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For the guarantee of the long-distance transport of the bunches of China Initiative Accelerator
Driven System (CIADS), a new scheme is proposed that extra magnetic field is used in the
accelerator-target coupling section before the windowless target to minimize the self-modula-
tion (SM) mechanism. Particle-in-cell simulations are carried out to study the influence of the
solenoidal magnetic field on the self-modulation mechanism when long proton bunches move
in the background plasmas. The long proton bunches used in the simulations are similar to
these in the linear accelerator of CIADS. It is found that the presence of the solenoidal magnetic
field will significantly inhibit the self-modulation process. For the strong magnetic field, the lon-
gitudinal separation and transverse focusing of the long bunches disappear. We attribute these
phenomena to the reason that the strong solenoidal magnetic field restricts the transverse move-
ment of plasma electrons. Thus, there are not enough electrons around the bunch to compen-
sate the space charge effect. Moreover, without transverse current, the longitudinal pinched
effect disappears, and the long bunch can not be separated into small pulses anymore.

Introduction

In the project of CIADS in Lanzhou (Yang and Zhan, 2015), which includes three sub-systems:
accelerator, spallation target, and sub-critical reactor, the proton beam from the accelerator
reacts with the nuclei of the lead-bismuth eutectic. Before the proton beam is injected into
the target, there is an about 100-m-long vacuum differential section. The differential section
is connected to a high vacuum accelerator pipe on the one end; while the section connected
to the target filled with helium at the other end where the pressure is close to atmospheric.
When passing through the differential section, the high-energy beam particles will ionize
the gas into plasmas. Then, the proton beam will move in plasmas over a long distance before
reaching the spallation target. Normally, the plasmas will provide charge and current neutral-
ization and compensate the transverse spreading of the ion bunches, thus providing self-
pinched transport over long distance.

However, in the case that the beam radius is small compare with the plasma electron skin
depth, the self-modulation (SM) mechanism (Kumar et al., 2010; Lotov, 2015) appears. That is
to say for a long proton beam moving in plasmas, the bunch is periodically focused and defo-
cused and is transformed into a train of short bunches separated by the plasma wavelength.
The AWAKE project reported the first experimental demonstration of the SM mechanism
in plasmas, of which showed that the SM mechanism could be a possible path to the future
high-energy particle physics. But in the project of CIADS, the SM mechanism caused by
the unneutralized current (Kaganovich et al., 2001, 2004; Polomarov et al., 2007) will lead
to the overcompression and destroy the stability of the beams. The overcompressed high-
density beam pulse will increase the peak power density and further the temperature of target,
which will greatly affect the safety of the CIADS. For the guarantee of the long-distance trans-
port of the bunches and the safety of the system, the SM mechanism must be minimized.

The application of a solenoidal magnetic field allows the additional control of the bunches
(Sefkow et al., 2009; Seidl et al., 2009; Hu et al., 2014). The magnetic field will affect the degree
of charge and current neutralization, and consequently lead to the variation of the SM mech-
anism. The previous study (Kaganovich et al., 2007; Dorf et al., 2009) shows that even a small
solenoidal magnetic field will strongly change the self-field and provides the enhanced self-
focusing. However, as the magnetic field increases the radial force acting on the beam ions
can change sign from focusing to defocusing. Thus, if the magnetic field is carefully chosen,
the overcompression caused by the SM mechanism can be minimized.

In the paper, we try to use the extra magnetic field to control the wakefield caused by the
beam pulse and to minimize the SM mechanism. To achieve this, we use a simplified model
here. In our simulation model, the long proton bunches, of which are similar to these in the
linear accelerator of CIADS, are used to study the influence of the magnetic field when they
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move through the hydrogen plasmas. Particle-in-cell (PIC) simu-
lations are carried out by the VORPAL (Nieter and Cary, 2004)
code. The neutralization of the charge and current, the self-
electric field, as well as the self-magnetic field are discussed.
Section “Method” is a brief introduction of the method used in
the paper. In Section “Results and discussion”, we vary the sole-
noidal magnetic field imposed on the pulse-plasmas system.
The influence on the SM mechanism of pulses propagation in
background plasmas is discussed. A summary is given in the
“Conclusion” section.

Method

In this paper, simulations are performed by the code VORPAL, of
which is an arbitrary dimensional hybrid plasma and a beam sim-
ulation code.

The kinetic model incorporated in VORPAL is based on the
PIC algorithm. The electric and magnetic fields are updated by
the Faraday’s equation and the Ampere-Maxwell equation:
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The equations of motion for all particles involved in the sim-
ulations (plasma electrons, ions, and the injection-beam ions) are
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Here, rj‘?‘, VJ‘?‘, Go» y]‘?‘, mgy, and N are the position, velocity,

charge, Lorentz factor, mass, and total number of plasma elec-
trons (o.=e), ions (o.=1i), and injection-beam ions (a=b),
respectively.

We use a 2D3V (x, y, Vx, Vy, Vz) PIC model in this paper. The
simulations are performed in a xy-plane, as shown in Figure 1.
The longitudinal (x) and radial (y) directions represent parallel
and perpendicular to the direction of the beam motion, respec-
tively. The simulation box is composed of Nx=6500 grids in
the x-direction and Ny =512 grids in the y-direction. Periodic
boundary condition in the y-direction and open boundary condi-
tion in the x-direction are adopted. The time step dt=2.576 x
107"s by taking into count the Courant-Friedrichs-Lewy
(CFL) limit and the spatial step dx = dy = 1.486 x 10~* m.

A fully ionized hydrogen plasma (H+,e—) is placed in the box.
The plasmas are assumed to be collisionless and uniform. The
plasma density Ne=1.0 x 10" m™ and the temperature of elec-
trons and ions T,y = Tj =1 eV, respectively.

The proton bunches are in the same form with these used in
the linear accelerator of CIADS. The energy of the beams is
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Plasma Region

Fig. 1. A long beam pulse propagation in the plasmas with the solenoidal magnetic
field.

45MeV and the transverse emittance is zero. A hard-cutoff
model is used for all protons restricting in the region of
(x — xo)z/(Lb/Z)2 + —)/())Z/Rb2 < 1. The density profiles of
the bunches are the Gaussian distribution: Ny(x, y) = py
exp (—(x — %0)*/Ly*) exp (=(y — y0)*/Ry*),  where pyy = 1.0 x
107 m~3, beam length L, =0.142 m, and radial R, = 1.68 x 107 m.
To investigate how the magnetic field influences the SM mechanism,
a solenoidal magnetic field is imposed in the x-direction with ranges
from 0.0 to 1 T.

Results and discussion

Figure 2 shows the density distribution of the proton bunches
(normalized by N,) propagation in plasmas over 0.9m.
Figure 2a shows the result when the magnetic field B=0.0T.
The initial long bunch is separated into a trains of short pulses.
The SM mechanism, which dominates the transport process,
compresses the pulses both in the x- and y-directions. In
Figure 2b when B=0.1T, the compression is inhibited. When
B=1.0T, as shown in Figure 2c, the longitudinal separation dis-
appears. Moreover, instead of transverse focus, the long bunch is
defocused in the y-direction. This implies that a solenoidal mag-
netic field will strongly reduce the SM mechanism.

In order to further understand the phenomenon, the electric
field is given in Figure 3. Figure 3a-3c shows the longitudinal
electric field Ex when B=0.0, 0.1, and 1.0 T, respectively. And
Figure 3d-3f shows the corresponding transverse electric field
Ey. When B=0.0T, the oscillation wakefield in the x-direction
accelerates and deaccelerates the bunch periodically, and eventu-
ally leads to the separation of the bunch. At the same time, like
the electrical field in the x-direction, periodically focusing and
defocusing field is observed in Figure 3d. This means that the
electrical field will focus the pulses both in the x- and y-directions.
However, as B increases, the oscillation wakefield Ex and Ey
decreases, as shown in Figure 3b and 3e. When B reaches up to
1.0'T, it is noted that a defocusing Ey field appears, as predicted
by Dorf et al. (2009) and Kaganovich et al. (2007). The self-
magnetic field Bz is shown in Figure 4. In Figure 4a when B =
0.0 T, the solenoidal magnetic field around each pulse is observed.
This self-magnetic field pinches the pulses. As B increases, the
self-magnetic field reduces significantly and can not compensate
the repulsive force from the electrical field. Thus, the defocusing
phenomenon happens, as shown in Figure 2c.

As mentioned above, the SM mechanism is original from the
charge neutralization and current unneutralization. To answer
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Fig. 3. The longitudinal electric field Ex (x 10°V/m) of the beam-plasma system when (a) B=0.0T, (b) B=0.1T, and (c) B=1.0 T, while the corresponding transverse
electric field Ey (x 10°V/m) when (d) B=0.0T, (e) B=0.1T, and (f) B=1.0T.
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Fig. 4. The magnetic field Bz (T) of the beam-plasma X(\)
system when (a) B=0.0T, (b) B=0.1T,and (c) B=1.0T. e

the question how a solenoidal magnetic field influence the SM
mechanism, the density distribution of the plasma electrons, as
well as the current of the proton-plasmas systems are investigated.
Figure 5 shows the corresponding contour plots of the electron
density in plasmas. In Figure 5a and 5b, electrons assemble in

Fig. 5. The density distribution of the plasma electrons
(normalized by Neo) when (a) B=0.0T, (b) B=0.1 T,
and (c) B=1.0T.
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the region of each pulse, providing the good charge neutralization.
In Figure 5c, when B is big enough, the accumulation of electrons
disappears. The space effects of the proton bunch are not com-
pensated, of which lead to a repulsive electric field in the trans-
verse direction, as given in Figure 3f.

B=0.0T
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Fig. 6. The contour plot of the current density of the beam-plasma system. The longitudinal current density Jx (x 10> A/m?) when (a) B=0.0T, (b) B=0.1T, and
(c) B=1.0T, while the corresponding transverse Jy (x 10° A/m® when (d) B=0.0T, (¢) B=0.1T, and (f) B=1.0T.

Figure 6 shows the contour plot of the current density in the
beam-plasma systems. Figure 6a-6¢ shows the results of Jx
when the solenoidal magnetic field B=0.0, 0.1, and 1.0 T, while
Figure 6d-6f shows the results of Jy. In Figure 6a-6¢, the longitu-
dinal currents are not compensated in all cases as predicted before
(Kaganovich et al., 2001; Polomarov et al., 2007), while the differ-
ence is from Jy. When B = 0.0 T, electrons move toward the pulses
in the y-direction, as shown in Figure 6d. This leads to two phe-
nomena: (1) Electrons will assemble in the region of pulses, and
the good charge neutralization is expected. (2) In the presence
of both Jx and Jy, the self-magnetic field envelops the pulses
and pinches them both in the x- and y-directions. However,
when Bx=1.0T, as shown in Figure 6f, the magnetic field is
strong enough and electrons are restricted transversely. Thus, Jy
disappears. This also leads to two phenomena: (1) There are
not enough electrons to compensate the space charge effect, so
the repulsive electrical field appears. (2) Without Jy, there is no
more pinched effect in the longitudinal direction. The long
bunch can not be separated into small pulses anymore.

Conclusion

In this paper, a new scheme is proposed to minimize the SM
mechanism in the accelerator-target coupling section in the
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windowless target design of CIADS. We use 2D3V PIC simula-
tions to study the influence of a solenoidal magnetic field to the
SM mechanism. Our results show that the solenoidal magnetic
field will significantly inhibit the SM process. In the presence of
a strong magnetic field, the transverse focusing, as well as the lon-
gitudinal separation of the proton bunches, disappear. We attri-
bute these phenomena to the reason that a strong solenoidal
magnetic field will restrict the transverse movement of plasma elec-
trons. Thus, in the region of proton bunches, there are not enough
electrons to compensate the space charge effort. Moreover, in the
absence of transverse current, the plasmas could not pinch the
bunch in the longitudinal direction, either. For a long ion bunch
moving in plasmas, a carefully chosen magnetic field will minimize
the SM mechanism, avoid overcompression and provide the guaran-
tee of stable transport over long distance.
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