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Abstract

Literature-based discovery systems aim at discovering valuable latent connections between previously
disparate research areas. This is achieved by analyzing the contents of their respective literatures
with the help of various intelligent computational techniques. In this paper, we review the progress of
literature-based discovery research, focusing on understanding their technical features and evaluating
their performance. The present literature-based discovery techniques can be divided into two general
approaches: the traditional approach and the emerging approach. The traditional approach, which
dominate the current research landscape, comprises mainly of techniques that rely on utilizing lexical
statistics, knowledge-based and visualization methods in order to address literature-based discovery
problems. On the other hand, we have also observed the births of new trends and unprecedented
paradigm shifts among the recently emerging literature-based discovery approach. These trends are
likely to shape the future trajectory of the next generation literature-based discovery systems.

1 Introduction

Literature-based discovery (LBD) encompasses various computational approaches that aim at discovering
previously unknown associations between pieces of existing knowledge by analyzing their relevant
literatures (Swanson, 2008). Due to the explosion in the number of scientific literatures being published
today, it has become increasingly challenging to keep track of the developments in all research areas,
which in turn may leave many valuable logical connections between disparate bodies of knowledge remain
unnoticed (Swanson, 1986b). In view of this challenge, LBD aims at exploring algorithmic approaches to
finding hidden links between previously disjoint groups of research papers, either in automatic or semi-
automatic fashion (Smalheiser, 2012). This paper provides a comprehensive review and performance
evaluation of the existing LBD techniques. In addition to presenting a useful classification of most LBD
methods, it places a special emphasis on evaluating the performance of recently emerging techniques.

The development of LBD as a research field can be traced to Swanson’s serendipitous discovery of the
potential benefits of dietary fish oil on the treatment of Raynaud’s syndrome (Swanson, 1986a; DiGiacomo
et al., 1989). Unlike other typical laboratory-situated discoveries, Swanson’s discovery was groundbreaking in
that it was generated using a content analysis technique applied to two seemingly unrelated sets of literatures.

Several review papers have been previously published in this field, yet with some limitations.
Davies (1989) provided the earliest, but limited coverage on Swanson’s pioneering work on LBD.
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Subsequent reviews by Weeber et al. (2005) and Bekhuis (2006) fell short of giving sufficient
technical depths as they were intended for non-technical audience, especially biomedical researchers and
digital librarians.

Other reviews are limited in terms of their topical coverage. In an attempt to encourage more work toward
alternative discovery models, Smalheiser (2012) focused only on criticizing the limitations of Swanson’s ABC
discoverymodel. In the sameway, the review byYetisgen-Yildiz and Pratt (2009) was limited to discussing the
limitations of the present LBD evaluation methodologies. Jensen et al. (2006), Hahn et al. (2012) and Li et al.
(2014) only discussed highly specialized LBD systems for biology and pharmacogenomics.

There are more comprehensive reviews. Ganiz et al. (2005) provided detailed discussions on various
LBD algorithms, whereas Kostoff et al. (2009) focused their attention on critically evaluating the quality
of discoveries produced by the existing LBD systems. Unfortunately, both reviews did not cover many
newer LBD techniques.

Unlike the previous review papers, the current paper affords more in-depth technical discussions on a
wide range of existing LBD algorithms. More importantly, we offer insightful performance evaluations on
some of the most recently emerging LBD approaches, with important implications for future research.
Further, the present review will benefit both novice and experienced researchers. Novice researchers and
less-technical readers who are new to LBD may use this paper as an introduction to LBD. To further assist
these readers, we supply many highly informative diagrams to help understand the complex methodo-
logical features of various LBD approaches being described. For more experienced LBD researchers,
this review provides valuable insights into the field’s technical developments, critical performance
evaluations, unaddressed research challenges, and the predicted future research directions.

The rest of this paper is organized as follow. Section 2 defines LBD. It explains the basic model underlying
most LBD approaches and argues for its significance within the contemporary scientific communities. The
section also highlights the evolution of LBD approaches over time and suggests a taxonomic structure for
categorizing different types of LBD techniques. The subsequent sections look at each LBD category in more
detail, starting with Section 3 which broadly reviews various techniques under the traditional LBD approach.
It is followed by Section 4, where we present the main contributions of this paper. Here, we conduct the
performance evaluations of notable examples of the emerging LBD approaches. We also discuss their
methodological characteristics, strengths and limitations at great length, before closing this section by
anticipating several future trends among these emerging techniques. Section 5 discusses a number of pertinent
research problems that may shape the future trajectory of LBD research. Section 6 concludes this paper.

2 Literature-based discovery

2.1 Overview

LBD can be defined as a systematic computational approach to combining distinct and previously
disconnected pieces of knowledge found in the existing literature in order to infer novel and interesting
knowledge (Ganiz et al., 2005; Swanson, 2008). The main goal of LBD is to produce interesting and novel
knowledge, where ‘novelty’ refers to any fact or finding that has never been publicly published in scientific
literatures (Swanson, 2008). Although some authors have viewed LBD as a subset of the largest text mining
field (Berry & Castellanos, 2004; Smalheiser, 2012), many LBD systems incorporated non-text mining
methods that utilize structured databases, such as STRING1 and OMIM2, as well as semi-structured
information sources, such as in-text citations, images, tables, bibliographic metadata, and citation links.

The majority of LBD techniques build upon a fundamental premise known as the ABC discovery model
(Swanson, 1987; Weeber et al., 2005; Bekhuis, 2006; Smalheiser, 2012). This model is intuitive, easy to
understand, and versatile (Smalheiser, 2012). It operates based on a simple syllogistic reasoning which
assumes that if an object A is associated with another object B and that object B is associated with yet
another object C, then it can be inferred that object A is eventually associated with object C.

1 http://string-db.org/
2 http://www.omim.org/
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Two variants of the ABC model exist, as depicted in Figure 1 (Ganiz et al., 2005; Weeber et al., 2005;
Kostoff et al., 2009). The first model, closed discovery, requires that objects A and C be predetermined by
the user. In this case, the goal of LBD is to find novel associations A −B and B−C that facilitate the
implicit association between A and C. The second model, open discovery, assumes that only A is known to
the user and that the main objective is to find the possible links to an unknown object C, given one or more
intermediate objects B. Hence, while the first model focuses on finding objects B, the second model
emphasizes on looking for both B and C objects.

2.2 Motivation

The development of a research field is often influenced by various external factors. As previously
suggested, LBD research initially started in response to the need to find previously unknown logical
associations between the increasingly fragmented pieces of knowledge in the midst of currently explosive
growth of scientific literatures (Swanson, 1979, 1986b, 1993; Larsen & Von Ins, 2010). Apart from this
primary motivation, we also observe other key factors fueling the ongoing interests in LBD research:
the growing number of evidence advocating more interdisciplinary approaches to research, and the
accumulative evidence of the existing LBD systems’ effectiveness for addressing real world problems.

First, a number of recent research findings have suggested the potential merit of the interdisciplinary
research approach. A report by the US National Research Council of the National Academies (Feller &
Stern, 2007) observed that many scientific discoveries often involve drawing novel connections between
various scientific domains, which coincidentally resembles the LBD model. Likewise, a study by Chen
et al. (2009) reported that many important scientific breakthroughs could be characterized by the presence
of unprecedented co-citation links between previously disjoint groups of research papers.

What matters more is that the trend above seems to generalize to most scientific publications. For
instance, Uzzi et al. (2013) studied 17.9 million records in Thomson Reuter’sWeb of Science, where they
found that the highest-impact scientific papers often involved making unusual combinations between
commonly known knowledge. Similarly, in a study on US Patent records in years between 1790 and 2010,
Youn et al. (2015) discovered that many previously reported inventions featured new combinations
between existing techniques and technologies artifact. Once again, these findings appear to be consistent
with the underlying idea behind LBD.

Second, recent advances in LBD research may have also been motivated by the increasing number of studies
that report the successful applications of LBD methods in a wide range of knowledge discovery scenarios.

Figure 1 The closed discovery model (left) and the open discovery model (right)
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For instance, Swanson’s hypothesis on the relationship between fish oil and Raynaud’s syndrome (Swanson,
1986a) was successfully validated via an actual clinical trial study (DiGiacomo et al., 1989). Not only that, there
have also been evidence of LBD techniques’ being used to discover previously unknown associations between
various biomedical entities, including between migraine and magnesium (Swanson, 1988), estrogen and
Alzheimer’s disease (Smalheiser & Swanson, 1996b), indomethacin and Alzheimer’s disease (Smalheiser &
Swanson, 1996a), nordihydroguaiaretic acid and breast cancer (Sneed, 2003), curcumin longa and retinal
disease (Srinivasan et al., 2004), chlorpromazine and cardiac hyperthropy (Wren et al., 2004), Parkinson’s
disease (PD) and Crohn’s disease (CD) (Kostoff, 2014), and between hypogonadism and sleep quality
(Miller et al., 2012).

Besides, LBD techniques have also been used to suggest possible new treatments for existing diseases,
such as cataracts (Kostoff, 2008), PD (Kostoff & Briggs, 2008), multiple sclerosis (Kostoff et al., 2008),
and breast cancer (Li et al., 2010). They have also been applied to find new therapeutic uses of existing
drugs such as thalidomide (Weeber et al., 2003) and Metformin (Ding et al., 2013). Finally, special
purpose LBD systems have been created to elucidate novel gene–disease associations (Perez-Iratxeta
et al., 2005), protein–protein interactions (van Haagen et al., 2009, 2011), adverse drug reactions
(Shang et al., 2014) and drug repositioning (Andronis et al., 2012; Wei et al., 2014).

2.3 Classification of literature-based discovery techniques

The progress of LBD research has resulted in the evolving approaches and techniques over time,
as depicted in Figure 2. The diagram suggests a general trend where LBD techniques tend to become
increasingly automated, relying on the usage of richer knowledge representations, and better equipped to
tackle more complex discovery problems. This trend has given rise to a set of distinct LBD approaches,
which we have indicated in the form of shaded ellipses in the diagram. The overlapping sections of these
ellipses point to hybrid LBD approaches.

This review proposes a taxonomy that divides the current LBD techniques into two broad approaches,
namely the traditional approach and the emerging approach. Each approach is further divided into several
categories. The traditional approach consists of three subcategories, that is, the statistical approach,
knowledge-based approach, and visualization approach (Ganiz et al., 2005; Bekhuis, 2006; Smalheiser,
2012), as illustrated in Figure 3. Likewise, the emerging LBD approach is divided into distinct approaches,
which include the context-driven subgraph model (Cameron et al., 2015), bibliographic coupling
model (Kostoff, 2014), cluster similarity model (Fujita, 2012), entitymetrics (Ding et al., 2013), and
heterogeneous graph models (Eronen & Toivonen, 2012; Sebastian et al., 2015).

As we emphasized at the beginning of this paper, the primary contribution of this review is in our
detailed performance evaluation of the emerging LBD approach. Unlike its traditional counterparts, the
emerging approach demonstrates better performance in terms of the ability to infer complex associations
within the literature, on top of their higher scalability and accuracy (Cameron, 2014). Nonetheless, in order

Figure 2 The technical evolution of literature-based discovery approaches (adapted from Cameron, 2014)
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to fully understand and appreciate the merits of this newer approach, it is important to revisit several
representative traditional LBD techniques. We cover these in the following sections.

3 Traditional literature-based discovery approaches

3.1 Statistical approach

The statistical LBD approach establishes links between disjoint knowledge by looking for the
most frequently co-occurring terms or concepts in the existing literature. This is primarily achieved by
computing the statistical distributions and frequencies of the terms, without further considerations for their
semantics (Lindsay & Gordon, 1999). Assuming the closed discovery model and given source term A and
target term C, this approach employs various statistical measures to determine which intermediate terms B
could meaningfully connect A to C (Gordon & Lindsay, 1996).

For instance, to replicate Swanson’s previously mentioned dietary fish oil–Raynaud’s syndrome
(DFORS) discovery (Swanson, 1986a), Swanson and Smalheiser (1997) retrieved all articles containing a
source term ‘fish oil’ in their titles. Other terms that appeared frequently with this source term were
selected as the possible intermediate terms, such as the term ‘blood viscosity’. The intermediate terms were
then ranked based on the relative frequency of their co-occurrences with the source term, allowing
terms that exceeded a predetermined threshold value to be shortlisted. In the next phase, each shortlisted
intermediate term was treated as if it were a new source term and the same procedure above was repeated.
The final result was a list of possible target terms (e.g. ‘Raynaud’s syndrome’).

We further divide the statistical LBD approach into three categories of techniques: unsupervised lexical
statistics, supervised ensemble statistics, and distributional semantics. Each category is discussed in the
sections below.

3.1.1 Unsupervised lexical statistics techniques
Considered to be one of the earliest LBD techniques, the unsupervised lexical statistics techniques
(Gordon & Lindsay, 1996; Lindsay & Gordon, 1999; Gordon et al., 2002) rely on word count statistics,
as illustrated in Figure 4. To perform the ABC discovery model, the steps on the gray plate are repeated

Figure 3 Classification of literature-based discovery techniques. HBIN= heterogeneous bibliographic information
network
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N times, where N denotes the number of intermediate term B connecting the source term A to target term C.
The effectiveness of this technique is determined by the extent to which the desired intermediate terms and
target terms (assumed to be known in advance) rank highly in the list of candidate terms.

To replicate Swanson’s magnesium–migraine (MM) discovery (Swanson, 1988), the technique first
downloaded bibliographic records containing the source term ‘migraine’. The records included titles,
abstracts, and subject descriptors. N-grams3 were subsequently extracted from these records, following
prior word-stemming and stopwords removal4. Note that these N-grams should not be words that typically
characterize the source literature (e.g. the word ‘migraine’ or other closely associated terms), nor should
they include very general terms. Finally, for each extracted N-gram, a number of lexical statistics scores
were calculated in order to determine and rank its importance in bridging A and C. The used scores
included token frequency (tf), document frequency, relative frequency, and frequency× inverse document
frequency (tf× idf) (Gordon & Lindsay, 1996; Lindsay & Gordon, 1999).

The unsupervised lexical statistic techniques offer some benefits in terms of their high intuitiveness and
ease of computation. However, given their reliance on using lexical statistical measures that tend to favor
frequently co-occurring terms, they may miss other interesting associations originating from less frequent
terms (Kostoff et al., 2009; Petrič et al., 2010). Not only that, the success of this technique greatly depends
on the user’s prior knowledge and inherent bias. For example, in the MM discovery, Lindsay & Gordon
(1999) removed a number of highly ranked intermediate terms given the authors’ foreknowledge that the
terms would not eventually lead to the desired target term ‘magnesium’.

3.1.2 Supervised ensemble statistics technique
The second category of the statistical approach is the supervised ensemble statistics technique. This
technique derives a single score by learning a number of different weighted features from a text corpus. As
shown in Figure 5, this learning step is facilitated with the help of logistics regression algorithm, after
which the learned score is used for deciding the relevance and the interestingness of various intermediate
terms that connect source term A and target term C (Torvik & Smalheiser, 2007).

In contrast to the previous unsupervised lexical statistics approach, this technique utilizes a machine
learning technique to determine the most relevant intermediate terms. Hence, it requires less human
intervention and therefore less prone to the user bias. There are limitations, however. Since the choice of
the learned features was arbitrary, there is also the possibility that other useful yet unexplored features
might have been overlooked (Torvik & Smalheiser, 2007). More importantly, this technique requires that a

Figure 4 The general methodology of the unsupervised lexical statistics technique proposed by Gordon and
Lindsay (1996) and Lindsay and Gordon (1999). The dotted line marks the system’s boundary.

3 N-gram is the continuous n-term or n-word sequence in a text.
4 Stemmed words are words whose inflections have been removed by a stemming algorithm so that only their base or
root forms are retained. The goal is to reduce level of noise in text. Refer to http://nlp.stanford.edu/IR-
book/html/htmledition/stemming-and-lemmatization-1.html for more details.
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large number of high-quality gold standards be available to adequately train the model, which is still a
challenging research problem (Smalheiser, 2012).

3.1.3 Distributional semantics techniques
Unlike the previous two approaches, distributional semantic technique uses scalable algorithms to build
representation of terms based on the patterns of their occurrence in natural language texts (Symonds et al.,
2014). At the heart of this technique is the assumption that two terms are semantically related if they appear
in a similar context (Salton & McGill, 1986; Symonds et al., 2014). The context of a term is defined as a
vector representation of other terms that co-occur with it. As a result, two semantically related terms are
expected to exhibit similar vector representations. Figure 6 depicts the overall methodology of this
technique.

Gordon and Dumais (1998) applied the Latent Semantic Indexing (LSI) algorithm (Deerwester et al.,
1990) that is capable of directly computing the semantic similarity between a source term and a target term
even if both terms never appear together. The technique also eliminates the need to generate and evaluate
large numbers of intermediate terms. Related to Gordon and Dumais (1998), Cohen et al. (2010)
introduced a distributional semantics technique called the Reflective Random Indexing (RRI), which
scaled better than LSI for processing very large corpora.

Besides its ability to eliminate the need to generate and evaluate a large number of intermediate
terms from the ABC discovery model, the distributional semantics technique has better scalability, up to a
million MEDLINE records (Cohen et al., 2010). Furthermore, these techniques can be applied to perform
LBD on non-English documents (Symonds et al., 2014).

There are limitations. LSI experienced difficulties in identifying the desired target terms when
evaluated on Swanson’s DFORS hypothesis (Gordon & Dumais, 1998). Although the performance
reportedly improved when the RRI model was used (Cohen et al., 2010), it required that certain inter-
mediate terms (e.g. ‘platelet’) be used to guide the search for the correct target term. Moreover, when used
to analyzeMEDLINE records, the techniques’ specificity and precision only improved under the condition
that the Medical Subject Headings (MeSH) terms were supplied to the algorithm (Cohen et al., 2010,
2012). Lastly, since documents are modeled as bags-of-words, this technique is oblivious to the positional
and sectional information of terms, making it difficult to interpret the LBD results (Cohen & Hersh, 2005).

Figure 5 The procedure for learning feature weights using the supervised ensemble statistics technique
(Torvik & Smalheiser, 2007). LBD= literature-based discovery
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In addition to the three subcategories of statistical LBD approach discussed above, other types of statis-
tical measures have been explored. They include term frequency-based measures (Gordon & Lindsay, 1996;
Lindsay & Gordon, 1999), association rules (Hristovski et al., 2000; Pratt & Yetisgen-Yildiz, 2003),
fuzzy binary relations (Perez-Iratxeta et al., 2002), mutual information measure (Wren, 2004), z-score
(Yetisgen-Yildiz, 2006; Yetisgen-Yildiz & Pratt, 2006), and R-scaled score (Frijters et al., 2010).

3.2 Knowledge-based approach

The second main subset of the traditional LBD approach is the knowledge-based approach, which owes its
performance to the ability to mine external domain-specific knowledge-based resources (e.g. ontologies and
biomedical databases), instead of using lexical statistics to achieve the accuracy in detecting meaningful
hidden relations between disconnected literatures (Weeber et al., 2005). It is common to find natural
language processing (NLP) and information extraction algorithms supplying the reasoning capabilities
required of these LBD systems (Weeber et al., 2005; Bekhuis, 2006; Smalheiser, 2012).

The knowledge-based LBD approach usually prioritizes intermediate terms and target terms according
to a set of predetermined semantic types. For example, Lytras et al. (2005) and Hu et al. (2005) removed
concept terms that belonged to very general semantic types and prioritized only the source and target terms
that satisfied a set of predefined semantic relations in a biomedical ontology. There are three types of
knowledge-based LBD techniques in the literatures: the semantic filtering technique, semantic profiling
techniques, and semantic pattern techniques.

3.2.1 Semantic filtering technique
The semantic filtering technique maps natural language text to specific biomedical concepts using NLP
tools, such as MetaMap5. The Figure 7 illustrates the steps in this technique. The aim is to obtain

Figure 6 The methodology of the distributional semantics technique (Gordon & Dumais, 1998)

5 http://metamap.nlm.nih.gov/
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intermediate terms which satisfy a set of user’s predefined semantic types, thus reducing the total number
of intermediate concepts that need to be evaluated by the user.

Unlike previously described lexical statistics technique, this technique relies on semantic type filtering
to provide its accuracy. Users significantly influence the discovery process through the formulation of
appropriate semantic filters. But the technique has a drawback in that it requires non-trivial amount of
domain knowledge to select the most effective semantic filters. Furthermore, it assumes that the actual
target terms are known in advance. Unfortunately, for many real world scenarios it may not be possible to
determine these target terms from the outset of a discovery process (Weeber et al., 2001).

3.2.2 Semantic profiling technique
Srinivasan (2004) introduced topic profile (TP), which is a vector of semantic type vectors. Figure 8
describes in detail the technique’s algorithm for solving the open discovery problem.

A semantic type vector is an unordered set of weighted MeSH terms that belong to a specific semantic
type. Since there are 134 semantic types in the UMLS (Unified Medical Language System) ontology, a TP
may be made up of up to 134 semantic type vectors. Equation (1) illustrates how a TPi may look like.
In this formula, wi,134,1 corresponds to the weight of the MeSH term m. The MeSH term m134,1, in turn,
belongs to the 134th semantic type (Srinivasan, 2004):

TPi = wi;1;1m1;1;wi;1;2m1;2;¼
� �

;¼; wi;134;1m134;1;wi;134;2m134;2;¼
� �� �

(1)

In this technique, the MeSH weight is calculated as a tf− idf score (Salton &McGill, 1986), such that a
TP represents the relative importance of various semantic types in the text based on the frequency of
occurrence of their component MeSH terms. Similar to the TP technique, van Haagen et al. (2009) later
proposed concept profile, which was capable of measuring the similarity between two types protein
concepts in the literature.

In contrast to the semantic filtering technique (Weeber et al., 2001), the advantage of semantic profiling
technique is obvious: it provides a way to assign the relative importance of a semantic type based on the
accumulative weights of its component MeSH terms (Srinivasan, 2004). Depending on the nature of an
LBD task, this allows one to prioritize certain semantic types over the others. Unfortunately, as suggested
in Figure 8, this technique is computationally expensive as it requires generating and evaluating every
single intermediate term in order to arrive at the correct target terms. Like many other knowledge-based
techniques, the success of this technique also relies on incorporating the information from various
domain-specific knowledge bases, for example, MeSH biomedical vocabularies.

Figure 7 The steps involved in the semantic filtering technique (Weeber et al., 2001). The dotted line marks the
system boundary
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3.2.3 Semantic pattern techniques
These techniques use semantic predications extracted from natural language texts. Hristovski et al. (2006)
introduced discovery pattern, a set of conditions in the form of a subject–predicate–object-like structure
known as predication. These pattern-like conditions guide the evaluation of candidate novel associations
generated by the LBD system. Figure 9 illustrates the process.

To replicate Swanson’s DFORS hypothesis, Hristovski et al. searched for complementary predications
in MEDLINE texts that conform to a certain discovery pattern. For example, the sentence ‘local increase
of blood viscosity during cold-induced Raynaud’s phenomenon’ was parsed to produce predication
ASSOCIATED_WITH (Raynaud’s, blood viscosity, increase). In the same manner, the sentence ‘a statis-
tically significant reduction in whole blood viscosity was observed at seven weeks in those patients
receiving the eicosapentaenoic acid rich oil’ was parsed to obtain predication ASSOCIATED_WITH
(eicosapentaenoic acid, blood viscosity, decrease). By assembling these two complementary predications,
the user may hypothesize that, since eicosapentaenoic acid (i.e. dietary fish oil) decreases blood viscosity
and high blood viscosity is observed among most Raynaud’s patients, it can then be inferred that regularly
consuming eicosapentaenoic acid may alleviate Raynaud’s syndrome.

Developing from Hristovski et al.’s discovery pattern model, the Predication-Based Semantic Indexing
model represented concepts and their relationships as vectors in a hyperdimensional space (Cohen et al.,
2012). In this case, finding a discovery pattern is viewed as a geometrical function in a hyperdimensional
space that is solved by tracing certain predication pathways.

The main strength of the semantic pattern techniques is their ability to better interpret the nature of the
associations among concepts in the literature (Hristovski et al., 2006). As a result, they may be used to figure
out more complex hidden associations better than the lexical statistics approach (Kraines et al., 2010).
And given that the associations among semantic types are explicitly represented in the form of predications,
it is easy for the user to verify the plausibility of associations between a source and a target concept.

There are drawbacks, though. First, scalability remains an issue. The technique requires two distinct
stages in order to extract the semantic predications: an initial stage where the semantic predications are
extracted for the source concept and each of the intermediate concepts, and the second stage where
semantic predications must be extracted for each intermediate concept and the target concept. Since the
number of intermediate concepts tends to grow exponentially (Wren, 2008), these two-staged procedures
almost certainly become a bottleneck in the algorithm (Cameron et al., 2013). Other limitations include the

Figure 8 The steps used by the profiling technique (Srinivasan, 2004). MeSH=Medical Subject Headings;
tf= token frequency; idf= inverse document frequency
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technique’s requirement that the user be able to select the most promising intermediate and target
concepts, as well as its reliance on the availability of third-party NLP software to enable the extraction of
predications from natural language texts (Hristovski et al., 2006).

3.3 Visualization approach

This last category of the traditional LBD approach harnesses graph visualizations. Graphs and networks
provide a versatile representation and visualization of structured and unstructured information (Juršič
et al., 2012; Chen et al., 2013; Ding et al., 2013). For LBD, graph representations can be used to visualize
the relationships between terms or concepts in text. For instance, a syllogistic association between
two disconnected objects x and y can be identified when a graph shows that x is connected to object z,
and object z is subsequently connected to object y (Narayanasamy et al., 2004).

van Mulligen et al. (2002) introduced two-dimensional graphs in which strongly correlated concepts
were plotted close to each other on a graphical space, known as the Associative Concept Space. The
implicit connections between a source term and a target term were inferred by automatically looking for
pairs of complementary links between a source term and an intermediate term, as well as the links between
the intermediate term and a target term link pairs in the graph.

Following van Mulligen et al., a number of other visualization techniques were studied. Narayanasamy
et al. (2004) explored the effectiveness of an association graph for modeling transitive associations. Wilkowski
et al. (2011) proposed discovery browsing technique, which plotted the subject and object of predications as
nodes and their predicates as links in a semantic graph. This algorithm has the capability of capable of
automatically suggesting interesting paths along the graph. We further discuss this technique below.

3.3.1 Discovery browsing techniques
The discovery browsing technique allows users to navigate through the complex relationships
among biomedical concepts, using a combination of semantic predications and graph-based methods

Figure 9 The steps involved in the semantic pattern technique (Hristovski et al., 2006)
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(Wilkowski et al., 2011; Goodwin et al., 2012). It extended the discovery pattern technique proposed earlier
by Hristovski et al. (2006) by allowing a serial chain of multiple intermediate B terms between a source
concept A to a target concept C, such that A↔ (B1↔B2↔B3↔ …Bn)↔C. This contrasts with the
simplistic ABC discovery model where only a single intermediate concept B is assumed between A and C.

At the initial stage, the discovery browsing technique generated a semantic predication graph. Concepts
were modeled as nodes and the semantic relations between themwere represented as the edges between the
nodes. The graph was then built iteratively, using a user-specified concept as seed. From here, the algo-
rithm searched a biomedical predication database for all predications containing the given seed concept as
their subject and/or object. Once found, these predications were subsequently used to further grow the
graph until the user noticed interesting patterns in the graph. Figure 10 explains this methodology.

We provide an example of paths extracted from a semantic predication graph in Figure 11. An edge
between two nodes may represent one or more semantic relations between two concepts, denoted by the
number label appearing on each edge. Each path is ranked according to its degree centrality score, which is
the sum of degree centrality scores of all nodes that make up the path. Paths with high scores are
considered interesting on the assumption that they connect many important nodes. In this example, a top
ranking path of length 4 is the [Melatonin]↔ [Interleukin-1β]↔ [Glutamate]↔ [CLOCK]↔ [Serotonin]
path, which suggests an association between the sleep hormone Melatonin and Serotonin. Serotonin is a
neurotransmitter known to regulate human mood (Wilkowski et al., 2011).

The main strength of the discovery browsing technique is its ability to allow users to control the growth
of the semantic predication graphs (Wilkowski et al., 2011), such as fine-tuning the discovery process to
avoid overwhelming computing resources. The technique also leverages the existing graph-based
algorithms to automatically measure the interestingness of discovery patterns, exemplified by the usage
of a node’s degree centrality (Freeman, 1978). Unfortunately, this technique favored two concepts that

Figure 10 The steps involved in the discovery browsing technique (Wilkowski et al., 2011)
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co-occur 10 times or more in MEDLINE records during the process of extracting the semantic predication.
Although applying such threshold may be useful for controlling the maximum number of predications
being generated, it may also result in an LBD system incapable of finding rarer yet valuable associations.

4 Emerging literature-based discovery approaches

Having broadly considered the traditional LBD approaches, we now direct our attention to providing
detailed review on various emerging LBD techniques. By ‘emerging’we refer to a new generation of LBD
methods, algorithms, or techniques which adopt non-traditional paradigms in solving the LBD problems.
The definition emphasizes on the fundamental changes observed in these emerging techniques’ approa-
ches and is not primarily concerned with the time of their publications. Therefore, we do not consider
recent works such as Preiss et al. (2015) and Preiss and Stevenson (2016) among the emerging LBD
techniques. Although these works gave interesting studies on the effects of word sense disambiguation on
the quality of LBD results, their general approach toward LBD is not very different from the traditional
knowledge-based approach. Likewise, we do not consider the semi-supervised approach to learning
closed chained relations proposed by Seki (2015) as an emerging approach because its approach closely
resembles the discovery pattern technique (Hristovski et al., 2006), except that it does not require
predefined semantic relations. Figure 12 shows our classification of the emerging LBD approach.

Two trends characterize the emerging LBD approach. First is the convergence of traditional statistical,
knowledge-based, and visualization approaches into an integrated LBD solution (Cameron, 2014). This
provides the emerging LBD techniques with a better capability in finding various latent associations in the
literatures that may be too complex to be modeled using any stand-alone approach (Cameron et al., 2013).

The second trend is the incorporation of techniques borrowed from other research fields, such as
scientometrics (Small, 2010; Kostoff, 2014), link prediction (Getoor & Diehl, 2005), machine learning
(Piatetsky-Shapiro et al., 2006; Chang & Blei, 2010), and community detection (Newman, 2001). These
new techniques offer fresh perspectives on how the LBD problem can be addressed. For example, previous
research in the field of scientometrics and information retrieval have suggested that the latent relationships
between documents can be inferred by studying their link structures. It is well-established that the network
structure between interlinked Web pages is a rich source of information about their content and quality
(Kleinberg, 1999; Brin & Page, 2012). Not only that, according to the structural variation theory
(Chen et al., 2009), past instances of transformative discovery are often characterized by the formation
of a number of new citation relationships between two previously disconnected groups of papers.
This idea coincides with the notion of LBD (Swanson, 1990). Therefore, it is possible to ultimately view
LBD as a link prediction problem between previously disjoint clusters of papers (Sebastian, 2014;
Sebastian et al., 2015).

In the following sections, we review the techniques and performance of various emerging LBD
techniques. We begin by discussing the context-driven subgraph model.

Figure 11 A partial representation of the discovery browsing graph. The image is adapted from Wilkowski et al.
(2011)
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4.1 Context-driven subgraph model

The context-driven subgraph model combines the elements of statistical, knowledge-based, and visuali-
zation approaches into a semi-automatic LBD technique that allows users to visualize the contexts in
which previously disjoint source and target terms may be connected. These contexts are modeled as
semantic predication subgraphs containing thematically similar paths (Cameron et al., 2013). Figure 13
shows its overall methodology.

In the beginning, the technique searched for the relevant literature to be analyzed. It then extracted the
semantic predications mentioned in these literature with the help of the SemMedDB predication database6.
These semantic predications were subsequently used to generate a directed, labeled predication graph. The
subjects and objects in the extracted predications constitute the nodes in the graph, meanwhile the pre-
dicates serve as the edges between the nodes. From this predication graph and using the Depth-First
Search algorithm (Tarjan, 1972), semantic predications connecting the source term ‘dietary fish oil’ to the
target concept ‘Raynaud’s Syndrome’ were identified in an attempt to reconstruct Swanson’s DFORS
hypothesis. Appropriate subgraphs were subsequently formed by grouping relevant predications, such that

Figure 12 Classification of the emerging literature-based discovery approach. HBIN= heterogeneous
bibliographic information network

Figure 13 The steps involved in the context-driven subgraph model (Cameron et al., 2015). MeSH=Medical
Subject Headings

6 http://skr3.nlm.nih.gov/SemMedDB/
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each group of predications eventually represented a coherent and logical chain of associations between the
source and the target concepts being studied.

A later version of the context-driven subgraph model enabled an automatic subgraph generation by
clustering the semantic predication paths following a specific, predefined relatedness threshold value
(Cameron et al., 2015). The degree of path relatedness was computed based on the information derived from
theMeSH descriptors of the relevant articles where the paths originated from. Interactive visualizations of these
subgraphs are made accessible via Web application OBVIO7. It is worth mentioning that recent semantic
relation analysis techniques, such as SemPathFinder (Song et al., 2015), may be used to improve the efficacy of
the current context-driven model by providing a more accurate semantic path analysis technique.

Subgraphs is an elegant way to represent complex relationships among entities in the literature. For example,
the claim that dietary fish oil may treat Raynaud’s syndrome by means of inhibiting platelet aggregation
(Swanson, 1986a) can bemodeled by a subgraph in Figure 14. The paths in this subgraph suggest that dietary fish
oil can treat Raynaud’s by stimulating the production of Epoprostenol. Epoprostenol, in turn, inhibits platelet
aggregation, which is the primary cause of Raynaud’s syndrome. From this subgraph model, one may also
observe that the biological mechanism connecting dietary fish oil to Raynaud’s syndrome can be quite complex.
There are multiple pathways connecting both entities and the intermediate terms are connected to one another in
the form of A−Bn−C relation (Smalheiser & Swanson, 1996a; Wilkowski et al., 2011; Cameron et al., 2013).

4.1.1 Performance evaluation
The current technique was first applied to replicate Swanson’s DFORS discovery in the closed discovery
model (Cameron et al., 2013). Out of a total of 2124 associations in which the concept ‘fish oil’ served as the
root of the paths, it found that 14 associations containing the ‘Raynaud’s’ concept as their terminal. On the
other hand, among the 17 848 associations where the ‘Eicosapentaenoic acid’ concept served as the root
concept, 172 associations had the ‘Raynaud’s’ concept as their terminal. In both scenarios, associations that
were relevant to the reconstruction of Swanson’s discovery had to be manually selected by the user.

Improving the previous technique, Cameron et al. (2015) introduced an automatic way to extract the
relevant paths from a predication graph and construct the corresponding context-based subgraphs from
these paths. When used to find relevant intermediate terms connecting fish oil and Raynaud’s Syndrome,
the technique successfully recovered blood viscosity and platelet aggregation terms but missed vascular
reactivity (Cameron et al., 2015). This is a limitation because the traditional semantic profiling technique
by Srinivasan and Libbus (2004) had previously managed to recover all three intermediate terms. Like-
wise, for reconstructing the migraine and magnesium hypothesis (Swanson, 1988), the technique only
recovered seven out of 11 possible latent associations between migraine and magnesium (Cameron et al.,
2015). In contrast, Srinivasan and Libbus (2004) managed to recover 10 associations.

4.1.2 Strengths and limitations
The main strength of the current technique is its ability to automatically extract thematic subgraphs. These
subgraphs make it possible for users to interpret the meaning of semantic predication paths given a highly
specific context. As such, the model affords much greater explanatory power compared to other previous

Figure 14 An example of a subgraph that portrays one aspect of the relationship between fish oil and Raynaud’s
syndrome (Cameron et al., 2013)

7 http://knoesis-hpco.cs.wright.edu/obvio/
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LBD techniques. Although it recovered fewer number of intermediate associations than Srinivasan and
Libbus (2004), this model requires less prior knowledge than the latter, making less prone to user bias.

There are some limitations. Users are still required to manually set the relatedness threshold values and
the semantic predication filters. The technique also relies on the availability of MeSH descriptors in order
to define the context of each subgraph. It is unclear how the model would have performed in the absence of
these descriptors. Lastly, similar to Hristovski et al. (2006), this technique relied on third-party NLP tools
to extract the semantic predications. Consequently, any lack of accuracy on the part of these tools may
result in the technique’s missing important latent associations (Cameron et al., 2015).

4.2 Bibliographic coupling technique

Since LBD is fundamentally concerned with the analysis of the content and structure of scientific literatures
(Smalheiser & Torvik, 2008), the bibliographic structures of scientific literatures may reveal meaningful yet
previously unknown relationships between articles, journals, authors, topics, research specialties, and even
countries. Figure 15 shows three commonly studied bibliographic link structures (Boyack &Klavans, 2010).
Apart from these, there are other types of bibliographic links that can be used to characterize the structures of
scientific literatures, for example, author co-citation link (White & Griffith, 1981) and co-word analysis
(Callon et al., 1983). Analyzing these bibliographic structures could help identify promising areas for
generating new discoveries (Chen et al., 2009; Small, 2010; Nakamura et al., 2014).

Kostoff (2014) was the first to explore the efficacy of bibliographic coupling structures in LBD.
Bibliographic coupling refers the sharing of references between documents (Kessler, 1963), where
two documents that cite many common references are considered as strongly coupled. This technique
examines these shared references between disjoint literatures to help select the most potential intermediate
terms connecting the PD and CD literature (Kostoff, 2014).

Figure 16 illustrates the procedures used in this technique. It examines two groups of intermediate
terms. The first group consists of common phrases from the title or abstract of disjoint literatures. The
second group comprises of common phrases in the title of the shared references between both literatures.
The research objective is to identify promising intermediate terms from the second group which are not
present in the first group (Kostoff, 2014).

4.2.1 Performance evaluation
Two performance evaluations were conducted to determine the effectiveness of this technique (Kostoff,
2014). The first evaluation looks at the ability of the technique to uncover the underlying themes
connecting the PD and CD literature. At first, the hierarchical clustering software CLUTO8 was used to
cluster papers that corresponded to the shared references between the PD and CD literatures. As a result,
records of the same research theme were clustered together. For each research theme, a factor analysis was
applied to identify significant phrases in the titles of the shared references that best represent that theme.

Figure 15 Various types of bibliographic link structures

8 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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In the second evaluation, common phrases in the title or abstract of PD and CD literatures and in the title
of their shared references were identified. Subsequently, the author determines whether there were novel
linkages established through the phrases in the shared references, which are not found among in the title or
abstract of PD and CD papers.

This technique revealed many promising concepts from the titles of the shared references between
PD and CD papers (Kostoff, 2014). Specifically, it discovered three main underlying themes connecting
the PD and CD literature, namely genetics, neuroimmunology, and cell death theme. It also found 1226
phrases in the titles of the shared references, of which seven new associations were considered meaningful:
(1) anthocyanins, (2) wogonin, baicalin, baicalein; Scutella rivularis extracts, (3) trichothecenes,
(4) pyroptosis, (5) adalimumab, (6) cooked foods, and (7) ippases.

4.2.2 Strengths and limitations
The results above strongly indicate that the shared references between two disjoint literatures could harbor
many useful linking terms (Kostoff, 2014). It also suggests that a structural LBD technique that is based on
bibliographic coupling, when combined with content-based analysis, could be useful in the selection of
potential discovery links (Kostoff, 2012). This technique exemplifies how an emerging LBD technique
begins to adopt various techniques developed in other research fields, such as computational linguistics
and data mining. In this case, it uses an NLP technique to extract phrases from the titles and abstracts of
records obtained from the Science Citation Index (SCI) and Social Science Citation Index (SSCI)9, with
the help of a partitional hierarchical clustering algorithm to find out the thematic structures of all references
shared between PD and CD literatures.

Figure 16 The steps involved in the bibliographic coupling technique (Kostoff, 2014). NLP= natural language
processing

9 http://thomsonreuters.com/en/products-services/scholarly-scientific-research/
scholarly-search-and-discovery.html
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The technique’s current limitation is its laborious procedure and lack of automation (Kostoff, 2014).
Manual analysis needs to be performed to identify potential intermediate terms from thousands of
candidates. Not only that, substantial domain expertise was needed to assess the merit of each intermediate
connection between PD and CD.

4.3 Cluster similarity technique

This technique applies a text-based similarity algorithm in conjunction with a citation analysis and
community detection technique (Fujita, 2012). It has been previously applied to find novel associations
between literatures in sustainability science and complex networks fields (Fujita, 2012), and between
robotics and gerontology fields (Ittipanuvat et al., 2014).

The cluster similarity technique works by initially forming a citation network for bibliographic records
downloaded from SCI and SSCI bibliographic databases, where nodes represent papers and links represent
the direct citation links between the papers. Isolates or unconnected nodes were removed from the network
so that only large connected components remained. The network was then partitioned into clusters of
connected nodes using a modularity-based community detection algorithm (Newman, 2004).

Text cosine similarity score was then computed for all possible pairings among these clusters using the
tf− idf vectors of technical terms contained in the records of each cluster. Lastly, pairs of clusters which
exhibited high cosine similarity scores (> 0.5) were selected and the shared technical terms between these
clusters were ranked based of a modified tf− idf weight. The highest ranked terms were taken as the most
potential intermediate terms. For instance, it was found that the term ‘social network’ was found to be an
important term connecting the sustainability and complex network research fields (Fujita, 2012). Figure 17
describes this algorithm.

4.3.1 Performance evaluation
As many as 1630 clusters were identified from the citation network of sustainability science literature and
151 clusters from the complex network literature (Fujita, 2012). In total, 22 largest clusters were selected

Figure 17 The steps used by the cluster similarity technique (Fujita, 2012). tf= token frequency; idf= inverse
document frequency
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from the former and nine largest clusters were likewise selected from the latter. Of these, three of the most
textually similar pairs of clusters were chosen. Finally, the top ranking shared terms between these pairs
of clusters were inspected by a domain expert to infer the possible hidden associations between the
two research fields (Fujita, 2012).

Akin to Fujita, Ittipanuvat et al. (2014) selected pairs of textually similar clusters from the robotics and
gerontology literatures. They found the cosine similarity score of tf− idf vectors to be the best performing
lexical statistics for identifying related clusters of papers, in comparison to other measures such as Jaccard
index, Dice coefficient, and Inclusion index (Manning et al., 2008).

4.3.2 Strengths and limitations
Several cluster analytic methods have been previously proposed to discover associations between dis-
connected literatures. Stegmann and Grohmann (2003) and Yamamoto and Takagi (2007) used co-word
analysis technique (Callon et al., 1983) to form clusters of biomedical articles in MEDLINE based on the
term co-occurrence in their titles, abstracts, publication dates, and MeSH keywords. It was found that
terms that linked the disconnected literatures occupied the regions of below-median centrality and density
of the clusters (Stegmann & Grohmann, 2003). These methods, however, built clusters merely from term
co-occurrence data and did not consider clusters formed from citation structures.

Fujita’s model is different from the techniques described above. It uses citation analysis coupled with
an advanced community detection algorithm instead of term co-occurrence. It also demonstrates that LBD
can be successfully performed on non-biomedical research papers. Prior to this, only a few examples of
non-biomedical LBD applications exist: water purification technology (Kostoff et al., 2008), computer
science (Gordon et al., 2002), chemistry (Valdés-Pérez, 1999), and humanities (Cory, 1997).

Having said so, the current technique is limited by the use of only one type of bibliographic link, that is
direct citation link. Studies in scientometrics have shown that the relationships between documents can be
represented by more than one types of citation links, for example, bibliographic coupling and co-citation
links (Janssens et al., 2008; Boyack & Klavans, 2010; Waltman & Eck, 2012; Boyack et al., 2013).
Therefore, it is possible that better discovery capabilities and more accurate cluster link prediction results
can be attained through combined applications of diverse types of bibliographic links.

4.4 Entitymetrics technique

Ding et al. (2013) introduced entitymetrics, a network-based data representation that combines biological
knowledge entities (e.g. diseases, drugs) with citation information. Assuming that paper A cites paper B,
artificial entity citation links are drawn between each knowledge entity mentioned in paper A and each
knowledge entity mentioned in paper B. This feature provides the model with richer information that can
be used to predict latent associations between two papers. Figure 18 gives an example of the entitymetrics
graph.

Besides predicting drug–disease interactions for Metformin (Ding et al., 2013), the entitymetrics
method has been used to predict gene–gene interactions (Song et al., 2013). Its methodology consists of
four major steps (Ding et al., 2013), as shown in Figure 19.

Biological entity extraction: At first, user selects a source term. Bibliographic records containing the
source term were then downloaded from PubmedCentral10. From these records, biological entities were
extracted from their title, abstract or full-text using a dictionary-based named entity recognition algorithm.
The dictionary includes vocabularies indexed in various biomedical knowledge bases, for example,
DrugBank11, HUGO (Human Genome Organization) database12, and Comparative Toxicogenomics
Database (CTD)13.

10 http://www.ncbi.nlm.nih.gov/pmc/
11 http://www.drugbank.ca/
12 http://www.genenames.org/
13 http://ctdbase.org/
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Bio-entity citation network construction: The entitymetrics graph was then built from the previously
extracted biological entities. As previously explained, if paper A cites paper B then citation links were
drawn connecting each biological entity in paper A to each biological entity in paper B.

Feature construction: Next, various network-based features were calculated from the entitymetrics
graph. The features included macro-level features (bi-component analysis, K-core analysis,mean shortest
path between node pairs, degree distribution),meso-level features (coefficient clustering), andmicro-level
features (degree centrality, closeness centrality, betweenness centrality). All of these features represent
cluster-level and node-level features of the network.

Figure 18 A partial depiction of an entitymetrics graph (Ding et al., 2013)

Figure 19 Methodology of the entitymetrics technique (Ding et al., 2013). CTD=Comparative Toxicogenomics
Database
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Prediction: The constructed features were finally used to predict drug–disease interactions for a drug
Metformin. The prediction results were evaluated against the existing drug–disease interactions indexed in
the CTD database.

4.4.1 Performance evaluation
The results showed that the features, especially centrality measures, can be used to predict the existing
drug–disease interactions for Metformin in the CTD database with certain amount of success (Ding et al.,
2013). Out of 697 diseases ranked in CTD for this drug, 16 matches were recovered using the in-degree
centrality feature. Three of the matches were among the top 10 diseases ranked in CTD for Metformin.
Other features such as the out-degree centrality features recovered 16 disease matches (lowest rank:
439th), the closeness centrality feature found 13 matches (lowest rank: 439th), and the betweenness
centrality feature found 17 matches (lowest rank: 439th).

4.4.2 Strengths and limitations
This model is interesting as it represents a step toward a highly seamless integration of scientometrics
techniques, knowledge-based techniques, and network analysis in a single LBD framework. Unlike
Fujita’s technique that combines the citation and lexical analysis in two consecutive but separate stages
(Fujita, 2012), entitymetrics integrates knowledge-based entities (drugs, diseases, genes) with biblio-
graphic entities (papers) in the same bio-entity citation network. This is advantageous because various
network-based features can then be computed from the same network. Furthermore, given the large
volume of research papers it was capable of analyzing, this technique suggests the promising scalability of
a network-based LBD technique.

The performance evaluation results of this technique seemed to suggest that it suffers from a low recall
rate with the ability to only recover less than 20 diseases for Metformin out of nearly a total of 700 diseases
ranked for it in the CTD database (Ding et al., 2013). Due to its strong coupling with domain-specific
knowledge bases, such as HUGO, CTD, and DrugBank, the effectiveness of this technique may only be
limited to situations where such resources are available.

4.5 BIOMINE

The BIOMINE model views LBD as a link prediction problem. Link prediction is ‘the problem of
predicting the existence of a link between two entities, based on attributes of the objects and other
observed links’ (Getoor &Diehl, 2005). For LBD, the goal is to predict the future links between previously
disjoint literatures (Chen, 2012; Sebastian, 2014). The predicted links may refer to new co-citation links
that connect two previously disconnected clusters of papers in a co-citation network (Chen et al., 2009).
Alternatively, they may represent novel word co-occurrence between previously unrelated concepts
(Yetisgen-Yildiz & Pratt, 2009). To achieve these objectives, an LBD system may require automatically
learning the most predictive features from large literature data sets. The learned features can then be used
for predicting future links between concepts, individual papers, or clusters of research papers.

This link prediction paradigm inspired the BIOMINE technique (Eronen & Toivonen, 2012). The
model constructs a biological heterogeneous weighted graph that can be used to model various biological
relationships (protein interactions, gene–disease associations, gene ontology annotations). BIOMINE’s
main objective is to predict which biological concept nodes will be connected in the future given the
present biological data.

Figure 20 illustrates the steps in the BIOMINE system. The first step weighted each edge in the graph
according to the probability of it representing an actual biological relationships. This is determined based
on three criteria: relevance, informativeness, and reliability (Equation (2)). Relevance, denoted by q(e),
refers to the relative importance of the relationship that is being represented by the edge. Its score ranges
from 0 to ∞. The informativeness of an edge, denoted by i(e), is calculated as the degrees of the nodes it
connects to. Reliability, denoted by r(e), measures the confidence that the relationship represented by the
edge actually exists. This is determined by the reliability value obtained from the STRING protein–protein
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interaction database14. Thus, the total weight of an edge e, p(e), is the product of the scores of these
three criteria:

pðeÞ= qðeÞ � iðeÞ � rðeÞ (2)

Subsequently, four node proximity features were extracted from the BIOMINE graph to facilitate the
link prediction tasks. The first feature is the probability of best path. Path probability is the product of all
p(e) of edges along a path. Consequently, assuming several paths connecting a source node to a target
node, this feature selects path that has the highest probability score. The second feature is the network
probability. Given a source node s and a target node t, this feature calculates the probability that a
randomly generated subgraph of the overall graph will contain a path connecting s and t. The third feature
is the expected reliable distance. It measures the expected shortest-path distance in all randomly generated
subgraphs in which a path exist between s and t. The fourth feature is the weighted version of standard
random walk stationary distribution score.

In the experiments, BIOMINE addressed two predictive goals: (a) predicting protein interactions that
will be added to the Entrez Gene database15, and (b) predicting pairs of genes that will affect the same
disease. Training and test sets were constructed for a binary classification task and the data sets consist of
positive and negative instances. The class assignment of these instances was determined by comparing an
old BIOMINE graph with its updated version. Positive instances are pairs of nodes in the graph that were
not linked in the older graph but which became linked in the updated BIOMINE graph. In contrast,
negative instances are disconnected pairs of nodes that remain unlinked.

4.5.1 Performance evaluation
BIOMINE demonstrated a good accuracy in predicting novel disease–gene associations (Eronen &
Toivonen, 2012). For task that predicts future protein interactions in the Entrez database, the random walk
feature emerged as the best predictor with the area under curve equals to 0.82. For the disease–gene
prediction task, the random walk feature also emerged as the most predictive feature.

Further, using the random walk feature as the node proximity measure, the performance of three
classifiers were compared in predicting disease–gene associations: a supervised classifier, the K-Nearest
Neighbour (KNN) algorithm, and a cluster-based classifier (Eronen & Toivonen, 2012). The results
showed that the supervised classifier and the cluster-based classifier outperforming the KNN classifier.

Figure 20 The algorithm of the BIOMINE system (Eronen & Toivonen, 2012)

14 http://string-db.org/
15 http://www.ncbi.nlm.nih.gov/gene
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4.5.2 Strengths and limitations
The most salient characteristic of this technique is its utilization of a heterogeneous biological graph.
The information richness of this graph allows one to generate a strongly predictive feature, such as the random
walk feature. The technique was also scalable to a database with 1.1 million concepts and 8.1 million relations
(Eronen & Toivonen, 2012). More importantly, this technique used both supervised and unsupervised machine
learning algorithms, where the encouraging performance of the random walk feature could motivate further
explorations into the use of machine learning techniques in future LBD systems.

In view of a general purpose LBD system, this technique is limited in that it is specifically tailored for
discovery tasks in genomics and proteomics. It also appears to heavily depend on the availability of certain
knowledge bases to operate successfully. For instance, the reliability score can only be calculated on if the
reliability values are available from the STRING database. For domains where such databases do not exist,
this technique may not be directly applicable.

4.6 Heterogeneous bibliographic information network (HBIN) technique

Sebastian et al. (2015) proposed a technique that builds predictive features from metapaths found in a
HBIN. Using the information mined from a HBIN graph, this model aims at predicting future co-citation
links between disparate groups of research papers. Similar to BIOMINE (Eronen & Toivonen, 2012),
the authors view LBD as a link prediction problem. Figure 21 details the algorithm of this technique.

A heterogeneous information network is a directed graph consisting of multiple-typed objects and links
(Sun & Han, 2012). More specifically, HBIN is a special type of heterogeneous information network that
allows one to model the rich interactions between various types of bibliographic entities.

HBIN consists of four types of bibliographic entities: paper, author, venue (i.e. journal or conference),
and term (i.e. those found in the titles, abstracts, subject headings, and full text of papers). The paper entity
is further subdivided into core paper, citing paper, and reference paper entities. Core papers are papers
that belong to either side of the disconnected literature. For example, in the case of Swanson’s DFORS

Figure 21 The algorithm used by the heterogeneous bibliographic information network (HBIN) technique
(Sebastian et al., 2015)
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hypothesis, papers that belong to either the fish oil or Raynaud’s syndrome literature (but not both) are the
core papers. The information about each core paper includes its title, author(s), publication venue, its
reference papers, and its citing papers. Citing papers are papers that cite a core paper, whereas reference
papers are papers which are cited by a core paper. A core paper may therefore be associated with zero or
more citing papers, as well as zero or more reference papers.

The entities in HBIN graphs are connected via various types of links (Sebastian et al., 2015). These
include citation links between papers, authorship link between an author and a paper, publication link
between a paper and the venue that publishes it, and semantic link between a paper and the term it contains.
Composite links known asmetapaths can then be constructed by adjoining these various types of link. The
overarching idea is that although two core papers are initially disjoint (i.e. do not have any article in
common, have never cited each other, and have never been co-cited) (Swanson, 1987), their hidden
connections could be inferred from the latent connections via these metapaths in the HBIN graph.

Two-degree, three-degree, and four-degree metapaths could be extracted from the HBIN graph
(Sebastian et al., 2015). Figure 22 gives examples of HBIN metapaths. Based on these path configurations,
a number of different metapath-based features could then be constructed and used to predict future
co-citation links between two previously disjoint core papers.

4.6.1 Performance evaluation
The model assumes the existence of a certain discovery paper, such as Swanson (1986a, 1988). A dis-
covery paper provides the starting point for this model to retrospectively reconstruct a LBD scenario. For
example, to reconstruct Swanson’s DFORS discovery, the technique started by downloading a total of 485
core papers along with their abstracts (352 on fish oil; 133 on Raynaud’s syndrome) from Thomson
Reuter’s Web of Science16. These core papers were identified using the same search keywords originally
used by Swanson (1986a) and they were to be published prior to Swanson’s discovery, that is between
1900 and 1985. A corresponding HBIN graph was then constructed using these bibliographic data, where
each edge in the HBIN graph was weighted according to a specific weighting score (Sebastian et al., 2015).
Based on these scores, 87 different metapath features were then computed from the HBIN graph.

This technique views link prediction in LBD as akin to solving a multiclass classification problem. The
performance of the learned metapath features was studied using five popular machine learning classifiers: the
Sequential Minimal Optimization (SMO) variant of the Support Vector Machine algorithm, Neural Networks,
Naive Bayes,Bayesian Network, andC4.5Decision Tree (Witten& Frank, 2005). To construct the training and
test sets, the technique collected 117370 unique core paper pairs from the 485 core papers retrieved previously.
It then applied an exhaustive algorithm to search for all distinct metapaths between all unique core paper pairs.
To assign a class label to each instance, the technique retrieved another set of fish oil and Raynaud’s syndrome

Figure 22 Examples of metapaths that can be found in the heterogeneous bibliographic information network
(Sebastian et al., 2015). The degree of a metapath is the number of edges that separate one core paper from
the other

16 http://thomsonreuters.com/en/products-services/scholarly-scientific-
research/scholarly-search-and-discovery/web-of-science.html
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records from theWeb of Science, including papers published in 1986 following Swanson’s discovery. A pair of
core papers is labeled as class +1 if it consisted of a pair of fish oil paper and Raynaud’s Syndrome paper that
had no co-citation link before 1986 but which became co-cited in 1986. A pair was labeled as −1 to represent
papers from the same research area (i.e. either fish oil or Raynaud’s syndrome literature) that became co-cited
in 1986. Lastly, a pair was labeled as 0 if they never became co-cited.

In reconstructing the DFORS discovery, the HBIN metapath features performed very well in predicting
future inter-cluster co-citation links (+1) between fish oil and Raynaud’s syndrome papers, with 0.851
F-Measure (precision: 0.845, recall: 0.857). This performance was better than the performance of other
document similarity features such as bibliographic coupling similarity (0.612 F-Measure), LDA topic
similarity (0.608 F-Measure), and TF–IDF similarity (0.457 F-Measure) (Sebastian et al., 2015). Further,
the authors found that using features constructed from the four-degree author-sharing and term-sharing
metapaths alone produced a better predictive performance (71.40 and 70.64% accuracy rate, respectively).

In a subsequent experiment to reconstruct Swanson’s migraine and magnesium discovery (Swanson,
1988), the HBIN model also performed well in predicting co-citation links between migraine and
magnesium literatures, with 0.80 F-Measure (precision: 0.80, recall: 0.80) (Sebastian et al., 2017).
Importantly, the study found that the predictive accuracy of the model improved when it incorporated
elements of topic modeling and word sense disambiguation techniques. This outcome is consistent with
Preiss and Stevenson (2016), who have observed that using appropriate word sense disambiguation could
positively enhance the performance of an LBD system.

4.6.2 Strengths and limitations
Unlike BIOMINE and other LBD techniques, HBIN’s efficacy does not depend on the availability
domain-specific knowledge-based sources. In the absence of these resources, it managed to perform
considerably well in predicting which papers will form future co-citation linkages. This is probably
because the HBIN allows much richer information to be exploited by the LBD algorithm compared to if a
homogeneous network is used (Sun & Han, 2012). The meta-structure of the HBIN graph (i.e. the inter-
connections between bibliographic entities) could reveal the latent semantic relationships between papers
from two separate literature.

Another distinct feature of this technique is its seamless integration of both lexical and citation infor-
mation into a single unified graphical representations. This approach overcomes the limitations of a purely
citation analysis method, such as bibliographic coupling (Kessler, 1963; Kostoff, 2014), as well as the
limitations of purely traditional lexical analysis techniques, such as latent Dirichlet allocation (Blei et al.,
2003) and tf− idf (Salton & McGill, 1986). Citation analysis is known to yield high precision but low
recall retrieval whereas lexical analysis tends to give high recall and low precision results (Bassecoulard &
Zitt, 2004). By incorporating both citation information and lexical information in the HBIN metapath
features, the more balanced precision and recall rates could be achieved.

There are several limitations of the current model. It has not completely addressed the scalability issue
of the algorithm, especially its path enumeration function (Sebastian et al., 2017). As such, it may be
difficult to extend the current model implementation on a much larger data set. Lastly, the model did not
perform author name disambiguation when constructing the HBIN graphs. The extent to which this
deficiency affects the model’s overall accuracy remains unknown.

4.7 Future trends in emerging literature-based discovery approaches

In short, the emerging LBD approaches have brought about new ways for addressing LBD problems. We
have summarized the key aspects of these approaches in Table 1. Unlike the traditional LBD approaches,
they are characteristically more data-driven, evident from the increasing adoption of machine learning
algorithms to automatically learn predictive LBD features (Eronen & Toivonen, 2012; Sebastian et al.,
2017). The emerging approach is also more interactive and could provide better explanations for the
discovered associations (Cameron et al., 2015). Not only that, these LBD techniques have been designed
to scale better against hundreds of thousands of documents and tackle millions of biomedical concepts and
semantic relations (Eronen & Toivonen, 2012; Ding et al., 2013).
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In terms of LBD evaluation methodology, a new trend is also emerging. Even though the majority of
LBD methods still rely on replicating Swanson’s hypotheses for validation (Yetisgen-Yildiz & Pratt,
2009), an increasing number of non-conventional evaluation methods have been introduced, as also shown
in Table 1. For instance, Ding et al. (2013) evaluated the effectiveness of their entitymetrics model
by detecting drug–disease associations in the CTD database. Likewise, there is also a move toward using
non-biomedical data sets for evaluations, as demonstrated by Fujita (2012) and Ittipanuvat et al. (2014).

For other future trends, we foresee a growing number of emerging LBD techniques that will be strongly
driven by the utilization of advanced machine learning algorithms, network-centric techniques, and
interactive visualizations. Furthermore, we also anticipate more effort will be devoted to novel ways for
automatically constructing evaluation gold standards. We discuss these points below.

4.7.1 Scalable machine learning-driven literature-based discovery techniques
In the past, most LBD techniques have been developed by information scientists, digital librarians,
medical researchers, and biologists (Weeber et al., 2005; Bekhuis, 2006; Jensen et al., 2006; Mostafa
et al., 2009; Hahn et al., 2012). As a consequence, most LBD systems tend to be biased toward domain-
oriented solutions, especially biomedical applications. Notably, they required extensive incorporation of
domain background knowledge, as evident from the rampant usage of UMLS vocabularies, biological
databases, and specially designed NLP tools by the majority of traditional LBD techniques. As a result,
their applications are limited to certain fields only (Marsi et al., 2014).

It is likely that future research trend could see more machine learning-oriented techniques capable of
automatically learning useful features from a collection of literature. The learned features would be used to
predict the existence of hidden connections between disjoint research areas, even in the absence of
available background knowledge. In terms of scale, given recent advances in Big Data technologies, future
LBD techniques may also incorporate algorithms that scale well against very large data sets. This trend
would also reduce LBD systems’ reliance on heuristics-based rules and domain-specific knowledge bases,
making it easier to generalize them to relevant applications in various research fields.

4.7.2 Network-centric algorithms
Since the relationships among papers can naturally be modeled as interconnected nodes in complex
networks (Newman, 2001), the current developments in community detection and network data mining

Table 1 The performance summary of techniques under the emerging literature-based discovery approach

Techniques Authors Data sets Performance

BIOMINE Eronen and Toivonen
(2012)

Gene–disease associations ROC (Receiver Operating
Characteristic) curve’s AUC: 0.82

Entitymetrics Ding et al. (2013) Drug–disease associations Precision: 0.30
Song et al. (2013) Drug–disease associations Precision: 0.36

Cluster similarity Fujita (2012) Sustainability Expert evaluation
Ittipanuvat et al. (2014) Robotics Expert evaluation

Bibliographic
coupling

Kostoff (2014) Parkinson’s disease Found 7 meaningful intermediate
terms out of 1226 phrases

Context-driven
subgraph model

Cameron et al. (2013) DFORS For fish oil term, 14/2124 paths
led to Raynaud’s

For eicosapentaenoic acid, 172/
17 848 paths led to Raynaud’s

Cameron et al. (2015) MM, somatomedin C, Alzheimer’s disease,
schizophrenia, cardiac hypertrophy,
hypogonadism

For MM, recovered 7 out of 11
latent associations discovered by
Swanson

HBIN model Sebastian et al. (2015) DFORS F-Measure: 0.851
Sebastian et al. (2017) MM F-Measure: 0.80

AUC= area under curve; DFORS= dietary fish oil–Raynaud’s syndrome; MM=migraine–magnesium;
HBIN= heterogeneous bibliographic information network.
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research may inform the future designs of LBD systems (Newman, 2003; Leskovec et al., 2005, 2010).
As a result of this network-centric view, there will be an increasing number of link prediction-oriented
LBD algorithms, such as a recent algorithm for predicting co-occurrence associations in the MeSH
co-occurrence network (Kastrin et al., 2013). Next generation LBD approaches are also likely to integrate
network analytic algorithms in their algorithms (Leskovec et al., 2010), especially given the availability of
existing open source network analytics packages such as GraphX17, NetworkX18, and the Stanford
Network Analysis Project19.

4.7.3 Better visualizations
Future LBD research may also integrate more advanced visualization methods to support LBD activities
(van Mulligen et al., 2002; Wilkowski et al., 2011; Goodwin et al., 2012; Cameron et al., 2013).
Smalheiser (2012) argued that the success of LBD systems should be measured based on how well they
support researchers in their daily scientific endeavors. Therefore, there would be needs to create semi-
automatic, highly usable, and visually attractive LBD systems that would integrate seamlessly with the
users’ workflows.

4.7.4 Automatic identification of evaluation gold standards
In terms of new evaluation gold standards, a possible future trajectory may see new methods capable of
automatically collecting instances of scientific discoveries that have exhibited strong inter-cluster linkage
properties (Chen et al., 2009; Chen, 2012). In addition to minimizing the subjective element in the current
gold standard selection process, this would reduce the costs associated with using domain expert evaluation.
Furthermore, to address the difficulties in finding good samples of discovery papers, researchers have the
option to collect evaluation data sets based on real world discoveries in fields such as medicine or physics.
For example, the Journal of American Medical Association has identified 51 landmark medical papers
(Meyer & Lundberg, 1985), whereas the Physical Review Letters has recognized 83 milestone physical
papers20. Given their lasting contributions of these selected papers to their fields, future studies may
focus on understanding the extent to which these papers may serve as good evaluation ground truth for
LBD systems.

5 Future research areas

We have identified five immediate research problems to be addressed in future LBD research.
We elaborate them in this section.

5.1 Measuring the interestingness of literature-based discovery outcomes

The first research area should consider how to accurately predict meaningful novel associations between
the disjoint concepts. As this review shows, a common approach is to rank a list of candidate intermediate
or target terms based on specific interestingness measures (Wren, 2008). User then examines which terms
would yield the most interesting novel associations. Because manually examining the ranked terms is a
tedious and time-consuming task, previous LBD algorithms addressed this problem either by exploring
various interestingness measures that can be used to automatically filter uninteresting associations from
the final LBD results (Torvik & Smalheiser, 2007), or by employing visualization techniques to help users
to easily identify interesting associations (Wilkowski et al., 2011).

There are considerable number of research problems to be pursued in this area. One possible research
direction is to develop objective interesting measures that can be fine tuned to fit different types of
knowledge discoveries (Smalheiser, 2012). Most of the existing interestingness measures have focused

17 https://spark.apache.org/graphx/
18 https://networkx.github.io/
19 http://snap.stanford.edu/
20 http://prl.aps.org/50years/milestones
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only on finding frequently co-occurring terms (Wren, 2008) or semantically similar terms (Smalheiser,
2012). However, it is also possible that the less frequently co-occurring terms to harbor novel connections
between disjoint literatures (Kostoff et al., 2009; Petrič et al., 2010), such that new interestingness
measures are needed to capture this type of discovery.

5.2 Evaluating the performance of literature-based discovery systems

As suggested previously, another immediate research problem concerns the deficiency in the current
evaluation methodologies. Currently, a comprehensive set of evaluation gold standards and the consistent
evaluation metrics do not exist (Yetisgen-Yildiz & Pratt, 2008; Smalheiser, 2012). Rather, most evalua-
tions typically involved replicating the historical LBD discoveries (Yetisgen-Yildiz & Pratt, 2009).
Although widely used even among the most recent LBD systems (Cameron et al., 2015; Novacek, 2015;
Song et al., 2015; Sebastian et al., 2017), this evaluation approach could risk overfitting an LBD system.
Another common method is to get domain experts to evaluate LBD systems’ results on ad hoc basis
(Weeber et al., 2003; Srinivasan & Libbus, 2004). Alternatively, the experts may be tasked with
formulating a new set of queries that might have potential LBD outcomes (Gordon et al., 2002; Torvik
& Smalheiser, 2007). Both approaches are costly and are prone to user bias.

To address this issue, new evaluation methods are needed. Yetisgen-Yildiz and Pratt (2009) proposed
using future co-occurrence between terms that have never been co-mentioned in the literature to provide a
more objective evaluation standard. The performance of LBD systems can then be evaluated based on how
accurate they are in predicting the future co-occurrences between these terms from time-sliced data sets.
Unfortunately, as pointed by Kostoff (2007), the term co-occurrence measure is a poor proxy for true
scientific discoveries. A recent alternative evaluates domain-specific LBD systems against existing
human-curated biomedical databases. For instance, Ding et al. (2013) judged their algorithms based on
how many drug–disease interactions in the CTD can be successfully predicted. This approach is highly
domain-dependent and may not be applicable to domains where such databases do not exist.

Future research should also look into building a consensus on LBD evaluation metrics. The absence of
a well-accepted evaluation ground truth naturally leads to the lack of consistent evaluation metrics. The
effectiveness of many past LBD systems are usually determined by their ability to recover past discoveries
(such as Swanson’s discoveries), without evaluating the rest of their outputs (Yetisgen-Yildiz & Pratt,
2009). Information retrieval metrics such as the precision, recall, and mean average precision have been
used (Yetisgen-Yildiz & Pratt, 2006; Torvik & Smalheiser, 2007), but Kostoff et al. (2009) contended that
such quantitative metrics cannot sufficiently account for the quality of a discovery. Instead, Kostoff et al.
argued for a more rigorous vetting process to rule out any possible previous work related to a claimed
discovery. Nevertheless, the suggested vetting procedure is likely to be a highly time-consuming task and
has not seen a significant following.

5.3 Increasing the scalability of literature-based discovery systems

Wren (2004) found that the network of co-occurring terms in scientific literature, such as MEDLINE,
exhibited a small world structures in which most nodes in a network are strongly interconnected to each
other. Coupled this with the current exponential growth of scientific literatures (Larsen & Von Ins, 2010;
Bornmann & Mutz, 2015), the scalability issue of the traditional LBD approaches remain an important
problem to be addressed. For example, with just a single hop from the source term A to the intermediate
term B, it is common to find an explosion in the number of A−B associations that need to be analyzed by
an LBD system (Wren, 2008; Smalheiser, 2012).

A possible strategy is to eliminate the need to evaluate the intermediate terms B by solving an open
discovery problem as multiple closed discovery problems (Smalheiser, 2012). Another way is to directly
measure the strength of the association between A and C without having to evaluate the strength of the
A−B associations, similar to the distributional LBD approach (Gordon & Dumais, 1998; Cohen et al.,
2014). Even in this case, the number of candidate target object C may still be very large. Thus, inventing
scalable LBD algorithms is a priority research area.
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5.4 Encouraging domain independence

In the past, simple statistical measures have been shown to be insufficient for modeling highly complex
nature of the relationships between two disjoint concepts (Wren, 2008). For instance, Gordon et al. (2002)
conducted experiments where lexical statistics are used to search for novel applications of genetic algo-
rithms from World Wide Web documents, but their results showed that the technique failed to produce
meaningful results, especially in the absence of substantial amount of user interventions and input.

On the other hand, knowledge-based approaches owe their effectiveness to the use of specific bio-
medical knowledge sources, such as MeSH vocabularies and UMLS semantic relations (Weeber et al.,
2001; Srinivasan, 2004; Hristovski et al., 2006) or third-party NLP software, for example, SemRep21

(Wilkowski et al., 2011; Miller et al., 2012; Cohen et al., 2015). These eventually limit the applicability of
these techniques to a wider range of research literatures (Symonds et al., 2014).

The next important research area therefore is to design LBD algorithms whose effectiveness does not
heavily rely on the availability of domain-specific knowledge sources (Marsi et al., 2014). DARPA’s Big
Mechanism initiative (Cohen, 2015) encourages a greater usage of LBD systems for uncovering complex
scientific mechanisms from diverse literatures. In addition to methods such as the HBIN model (Sebastian
et al., 2017), a work such as an automatic extraction of variable terms from non-biomedical literatures
(Marsi &Öztürk, 2015) is a good example of the initial steps toward this direction.

5.5 Improving user acceptance

The final noteworthy research problem is to increase the acceptance and usage of LBD systems by
researchers. To date, the ARROWSMITH22 system is arguably the most popular and well-maintained
LBD system. It is available as an online Web application and is relatively easy to use, although it has been
previously reported to have only about 1200 unique users monthly (Li et al., 2014). Certainly, having more
users is desired in order to fully realize the potential and benefits of LBD systems in contemporary
scientific practices (Smalheiser, 2012).

Smalheiser and Torvik (2008) observed that the problem with low user acceptance may have originated
from the lack of proper understanding as to the success of LBD systems ought to be determined. Rather
than defining its success by how true its outputs are, the authors argued that the merit of an LBD system
should be judged instead by how well it seamlessly supports contemporary scientific practices in a way
similar to how the PubMed search engine supports scientists. Even so, increasing the popularity and the
rate of LBD systems’ adoption in most actual scientific settings may still be hampered by the reluctance of
the scientists in giving credit to an LBD system for its contributions to their scientific achievements
(Smalheiser, 2012).

Smalheiser (2012) suggested two possible solutions. First, the LBD community needs to help scientists
recognize the occasions during which they actually carry out LBD-like investigations in their day-to-day
practices. Doing so will help them recognize the value of LBD systems as an integral part of their research
activities. Second, it will be useful to increase the visibility of LBD systems to the public. For example, this can
be achieved by integrating LBD functionalities to popular search engines such as PubMed23. Unfortunately,
we have yet to witness an actual study or practical implementation of these suggested ideas.

6 Conclusion

LBD techniques have evolved from traditional approaches that primarily rely on the utilization of lexical
statistics and knowledge-based techniques, to the more sophisticated emerging approaches. In this paper,
we have reviewed the technical and performance evaluations of these emerging techniques. Our review
has shown that, in contrast to most traditional LBD approaches, the fundamental paradigm shifts have
occurred among the emerging approaches that involve the increasing adaptation of various techniques

21 http://semrep.nlm.nih.gov/
22 http://arrowsmith.psych.uic.edu/arrowsmith_uic/index.html
23 http://www.ncbi.nlm.nih.gov/pubmed
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originating from non-LBD research fields, such as graph theory, scientometrics, link prediction, and
machine learning research. These techniques also employ richer forms of information representations in
the form of entitymetrics, biological graphs, and HBIN. The new data structures and representational
models harness both textual and non-textual features in the literatures for finding the implicit connections
between disjoint sets of literature. Experimental results have shown the emerging LBD approach out-
performing the traditional approaches in terms accuracy, comprehensibility, scalability, and interactivity.

Nonetheless, some research challenges remain to be addressed by future research. They include
challenges associated with the scalability of LBD algorithms in dealing with very large volume of
scientific papers, the need for more objective and well-accepted evaluation gold standards, and the heavy
reliance on domain-specific knowledge sources. Addressing these research challenges is important to
ensure that LBD systems ultimately become an invaluable resource within the contemporary scientific
practices of diverse fields.

Future trends in the LBD research will see more convergence between the LBD field and other fields,
especially machine learning and scientometrics. Unlike traditional artificial intelligence learning methods that
are mainly constructed from rigid heuristics and formalisms, state-of-the-art machine learning techniques are
capable of automatically learning hidden features from large data sets. The learned features can then be used as
signal cues to find hidden connections between disjoint sets of literatures. Another trend may see new
explorations into alternative discovery models other than Swanson’s ABC model as previously suggested by
(Smalheiser, 2012), with the discovery-by-analogy model being a good example of this (Cohen et al., 2015).
Lastly, with the advent of today’s large-scale network analysis techniques, future LBD evaluation methodo-
logies may consider ways to automatically search for instances of past scientific discoveries that have exhibited
LBD characteristics (i.e. linking disparate clusters) within large bibliographic networks. These discovery
instances may become good candidates for new LBD evaluation standards.
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