
be a W (Φ)-invariant inner product on AS . Then the different irreducible

components Φ∨
i of Φ∨ are orthogonal and on RΦ∨

i the inner product is unique up to
scaling. Thus we may assume that 〈α∨, α∨〉AS

= 1 for all short coroots α∨ ∈ Φ∨.
The centralizer ZG(S) acts on AS by

g · x = x + ν(g).

This extends to an action of NG(S) on AS by affine automorphisms, such that the linear
part of x �→ g · x is given by the image of g ∈ NG(S) in W (Φ). In particular, the action
of g on AS is a translation if and only if g ∈ ZG(S). The affine hyperplanes

AS,α,k := {x ∈ AS : 〈x, α〉 = k} for α ∈ Φ and k ∈ Γα (3.8)

turn AS into a polysimplicial complex. The open polysimplices are called facets, that is,
a facet in AS is a non-empty subset F ⊆ AS such that

• F ⊆ AS,α,k or F lies entirely on one side of AS,α,k for all α ∈ Φ and k ∈ Γα;

• F cannot be extended to a larger set with the first property.
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Thus the closure of a facet is a polysimplex, and a facet is closed if and only if it is a
single point. Moreover, a facet is open in AS if and only if it is of maximal dimension, in
which case we call it a chamber.

The affine action of NG(S) on AS respects the polysimplicial structure. In fact, NG(S)
is generated by the translations coming from ZG(S) and the reflections in the hyper-
planes AS,α,k:

x �→ x + (k − 〈x, α〉)α∨, α ∈ Φ, k ∈ Γα,

where α∨ ∈ Φ∨ is the coroot corresponding to α.
For a non-empty subset Ω ⊆ AS we define

fΩ : Φ → R ∪ {∞}, fΩ(α) := − inf
x∈Ω

〈x, α〉 = sup
x∈Ω

〈x,−α〉. (3.9)

This gives rise to the following subgroups of G:

UΩ := subgroup generated by
⋃

α∈Φred

Uα,fΩ(α),

NΩ := {n ∈ NG(S) : n · x = x for all x ∈ Ω},

PΩ := NΩUΩ = UΩNΩ .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.10)

The latter is a group because nUΩn−1 = UnΩ for all n ∈ NG(S). For Ω = {x} we
abbreviate UΩ = Ux, which should not be confused with the root subgroups Uα.

Given a partition Φ = Φ+ ∪ Φ− of Φ(G,S) in positive and negative roots, we let U±

be the subgroup of G generated by
⋃

α∈Φ± Uα. We write

U+
Ω := UΩ ∩ U+ and U−

Ω := UΩ ∩ U−.

Proposition 3.2 (Bruhat and Tits [3, 6.4.9]). These subgroups have the following
properties.

(a) UΩ ∩ Uα = Uα,fΩ(α) for all α ∈ Φ.

(b) The product map ∏
α∈Φred∩Φ±

Uα,fΩ(α) → U±
Ω

is an isomorphism of algebraic varieties, for any ordering of the factors.

(c) UΩ = U+
Ω U−

Ω (UΩ ∩ NG(S)).

We define an equivalence relation ∼ on G × AS by

(g, x) ∼ (h, y) ⇐⇒ there is n ∈ NG(S) with nx = y and g−1hn ∈ Ux.

As announced, the Bruhat–Tits building of G is

B(G, F) = G × AS/∼.
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The group G acts naturally on B(G, F) from the left, and the map

AS → B(G, F), x �→ (1, x)/∼,

is an NG(S)-equivariant embedding. An apartment of B(G, F) is a subset of the form
g · AS with g ∈ G, and g · AS = AS if and only if g ∈ NG(S). Since all maximal split
tori of G are conjugate by [2, Théorème 4.21], there is a bijection between apartments
in B(G, F) and maximal split tori in G.

A facet of B(G, F) is a subset of the form g · F , where g ∈ G and F is a facet of AS .
For a polysimplicial complex Σ, we denote the set of vertices by Σ◦ and the set of
n-dimensional polysimplices in Σ by Σn for n ∈ N.

For any subset Ω ⊆ B(G, F), we denote the pointwise stabilizer of Ω by PΩ . This is
consistent with (3.10) when Ω ⊆ AS .

4. Fixed points in the building

An element g of G is called compact if its image in G/Z(G) belongs to a compact sub-
group of G/Z(G). According to the Bruhat–Tits Fixed Point Theorem (see [3, § 3.2]),
the compact elements of G are precisely those that fix a point in the building B(G, F).
In this section, we study how the fixed point subset B(G, F)γ depends on γ.

Let H be a group of polysimplicial automorphisms of B(G, F). If x, y ∈ B(G, F)H ,
then H fixes the geodesic segment [x, y] pointwise by [3, 2.5.4]. Consequently, B(G, F)H

is a convex subset of B(G, F). Recall that a chamber complex is a polysimplicial complex Σ

such that

• all maximal polysimplices of Σ (the chambers) have the same dimension;

• given any two chambers C1 and C2 of Σ, there exists a gallery of chambers con-
necting C1 and C2.

If g ∈ G is compact and belongs to a maximal split torus S of G, then there is a chamber
in the corresponding apartment AS that is fixed pointwise by g. There exist, however,
regular semisimple elements γ ∈ G that fix no chamber in the building pointwise. For
such elements the fixed point subcomplex is not necessarily a chamber complex. But
once g fixes a chamber, say, because it belongs to a maximal split torus, the fixed point
subset is automatically a chamber complex.

Lemma 4.1. Suppose that H fixes a chamber C ⊆ B(G, F) pointwise. Then B(G, F)H is
a chamber complex.

Proof. This is well known, but we include a proof anyway. Let x ∈ B(G, F)H and let Ax

be an apartment that contains C and x. Since dimC = dimAx and B(G, F)H is convex,
it contains an open subset of some chamber Cx ⊆ Ax with x ∈ Cx. Thus H fixes Cx

pointwise and B(G, F)H is the union of all its closed chambers.
Suppose that C is any collection of chambers of an apartment AS of B(G, F). Then⋃
C∈C C̄ is convex if and only if all minimal galleries between elements of C are contained

in C. Hence B(G, F)H ∩ AS contains all minimal galleries between its chambers. �
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4.1. The split case

Let S ⊂ G be a split maximal torus and let γ ∈ S be a compact element. Then
v(χ(γ)) = 0 for all χ ∈ X∗(S), so that γ fixes the apartment AS pointwise. The subcom-
plex B(G, F)γ ⊆ B(G, F) is convex and S-invariant. Its core is formed by the apartment AS

and from there ‘hairs’ extend in all directions. This terminology applies quite well to one-
dimensional buildings, but in general such a hair is a (not necessarily bounded) chamber
complex. Since S acts by translations on AS , it shifts all these hairs. If γ ∈ S is regular,
then B(G, F)γ/S is compact by [9, § 9.1]: the length of the hairs is finite.

Now we study when an arbitrary point x ∈ B(G, F) is fixed by γ ∈ S. Choose a chamber
C0 ⊆ AS and let ρ be the retraction of B(G, F) to AS centred at C0. Let Φ+ be a system of
positive roots in Φ such that fρ(x)(α) � fC0(α) for all α ∈ Φ+; equivalently, Φ+ contains
all roots with fρ(x)(α) > fC0(α). Let ∆ be the basis of Φ corresponding to Φ+.

Then UC0 ∩Uα ⊆ Uρ(x)∩Uα for all α ∈ Φ−, so U−
C0

⊆ U−
ρ(x). Furthermore, NC0 = Nρ(x),

which together with Proposition 3.2 (c) shows that PC0 ⊆ U+
C0

Pρ(x). Since PC0 acts
transitively on the set of apartments containing C0 by [3, 7.4.9], there is u ∈ U+

C0
with

x = uρ(x). Thus we want to know which part of the apartment uAS is fixed by γ.
By definition, u ∈ U+

C0
fixes all y ∈ AS satisfying −α(y) � fC0(α) for all α ∈ Φ+.

These points constitute a cone in AS ∩ uAS , which is fixed by γ. We are interested in
the larger subset (uAS)γ , which is a convex subcomplex of B(G, F)γ . Hence the complex
Y := u−1(uAS)γ is convex as well. Concretely, this means that Y ⊆ AS is determined by
a system of equations −α(y) � rα for certain rα ∈ R, α ∈ Φ+. We need some notation
to make this more explicit. The singular depth of γ in the direction α ∈ Φ is

sdα(γ) := v(α(γ) − 1).

We also let sd(γ) := maxα∈Φ+ sdα(γ).
Recall that the height of a positive root is defined as follows:

• ht(α) = 1 if α ∈ Φ+ is simple;

• ht(α + β) = ht(α) + ht(β) if α, β, α + β ∈ Φ+.

Since ht extends to a group homomorphism X∗(G/Zc(G)) → R, we may regard it as
a point in the apartment AS . Since y is contained in the same apartment, this gives
meaning to the linear combination y+sd(γ) ht for y ∈ Y appearing in Proposition 4.2 (c)
below.

By Proposition 3.2 (b) we can write

u =
∏

α∈Φ+

uα with uα ∈ Uα,fC0 (α). (4.1)

Proposition 4.2. Let y ∈ u−1(uAS)γ .

(a) The compact element γ ∈ S fixes x = uρ(x) if and only if [γ, u−1] ∈ U+
ρ(x).

(b) uα ∈ Uα,−α(y)−sdα(γ) for all simple roots α ∈ ∆.

(c) u ∈ U+
y+sd(γ) ht, where sd(γ) ht ∈ AS .
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Proof. (a) Since γ ∈ S fixes ρ(x) ∈ AS ,

γ(x) = γuρ(x) = γuγ−1ρ(x).

This point equals x = uρ(x) if and only if γu−1γ−1uρ(x) = ρ(x), which is equivalent to
[γ, u−1] ∈ Pρ(x). As u ∈ U+ and γ normalizes U+, this is equivalent to

[γ, u−1] ∈ Pρ(x) ∩ U+ = U+
ρ(x).

(b) The decomposition (4.1) is unique once we fix an ordering on Φ+, but the terms uα

may depend on this ordering. Let Φ∗ := Φ+ \ ∆ be the set of non-simple positive roots.
Then

⋃
α∈Φ∗(Uα ∩ UC0) generates a normal subgroup U∗

C0
of U+

C0
. The quotient U+

C0
/U∗

C0

is abelian and can be identified with a lattice in the F-vector space
∏

α∈∆ Uα. The image
of u in U+

C0
/U∗

C0
is

∏
α∈∆ uα, which shows that the ingredients uα of (4.1) for α ∈ ∆ are

independent of the ordering of Φ+.
Suppose now that γ fixes uy ∈ uAS . By part (a), we have [γ, u−1] ∈ U+

y . Since γ

normalizes the groups Uα,r for α ∈ Φ+, r ∈ R, this implies

[γ, u−1]U∗
y =

∏
α∈∆

[γ, u−1
α ]U∗

y ∈ U+
y /U∗

y . (4.2)

But on the vector space Uα the map a �→ [γ, a] can be identified with multiplication by
α(γ) − 1. Hence (4.2) is equivalent to

uα ∈ (α(γ) − 1)−1Uα,−α(y) (4.3)

for all α ∈ ∆. Together with (3.1) implies the statement (b).

(c) We fix an ordering Φ+ = {α1, α2, . . . , αk} with ht(αi) � ht(αi+1) for all i, and we
get a unique decomposition u =

∏k
i=1 uαi

in U+
C0

. Similarly, Proposition 3.2 (b) yields a
unique decomposition

k∏
i=1

[γ, u−1]αi
= [γ, u−1] = γu−1

αk
u−1

αk−1
· · ·u−1

α1
γ−1uα1uα2 · · ·uαk

. (4.4)

By construction [γ, u−1]α ∈ Uα,fC0 (α), and γ fixes uy if and only if, even more,

[γ, u−1]α ∈ Uα,−α(y) for all α ∈ Φ+. (4.5)

Assuming (4.5), we will show by induction on ht(α) that

[γ, u−1
α ] ∈ Uα,−α(y)+(1−ht(α)) sd(γ) for all α ∈ Φ+. (4.6)

Like in (4.3), this statement is equivalent to uα ∈ Uα,−α(y)−sdα(γ)+(1−ht(α)) sd(γ), which
for roots α of height 1 is part (b).
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Let us assume (4.6) for roots of height less than k. Let N>k be the product of the
groups Uα for roots α of height greater than k. This is a normal subgroup of the Borel
group SU+, and the subgroups Uα ⊆ U+ for a root α of height k become central in
the quotient U+/N>k. We may determine the α-component for a root α of height k by
computations in U+/N>k because of the uniqueness of the decomposition (4.1).

Now we split u up as u<kuku>k, where the factors u<k, uk and u>k contain the
contributions uα of positive roots α with height less than k, equal to k, and greater
than k, respectively. In the quotient U+/N>k, we may drop u>k, and uk becomes central.
Hence

[γ, u−1] = γu−1
>ku−1

k u−1
<kγ−1u<kuku>k

≡ γu−1
k γ−1γu−1

<kγ−1u<kuk

≡ γu−1
k γ−1ukγu−1

<kγ−1u<k

= [γ, u−1
k ][γ, u−1

<k]

≡
( ∏

ht(α)=k

[γ, u−1
α ]

)
[γ, u−1

<k], (4.7)

where we compute in the quotient U+/N>k. We will use the induction hypothesis and
the estimate on [γ, u]α to estimate [γ, u−1

α ] when ht(α) = k.
We first rewrite a commutator [γ, z1z2 · · · zl] as a product of iterated commutators

C(zi1 , . . . , zik
) := [zi1 , [zi2 , . . . , [zik−1 , [γ, zik

]] . . . ]]. (4.8)

We claim that [γ, z1 · · · zj ] is a product of the factors C(zi1 , . . . , zik
) with 1 � i1 < i2 <

· · · < ik � j, each factor appearing exactly once. The proof is by induction on j, the case
j = 1 being clear. For the induction step, we use

[γ, z1 · · · zj ] = γz1γ
−1[γ, z2 · · · zj ]z−1

1 ,

γz1γ
−1x1 · · ·xkz−1

1 = [γ, z1] · [z1, x1]x1 · [z1, x2]x2 · · · [z1, xk]xk.

By the induction hypothesis, [γ, z2 · · · zl] is the product in some order of the factors
C(zi1 , . . . , zik

) for all 2 � i1 < · · · < ik � j. Plugging this into the second equation above
shows that [γ, z1z2 · · · zl] is the product in some order of the factors C(zi1 , . . . , zik

) for all
1 � i1 < · · · < ik � j. By the way, a more careful induction argument also yields the order
of the factors: it is the reverse lexicographic order for the words (j − ik, ik−1, ik−2, . . . , i1).

Now we apply this to u−1
<k = u−1

αl
· · ·u−1

α1
= z1 · · · zl. By the induction hypothesis and

by Lemma 3.1, all the occurring C(u−1
αi1

, . . . , u−1
αik

) lie in the group generated by the Uα,r

with α =
∑k

j=1 kjαij and r = sdαik
(γ) +

∑k
j=1 kjrij , where kj ∈ Z>0 and

rij = −αij (y) − sdαij
(γ) + (1 − ht(αij )) sd(γ).
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For such α ∈ Φ+ and r ∈ R we have

r = sdαik
(γ) +

k∑
j=1

kj(−αij (y) − sdαij
(γ) + (1 − ht(αij )) sd(γ))

� −α(y) + (1 − ht(α)) sd(γ) + (−1 +
k∑

j=1

kj)(sd(γ) − max
j

sdαij
(γ))

� −α(y) + (1 − ht(α)) sd(γ). (4.9)

For a root α of height k, (4.5) and (4.7) show that [γ, u−1
α ] must lie in the largest of the

groups Uα,−α(y) and Uα,r. Now we see from (4.9) that in any case

[γ, u−1
α ] ∈ Uα,−α(y)+(1−ht(α)) sd(γ),

so
u−1

α , uα ∈ Uα,−α(y)−ht(α) sd(γ) = Uα ∩ U+
y+sd(γ) ht.

�

Given an arbitrary point y ∈ AS , the condition in Proposition 4.2 (c) does not imply
that γ fixes uy. Counterexamples exist whenever Φ contains an irreducible root system
of rank greater than one.

Proposition 4.2 only applies to fixed points of semisimple elements that lie in a split
maximal torus. (We will not consider the fixed points of non-semisimple elements of G

in this article.) For elements of non-split maximal tori we need yet another aspect of
Bruhat–Tits theory.

4.2. The non-split case

The construction of the Bruhat–Tits building over p-adic fields is functorial with
respect to finite field extensions by [3, 9.1.17]. For any such extension F̃/F, the group

Γ := {σ ∈ Aut(F̃) : σ|F = idF}

acts naturally on B(G, F̃), and B(G, F) is contained in B(G, F̃)Γ . In particular, for every
g ∈ G(F) we have an inclusion

B(G, F)g = B(G, F̃)g ∩ B(G, F) ⊆ B(G, F̃)Γ×〈g〉, (4.10)

where 〈g〉 ⊆ G(F̃) denotes the subgroup generated by g.
In general, B(G, F) is strictly smaller than B(G, F̃)Γ , even if F̃/F is a Galois extension

(in which case Γ is its Galois group). Rousseau [17] proved that B(G, F) = B(G, F̃)Γ

if F̃/F is a tamely ramified Galois extension, see also [16]. Consequently, (4.10) is an
equality for such extensions.

Let T = T (F) be a maximal torus and F̃/F a finite Galois extension over which T splits,
as in Proposition 2.1. Since T is defined over F, it is Γ -stable, and hence the corresponding
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apartment ÃT (F̃) of B(G, F̃) is Γ -stable. The action of Γ on ÃT (F̃) is linear, so that the
origin of ÃT (F̃) is fixed. Thus Rousseau’s above result implies that

B(G, F) ∩ ÃT (F̃) �= ∅ if F̃/F is tamely ramified. (4.11)

Any g ∈ G acts on LieF(G)/ LieF(ZG(g)) by the adjoint representation. The collection
E(g) of eigenvalues (in some algebraic closure of F) is finite and does not contain 1.
Assume that G is not a torus and that g is regular, that is, ZG(g) has the smallest
possible dimension. The number

sd(g) := max
λ∈E(g)

v(λ − 1)

is well defined because every eigenvalue lies in a finite field extension of F. For irregular
g ∈ G we put sd(g) = ∞, because in that case the multiplicity of the eigenvalue 1 of
Ad(g) ∈ EndF(LieF(G)) is too high. Finally, if G is a torus, then we define sd(g) = 0 for
all g ∈ G. This definition stems from [1, § 4], where sd(g) is called the singular depth
of γ. We note that

sd(gz) = sd(g) = sd(hgh−1) for z ∈ Z(G) and h ∈ G. (4.12)

Let T and F̃ be as above and let Φ̃ = Φ(G(F̃), T (F̃)) be the corresponding root system.
Let ṽ be the discrete valuation that extends v and suppose γ ∈ T . Then

sd(γ) = max
α∈Φ̃

sdα(γ),

which agrees with the notation from Proposition 4.2 (c). Notice that sd(γ) � 0, for if
sdα(γ) < 0, then ṽ(α(γ)) < 0, so ṽ(α(γ)−1) > 0 and sd−α(γ) = 0.

Now we specialize to a compact regular semisimple element γ ∈ T . Then B(G, F)γ is
non-empty by the Bruhat–Tits Fixed Point Theorem. If T/Zc(G) is anisotropic, then
B(G, F)γ is a finite polysimplicial complex (see [18, p. 53]) and there is an open neigh-
bourhood U of γ in G such that B(G, F)U = B(G, F)γ .

If T/Zc(G) is not anisotropic, we have a weaker substitute. Since B(G, F)γ/T is com-
pact, there exists an open neighbourhood V of γ in T such that B(G, F)g = B(G, F)γ

for all g ∈ V . Let H̃r be as in (3.6), but with respect to (G(F̃), T (F̃)). First the authors
believed that one could take V = γH̃r ∩ T for any r > sd(γ), but this turns out to be
incorrect in general. We thank the referee for pointing out the weakness in our former
argument.

Lemma 4.3. Write ht(Φ) := maxα∈Φ+ ht(α) and let r > ht(Φ) sd(γ). Then B(G, F)γh =
B(G, F)γ for all h ∈ H̃r ∩ T .

Proof. In view of (4.10) it suffices to prove the corresponding statement for fixed points
in the building B(G, F̃). We use the notation from the proof of Proposition 4.2, but
with some additional tildes. We want to know when γ fixes uy, for some point y ∈ ÃS .
According to (4.5), this is equivalent to

[γ, u−1]α ∈ Ũα,−α(y) for all α ∈ Φ̃. (4.13)
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From (4.7) we know that apart from [γ, u−1
α ], all the contributions to [γ, u−1]α come from

commutators of elements u−1
β with ht(β) < ht(α). Supposing that uβ has already been

fixed for all roots β of smaller height than α, (4.13) determines which uα ∈ Ũα can give
rise to fixed points uy.

Recall from § 3.1 that we have a Chevalley basis of Lie
F̃
(G) and corresponding isomor-

phisms of algebraic groups Ũα
∼= F̃. These restrict to

Ũα,r
∼= {λ ∈ F̃ : ṽ(λ) � r} for all r ∈ R,

and if uα corresponds to λα ∈ F̃, then [γ, u−1
α ] becomes (1 − α(γ))λα. Because we are

interested in uy, the component uα is determined only modulo Ũα,−α(y), that is, λα

modulo {λ ∈ F̃ : ṽ(λ) � −α(y)} is all that matters.
Now we compare γ with γh. We note that for all β ∈ Φ

ṽ((1 − β(γ)) − (1 − β(γh))) = ṽ(β(γ)(β(h) − 1))

= ṽ(β(h) − 1)

= sdβ(h)

� r

> ht(Φ) sd(γ). (4.14)

By (4.9) the valuation of a contribution from C(u−1
αi1

, . . . u−1
αik

) to [γ, u−1]α is at least

−α(y) + (1 − ht(α)) sd(γ). (4.15)

Recall that C(u−1
αi1

, . . . , u−1
αik

) also involves [γ, u−1
ik

]. If we use γh instead of γ, then by
(4.14) and (4.15) we get a new element whose vα-value differs only in the fractional ideal
of F̃ where the valuation is at least

−α(y) + (1 − ht(α)) sd(γ) + ht(Φ) sd(γ) � −α(y) + sd(γ).

So, if the uβ with ht(β) < ht(α) have already been fixed, then the condition (4.13) for
both γ and γh leads to two sets of solutions for λα, and these sets differ only in the parts
of valuation at least

−α(y) + sd(γ) − sdα(γ) � −α(y).

But these parts do not influence the point uy. Hence γh fixes such a point uy if and only
if γ does. Since this holds for all y ∈ ÃS we conclude that

B(G, F̃)γh = B(G, F̃)γ .

�

5. The groups U
(e)
Ω

Schneider and Stuhler introduced an important system of compact subgroups of G, which
they used to derive several interesting results on complex smooth G-representations
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in [18]. These subgroups were also studied by Moy and Prasad in [12,13] for their theory
of unrefined minimal types, and by Vignéras in [23] in the context of G-representations
on vector spaces over general fields.

Let R̃ be the set R ∪ {r+: r ∈ R} ∪ {∞} endowed with the ordering

r < r+ < s < s+ < ∞ if r < s.

We define addition and multiplication with positive numbers on R̃ in the obvious way,
so that they respect the ordering. For example,

r + (s+) = (r + s)+ and 2 · r+ = (2r)+.

Starting with the filtrations (3.4) and (3.6) we define for α ∈ Φ and r ∈ R:

Uα,r+ :=
⋃
s>r

Uα,s, Uα,∞ := {1},

Hr+ :=
⋃
s>r

Hs, H∞ := {1}.
(5.1)

Since the filtrations are discrete, we have Uα,r+ = Uα,r+ε for sufficiently small ε > 0, and
similarly for Hr+.

For a function f : Φ∪{0} → R̃, let Uf be the subgroup of G generated by
⋃

α∈Φ Uα,f(α)∪
Hf(0). For non-empty Ω ⊆ AS we vary on (3.9) by

f∗
Ω : Φ ∪ {0} → R̃, α �→

{
〈Ω, −α〉+ if α is constant on Ω,

supx∈Ω〈x,−α〉 otherwise.
(5.2)

For e ∈ R�0, we define

U
(e)
Ω := Uf∗

Ω+e.

Notice that the closure Ω̄ of Ω yields f∗
Ω̄

= f∗
Ω and hence U

(e)
Ω̄

= U
(e)
Ω .

Example 5.1. Let G = GLn(F). We identify the standard apartment AS of B(GLn, F)
with Rn/R(1, 1, . . . , 1), such that the set of vertices is the image of Zn. Denote the
smallest integer larger than r+ ∈ R̃ by �r+�. Recall the fractional ideals Pm in F for
m ∈ Z. For a point x = (x1, . . . , xn) ∈ AS and e ∈ R�0 we have

U (e)
x =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + P
e+� P
x2−x1+e+� P
xn−x1+e+�

P
x1−x2+e+�

1 + P
e+�

P
xn−xn−1+e+�

P
x1−xn+e+� P
xn−1−xn+e+� 1 + P
e+�

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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If e ∈ Z�0 and Ω ⊂ AS is the standard chamber, defined by x1 > x2 > · · · > xn > x1 −1,
then

U
(e)
Ω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + Pe+1 Pe Pe

Pe+1

1 + Pe+1

Pe

Pe+1 Pe+1 1 + Pe+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that U
(0)
Ω is contained in the standard Iwahori subgroup of GLn(F), and that they

are not equal because the diagonal entries differ.

The groups U
(e)
Ω satisfy the following unique decomposition property.

Proposition 5.2 (Bruhat and Tits [3, 6.4.48]). For any ordering of Φred the product
map

He+ ×
∏

α∈Φred

(U (e)
Ω ∩ Uα) → U

(e)
Ω

is a diffeomorphism. Moreover, U
(e)
Ω ∩ NG(S) = He+ and for α ∈ Φred,

U
(e)
Ω ∩ Uα =

{
Uα,f∗

Ω(α)+e if 2α /∈ Φ,

Uα,f∗
Ω(α)+e · U2α,f∗

Ω(2α)+e if 2α ∈ Φ.

By a diffeomorphism between p-adic algebraic varieties we mean a homeomorphism f ,
such that f and f−1 are given locally by convergent power series. The above product
map is obviously algebraic, but its inverse need not be.

There is a version of the unique decomposition property with Φred∪{0} instead of Φred.
It follows easily from Proposition 5.2, since He+ normalizes Uα,r.

The above decomposition implies that the subgroups U
(e)
Ω behave well with respect to

field extensions and Levi subgroups.

Lemma 5.3. Let F̃/F be a finite field extension and let Ũ
(e)
Ω ⊆ G(F̃) be defined like

U
(e)
Ω ⊆ G(F). Then U

(e)
Ω = Ũ

(e)
Ω ∩ G(F).

Proof. Let S̃ and ρS be as in (3.3) and let ÃS̃ ⊇ AS be the corresponding apartment
of B(G, F̃). Then f̃∗

Ω(α) = f∗
Ω(ρS(α)) for all α ∈ Φ̃. Now apply Proposition 5.2 and

Equations (3.4) and (3.6). �

Let MD = MD(F) be a standard Levi subgroup of G. Then a maximal split torus S

of G is a maximal split torus of MD as well, and the standard apartment of B(MD, F) is

AD := (X∗(S)/X∗(Zc(MD))) ⊗Z R = (X∗(S)/X∗(SD)) ⊗Z R.

Since S∆ ⊆ SD, there is a quotient map between the apartments

AS → ASD
, x �→ xD (5.3)

in the buildings for G and MD.
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Lemma 5.4. Let ΩD be the image of Ω in the standard apartment AD of the building
for MD. Then U

(e)
ΩD

= U
(e)
Ω ∩ MD and

U
(e)
Ω = (U (e)

Ω ∩ Ru(PD))(U (e)
Ω ∩ MD)(U (e)

Ω ∩ Ru(P̄D)).

Proof. For Ω ⊆ AS and α ∈ ΦD we clearly have f∗
ΩD

(α) = f∗
Ω(α). As the groups Uα,r

and Hr are the same in MD and in G, the statement follows from Proposition 5.2. �

We are mainly interested in the cases where Ω is a point, a facet or a polysimplex.

Theorem 5.5. For a point x, a polysimplex σ, and a general subset Ω of an apart-
ment AS , the following hold.

(a) U
(e)
Ω is open if Ω is bounded.

(b) U
(e)
Ω is compact.

(c) U
(e)
Ω is normal in PΩ .

(d) U
(e)
x fixes the star of x pointwise.

(e) U
(e)
σ =

∏
x vertex of σ U

(e)
x if e ∈ Z�0.

(f) If x is an interior point of σ and e ∈ Z�0, then U
(e)
x = U

(e)
σ .

(g) U
(e)
Ω ⊇ U

(e′)
Ω whenever e � e′.

(h) The groups U
(e)
σ for e ∈ N form a neighbourhood basis of 1 in G.

(i) The group generated by the commutators [U (e)
Ω , U

(e′)
Ω ] is contained in U

(e+e′)
Ω .

Since Uα,r = {1} if and only if r = ∞, (a) follows from Proposition 5.2. Statements (c)
and (d) show that the order of the product in (e) does not matter. The proofs of (b)–(e)
and (g), (h) may be found in [18, § I.2]. Property (f) is [23, Proposition 1.1], whereas (i)
follows from [3, 6.4.41]. Notice that so far these properties hold only for subsets of the
standard apartment AS . However, (c) allows us to define

U
(e)
Ω := gU

(e)
g−1Ωg−1 (5.4)

for any non-empty subset Ω of an apartment gAS . Now Theorem 5.5 holds in the entire
building B(G, F).

We need one more important property. We define the hull H(σ, τ) of two polysimplices
σ and τ as the intersection of all apartments containing σ ∪ τ . This finite polysimplicial
complex is a combinatorial approximation to the closed convex hull of σ ∪ τ . Similarly,
we can define the hull H(x, z) of two arbitrary points x, z ∈ B(G, F). The proof of [23,
Lemma 1.28] yields

(j) if x, z ∈ B(G, F) and y ∈ H(x, z), then U
(e)
y ⊆ U

(e)
x U

(e)
z .
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The fixed points of the groups Uα,k in the standard apartment are described by [3, 7.44]:

A
Uα,k

S = {x ∈ AS : 〈x, α〉 � −k},

A
Uα,k+
S = {x ∈ AS : 〈x, α〉 � −k − n−1

α }
(5.5)

for all α ∈ Φ and k ∈ Γα. Let �r�Γα
for r ∈ R denote the largest element of Γα that is

strictly smaller than r. For x ∈ AS , (5.5), Proposition 5.2 and Theorem 5.5 (c) yield

A
U(e)

x

S = {y ∈ AS : 〈y, α〉 � �α(x) − e�Γα
for all α ∈ Φ},

B(G, F)U(e)
x = Px · A

U(e)
x

S .
(5.6)

5.1. The level of representations

The system of subgroups (U (e)
x )x∈B(G,F)◦ for fixed e ∈ Z�0 is a ‘consistent equivariant

system of subgroups’ in the terminology of [11, § 2.2] because of properties (b), (e),
and (j) in Theorem 5.5 and (5.4). The main result of [11, § 7.1], which was inspired
by [9], uses these subgroups to construct resolutions of G-representations and suitable
subsets thereof. We now describe this in greater detail.

Let π be a representation of G on a Z[1/p]-module V , where p is the characteristic of
the residue field of F. For any polysimplicial subcomplex Σ ⊆ B(G, F) we define

Cn(Σ; V ) :=
⊕

σ∈Σn

V U(e)
σ ⊗Z Z{σ}.

If τ is a face of σ, then U
(e)
τ ⊆ U

(e)
σ by Theorem 5.5 (e) above, so that V U(e)

τ ⊇ V U(e)
σ .

Fix any orientation of B(G, F) and declare σ endowed with the opposite orientation to
be equal to −σ ∈ Z{σ}. We define a boundary map

∂n : Cn(Σ; V ) → Cn−1(Σ; V ), v ⊗ σ �→ v ⊗ ∂(σ). (5.7)

Here ∂(σ) is the usual boundary of σ, a weighted sum of codimension-one faces of σ.
This yields a chain complex (C∗(Σ; V ), ∂∗), that is, ∂2 = 0. We augment it by

∂0 : C0(Σ; V ) → V, v ⊗ x �→ v. (5.8)

If g ∈ G and g · Σ ⊆ Σ, then g acts on C∗(Σ; V ) by

g · (v ⊗ σ) = π(g)v ⊗ g · σ,

where g · σ is endowed with the orientation coming from σ.

Theorem 5.6 (Meyer and Solleveld [11, Theorem 2.4]). Let Σ be a convex sub-
complex of B(G, F), let e ∈ Z�0, and let π : G → Aut(V ) be a representation as above.
Then (C∗(Σ; V ), ∂∗) is exact in all positive degrees, and the augmentation map ∂0 induces
a bijection

H0(Σ; V ) ∼=
∑

x∈Σ◦

V U(e)
x .
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Definition 5.7. A (smooth) G-representation V has level e ∈ Z�0 if

V =
∑

x∈B(G,F)◦

V U(e)
x .

This level is similar to the depth of a representation defined by Vignéras in [22, II.5.7],
generalizing [12]. More precisely, if V is irreducible and e is the smallest integer such
that V has level e, then the depth of V lies in (e−1, e]. The category of G-representations
of level e is studied in [11, § 3]. If V is a complex G-representation of level e and Σ =
B(G, F), then Theorem 5.6 recovers a result of Schneider and Stuhler [18, II.3.1]. As we
will see later, Theorem 5.6 for finite subcomplexes has independent significance.

Let P be a parabolic subgroup of G with unipotent radical Ru(P ). We let

V (Ru(P )) := span{π(g)v − v : g ∈ Ru(P )}, VRu(P ) := V/V (Ru(P )).

The representation (πRu(P ), VRu(P )) of P or P/Ru(P ) is called the (unnormalized)
parabolic restriction of V .

Let (ρ, W ) be a smooth representation of P/Ru(P ). Inflate it to a representation of P

and construct the smoothly induced G-representation IndG
P (W ). This is known as the

(unnormalized) parabolic induction of W .

Proposition 5.8. Let P ⊆ G be a parabolic subgroup.

(a) If V is a G-representation of level e, then VRu(P ) is a representation of P/Ru(P ) of
level e.

(b) If W is a representation of P/Ru(P ) of level e, then IndG
P (W ) has level e.

Proof. We first establish (a). We may assume that P = PD is a standard parabolic
subgroup. Then U+ ⊆ PD and [3, Proposition 7.3.1] yields G = PDNG(S)UC for any
chamber C ⊆ AS . Since C̄ is a fundamental domain for the action of G on B(G, F),

B(G, F)◦ = G · C̄◦ = PDNG(S)UCC̄◦ = PDNG(S)C̄◦ = PDA◦
S .

The definition of the level and Lemma 5.4 yield

V =
∑

x∈B(G,F)◦

V U(e)
x

=
∑

p∈PD

∑
x∈A◦

S

p · V U(e)
x

⊆
∑

p∈PD

∑
x∈A◦

S

p · V U(e)
x ∩MD

=
∑

p∈PD

∑
xD∈A◦

D

p · V U(e)
xD .
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This implies that VRu(PD) has level e as well:

VRu(PD) =
∑

p∈PD

∑
xD∈A◦

D

p · V
U(e)

xD

Ru(PD) =
∑

xD∈B(MD,F)◦

V
U(e)

xD

Ru(PD).

Now we establish (b). For notational convenience, we assume that P = PD is standard
parabolic, so that we may identify P/Ru(P ) with MD = MD(F). A representation
of MD has level e if and only if it is a quotient of a direct sum of copies of the regular
representation on C∞

c (MD/U
(e)
xD ) for points xD in the building of MD; here C∞

c denotes
the space of locally constant functions with compact support. Since Jacquet induction
preserves direct sums and quotients, it suffices to prove that the Jacquet induction of
C∞

c (MD/U
(e)
xD ) has level e. Inspection shows that this Jacquet induction is isomorphic to

the regular representation on C∞
c (G/Ru(PD)U (e)

xD ).
The subgroup Ru(PD)U (e)

xD of G is an inductive limit of compact subgroups because U
(e)
xD

is compact and Ru(PD) is unipotent. It is useful to choose a special sequence of compact
subgroups exhausting Ru(PD), namely,

Kn := γn(U (e)
xD

∩ Ru(PD))γ−n,

where γ is a central element of MD that is strictly positive, that is,
⋃

Kn = Ru(PD).
We also consider the subgroups K̄n := γn(U (e)

xD ∩ Ru(P̄D))γ−n in the opposite unipotent
group; then

⋂
K̄n = {1}.

The space C∞
c (G/Ru(PD)U (e)

xD ) is the coinvariant space for the right action of
Ru(PD)U (e)

xD on C∞
c (G). This coinvariant space for an increasing union of compact sub-

groups is the inductive limit

C∞
c (G/Ru(PD)U (e)

xD
) ∼= lim−→ C∞

c (G/KnU (e)
xD

) ∼= lim−→ C∞
c (G/γn(U (e)

x ∩ PD)γ−n).

Here x is a pre-image of xD in the building for G for the map in (5.3). Thus U
(e)
x ∩MD =

U
(e)
xD and

U (e)
x = (U (e)

x ∩ Ru(PD)) · (U (e)
x ∩ MD) · (U (e)

x ∩ Ru(P̄D)).

Any smooth compactly supported function on G/γn(U (e)
x ∩ PD)γ−n is invariant under

right translation by K̄m for sufficiently large m because
⋂

K̄m = 1. Hence we may rewrite

C∞
c (G/Ru(PD)U (e)

xD
) ∼= lim−→

n,m

C∞
c (G/K̄mγn(U (e)

x ∩ PD)γ−n)

∼= lim−→
n

C∞
c (G/K̄nγn(U (e)

x ∩ PD)γ−n)

∼= lim−→
n

C∞
c (G/γnU (e)

x γ−n).

Since the regular representations on C∞
c (G/γnU

(e)
x γ−n) ∼= C∞

c (G/U
(e)
x ) have level e, so

has their inductive limit. Hence C∞
c (G/Ru(PD)U (e)

xD ) has level e as asserted. �
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6. Characters of admissible representations

We define the character of an admissible representation first as a distribution and then
describe how to interpret it as a locally constant function on suitable open subsets. Our
discussion is purely algebraic and also works for representations over arbitrary fields
whose characteristic is different from the characteristic p of the residue field of F.

There is a Haar measure µ on G such that µ(K) ∈ Z[1/p] for all compact open
subgroups K ⊆ G by [11, Lemma 1.1]. Let H(G, Z[1/p]) be the Z[1/p]-module of locally
constant functions G → Z[1/p] with compact support. Define the convolution product of
f1, f2 ∈ H(G, Z[1/p]) by

(f1 ∗ f2)(h) =
∫

G

f1(g)f2(g−1h) dµ(g).

We call H(G, Z[1/p]) endowed with this multiplication the Hecke algebra. It is an asso-
ciative idempotented, non-unital Z[1/p]-algebra. Every element of G naturally defines a
multiplier of H(G, Z[1/p]), but is not contained in H(G, Z[1/p]). Given a pro-p compact
open subgroup K ⊆ G, we let

〈K〉 = µ(K)−11K ∈ H(G, Z[1/p])

be the corresponding idempotent.
A smooth representation π of G on a Z[1/p]-module V becomes a H(G, Z[1/p])-module

in a natural way, and we have 〈K〉V = V K , the module of K-invariant vectors in V .
We call an H(G, Z[1/p])-module W smooth if W = lim−→〈K〉W , where the limit runs over
all pro-p compact open subgroups K of G. There is a natural equivalence between the
following categories (see [11, Proposition 1.3]):

• smooth representations of G on Z[1/p]-modules;

• smooth H(G, Z[1/p])-modules.

We say that a representation G on a K-vector space V has good characteristic if the
characteristic of the field K does not equal p.

In good characteristic, we may define the algebra H(G, K), whose smooth modules are
in bijection with smooth representations of G on K-vector spaces. Such a representation
(π, V ) is called admissible if V K has finite dimension for all compact open subgroups
K ⊆ G. An admissible representation in good characteristic gives rise to a distribution

θπ : H(G, K) → K, f �→ tr(π(f), V ).

If K = C, then Harish-Chandra’s Theorem 1.1 shows that this distribution is associated
to a locally integrable function, that is, θπ(f) =

∫
f(g) · trπ(g) dµ(g) for all f ∈ H(G, C)

and a locally integrable function trπ. Furthermore, trπ is locally constant on the subset
of regular semisimple elements. Since this subset has full measure, the distribution θπ

is determined by the values of trπ on regular semisimple elements. If V has infinite

https://doi.org/10.1017/S1474748011000120 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000120


314 R. Meyer and M. Solleveld

dimension, then trπ is not locally constant near a unipotent element u because the closure
of the conjugacy class of u contains 1 and trπ(1) = dimV = ∞.

Since integration requires analysis, the notion of a locally integrable function is unclear
for a general field K. The following definition of a character function makes sense for any
field K.

Definition 6.1. Let (π, V ) be an admissible K-linear representation of G and let g ∈ G.
We write trπ(g) = τ ∈ K if there is a compact open subgroup K such that tr(π(f), V ) =
τ ·

∫
G

f(g) dµ(g) for all f ∈ H(G, Z[1/p]) that are supported in KgK.

By definition, the domain of definition dom trπ of trπ is open in G, and trπ is locally
constant on dom trπ. Moreover, the trace property of θπ forces the function trπ to be a
class function, that is, dom trπ is invariant under conjugation and trπ(gxg−1) = trπ(x)
for all g ∈ G and x ∈ dom trπ.

In the following sections, we will show that dom trπ contains all regular semisimple
elements, and given such an element g, we will describe a subgroup K for which trπ is
locally constant on KgK. We begin with some preparatory results. First we describe the
trace distribution as a limit of locally constant functions and relate the latter to the trace
function.

Let K be a compact open pro-p subgroup of G (these exist by [11, Lemma 1.1]). Since
the space V K of K-invariants in V is finite dimensional, the linear operator π(〈K〉g〈K〉)
has finite rank for all g ∈ G. Hence

χK(g) := tr(π(〈K〉g〈K〉), V ) = µ(K)−1 tr(π(1Kg), V ) = µ(K)−1 tr(π(1gK), V )

defines a K-bi-invariant function on G; here we used that π(g〈K〉), π(〈K〉g〈K〉), and
π(〈K〉g) have the same trace. By construction,

tr(π(f), V ) =
∫

G

f(g)χK(g) dµ(g) (6.1)

for all K-bi-invariant compactly supported functions f on G. Let (Kn)n∈N be a decreasing
sequence of compact open pro-p subgroups with

⋂
Kn = {1}. Then any locally constant,

compactly supported function is Kn-bi-invariant for some n ∈ N, so that (6.1) holds for
K = Kn for all sufficiently large n. In this sense, the trace distribution is the limit of the
locally constant functions χK in a distributional sense. The following lemma is trivial.

Lemma 6.2. The trace function exists at γ ∈ G and has value τ if and only if there is
n0 ∈ N with χKn

(g) = τ for all g ∈ Kn0γKn0 and all n � n0. Furthermore, then trπ is
defined and constant on Kn0γKn0 .

Let γ ∈ G be a regular semisimple element. Then γ is contained in some maximal
torus T . Let T rss ⊆ T be the subset of regular elements. It is well known that the map

ψ : G/T × T rss → G, (gT, t) �→ gtg−1 (6.2)

is open. We are going to quantify this statement by providing compact open subgroups
K, KG ⊆ G, and KT ⊆ T such that ψ(KGT × KT γ) contains KγK for a given regular
element γ of T . We first consider the split case.
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Lemma 6.3. Suppose that T contains the maximal split torus S of G. Then the map

U+ → U+ : u �→ [u, γ]

is a diffeomorphism.

Proof. For α, β, α + β ∈ Φ ∪ {0}, we have [Uα, Uβ ] ⊆ Uα+β , where we interpret U0 as
ZG(T ). Let U (n) be the group generated by the Uα with α ∈ Φ+ of height at least n.
Then

U+ = U (1) ⊇ U (2) ⊇ · · · ⊇ U (ht(Φ)) ⊇ {1}

is a filtration of U+ by normal subgroups. Moreover, as algebraic groups

U (n)/U (n+1) ∼=
∏

α∈Φ(n)

Uα/U2α,

where Φ(n) denotes the set of roots of height n. The group Uα/U2α carries a canonical
F-vector space structure, so we can speak of λuα for λ ∈ F and uα ∈ Uα/U2α.

Given v ∈ U+, we recursively construct un ∈ U (n) such that

[un · · ·u2 · u1, γ] ∈ vU (n+1).

Then u := uht(Φ) · · ·u2 · u1 belongs to U+ and satisfies [u, γ] = v. The construction will
show that the un and hence u depend algebraically on v and that the class of un in
U (n)/U (n+1) is unique. It follows that the map u �→ [u, γ] is bijective and that the inverse
map is algebraic.

Let wn := [un · · ·u2 · u1, γ] and define w0 := 1. These elements satisfy the recursive
relation

wn = unun−1 · · ·u1γ(un−1 · · ·u1)−1γ−1γu−1
n γ−1

= wn−1w
−1
n−1unwn−1u

−1
n unγu−1

n γ−1

= wn−1[w−1
n−1, un][un, γ].

If un ∈ U (n), then [un, γ] ∈ U (n) and [w−1
n−1, un] ∈ U (n+1) because [U+, U (n)] ⊆ U (n+1).

Since U (n)/U (n+1) is commutative, we have wn ∈ wn−1[un, γ]U (n+1). Hence un must
solve the equation [un, γ] ∈ w−1

n−1vU (n+1). As

[uα, γ] = (1 − α(γ))uα for uα ∈ Uα/U2α,

the map [?, γ] : U (n)/U (n+1) → U (n)/U (n+1) is invertible. Since w−1
n−1v ∈ U (n) by

the induction assumption, there is a unique coset unU (n+1) with wn−1[un, γ]U (n+1) =
vU (n+1), and it depends algebraically on w−1

n−1v. We may pick a representative in this
coset by an algebraic map. If we do this in each step, then the final result u depends
algebraically on v and satisfies [u, γ] = v. In each step, there is a unique way of lifting a
solution of the equation [u, γ] = v from U+/U (n) to U+/U (n+1); in the first step, there
is a unique solution in U+/U (2). Hence there is a unique u ∈ U+ with [u, γ] = v. �
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Proposition 6.4. Suppose that the maximal torus T containing γ is split, so that G is
split. Let AS be the apartment corresponding to S = T , let x ∈ AS , and let r ∈ R�sd(γ).
Then the map ψ in (6.2) restricts to an injective map from (U (0)

x /H0+) × Hr+γ onto a
neighbourhood of γ that contains U

(r)
x γ.

Proof. First we prove injectivity on the indicated domain. Assume ψ(g1T, t1) =
ψ(g2T, t2). Then g−1

2 g1t1g
−1
1 g2 = t2 ∈ T . Since t1 is regular, this implies g−1

2 g1 ∈ NG(T ).
But NG(T ) ∩ U

(0)
x = ZG(T ) = T , so that g1T = g2T and therefore t1 = t2.

Since G splits, the definition (3.2) yields Hr+ ⊆ T . As ψ(u, hγ) = [u, hγ]hγ, Lemma 6.3
shows that ψ(G/T × Hr+γ) contains U+Hr+γ for any positive system Φ+ ⊂ Φ. We may
decompose any element of U

(r)
x γ as y = y+ · y− · y0 with y± ∈ U± ∩ U

(r)
x and y0 ∈ Hr+γ.

There are u+ ∈ U+ and u− ∈ U− such that

y+y0 = u+y0u
−1
+ and y−y0 = u−y0u

−1
− .

Now sd(y0) = sd(γ) � 0 and [u+, y0] = y+ ∈ U
(r)
x force u+ ∈ U

(r−sd(γ))
x ⊆ U

(0)
x . For the

same reason, u− ∈ U
(r−sd(γ))
x . A good approximation for ψ−1(y) is (u−u+, y0):

ψ(u−u+, y0) = u−u+y0u
−1
+ u−1

−

= u−y+y0u
−1
−

= u−y+u−1
− y−y0

= [u−, y+]y+y−y0

= [u−, y+]y. (6.3)

Theorem 5.5 (i) yields

[u−, y+] ∈ [U (r−sd(γ))
x , U (r)

x ] ⊆ U (2r−sd(γ))
x ,

but we can be more precise. Let r′ > r the smallest number with U
(r′)
x �= U

(r)
x . Choose

ε ∈ (0, r′ −r) such that U
(ε)
x = U

(0)
x (this is possible because the filtrations (3.4) and (3.6)

are discrete). Now Theorem 5.5 (i) yields

[u−, y+] ∈ U (r′)
x .

In other words, ψ(u−u+, y0) = y in Px/U
(r′)
x .

Next we try to find a solution of the form ψ(u−u+g, ty0) = y. By (6.3) this is equivalent
to

ψ(g, ty0) = u−1
+ u−1

− yu−u+ = (u−u+)−1[y+, u−](u−u+)y0.

Since u−u+ ∈ U
(0)
x ⊆ NG(U (r′)

x ), the right-hand side lies in U
(r′)
x y0. Thus we transformed

the original problem
ψ(U (0)

x /H0+ × Hr+γ) ⊇ U (r)
x γ

to the problem
ψ(U (0)

x /H0+ × Hr+y0) ⊇ U (r′)
x y0.
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Since Hr+γ = Hr+y0, r′ > r and

U (r′)
x y0 ⊆ U (r′)

x Hr+γ � U (r)
x γ,

repetition of this process yields a solution ψ−1(y). �

Now we consider a regular element γ of a non-split maximal torus T = T (F). Further-
more, we want to generalize the statement by allowing the choice of an arbitrary x ∈ AS .
Let F̃ be a splitting field of T , let G̃ = G(F̃), and let T̃ := T (F̃). This is a split maximal
torus in G̃, which therefore corresponds to an apartment ÃT̃ in the building B(G, F̃).
Recall the subgroups H̃r ⊆ ZG(F̃)(T (F̃)).

For x ∈ B(G, F), let πT (x) be the point of ÃT̃ that is nearest to x. Let Ψ be the root
system corresponding to an apartment of B(G, F̃) that contains x and πT (x). We define

dT (x) := max
β∈Ψred

|β(πT (x)) − β(x)|. (6.4)

If F̃/F is tamely ramified, then (4.11) shows that ÃT̃ ∩ B(G, F) is non-empty, that is,
there is x with dT (x) = 0.

Alternatively, let C̃ ⊆ ÃT̃ be a chamber containing πT (x), let ρÃT̃ ,C̃ : B(G, F̃) → ÃT̃

be the associated retraction. Then

dT (x) = max
α∈Φ̃red

|α(πT (x)) − α(ρÃT̃ ,C̃(x))|.

Proposition 4.2 (c) yields

dT (x) � ht(Φ) sd(γ) for all x ∈ B(G, F̃)γ . (6.5)

Lemma 5.3 and (5.2) yield

U (r+dT (x))
x = Ũ (r+dT (x))

x ∩ G(F) ⊆ Ũ
(r)
πT (x) ∩ Ux. (6.6)

Lemma 6.5. Let γ ∈ T be regular and let r ∈ R�sd(γ). Let x ∈ B(G, F) and abbreviate
Kx = Ũ

(0)
πT (x) ∩ G. Then U

(r+dT (x))
x γ is contained in ψ(Kx × (H̃r+γ ∩ T )).

Proof. Equation (6.6) and Proposition 6.4 show that every element of Ũ
(r+dT (x))
x γ is

conjugate in G(F̃) to an element of H̃r+γ ∩ T (F̃). Since the maps

ψ̃ : (G(F̃)/T (F̃)) × T (F̃) → G(F̃) and ψ : (G(F)/T (F)) × T (F) → G(F)

are injective and open, respectively, on Ũ
(0)
πT (x)/H̃0+ × (H̃r+γ ∩ T (F̃)) and on the inter-

section of this set with G,

ψ̃(Kx × (H̃r+γ ∩ T )) = ψ̃(Ũ (0)
πT (x) × (H̃r+γ ∩ T (F̃))) ∩ G.

Moreover, by Proposition 6.4 the right-hand side contains

Ũ
(r)
πT (x)γ ∩ G ⊇ Ũ (r+dT (x))

x γ ∩ G = U (r+dT (x))
x γ. (6.7)

�

https://doi.org/10.1017/S1474748011000120 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000120


318 R. Meyer and M. Solleveld

There is a decreasing sequence (Kn)n∈N of normal compact open subgroups of Kx with⋂
Kn = {1}. Since Kx is open in G, we may use this sequence to approximate the trace

distribution as in (6.1). Since Kn is normal in Kx, the space of Kn-bi-invariant functions
is invariant under conjugation by elements of Kx. This implies that the function χKn is
invariant under conjugation by elements of Kx. Therefore, Lemma 6.5 shows that χKn

is constant on U
(r+dT (x))
x γ once it is constant on H̃r+γ ∩ T . In the following, we may

therefore restrict attention to elements of a torus in G.

7. The local constancy of characters

Let (π, V ) be an admissible representation of G in good characteristic, of level e ∈ Z�0.
Let γ be a regular semisimple element of a maximal torus T ⊆ G and let x ∈ B(G, F)◦

be a vertex in the building of G. We are going to find r(γ) ∈ N depending only on γ and
the level e of the representation, such that trπ is defined and constant on U

(r(γ)+dT (x))
x

with dT (x) as in (6.4).

7.1. Local constancy for compact elements

First we assume, in addition, that γ is a compact element, so that γ fixes some point
in the affine building. The assertions for general elements are reduced to the compact
case in § 7.2.

Our definition of r(γ) is somewhat complicated and probably not optimal. It is likely
that r(γ) = max{sd(γ), e} works, but we can only prove this if T has a subtorus S that
is a maximal F-split torus of G.

Let T = T (F) ⊆ G be a maximal torus containing γ and let F̃ be a splitting field of T .
Recall the subgroups Ũ+ ⊂ G(F̃) and H̃r ⊆ ZG(F̃)(T (F̃)). Let B̃ be a Borel subgroup of
G(F̃) containing T (F̃).

Definition 7.1. For x ∈ B(G, F) define dT (x) as in (6.4) and let d(γ) ∈ R be the smallest
number such that

B(G, F)γ ⊆ B̃ · {x ∈ B(G, F) : dT (x) � d(γ)}. (7.1)

We have d(γ) < ∞ because B(G, F)γ/T is compact.

Theorem 7.2. Define r(γ) := max{ht(Φ) sd(γ), e + d(γ)}.

(a) The function trπ is defined and constant on γH̃r(γ)+ ∩ T , and on all G-conjugacy
classes intersecting this set.

(b) The function trπ is constant on U
(r(γ)+dT (x))
x γ, for any x ∈ B(G, F).

(c) If T has a subtorus S that is a maximal F-split torus of G, then d(γ) = 0 and
we may omit the factor ht(Φ) in the definition of r(γ), that is, trπ is constant on
γH̃max{sd(γ),e}+ ∩ T .
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If F̃/F is tamely ramified, then (4.11) shows that there is a point x ∈ B(G, F) with
dT (x) = 0, so that trπ is constant on U

(r(γ))
x γ.

The number r(γ) will reappear frequently in the following. We will not need the defi-
nition of r(γ) but only Theorem 7.2 (a). That is, the following results remain true for a
smaller value of r(γ) provided Theorem 7.2 (a) can be established for it.

Proof. (a) Theorem 5.6 implies a formula for tr(π(f), V ), which is worked out in [11,
Proposition 4.1]. We need some notation to state this trace formula. For g ∈ G, let Σg be
the set of all polysimplices σ with gσ = σ and let εσ(g) = ±1, depending on whether the
automorphism of σ induced by g preserves or reverses orientation. For a locally constant
function f supported in Px, [11, Proposition 4.1] asserts

tr(π(f), V ) = lim
Σ

∫
g∈K

f(g)
∑

σ∈Σg

(−1)dim σεσ(g) tr(π(g), V U(e)
σ ) dµ(g), (7.2)

where the limit means that there is a finite convex subcomplex Σ0 such that the right-
hand side is the same for all Px-invariant finite convex subcomplexes Σ of B(G, F) with
Σ ⊇ Σ0. Thus we want to show that the function

τΣ : g �→
∑

σ∈Σg

(−1)dim σεσ(g) tr(π(g), V U(e)
σ ) (7.3)

is constant on U
(r(γ)+dT (x))
x γ for all sufficiently large Px-invariant finite convex subcom-

plexes Σ. The function τΣ is invariant under conjugation by elements of Px because Σ

is Px-invariant.
Lemma 4.3 yields B(G, F)g = B(G, F)γ for all g ∈ H̃r(γ)+γ ∩ T , because r(γ) �

ht(Φ) sd(γ). Since
H̃e+dT (x)+ ⊆ Ũ

(e+dT (x))
πT (x) ⊆ Ũ (e)

x , (7.4)

the operator π(g−1γ) restricts to the identity on V U(e)
x , for all x with dT (x) � d(γ).

Let D be a set of simplices in B(G, F)γ , such that D is a fundamental domain for
the action of B̃ on B̃ · B(G, F)γ and every σ ∈ D contains an interior point x with
dT (x) � d(γ). Equation (7.3) becomes

τΣ(g) =
∑

bσ∈Σg

εbσ(g) tr(π(g), V U
(e)
bσ ) =

∑
bσ∈Σg

εσ(b−1gb) tr(π(b−1gb), V U(e)
σ ), (7.5)

where the sums runs over all polysimplices bσ ∈ Σg = Σγ with σ ∈ D and b ∈ B̃. Notice
that we pick only one b for each such polysimplex. Given another b1 ∈ B̃ with b1σ = bσ,
we have b−1

1 b ∈ Pσ, so θ(b1, g) = θ(b, g), where

θ(b, g) := εσ(b−1gb) tr(π(b−1gb), V U(e)
σ ).

We want to show that τΣ(γ) = τΣ(g). Write b1 = t1u1 ∈ T (F̃)Ũ+, where Ũ+ is the
unipotent radical of B̃. By Lemma 6.3 the map Ũ+ → Ũ+ : u �→ [u−1, γ] restricts to
diffeomorphisms

{u ∈ Ũ+ : [u−1, γ] ∈ P̃σ} → P̃σ ∩ Ũ+,

{u ∈ Ũ+ ∩ G : [u−1, γ] ∈ Pσ} → Pσ ∩ Ũ+.
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Hence we can find u2 ∈ Ũ+ ∩ G with [u−1
2 , γ] = [u−1

1 , g] = [b−1
1 , g]. This implies that γ

and g fix u2σ, so u2σ occurs in the sum τΣ(γ), although it does not necessarily equal b1σ.
Now

θ(u2, γ) = εσ([u−1
2 , γ]γ) tr(π([u−1

2 , γ]γ), V U(e)
σ )

= εσ([u−1
1 , g]g(g−1γ)) tr(π([u−1

1 , g])π(g)π(g−1γ), V U(e)
σ ).

Since Σg = Σγ , g−1γ fixes σ pointwise, while in view of (7.4) and the definition of D,
π(g−1γ) acts as the identity on V U(e)

σ . Therefore,

θ(u2, γ) = εσ([u−1
1 , g]g) tr(π([u−1

1 , g]g), V U(e)
σ ) = θ(u1, g) = θ(b1, g),

which shows that every term of the sum (7.5) also occurs in τΣ(γ). The converse also holds
and both sums have the same number of terms, so we can conclude that τΣ(γ) = τΣ(g).

(b) Lemma 6.5 shows that any element of U
(r(γ)+dT (x))
x γ is Px-conjugate to one of

γH̃r(γ)+ ∩ T . Hence (b) follows from (a).

(c) To a large extent we will copy the proof of part (a), but we take advantage of
U+ · AS = B(G, F). This clearly implies d(γ) = 0, so that D is a collection of simplices
of AS that form a fundamental domain for the action of ZG(S) on AS . This D works for
both γ and g = γh.

With these choices the proof of (a) mostly goes through, even though we do not know
whether B(G, F)g equals B(G, F)γ or not. The only problem arises in the last line, where
we still have to justify that the sums τΣ(γ) and τΣ(g) involve the same number of terms. It
suffices to show this for the number of terms n(σ, γ) (respectively n(σ, g)) corresponding
to a particular simplex σ ∈ D. For sufficiently large Σ these numbers equal the number
of simplices of B(G, F)γ (respectively B(G, F)g) of the form uσ with u ∈ U+. Guided by
Proposition 4.2 we have a closer look at the maps

φγ : u �→ [γ, u−1] and φg : u �→ [g, u−1],

both from U+ to U+. It is easy to see that φγ(U+
σ ) ∪ φg(U+

σ ) ⊆ U+
σ . Now Proposi-

tion 4.2 (a), whose proof remains valid in the current setting, tells us that

n(σ, γ) = [{u ∈ U+ : [γ, u−1] ∈ Pσ} : Pσ ∩ U ] = [φ−1
γ (U+

σ ) : U+
σ ], (7.6)

and similarly for n(σ, g). Like in the proof of Lemma 6.3, the generalized eigenvalues
of the differentials Dφγ , Dφg : LieF(U+) → LieF(U+) are {1 − α(γ) : α ∈ Φ+} and {1 −
α(g) : α ∈ Φ+}, and they occur with multiplicity dα := dim LieF(Uα/U2α). The restriction
h ∈ H̃sd(γ)+ ∩ T implies

v(1 − α(g)) = v(1 − α(γ)α(h)) = v(1 − α(γ) + α(γ)(1 − α(h))) = v(1 − α(γ))
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for all α ∈ Φ. Let µU+ be a Haar measure on the locally compact group U+. For any
compact open subset K ⊆ U+

µU+(φg(K)) =
∏

α∈Φ+

‖1 − α(g)‖dα

F
µU+(K)

=
∏

α∈Φ+

‖1 − α(γ)‖dα

F
µU+(K)

= µU+(φγ(K)). (7.7)

But φγ and φg are diffeomorphisms, so φ−1
γ and φ−1

g also multiply volumes by the same
factor. Together with (7.6) this shows that n(σ, γ) = n(σ, g), as required. �

7.2. Local constancy for non-compact elements

We would like to generalize Theorem 7.2 to all regular semisimple elements. This is
possible using Jacquet modules and parabolic restriction as in [5]. Although the methods
in [5] are algebraic and not restricted to complex coefficients, Casselman refers to ear-
lier work which was written with complex representations in mind. This makes it hard
to judge whether Casselman’s proofs work for representations in good characteristic.
Fortunately, Vignéras [22] proved the required results in this generality.

Let γ ∈ T be a semisimple element and let Pγ ⊆ G be the parabolic subgroup con-
tracted by γ, which is defined in (2.3). Since F is complete with respect to the valuation v,
Proposition 2.3 (d) shows that γ is compact in Mγ . It follows from Proposition 2.3 (b)
that LieF(Ru(Pγ)) ⊆ LieF(G) is the sum of all eigenspaces of Ad(γ) corresponding to
eigenvalues with strictly positive valuation. (Although the eigenvalues may lie in a field
extension of F, this subspace is defined over F.) Similarly, Ru(Pγ−1) corresponds to the
γ-eigenvalues with strictly negative valuation.

The description of (standard) parabolic subgroups in Definition 2.2 shows that Mγ

contains a maximal split torus of G, say Sγ . It may happen that γ /∈ Sγ . Let x be a point
of the apartment Aγ of B(G, F) corresponding to Sγ . Proposition 5.2 implies

U (e)
x = (U (e)

x ∩ Ru(Pγ−1))(U (e)
x ∩ Mγ)(U (e)

x ∩ Ru(Pγ)), (7.8)

or, in other words, U
(e)
x is well placed with respect to (Pγ , Mγ). The collection

X = {gx ∈ B(G, F) : g lies in the maximal compact subgroup of T}

is finite and γ-invariant. Since T ⊂ Mγ , the subgroup U
(e)
x′ is well placed with respect to

(Pγ , Mγ) for every x′ ∈ X. The group K(e) :=
⋂

x′∈X U
(e)
x′ is also well placed:

K(e) = (K(e) ∩ Ru(Pγ−1))(K(e) ∩ Mγ)(K(e) ∩ Ru(Pγ)) =: K
(e)
− K

(e)
0 K

(e)
+ .

It follows that

γK
(e)
− γ−1 � K

(e)
− , γK

(e)
0 γ−1 = K

(e)
0 , γK

(e)
+ γ−1 � K

(e)
+ ,

so that the sequence K(e) for e ∈ N has all the properties claimed in [6].
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Theorem 7.3 (Vignéras [22, II.3.7]). Let (π, V ) be an admissible smooth G-represen-
tation in good characteristic and let g ∈ G be such that Pg = Pγ . There exist increasing
sequences of finite-dimensional vector spaces

V (e) ⊆ V K(e)
and V

(e)
Ru(Pγ) ⊆ V

K
(e)
0

Ru(Pγ)

such that

(a)
⋃

e V (e) ⊕ V (Ru(Pγ)) = V and
⋃

e V
(e)
Ru(Pγ) = VRu(Pγ),

(b) the quotient map V → V/V (Ru(Pγ)) = VRu(Pγ) restricts to bijections V (e) →
V

(e)
Ru(Pγ) and ( ⋃

r

V (r)
)K(e)

→ V
K

(e)
0

Ru(Pγ),

(c) V (e) is stable under π(1K(e)gK(e)).

This setup allows us to use the (elementary) arguments from [5, p. 104], which result
in

tr(µ(K(e)gK(e))−1π(1K(e)gK(e)), V ) = tr(πRu(Pγ)(g), V K
(e)
0

Ru(Pγ)) (7.9)

for all g ∈ G with Pg = Pγ . Notice that the set of such g is contained in Mγ , so it is not
open in G unless γ is compact in G.

Theorem 7.4. Let γ be a regular semisimple element. Then trπ(γ) and trπRu(Pγ )(γ) are
both defined, and they are equal.

Proof. Since γ is compact in Mγ , Theorem 7.2 tells us that trπRu(Pγ ) is well defined and
constant near γ. Pick an e ∈ N such that it is constant on γK

(e)
0 . Now (7.9) yields

trπRu(Pγ )(γ) = tr(πRu(Pγ)(γ ∗ 〈K(e)
0 〉), VRu(Pγ))

= tr(πRu(Pγ)(γ), V K
(e)
0

Ru(Pγ))

= tr(µ(K(e)γK(e))−1π(1K(e)gK(e)), V ).

As the subsets K(e)γK(e) form a neighbourhood basis of γ in G, taking the limit e → ∞
and invoking Lemma 6.2 shows that trπ(γ) is well defined and equals trπRu(Pγ )(γ). �

This theorem, which Casselman [5] proved for complex representations, enables us to
reduce the computation of traces from general semisimple elements to compact semisim-
ple elements. Theorem 7.2 tells us on which neighbourhood of γ the function trπRu(Pγ )

is constant. But this is only a neighbourhood in Mγ . We also want to know on which
neighbourhood in G the function trπ is constant. Let r(γ) be such that Theorem 7.2 (a)
holds when we view γ as a compact element in Mγ .
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Theorem 7.5. Let γ be a regular element of a (not necessarily split) maximal torus T

of G. Let (π, V ) be an admissible representation of G of level e in good characteristic.

(a) The function trπ is defined and constant on H̃r(γ)+γ ∩ T , and on all G-conjugacy
classes intersecting this set.

(b) The function trπ is constant on U
(r(γ)+dT (x))
x γ, for any x ∈ B(G, F).

Proof. For every root α ∈ Φ(G(F̃), T (F̃)) and every g ∈ H̃r(γ)+γ ∩ T we have ṽ(α(g)) =
ṽ(α(γ)) because gγ−1 is compact. Together with (2.5), this implies Pg = Pγ , so that
Theorem 7.4 applies to all g ∈ H̃r(γ)+γ ∩ T and tells us that trπ(g) = trπRu(Pγ )(g).
Theorem 7.2 and Proposition 5.8 show that trπRu(Pγ ) is constant on H̃r(γ)+γ ∩ T , so the
same goes for trπ. This proves (a), from which (b) follows upon applying Lemma 6.5. �

This theorem is similar to [1, Corollary 12.11], which was proved only for complex
representations and ‘tame’ elements γ. Our neighbourhoods of constancy are usually
smaller than those in [1], because Theorem 7.2 (a) is not optimal. The results of Adler
and Korman suggest that Theorem 7.2 (c) could be valid whenever the maximal torus T

splits over a tamely ramified extension of F. Possibly this has something to do with
Rousseau’s result (4.10).

8. A bound for the dimension of V K

In this section, we will use the resolutions of [11] to estimate the dimension of V U(e)
x for an

admissible representation (π, V ) of G in good characteristic. We abbreviate Ke := U
(e)
x .

First we estimate the growth of some related double coset spaces in order to show that
our later estimates are optimal, at least for GLn.

Since every irreducible smooth representation is a subquotient of a parabolically
induced one, the essential case is V = IndG

P (W ), where P is a parabolic subgroup of G

and (ρ, W ) is a supercuspidal representation of P/Ru(P ). There is a natural isomorphism

V Ke ∼=
⊕

PgKe

WP∩gKeg−1
, (8.1)

where the sum runs over all double (P, Ke)-cosets. The space P\G/Ke is finite because
P\G is a complete algebraic variety (and hence compact in the p-adic topology) and Ke

is open. We will discuss how |P\G/Ke| grows as e increases, under some simplifications.
If P is a Borel subgroup and ρ is a character, then |P\G/Ke| and dimV Ke have equivalent
growth rates.

Suppose that G is split. Let S be a split maximal torus of G and let PD be a standard
parabolic subgroup of G. The dimension of PD\G is

dim(PD\G) = dimF(LieF(G)/ LieF(PD)) =
∑

α∈Φ−\Φ−
D

dimF LieF(Uα) = |Φ−| − |Φ−
D|.
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Let x ∈ AS . By construction, the groups Ke decrease equally fast in every direction; if Ke

corresponds to a lattice L(e) in LieF(G), then Ke+1 corresponds to PL(e), where P is the
maximal ideal in the maximal compact subring of F. Hence a double coset PDgKe con-
tains approximately qdim(PD\G) double (PD, Ke+1)-cosets. Therefore, |PD\G/Ke| grows,
in first approximation, like qe dim(PD\G).

Now we focus on the easier example G = GLn and let P and S be the standard Borel
subgroup and the standard maximal torus in GLn(F). The irreducible representations of
S = P/Ru(P ) are characters. Let (ρ, C) be such a character and let V be the parabolically
induced representation of G. Since any character is trivial on Ke ∩ S for large enough e,
CP∩gKeg−1 ∼= C for large enough e, so that dim(V Ke) = |P\G/Ke| for large e. These
numbers are routine to compute:

|P\G/Ke| ≈ en−1qen(n−1)/2 (8.2)

in the sense that the quotient of both sides tends towards a constant as e → ∞.
For complex representations, we may use the growth rate of dimV Ke to estimate the

growth of the character. It will, however, turn out that these estimates are far from
optimal. The idea is simple enough: if trπ is constant on Keγ, then

trπ(γ) =
1

|Keγ|

∫
Keγ

trπ(γ) dµ(γ) = tr(π(〈Ke〉γ)).

Equip the finite-dimensional vector space V K0 with some norm. Since the range of 〈Ke〉γ
is contained in V Ke ⊆ V K0 and the largest eigenvalue of 〈Ke〉γ is controlled by the
operator norm ‖〈K0〉γ〈K0〉‖∞, we get the estimate

| trπ(γ)| � ‖〈K0〉γ〈K0〉‖∞ · dim V Ke . (8.3)

Since the function γ �→ 〈K0〉γ〈K0〉 is locally constant, the local growth of the right-hand
side is equivalent to that of dimV Ke . This depends on γ via e. For x sufficiently close
to the set of singular elements (namely, for sd(γ) > e + d(γ)) we may take e = sd(γ) by
Theorem 7.2.

Unfortunately, a direct computation for GLn shows that

∞∑
e=0

dim V Ke · µ{g ∈ K0 : sd(g) = e}

diverges, already for GL2. Hence the estimate (8.3) does not imply the local integrability
of trπ. The authors have not been able to detect the additional cancellation in our trace
formula that makes the character locally integrable.

Instead, we estimate of the growth of dim V Ke . For convenience, we assume that x = o

is the origin of the apartment AS and that e ∈ Z�0.
Theorem 5.6 assigns to every convex subcomplex Σ of B(G, F) a subspace of V , namely

the image
∑

x∈Σ◦ V U(e)
x of ∂0 : C0(Σ, V ) → V . This space admits an important alterna-

tive description if Σ is finite.
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Theorem 8.1 (Meyer and Solleveld [11, Theorem 2.12]). The elements

u
(e)
Σ :=

∑
σ∈Σ

(−1)dim σ〈U (e)
σ 〉 ∈ H(G, Z[1/p])

are idempotent and

u
(e)
Σ H(G, Z[1/p]) =

∑
x∈Σ◦

〈U (e)
x 〉H(G, Z[1/p]),

(1 − u
(e)
Σ )H(G, Z[1/p]) =

⋂
x∈Σ◦

(1 − 〈U (e)
x 〉)H(G, Z[1/p]).

In particular,
im(∂0 : C0(Σ, V ) → V ) =

∑
x∈Σ◦

V U(e)
x = u

(e)
Σ V.

It is shown in [11] that there is a convex subcomplex Σ0 such that 〈U (r)
o 〉u(e)

Σ =
〈U (r)

o 〉u(e)
Σ0

for all convex subcomplexes Σ with Σ ⊇ Σ0. The following lemma describes Σ0

explicitly. To state it, we need some notation. For α ∈ Φ we define

Aα+
S,r := {x ∈ AS : 〈x, α〉 > r},

Aα0
S,r := {x ∈ AS : 〈x, α〉 ∈ [−r, r]},

Aα−
S,r := {x ∈ AS : 〈x, α〉 < −r},

and for any map ε : Φ → {+, 0,−} we write

Aε
S,r :=

⋂
α∈Φ

A
α,ε(α)
S,r .

Most of the sets Aε
S,r are empty, some are compact, and the others are unbounded.

The non-empty Aε
S,r partition AS . Let Ab

S,r be the union of the bounded Aε
S,r; this

is a polysimplicial subcomplex of AS which is star-shaped around o. The subcomplex
Br := Po · Ab

S,r of B(G, F) is obviously stable under the action of all the groups U
(s)
o for

s ∈ R�0. We may think of Br as a combinatorial approximation to a ball of radius r

around o.

Lemma 8.2. Let r ∈ Z�e and let Σ ⊆ B(G, F) be any finite convex subcomplex that
contains Br−e. Then

〈U (r)
o 〉u(e)

Σ = 〈U (r)
o 〉u(e)

Br−e
=

∑
σ∈Br−e

(−1)deg σ〈U (r)
o 〉〈U (e)

σ 〉.

Proof. Fix ε : Φ → {+, 0,−} such that Aε
S,r−e is unbounded. First we establish

〈U (r)
o 〉〈U (e)

F 〉 = 〈U (r)
o 〉〈U (e)

F ′ 〉

for certain facets F, F ′ ⊆ Aε
S,r−e. The coroots α∨ ∈ Φ∨ with ε(α) = 0 span a proper

subspace Aε
S,⊥ � AS . We may pick a non-zero vector δε ∈ AS such that

https://doi.org/10.1017/S1474748011000120 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000120


326 R. Meyer and M. Solleveld

(1) δε is orthogonal to Aε
S,⊥,

(2) Aε
S,r−e + R�0δ

ε ⊆ Aε
S,r−e,

(3) δε lies in the span of an irreducible root subsystem Ψ∨ of Φ∨ (here we decompose Φ∨

as a direct sum of irreducible root systems).

For every facet F ⊆ Aε
S,r−e let M(F ) ⊆ Aε

S,r−e be the unique facet such that for all
x ∈ F there exists λ > 0 with x + λ · δε ⊆ M(F ). We claim that

〈U (r)
o 〉〈U (e)

F 〉 = 〈U (r)
o 〉〈U (e)

M(F )〉 for F ⊆ Aε
S,r−e. (8.4)

In view of the unique decomposition property (Proposition 5.2) this is equivalent to

(U (r)
o ∪ U

(e)
F ) ∩ Uα = (U (r)

o ∪ U
(e)
M(F )) ∩ Uα for all α ∈ Φred.

By definition, U
(r)
o ∩ Uα = Uα,r+ and U

(e)
F ∩ Uα = Uα,−α(x)+e+ for x ∈ F . If ε(α) = −,

then −α + e > r on F ∪ M(F ), so that

Uα,r+ ⊇ Uα ∩ (U (r)
o ∪ U

(e)
M(F )).

If ε(α) �= −, then supx∈F −α(x) � supx∈M(F ) −α(x), which combined with U
(e)
F ⊆ U

(e)
M(F )

yields
U

(e)
F ∩ Uα = U

(e)
M(F ) ∩ Uα.

This finishes the proof of (8.4).
Now we use (8.4) to establish some cancellation. Every facet F in AS can be written

uniquely as F = FΨ ×F⊥, where FΨ and F⊥ are facets in RΨ∨ and Ψ⊥ ⊆ AS , respectively.
Consider a facet F ⊆ Aε

S,r−e such that M−1(F ) is not empty. Then M(F ) = F , and
M−1(F ) consists of facets of F̄ . Property (3) above shows that F ′

⊥ = F⊥ for any F ′ ∈
M−1(F ). Hence ⋃

F ′∈M−1(F )

F ′ = τ × F⊥,

where τ ⊆ RΨ∨ consists of the facets of FΨ that contain points of the form x + λδε with
x ∈ F and λ � 0. In particular, τ is diffeomorphic to

(−1, 1]δε + {x ∈ F : 〈x, δε〉 = c}

for some c ∈ R, so that the Euler characteristic of τ is zero. Therefore,∑
F ′∈M−1(F )

(−1)dim F ′
=

∑
F ′∈M−1(F )

(−1)dim F ′
Ψ (−1)dim F⊥

=
∑

τ ′ facet in τ

(−1)dim τ ′
(−1)dim F⊥

= 0, (8.5)
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which together with (8.4) yields∑
F ′∈M−1(F )

(−1)dim F ′〈U (r)
o 〉〈U (e)

F ′ 〉 = 0 ∈ H(G, Z[1/p]). (8.6)

Suppose that AS is any apartment of B(G, F) that contains o and at least one facet
F ′ ∈ M−1(F ). As δε points away from o, the apartment AS contains points of F , so that
F̄ ⊆ AS . This enables us to extend the map M to all facets of B(G, F). Recall that any
Weyl chamber A+

S ⊆ AS is a fundamental domain for the action of Po on B(G, F). On A+
S

we define M according to the above recipe and by M(F ) := F if F ⊆ Ab
S,r−e ∩ A+

S . The
properties (1)–(3) of δε ensure that M(F ) and F have the same isotropy group in Po, so
we can extend M Po-equivariantly to B(G, F).

Since Σ contains o and is a convex subcomplex of B(G, F), its collection of facets is
stable under M . By definition

〈U (r)
o 〉u(e)

Σ = 〈U (r)
o 〉

∑
σ∈Σ

(−1)deg σ〈U (e)
σ 〉

= 〈U (r)
o 〉

∑
F facet of Σ

∑
F ′∈M−1(F )

(−1)dim F ′〈U (e)
F ′ 〉.

Now (8.6) (which only holds for facets of unbounded Aε
S,r−e) shows that the facets of

Σ\Br−e do not contribute to this sum. As M is the identity on facets of Br−e, we remain
with 〈U (r)

o 〉u(e)
Σ = 〈U (r)

o 〉u(e)
Br−e

. �

Remark 8.3. Lemma 8.2 provides a direct proof of the special case of [11, Proposi-
tion 3.6] where the consistent system of idempotents is 〈U (e)

x 〉; this proof does not use
the fact that the Hecke algebra is Noetherian.

We turn to the space of invariants V U(r)
o . Since it has finite dimension, it is contained

in the range of u
(e)
Σ for some finite convex subcomplex Σ ⊆ B(G, F). We may as well

assume that Σ contains Br−e, so that Lemma 8.2 yields

V U(r)
o = 〈U (r)

o 〉u(e)
Σ V =

( ∑
σ∈Br−e

(−1)deg σ〈U (r)
o 〉〈U (e)

σ 〉
)

V.

The right-hand side is contained in∑
x∈B◦

r−e

〈U (r)
o 〉〈U (e)

x 〉V

by Theorem 5.5 (e). It is the space of U
(r)
o -invariants in∑

x∈B◦
r−e

〈U (e)
x 〉V

because ∑
x∈B◦

r−e

〈U (e)
x 〉V
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is Po-invariant. Let Po ⊇ 〈U (r)
o 〉 act on⊕

x∈B◦
r−e

〈U (e)
x 〉V

by g · (x, v) = (g · x, π(g)v). Then ∑
x∈B◦

r−e

〈U (r)
o 〉〈U (e)

x 〉V

is a quotient of ⊕
x∈B◦

r−e

〈U (e)
x 〉V.

The addition map

( ⊕
x∈B◦

r−e

〈U (e)
x 〉V

)U(r)
o

→
( ∑

x∈B◦
r−e

〈U (e)
x 〉V

)U(r)
o

is surjective because U
(r)
o is compact and we are working in good characteristic. Since

there are only finitely many G-orbits of vertices in B(G, F),

mV := max
x∈B(G,F)

dim V U(e)
x (8.7)

exists. The dimension of ( ⊕
x∈B◦

r−e

〈U (e)
x 〉V

)U(r)
o

is at most mV |B◦
r−e/U

(r)
o |.

It remains to estimate the number of U
(r)
o -orbits of vertices in Br−e. For α ∈ Φ let dα

be the dimension of LieF(Uα/U2α) and let d0 be the dimension of LieF(ZG(S)). Recall
that q = |O/P| and that n−1

α Z is the set of jumps of the filtration of Uα.

Lemma 8.4. The number of U
(r)
o -orbits on B◦

r−e is of order O(rdim AS Qr), where

Q := exp
(

log(q)
∑

α∈Φred

dαnα

2
+

d2αn2α

4

)
.

Proof. Recall from (3.10) and Proposition 3.2 (c) that

Po = UoNo = U+
o U−

o (Po ∩ NG(S)),

for any positive root system Φ+ of Φ. Hence every facet of Br−e = Po · Ab
S,r−e is of

the form u · F with u ∈ U+
o U−

o and a facet F of AS . Fix F and choose a positive root
system Φ+ such that α(F ) � 0 for all α ∈ Φ+. Then U−

o ⊆ U−
F fixes F pointwise, so that

we only need u ∈ U+
o . By Propositions 3.2 (b) and 5.2 the product maps∏

α∈Φred∩Φ+

Uα,0 → U+
o ,

∏
α∈Φred∩Φ+

(Uα ∩ U (r)
o ) → U+ ∩ U (r)

o
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are diffeomorphisms. Together with the conventions (3.4) we get

[U+
o : U+

o ∩ U (r)
o ] =

∏
α∈Φred∩Φ+

[Uα,0 : Uα ∩ U (r)
o ]

=
∏

α∈Φred∩Φ+

[Uα,0U2α,0 : Uα,r+U2α,2r+]

=
∏

α∈Φred∩Φ+

[Uα,0/U2α,0 : Uα,r+/U2α,2r+] · [U2α,0 : U2α,2r+]. (8.8)

Since we are dealing with unipotent pro-p-groups, these indices can be read off from the
Lie algebras. For α ∈ Φ and s ∈ n−1

α Z, the construction from (3.1) and (3.4) shows that
Uα,s � Uα,s+ corresponds to multiplying a lattice in LieF(Uα) with the maximal ideal P

of O (see also [21, 3.5.4]). Hence

[Uα,s/U2α,2s : Uα,s+/U2α,2s+] = qdα ,

[Uα,0/U2α,0 : Uα,r+/U2α,2r+] = qdα
nαr+�,

where �y+� denotes the smallest integer larger than y+ ∈ R̃. Similarly,

[U2α,0 : U2α,r+] = qd2α
n2αr/2+�,

from which we conclude that

[U+
o : U+ ∩ U (r)

o ] =
∏

α∈Φred∩Φ+

qdα
nαr+�qd2α
n2αr/2+�

�
∏

α∈Φred

qdα(nαr+1)/2qd2α(n2αr+2)/4. (8.9)

This number is an upper bound for the number of U
(r)
o -orbits in Uo ·F . Since it does not

depend on F , we only need to multiply it with the number of facets of Ab
S,r−e. While

this number is not easily expressible in a formula, it clearly grows like rdim AS . �

Theorem 8.5. Let (π, V ) be an admissible G-representation of level e ∈ Z�0 in good
characteristic. Let r ∈ R�e and define Q and mV as in Lemma 8.4 and (8.7). Then

dim V U(r)
o = O(mV rdim AS Qr),

µ(U (r)
o ) dimV U(r)

o = O(mV rdim AS q−rd0Q−r)

with constants independent of V and r.

Proof. The first estimate follows from Lemma 8.4 and the arguments above. Proposi-
tion 5.2 yields

[U (s)
o : U (r+s)

o ] = [Hs+ : Hr+s+]
∏

α∈Φred

[Uα,s+U2α,s+ : Uα,r+s+U2α,r+s+]
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for all s ∈ Z�0. A calculation like the one in (8.8) and (8.9) shows that this index is at
least

qrd0
∏

α∈Φred

qrnαdαqrn2αd2α/2.

(We cannot be exact because we do not know at which points the filtration of H jumps.)
This yields the second estimate. �

These estimates are sharp in some examples: (8.2) shows that (a) and (c) cannot be
improved for GLn. Here all nα and dα are 1, Φ is reduced, and there are n(n − 1)/2
positive roots, so that Q = qn(n−1)/2.

9. Conclusion

Let G be a reductive p-adic group and let (ρ, V ) be an admissible representation of G

on a vector space V of characteristic not equal to p. We have seen that the character
of (ρ, V ) is a locally constant function on the set of regular semisimple elements, and
we have described explicit open subsets on which it is constant. Furthermore, we have
estimated the growth of the dimensions of the fixed-point subspaces V U(e)

x for e → ∞.
Both results are based on the main result of [11] about the acyclicity of certain coefficient
systems on the affine Bruhat–Tits building.

It is still unclear whether Harish-Chandra’s theorem about the local integrability of
the character function for complex representations can be established using these reso-
lutions. This may depend on a better understanding of the character formulae. While
the resolution in [11] does provide an explicit formula for the character, more work is
required to understand and simplify this formula.
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