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Molecular dynamics simulations with a repulsive Lennard-Jones potential are employed
to understand the bifurcation scenario and the resulting patterns in compressible
Taylor–Couette flow of a dense gas, with the inner cylinder rotating (ωi > 0) and the
outer one at rest (ωo = 0). The steady-state flow patterns are presented in terms of a
phase diagram in the (ωi, Γ ) plane, where Γ = h/δ is the aspect ratio, h is the height
of the cylinders and δ = Ro − Ri is the gap between the outer and inner cylinders, and
the underlying bifurcation scenario is analysed as a function of ωi for different Γ .
Considerable density stratification is found along both radial and axial directions in the
Taylor-vortex regime of a dense gas, which makes the present system fundamentally
different from its incompressible analogue. In the circular Couette flow regime, the
stratifications remain small and the predicted critical Reynolds number for the onset of
Taylor vortices matches well with that of its incompressible counterpart. The emergence
of asymmetric Taylor vortices at Γ > 1 is found to occur via saddle-node bifurcations,
resulting in hysteresis loops in the bifurcation diagrams that are characterized in terms of
the net circulation or the maximum radial velocity or the axial density contrast as order
parameters. For Γ ≤ 1 with reflecting axial boundary conditions, the primary bifurcation
yields a single-vortex state which is connected to a two-roll branch via saddle-node
bifurcations; however, changing to stationary (no-slip) endwalls yields a new state, which
consists of two large symmetric vortices near the inner cylinder coexisting with an
irregular pattern near the stationary outer cylinder. It is shown that the endwall conditions
and the fluid compressibility play crucial roles on the genesis of asymmetric and stratified
vortices and the related multiplicity of states in the Taylor-vortex regime of a dense gas.

Key words: Taylor–Couette flow, bifurcation, molecular dynamics

1. Introduction

Taylor–Couette flow (TCF) refers to the flow within the annulus between two
independently rotating coaxial cylinders (Couette 1888; Mallock 1888; Taylor 1923). For
small values of inner-cylinder rotation speed (ωi), the bulk flow (away from the two
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endwalls) is close to purely azimuthal circular Couette flow (CCF), which, on increasing
ωi, gives birth to a non-azimuthal flow consisting of an array of stationary vortices
stacked along the axial direction, called the Taylor-vortex flow (TVF). Rayleigh’s inviscid
stability criterion (Rayleigh 1917) explained that an inviscid rotating flow is unstable to
axisymmetric perturbations if the angular momentum of the fluid decreases outwards from
the axis of rotation – this implies that the CCF is unstable for any non-zero rotation rate of
the inner cylinder, with the outer one being at rest. Taylor (1923) presented a linear stability
analysis, accounting for viscosity and backed by experimentally observed data, which
predicts the primary instability at a finite rotation rate of the inner cylinder, confirming
the stabilizing role of viscosity on the instability onset.

The comprehensive experimental studies of Coles (1965) and Andereck, Liu & Swinney
(1986) established that a plethora of patterns, like stationary Taylor vortices, azimuthally
propagating wavy Taylor vortices (WTVs), axially azimuthally propagating spiral vortices,
azimuthally propagating ribbons (or interpenetrating spirals), corkscrews and ripples,
including the non-uniqueness of certain time-dependent patterns (Coles 1965), are
possible beyond the onset of the primary instability. The experimental studies of Benjamin
(1978a,b) revealed that a multiplicity of steady states and an odd number of Taylor rolls
are possible in this configuration and that the conditions at the endwalls (Schaeffer 1980;
Benjamin & Mullin 1981; Jones 1982; Cliffe 1983; Lücke et al. 1984; Nakamura et al.
1989) play a crucial role in the development of patterns in finite-length cylinders.

In small-aspect-ratio (Γ = O(1)) Taylor–Couette (TC) cells, Benjamin & Mullin (1981)
showed that the two-roll state bifurcates into a pair of single-roll states with increasing
Re. This corresponds to Z2-symmetry-breaking pitchfork bifurcation, since the bifurcated
state breaks the midplane axial symmetry. Such asymmetric two-roll states, with one large
vortex coexisting with a smaller vortex, are often called ‘single-roll’ states. The latter
terminology was coined by Cliffe (1983) since the asymmetric two-roll state was found
to degenerate into a single-vortex state in computations of an axially periodic model.
The single-roll states have been extensively probed in subsequent studies (Lücke et al.
1984; Pfister et al. 1988; Nakamura et al. 1989; Furukawa et al. 2002; Mullin, Toya &
Tavener 2002). In particular, the experimental and numerical work of Mullin et al. (2002)
demonstrated that the symmetry-breaking bifurcation sequence coalesce into a symmetric
two-roll state with decreasing Γ , implying that the midplane symmetric steady states
represent unique states for very short cylinders (Γ < 1) with stationary (no-slip) endwalls.
The above studies belong to near-critical steady-state flows, for which the Reynolds
number is of moderate value, Re < O(103), an order of magnitude lower than that where
turbulence is expected to set in. Interestingly, a recent experimental study (Huisman et al.
2014) demonstrated that the multiplicity of flow structures can persist even in the turbulent
regime of TCF at very high Reynolds numbers (∼106).

While Benjamin (1978a,b) discovered that steady states with an odd number of rolls
could exist with symmetric axial boundary conditions, such asymmetric Taylor vortices
can be expected when the endwall conditions are asymmetric. The axial asymmetry
can be imposed either by having a free surface at the top (Cole 1976; Nakamura et al.
1989) or by having a rotating endplate. For example, Mullin & Blohm (2001) studied the
bifurcation phenomena in a TC set-up with one endplate rotating with the inner cylinder
while the other endplate is held stationary. They probed the selection process of the
preferred steady state using both experiments and numerical bifurcation analysis of the
Navier–Stokes equations. They found three vortices at Γ = O(3) for smaller values of
Re, which collapsed into a single vortex at some critical value of Re via a saddle-node
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bifurcation. For the latter case, the vortex near the stationary endwall was found to grow
in size with increasing Re, eventually replacing the three-vortex state with a large single
vortex. They further showed that the three-vortex state can be recovered by reducing
Re in their numerical model, but this process was interrupted by the appearance of a
three-dimensional time-dependent state in experiments.

Using both experiments and numerical analysis, Tavener, Mullin & Cliffe (1991)
investigated the TCF, with two endplates that are rotated along with the inner cylinder. The
rotating endwalls produce a strong driving effect on two vortices adjacent to the walls; the
rotating endwall-induced driving increases with increasing Reynolds number. This added
driving (compared to the stationary endwalls) makes the two-roll configuration more
stable, but the higher-roll configurations (with Γ > 2) tend to lose stability with increasing
Re since the two end rolls tend to grow and squeeze out their interior neighbours.
They identified several codimension-two bifurcation points with interesting dynamical
behaviour. Another noteworthy finding of Tavener et al. (1991) is that the rotating endwalls
readily admit asymmetric Taylor vortices more so than the stationary endwalls.

The above works pertain to incompressible TCF. Prior studies on the effect of fluid
compressibility (Kao & Chow 1992; Welsh, Kersal’e & Jones 2014) and rarefaction
(Yoshida & Aoki 2006; Manela & Frankel 2007) dealt with linear stability of purely
azimuthal CCF of a dilute/ideal gas, but neither the roles of axial boundary conditions
nor nonlinear simulations were carried out to address (i) the bifurcation structure,
(ii) the resulting nonlinear (non-CCF) states and (iii) the anomalous modes in
compressible TCF. The present work deals with molecular dynamics (MD) simulations
of the TCF of a compressible ‘dense’ gas, with the primary focus to understand
symmetry-breaking bifurcations and hysteresis in this flow. The effectiveness of MD
simulations to capture the transition from CCF to TVF was demonstrated first by Hirshfeld
& Rapaport (1998); the variation of radial velocity over a range of Taylor numbers was
shown to be consistent with the theoretical predictions of critical Taylor number from
continuum hydrodynamics and laboratory experiments. Building upon this, the torque
scaling with angular velocity and the rate of growth and decay of Taylor vortices were
analysed subsequently (Hirshfeld & Rapaport 2000). Travelling waves in the form of
WTVs were found (Trevelyan & Zaki 2016) in recent MD simulations of a narrow-gap
(of radius ratio of 0.873) TC cell.

In an altogether different context, Taylor-like vortices have also been uncovered in MD
simulations of both dense (Krishnaraj & Nott 2016) and moderately dense (Mahajan &
Alam 2016) granular flows – while the former employed the soft-particle discrete-element
method, the latter used the traditional inelastic hard-sphere model for the simulation
technique. The compressibility effects (Savage 1988; Krishnaraj & Nott 2016) are
important in fluidized particulate flows in which the Taylor-like vortices have been realized
in experiments too (Conway, Shinbrot & Glasser 2004).

More recently, experiments on suspension TCF (Majji, Banerjee & Morris 2018;
Ramesh, Bharadwaj & Alam 2019; Ramesh & Alam 2020) have unveiled a variety of new
patterns in addition to WTVs. Ramesh et al. (2019) showed that the radial segregation of
particles led to shear-band-type profiles for the azimuthal velocity, which are responsible
for the non-monotonic variations of the angular momentum along the radial direction.
The latter finding implies that the compressibility of the particle phase in suspension
TCF can lead to a scenario in which a part of the flow is centrifugally stable or unstable
(Rayleigh 1917) – a theoretical understanding of this issue remains elusive due to the
unavailability of universal constitutive models for suspensions. In any case, the underlying
issues can be systematically addressed via a bottom-up approach in which the simpler
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flow configurations are first studied in detail before a fluid–particle system is taken up for
study.

In this work, the compressible TCF is analysed via MD simulations with the
Lennard-Jones potential with a normal damping force being used as a fluid model. Details
of the simulation technique, the particle-level boundary conditions and the statistical
steady state of the TCF are described in § 2. Our major objectives are to (i) quantify
the primary bifurcation from CCF to TVF, (ii) identify the role of fluid compressibility
on Taylor vortices and (iii) analyse the secondary bifurcation from the TVF state with
increasing rotation. The secondary bifurcation is found to break the Z2-symmetry, leading
to asymmetric vortices and a hysteresis phenomenon that are analysed in detail. The
rest of this paper is organized as follows. The primary bifurcation from CCF to TVF is
analysed and the procedure to determine the critical rotation rate is described in § 3.1;
the observed patterns are presented in terms of a phase diagram as a function of (ωi, Γ )
in § 3.2. The structural characteristics of compressible Taylor vortices are deciphered
by analysing the hydrodynamic fields and related order parameters in § 4. The onset of
secondary bifurcation from the TVF state and the emergence of multiple solutions for
specified (ωi, Γ ) are analysed in terms of bifurcation diagrams in § 4.1.1; the patterns
in small-aspect-ratio cylinders (Γ ≤ 1) are analysed in § 4.2. The role of stationary
endwalls and the underlying bifurcation scenario are discussed in § 5.1; the role of endwall
conditions on the single-vortex mode and the emergence of unsteady patterns are briefly
discussed in § 5.2. A summary of all results with conclusions and possible future works
are given in § 6. While the results in the main text are presented for a non-zero value of
the particle-level damping force (see § 2), the generality of our findings is demonstrated in
appendix A by setting the microscopic damping force to zero.

2. Molecular dynamics simulation of Taylor–Couette flow

The schematic of the simulation domain is shown in figure 1: it is described by an
annular space of thickness δ = (Ro − Ri) between two concentric cylinders of equal height
h, with outer and inner radii of Ro and Ri, respectively. The outer cylinder is kept stationary
(ωo = 0) and the inner cylinder rotates with a constant rotational speed (ωi /= 0). The
soft-sphere fluid particles interact through a short-range repulsive Lennard-Jones (LJ)
potential V(r), which results in a force of the form

Fe(r) = −dV(r)
dr

= 24
(ε

r

) [
2

(σ

r

)12
−

(σ

r

)6
]

, (2.1)

where r is the distance between two particle centres, σ is the distance at which the potential
is zero (representing the effective diameter of the particles) and ε is the depth of the
potential well. The simulations discussed herein have σ = ε = 1 (reduced LJ units) and
a cutoff at rc = 21/6σ , which refers to the ‘repulsive’ part of the LJ potential. It may be
noted that removing the attractive part and retaining only the repulsive part of the LJ
potential provides a model for a hard-sphere gas. In addition to this, a normal damping
force acts over the duration of each collision and is given by Fd = −mγnvn (Rapaport
2004), where vn is the normal component of the relative velocity of two colliding particles,
m denotes the mass of a particle and γn is the damping coefficient. This particle-level
damping is akin to (i) a ‘velocity-dependent’ normal restitution coefficient in a granular
gas (Goldhirsch 2003; Brilliantov & Pöschel 2004) and/or (ii) a drag force in a gas–solid
suspension (Jackson 2000; Saha & Alam 2017) at large Stokes numbers; the specific role
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FIGURE 1. (a) Schematic and the domain binning of the TC cell; h is the height of the cylinders,
Ri and Ro are the inner and outer radii, and δ = Ro − Ri is the gap width; the rotational speeds of
the inner and outer cylinders are ωi and ωo = 0, respectively. (b) Schematic of wall conditions
for the simulation system.

of this damping mechanism on both primary and secondary bifurcations and the emerging
patterns are discussed in appendix A.

2.1. Boundary conditions
As in the work of Hirshfeld & Rapaport (1998), the inner and outer cylinders are treated as
thermal walls with a wall temperature Tw. Any particle that collides with the inner or outer
cylindrical wall has all memory of its velocity erased and is assigned a random velocity
in addition to a mean velocity corresponding to the tangential velocity of the cylinder
(vθ = ωiRi). Referring to figure 1(b) and using the transformation rule between Cartesian
(x, y, z) and polar (r, θ, z) coordinates, a reflected particle from the cylindrical walls is
assigned the following velocity:

(c′
x , c′

y, c′
z) =

√
kBTw

m
(vGx , vGy, vGz) + ωiRi(− sin θ, cos θ, 0), (2.2)

where vGi is sampled from the Gaussian distribution

p(vGi) =
(

m
2πkBTw

)1/2

exp
(

− mv2
Gi

2kBTw

)
, (2.3)

with kB being the Boltzmann constant. If the assigned velocity is such that the particle
leaves the simulation domain, then the directional sense of vGx and vGy is inverted (vGx =
−vGx and vGy = −vGy).

The axial boundary condition is implemented using the following rule: any particle that
moves outside the top or bottom endwalls, by a distance sz during time integration, is put
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back into the box by the same distance and the z-component of the velocity of that particle
is inverted such that

c′ · k̂ = −c · k̂, (2.4)

where k̂ is the unit vector along the axial direction; note that the reflecting particle’s
x- and y-component velocities remain unchanged.

The above thermal-wall condition (2.2) and reflective endwall condition (2.4) are similar
to those employed in the previous MD simulations (Hirshfeld & Rapaport 1998; Trevelyan
& Zaki 2016) of the TCF; similar boundary conditions were also used by Stefanov &
Cercignani (1993) to study the onset of vortices in Monte Carlo simulations of the TCF of
a rarefied gas. The role of stationary endwalls, resulting in no-slip velocity, will be briefly
analysed for few specific cases in § 5.

2.2. Simulation methodology with CPU and GPU
The open-source LAMMPS MD code (Plimpton 1995) is employed to integrate the
equations of motion in the Cartesian coordinate system using a velocity–Verlet integrator.
To speed up computations, LAMMPS has been built from source with the graphics
processing unit (GPU) package enabled and optimized for performance on a GPU with
3072 CUDA (Compute Unified Device Architecture) cores and 12 GB GPU random-access
memory (RAM). The central processing unit (CPU) computational component consists
of a system total of 64 GB CPU RAM equally distributed amongst two sockets, each
housing a 2.4 GHz Haswell architecture processor having eight cores, of which 14 (2 × 7)
cores are employed for computations. The average scale-up obtained by this ‘CPU + GPU’
combination for the family of runs corresponding to Γ = 2 and δ = 25σ is found to be
approximately 2.3 times that of the CPU-only runs employing 14 cores. The scale-up
performance is seen to decay with both increasing ωi and increasing number of particles.
The latter can be attributed to the more frequent neighbour list rebuilds, which can occur
in the CPU only, owing to the nature of the potential used.

All simulations have been carried out for a mean reduced density of ρav = 0.5 as
in previous studies on TCF (Hirshfeld & Rapaport 1998; Trevelyan & Zaki 2016); the
aspect ratio (Γ = h/δ = 0.5, 0.75, 1.0, 1.33, 2, 4, 10) was varied by changing the height
(h) of the cylinders. In most simulations, the outer and inner cylinder radii are taken as
Ro = 75σ and Ri = 50σ , such that the gap width is δ = (Ro − Ri) = 25σ , the radius ratio
is η = Ri/Ro = 2/3 and the curvature is κ = δ/Ri = 1/2. The latter two quantities (η, κ)
suggest that our simulations correspond to ‘wide-gap’ TC geometry. The total number of
particles within the annular gap is calculated from

N = ρavπ

(
R2

o

σ 2

)
(1 − η2)Γ

(
δ

σ

)
, (2.5)

which varied from 60 000 to 1.25 × 106, depending on the value of Γ ∈ (0.5, 10). At
smaller values of Γ < 1, a four-fold increase of N (by keeping η, κ and Γ fixed) did not
affect the observed patterns.

The simulation procedure consists of two stages: (i) an equilibration run that consist
of 105 time steps during which the inner cylinder is uniformly accelerated from rest to
the required angular velocity and (ii) a production run consisting of another 2 × 106 time
steps during which the (instantaneous) hydrodynamic fields are calculated in each bin at
every step, and then time-averaging over these bin-averaged properties is carried out over
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every 2000 time steps as detailed in § 2.3. Most simulations have been carried out with
a time step of Δt = 0.005; a few simulations were checked with smaller time steps of
Δt = 0.0025 (at Γ = 2 and 4) and 0.001 (at Γ = 4/3), which did not alter the results.

2.3. Hydrodynamic fields and the statistical steady state of TVF
To calculate hydrodynamic fields from the instantaneous particle positions and velocities,
the simulation domain is binned along the radial and axial directions with bin sizes of
dz = dr = 1.25σ . Since we will be presenting results on CCF and TVF, both of which
being azimuthally invariant states, the hydrodynamic fields will be calculated by averaging
particle data over all θ . Note that the mapping from the Cartesian (x, y, z) to the polar
(r, θ, z) coordinate system is done via the planar rotation matrix to obtain the velocity
components of a particle (cr, cθ , cz) in polar coordinates.

The instantaneous ‘reduced’ density is defined as ρ = σ 3N(t)/Vbin , where Vbin is the
volume of the bin and N(t) is the instantaneous number of particles in a bin; the reduced
density is related to the particle volume fraction (φ) via φ = (π/6)ρ. For a bin in the (r, z)
plane, the local reduced density is calculated from

ρ(r, z) = σ 3

π(R2
bo − R2

bi) dz

〈
N∑

i=1

δ(r − ri)δ(z − zi)

〉
θ

, (2.6)

where Rbo and Rbi denote the outer and inner radii of the bin whose axial height is dz, and
(ri, zi) denote the coordinates of all particles residing in this particular bin. The subscript
θ on the angular brackets in (2.6) implies a spatial averaging over all particles in the
θ -direction, in addition to temporal averaging over a few thousand snapshots of the system
in the steady state.

The instantaneous velocity of a group of particles within a bin, at any instant in time, is
defined as

∑N
i=1 c/N(t), where c denotes the instantaneous velocity vector of the particles

in that bin. Thus, the local hydrodynamic velocity is calculated from

v(r, z) =

〈∑N
i=1 ci(t)δ(r − ri)δ(z − zi)

〉
θ〈∑N

i=1 δ(r − ri)δ(z − zi)
〉
θ

, (2.7)

where ci is the instantaneous velocity of the ith particle in the bin, and the angular brackets
denote an averaging over time as well as θ .

The local kinetic temperature in a bin, which is a measure of the fluctuation velocities
of the particles within that bin, is defined as

T(r, z) =

〈
m

∑N
i=1 (ci(t) − v(r, z)) · (ci(t) − v(r, z))δ(r − ri)δ(z − zi)

〉
θ

3kB

〈∑N
i=1 δ(r − ri)δ(z − zi)

〉
θ

. (2.8)

For the simulations considered here, kB = m = 1 and C = (c − v) denotes the peculiar
velocity of the particles within the bin during the time frame of interest. Using the gap
width (δ = Ro − Ri) and the inverse of the inner-cylinder rotation rate (ω−1

i ) as the length
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FIGURE 2. Main panel: temporal evolution of the global kinetic temperature (dimensionless),
equation (2.10), of the fluid. Inset: snapshot of steady Taylor vortices, displaying radial–axial
velocity vectors. Parameter values are (a) γn = 5 (microscopic damping coefficient) and
(b) γn = 0, with Γ = 2 and ωi = 0.1.

and time scales, respectively, the following dimensionless fields are defined:

z∗ = z
δ
, t∗ = ωit, v∗ = v

ωiδ
, T∗ = T

(ωiδ)2
. (2.9a–d)

To ascertain whether the system reached a statistical steady state, we monitor the global
temperature defined as

Ts =
∑r ∑z T(r, z)

nrnz
, (2.10)

where nr and nz denote the number of bins along the radial and axial directions,
respectively. The constancy of the global temperature Ts with time is taken as the statistical
steady state of the flow – see the main panels in figure 2. The inset of each panel in
figure 2 displays a pair of counter-rotating rolls at the steady state for parameter values of
(a) γn = 5 and (b) γn = 0 (i.e. with zero microscopic damping force), with ωi = 0.1 and
Γ = h/δ = 2. For both cases, there is an ‘outward’ jet at the mid-height of the cylinder
and two ‘inward’ jets near the two endwalls – the resulting pattern is called TVF or Taylor
rolls (Taylor 1923). All results presented below correspond to a damping coefficient γn = 5
(Rapaport 1998, 2004) but the robustness of our reported results is verified in appendix A
by performing simulations with γn = 0.

3. Onset of Taylor vortices, and the phase diagram of patterns

Referring to the velocity-vector plot in the inset of figure 2(a), the profiles of the radial
and axial velocities can be extracted as functions of the rotation rate. The axial variations
of the scaled radial velocity (v∗

r = vr/ωiδ) are shown in figure 3(a) for different ωi; the
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FIGURE 3. (a) Variations of scaled radial velocity (v∗
r = vr/ωiδ) with axial distance for

different ωi. (b) Bifurcation diagram: variation of Δvr, (3.1), with ωi; the symbols represent
simulation data and the line is a least-squares fit of the form (3.2). The aspect ratio of the TC cell
is Γ = 2.

aspect ratio is set to Γ = h/δ = 2. Each profile represents ‘radially averaged’ data over
all radial bins, which have also been time averaged (over 100 000 time steps after the
production run). The flow is found to be almost purely azimuthal at ωi ≤ 0.05, with no
motion on the meridional plane. It is seen in figure 3(a) that, on increasing the angular
velocity of the inner cylinder to ωi = 0.055, two radial jets (inward flow from the outer
towards the inner cylinder) are formed near the top (z∗ = 2) and bottom (z∗ = 0) walls
and a radial outward flow at the mid-height (z∗ = 1) of the TC cell is observed. On
increasing ωi ≤ 0.25, it is seen that the strength of the mid-height radial outward flow
increases. As ωi is increased further to ωi ≥ 0.3, the radial velocity vr(z) exhibits two
local maxima, indicating two regions of radial flow reversal, which implies the presence of
three stationary Taylor vortices; see the velocity profile marked by triangles in figure 3(a)
that corresponds to ωi = 0.4. Clearly, such odd-numbered Taylor vortices break the Z2
symmetry – this signals the outcome of a secondary bifurcation from the TVF state and
will be analysed in detail in § 4.

3.1. Determination of the critical rotation rate and Reynolds number
To identify the location of the primary bifurcation point ωi = ωcr for the onset of TVF,
the simulations have been performed for a range of ωi for specified values of the aspect
ratio Γ . Based on the radial velocity variations such as in figure 3(a), the maximum radial
velocity,

Δvr = max
0≤z∗≤Γ

[vr(z)], (3.1)

is chosen as an order parameter to identify the transition from CCF to TVF. The variation
of Δvr with ωi is displayed in figure 3(b). The critical rotation rate ωcr

i for transition from
CCF to TVF is obtained by fitting all data for Δvr using the following function:

Δvr = α(ωi − ωcr)β, (3.2)

with α ≈ 2.05 and β ≈ 0.565. Estimating the bifurcation point (figure 3b) at which
Δvr ≈ 0 yields a value of ωcr ≈ 0.054 for the present system with Γ = 2 and ωo = 0;
this critical rotation rate holds for all Γ > 1 (see § 3.2).
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Based on the inner-cylinder speed vi = ωiRi as the velocity scale and the gap width
δ = Ro − Ri as the length scale, the Reynolds number can be estimated from

Re = �viδ

μ
, (3.3)

where � = ρpφ = (πρ/6)ρp is the mass density of the fluid, ρp is the material density of
particles and μ is the shear viscosity. The expression of the latter for a ‘dense’ hard-sphere
fluid is given by Chapman & Cowling (1970) and Saha & Alam (2016) as

μ

�σ
√

(kB/m)T
= 5

√
π

96φg0

(
1 + 8

5
φg0

)2

+ 8
5
√

π
φg0 = f2(φ), (3.4)

where g0(φ) = (1 − φ/2)/(1 − φ)3 is the radial distribution function and f2(φ) is a
dimensionless function of particle volume fraction (φ). Combining (3.3) and (3.4) we
arrive at the following expression for the Reynolds number:

Re = �ωiRiδ

�σ
√

(kB/m)T f2(φ)
≡ (Ri/σ)

f2(φ)
√

T∗ , (3.5)

with T∗ = T/(ωiδ) being the dimensionless temperature, and we have set kB = 1 = m as
in the present simulations. The mean/global temperature at the onset of Taylor vortices
is T∗ = T∗

av ≈ 0.28 (i.e. at ωi = ωcr ≈ 0.054). Substituting the value of T∗, along with
f2(φav) ≈ 1.1029 (evaluated at a mean volume fraction of φ = φav = πρav/6 ≈ 0.2618)
and Ri/σ = 50 in (3.5), we find a critical Reynolds number of Recr ≈ 85.6.

On the other hand, for the same system without microscopic damping (γn = 0, see
appendix A), we have ωcr = 0.07 and T∗ = T∗

av ≈ 0.4028, resulting in a critical Reynolds
number of Recr(γn = 0) ≈ 71.4 < Recr(γn /= 0). The above estimates do not depend on
the aspect ratio (Γ = h/δ) of the TC cell as long as Γ > 1. Overall, the microscopic
dissipation (γn > 0) increases the value of the critical Reynolds number, thereby delaying
the onset of Taylor vortices, which is expected. Note that our estimate of Recr(γn = 0) ≈
71.4 is close to the predicted value of Recr = 76.4 (Sparrow, Munro & Jonsson 1964) for
an incompressible TCF with a radius ratio of η = 2/3.

3.2. Phase diagram of patterns: symmetric and asymmetric vortices
Following the procedure described in § 3.1, the critical rotation rate ωcr for the bifurcation
from CCF to TVF has been determined for different values of the aspect ratio Γ . The
neutral/critical locus of ωi = ωcr is marked in figure 4 by the dashed and dot-dashed lines.
It is seen that the critical rotation rate is nearly constant (ωcr ≈ 0.054) for Γ ≥ 1, and the
data points for Γ ∈ (0.2, 1) can be fitted via

ωcr = 0.051
Γ

, ∀ Γ < 1, (3.6)

marked by the dashed line in figure 4. Equation (3.6) implies that the critical rotation rate
increases for short cylinders or, in other words, the transition from CCF to TVF is delayed
in short cylinders with Γ < 1.

The main panel of figure 4 summarizes all patterns for selected aspect ratios Γ ∈
(0.2, 4) that have been obtained from long-time simulations (such as in figure 2) by
varying the inner-cylinder rotation rate ωi ∈ (0.05, 0.4) that approximately spans a range
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FIGURE 4. Phase diagram of patterns in the (Γ, ωi) plane. Different symbols denote different
numbers of Taylor vortices as shown in the legend (bottom right corner); the empty symbols
denote a sense of rotation opposite to the one observed in the case of the corresponding filled
symbols. Each symbol at (Γ, ωi) corresponds to a steady-state pattern that has been obtained
from an individual run (such as figure 2) by uniformly accelerating the inner cylinder to a
specified ωi in 105 time steps (Δt) from the rest state, and subsequently allowing the simulations
to run for 2 × 106Δt to calculate hydrodynamic fields; see § 2.2 for details on simulation
protocols. The vector visualizations corresponding to points A, B, D and F have been scaled
by factors of 15, 2, 5 and 2, respectively, to improve clarity.

of inner-cylinder Reynolds number of Re = ωiRiδ/(μ/�) ∈ (50, 500). The Taylor vortices
having different numbers of rolls are marked in figure 4 by different symbols at each Γ .
The steady-state snapshots with increasing ωi > ωcr, depicting transitions from one pattern
to another, are shown on the left and right panels of figure 4 in terms of the radial–axial
velocity-vector plots. For example, the snapshots I and J represent a transition from a
two-roll to a three-roll TVF (marked by diamonds and triangles, respectively, in figure 4)
that occurs at ωi ≈ 0.27 at Γ = 2. A transition from a four-roll to a five-roll state can be
ascertained from the snapshots K and L displayed on the lower right panels that occurs at
Γ = 4.

The snapshots A → B and C → D represent transition from (i) an ‘unsteady’ state to
a ‘steady’ single-roll state and (ii) a single-roll state to an ‘asymmetric’ two-roll state at
Γ = 0.5 and 0.75, respectively. When the aspect ratio is increased to Γ = 1, a transition
from a single-roll state to a ‘symmetric’ two-roll state is found to occur; see the snapshots
E → F. On the other hand, the snapshots G → H represent a transition between two
possible two-roll configurations, with one having ‘outward’ flows (G) near the endwalls
and the other having ‘inward’ flows (H) near the endwalls. The latter transition will be
analysed in detail in § 5.1.

Among the patterns identified in figure 4, the odd-numbered or asymmetric rolls break
the Z2-symmetry (reflection about the mid-height z = h/2). Such asymmetric states, along
with the midplane symmetric Taylor vortices with outward flow at the endwalls, are
collectively known as ‘anomalous modes’ according to the classification of Benjamin
(1978a,b). The latter-type vortices have been extensively studied in incompressible TCF
with no-slip, free-slip and asymmetric boundary conditions at the endwalls (Benjamin
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& Mullin 1981; Cliffe 1983; Lücke et al. 1984; Nakamura et al. 1989; Mullin & Blohm
2001). In the context of the present findings, pertinent questions are these: Are the present
asymmetric roll states similar to those known in incompressible fluids? How does the
compressibility of the fluid affect the primary and secondary bifurcation scenario? Does
the bifurcation between different types of roll states occur via supercritical or subcritical
transitions? These questions are addressed below.

4. Characterization of Taylor vortices and the bifurcation scenario

The hydrodynamic fields are used to characterize the Taylor-vortex patterns (such as
those in figure 4) as discussed in § 4.1. Various order parameters are considered in
§ 4.1.1 to identify the bifurcation scenario among different patterns as a function of the
inner-cylinder rotation. The results pertaining to short cylinders (Γ ≤ 1), leading to the
emergence of single-vortex and asymmetric two-vortex states and their interrelations, are
discussed separately in § 4.2.

4.1. Results for aspect ratios Γ = 2 and 4: stratification and asymmetric states
For the case of Γ = 2, we display the radial–axial velocity field in figure 5(a) for four
representative values of inner-cylinder rotation ωi. A pair of (weak) counter-rotating rolls,
with an outward jet at the mid-height of the TC cell, is seen in the leftmost panel,
which corresponds to ωi = 0.055 > ωcr. With increasing ωi, the rolls and the outward
jet become stronger, as seen in the second (ωi = 0.1) and third (ωi = 0.25) panels of
figure 5(a). Increasing rotation beyond ωi = 0.25 results in a three-vortex configuration;
see the rightmost panel of figure 5(a), which corresponds to ωi = 0.4. The corresponding
variations of density and temperature in the meridional plane can be ascertained from
figure 5(b) and (c), respectively. In particular, the outward jets correspond to relatively
dilute and hotter flows through which the angular momentum is transferred from the
rotating inner cylinder to the stationary outer cylinder (see below).

Figure 5(d) represents the colour maps of the local Mach number based on the azimuthal
velocity,

Ma = vθ

cs
, (4.1)

where cs is the local sound speed (Savage 1988):

cs =
√(

∂p
∂�

)
s

≡
√

T
(

1 + 2
3

f1(ρ) + ρ
d ln f1(ρ)

dρ

)
f1(ρ). (4.2)

The latter expression follows from the equation of state for a dense gas, p = �f1(ρ)T ,
where � = ρp(π/6)ρ is the mass density, ρp is the material density of particles, f1(ρ) =
1 + (2π/3)ρg(ρ) is a dimensionless factor incorporating excluded-volume effects and
g(ρ) is the radial distribution function,

g(ρ) = ρ2
max(ρmax − ρ/2)

(ρmax − ρ)3
, (4.3)

with ρmax ≤ 6/π. For a dilute gas (ρ → 0), the dense-gas factor is f1(ρ) → 1 and hence
we recover the well-known expression for the sound speed,

cs =
√

γ T =
√

5T/3, (4.4)
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FIGURE 5. (a) Radial–axial velocity vectors, (b) reduced density and (c) temperature in the
(r, z) plane for different ωi. (d) Colour maps of the Mach number Ma = vθ/cs, where cs is the
local sound speed. The aspect ratio is Γ = 2; reflective boundary conditions are imposed at axial
endwalls.
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FIGURE 6. Top row: radial variations of the axially averaged (a) reduced density ρ(r) =
〈ρ(r, z)〉z, (b) temperature T(r) = 〈T(r, z)〉z and (c) azimuthal velocity vθ (r) = 〈vθ (r, z)〉z.
Bottom row: axial variations of the radially averaged (d) reduced density ρ(z) = 〈ρ(r, z)〉r,
(e) temperature T(z) = 〈T(r, z)〉r and ( f ) azimuthal velocity vθ (z) = 〈vθ (r, z)〉r. Parameter
values are the same as in figure 5.

with γ = 5/3 being the ratio of specific heats for a monatomic gas. It is clear from the
panels in figure 5(d) that there are considerable variations of Mach number in the (r,z)
plane, with its maximum being located near the rotating inner cylinder and across the
outward jet. In fact, the azimuthal flow velocity can exceed the sound speed, and the flow
being subsonic seems to hold only for rotation rates below the onset of Taylor vortices.

Figure 6 displays the time-averaged profiles of (a,d) the reduced density, (b,e) the
kinetic temperature and (c,f ) the azimuthal velocity. Note that the radial profiles of the
hydrodynamic fields represent spatial averaging over both azimuthal (θ ) and axial (z)
directions, i.e.

vθ(r) = 〈vθ(r, z, θ)〉θz, ρ(r) = 〈ρ(r, z, θ)〉θz and T(r) = 〈T(r, z, θ)〉θz, (4.5a–c)

while their axial profiles in the lower panel of figure 6,

vθ(z) = 〈vθ(r, z, θ)〉θr, ρ(z) = 〈ρ(r, z, θ)〉θr and T(z) = 〈T(r, z, θ)〉θr, (4.6a–c)

have been averaged over both azimuthal and radial directions.
The distinguishing features of the compressible TCF can be ascertained from figure

6(a,b) and (d,e). There are considerable density and temperature variations along both
the radial and axial directions; clearly, the fluid is compressible and non-isothermal. It is
seen in figure 6(a) that the peak of ρ(r) shifts towards the outer cylinder with increasing
rotation rate of the inner cylinder, implying that the material is thrown outwards due to
increasing centrifugal force. The competition between the centrifugal force and the radial

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

53
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.534


Bifurcations and hysteresis in TCF of a dense gas 902 A18-15

pressure gradient would decide the location of the density maximum. The radial variation
of the temperature profile in figure 6(b) has a minimum within the annular gap – the origin
of this temperature minimum can be explained by three competing factors: (i) the thermal
diffusion, (ii) the added shear work due to the rotating inner cylinder and (iii) a cooling
mechanism due to the microscopic damping force (γn > 0); see (A 1) in appendix A. The
discussion on temperature variations in the meridional plane and a comparison with the
undamped case (γn = 0) are deferred to appendix A (see figures 23b and 24b).

The axial density profiles in figure 6(d) indicate the emergence of axial density
stratification, i.e. alternate regions of dilute and dense layers are formed along the axial
direction. Such axial stratification of density was also observed in the context of ‘granular’
TCF where the particle collisions are inelastic (Mahajan 2016; Mahajan & Alam 2016).
Comparing figure 6(d) with corresponding radial velocity profiles in figure 3(a), we
find that the vortex centres are identified with the average density (ρav = 0.5), but the
outward and inward jets correspond to minimum and maximum density, respectively.
Similar inferences can be made about the temperature field in figure 6(e).

With increasing inner-cylinder rotation, the azimuthal velocity vθ(r) profile becomes
flatter (i.e. a low shear region) around the mid-gap of the annulus (see figure 6c), while
its axial variations vθ(z) in figure 6( f ) display similar geometrical features to its radial
velocity profile (figure 3a), with larger and smaller velocities representing outward and
inward jets, respectively. The appearance of a plateau in vθ(r) can be explained by the
azimuthal momentum balance of steady, axisymmetric, azimuthal (with ∂/∂z(·) = 0 and
∂/∂θ(·) = 0) flow:

d
dr

(r2�rθ ) = 0, (4.7)

where �rθ = −μr(d/dr)(vθ/r) is the shear stress. A decreasing shear rate would
necessarily imply an increased shear viscosity μ ∼ f2(ρ)

√
T (see (3.4)),which can happen

if f2(ρ) ∼ g(ρ) (the radial distribution function, (4.3)) increases strongly with increasing
density. We have verified that the decrease of μ(ρ, T) due to decreasing T with increasing
ωi (see figure 6b) is compensated by its stronger increase (∝ g(ρ)) due to increased
density in the same limit. The latter finding can be ascertained from a comparison of
the temperature profiles in figure 6(b) between ωi = 0.1 and 0.25.

The colour maps of the time-averaged specific angular momentum, averaged over the
azimuthal direction, defined as

L(r, z) = 〈ρ(r, z, θ)vθ (r, z, θ)r〉θ , (4.8)

are displayed in figure 7(a), with parameter values as in figure 5. The angular momentum
is transported via the outward jets that correspond to larger values of L; the related
signatures of two outward jets are seen in the last panel of figure 7(a), which represents
a three-roll state. With increasing rotation rate of the inner cylinder, the radial variation
of L(r, z) along the outward jet becomes non-monotonic; see the second and third panels
of figure 7(a). The above non-monotonicity is also evident in the radial profiles of axially
averaged L(r) = 〈L(r, z)〉z; see figure 7(b). It is clear that L(r) decreases monotonically
towards the stationary outer cylinder for ωi = 0.055 and 0.1 (representing the centrifugally
unstable (Rayleigh 1917) or ‘Rayleigh-unstable’ regime), but, at higher values of ωi = 0.25
and 0.4, L(r) increases up to some radial distance beyond which it decreases towards the
outer cylinder. The latter profiles can be divided into two parts: (i) a ‘Rayleigh-stable’
part located near the inner cylinder and (ii) a ‘Rayleigh-unstable’ part near the outer
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FIGURE 7. (a) Colour maps of the specific angular momentum L(r, z) = 〈ρvθ r〉θ in the (r, z)
plane for different ωi. Bottom row: variations of specific angular momentum (b) axially averaged
〈L(r, z)〉z(r) and (c) radially averaged 〈L(r, z)〉r(z). Parameter values are the same as in figure 5.

cylinder. Figure 7(c) shows the axial profiles of the radially averaged angular momentum
L(z) = 〈L(r, z)〉r – the structural features of L(z) with increasing ωi resemble that of the
azimuthal velocity field (figure 6f ).

For a longer TC cell with an aspect ratio of Γ = 4, the time-averaged radial–axial
velocity fields in the (r, z) plane are shown in figure 8(a) for different values of
inner-cylinder rotation ωi. The colour maps of the azimuthal velocity vθ(r, z) and
the specific angular momentum field L(r, z) are displayed in figures 8(b) and 8(c),
respectively. The image in the leftmost panel of figure 8(a) indicates that the primary
bifurcation from the CCF state leads to a weak four-roll state at ωi = 0.055. The vortices
become stronger with increasing rotation rate, as seen in the second panel of figure 8(a)

at ωi = 0.1, for which two outward jets are also evident in the angular momentum field
in the second panel of figure 8(c). For both ωi = 0.055 and 0.1, the flow is radially
inwards (towards the inner cylinder) near endwalls and they represent normal Taylor
vortices.

At a slightly higher rotation of ωi = 0.15 (see the third panel in each of figure 8a–c),
however, we find a four-roll state with outward jets near the endwalls – we shall show in
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FIGURE 8. Evolution of steady Taylor rolls with increasing rotation rate of the inner cylinder
for Γ = 4: (a) axial–radial velocity vectors, (b) azimuthal velocity and (c) specific angular
momentum field. While the four-roll state at ωi = 0.1 represents Taylor vortices with inward
flows at endwalls, the four-roll (ωi = 0.15), five-roll (ωi = 0.25) and six-roll (ωi = 0.4) states
have outward flows near endwalls.

§ 5.1 that the present system with reflective endwall conditions admits ‘perfect’ pitchfork
bifurcation (figures 10, 11 and 14) and hence the even-numbered roll state with either
inward or outward jets near the endwalls are equivalent solutions. Note in figure 8(b,c) that
the outward jets are characterized by maxima in vθ and L. This four-roll mode transitions
to a five-roll state at ωi = 0.25; see the fourth panels of figure 8(a–c). With increasing
ωi, a four-roll state, with inward jets near endwalls, reappears at ωi = 0.3 (not shown) and
a five-roll state at ωi = 0.35 (not shown) – these states have been marked in the phase
diagram in figure 4. With further increasing rotation rate to ωi = 0.4, a six-roll state (with
outward jets near endwalls) is found whose meridional-plane structure can be ascertained
from the last panels of figure 8(a–c).

Figure 9 displays the radial and axial profiles of the reduced density, the azimuthal
velocity and the specific angular momentum field in the upper and lower panels,
respectively, for Γ = 4. The overall radial and axial variations of these hydrodynamic
fields look similar to those for Γ = 2 (figures 6 and 7b,c). Note that the axial density
stratification becomes stronger with increasing ωi (figure 9d), with the density maxima
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FIGURE 9. Top row: radial variations of (a) the reduced density ρ(r) = 〈ρ(r, z)〉z, (b) the
azimuthal velocity vθ (r) = 〈vθ (r, z)〉z and (c) the specific angular momentum L(r) = 〈L(r, z)〉z.
Bottom row: axial variations of (d) the reduced density ρ(z) = 〈ρ(r, z)〉r, (e) the azimuthal
velocity vθ (z) = 〈vθ (r, z)〉r and ( f ) the specific angular momentum L(z) = 〈L(r, z)〉r. The
aspect ratio is Γ = 4.

and minima coinciding across the inward and outward jets (figure 9e), respectively, which
correspond to channels of the (inward/outward) radial transport of angular momentum
(figure 9f ). The latter reconfirms our previous finding that the angular momentum is
transported from the inner cylinder to the outer cylinder via the relatively rarefied (dilute)
outward jets.

One key finding of this section is that the compressible Taylor vortices are embedded
with stratifications in density, temperature, viscosity and specific angular momentum fields
along both the axial and radial directions that become stronger with increasing rotational
speed of the inner cylinder. In particular, the non-monotonic radial stratification of density
(figures 6a and 9a), with a density maximum around the mid-gap, is a key structural
signature of compressible Taylor vortices in a dense gas. This is in contrast to the TCF
of a dilute gas (Welsh et al. 2014; Aghor & Alam 2020), where the density maximum
occurs at the outer cylinder when the Prandtl number is of order one. Related issues on
the temperature field are discussed in appendix A. The other key finding is a secondary
transition from a symmetric even-roll state to an asymmetric odd-roll state beyond some
critical value of ωi � ωcr. The signature of this secondary bifurcation is implicated in
the non-monotonic radial variation of angular momentum (figures 7b and 9c), with a
Rayleigh-stable (centrifugally stable) part being located near the inner cylinder and a
Rayleigh-unstable part near the outer cylinder. The nature of the latter bifurcation is
characterized in terms of different order parameters in § 4.1.1.
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FIGURE 10. Bifurcation diagrams in terms of (a) (Δvr, ωi), (b) (ζ, ωi) and (c) (Δρ, ωi). The
inset in each panel represents a magnified sketch showing the hysteretic region. The aspect ratio
is Γ = 2.

4.1.1. Secondary bifurcation and the hysteretic transition to asymmetric vortices
Figure 10 displays bifurcation diagrams in terms of different order parameters for the

case of Γ = 2. Figure 10(a) shows the variation of the maximum radial velocity Δvr, (3.1),
with ωi, whereas figure 10(b) shows the variation of the net circulation as a function of ωi.
Here, the net circulation of vortices is calculated from

ζ = 1
nvnl

nv∑
i=1

nl∑
j=1

v(r, z) · dl, (4.9)

where nv is the number of vortices and nl is the number of loops around each vortex
centre. To evaluate (4.9), the vortex centres are first identified (i.e. the point at which (vr,

vz) ≈ 0) and two square loops of sides Δl = 0.32δ and 0.42δ around each vortex centre are
defined. The net circulation ζ , (4.9), is then calculated over each of these loops, resulting
in nl = 2. This procedure is repeated over all vortices in the system. If the system has an
even number of symmetric Taylor vortices, such as in figure 2, the net circulation is zero
(ζ = 0). Clearly, the zero and non-zero values of ζ , (4.9), demarcate the transition from a
symmetric two-roll state to a three-roll state that occurs at ωi ≈ 0.26 (see figure 10b).

Figure 10(a) indicates that, while the maximum radial velocity Δvr increases with
increasing ωi in the two-roll state (implying that the strength of the inward/outward jets
increases), there is a discontinuous drop in Δvr when the number of vortices increases
from two to three. The latter is expected since the angular momentum of two vortices
must be redistributed to three vortices at the ‘2 ↔ 3’ roll transition. The above transition
is further clarified in the inset (schematic) of figure 10(a), which indicates that the ‘2 ↔ 3’
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FIGURE 11. Bifurcation diagrams in terms of (a) (Δvr, ωi) and (b) (ζ, ωi). The inset zoom in
panel (a) shows a sketch of the possible hysteresis loop in the (Δvr, ωi) plane. The aspect ratio
is Γ = 4.

roll transition appears to be hysteretic over a small range of inner-cylinder rotational
rates about ωi ≈ 0.26. Note that to exactly locate the limit point and thereby confirm the
hysteretic nature of the ‘2 ↔ 3’ roll transition would require a ‘numerical continuation’ in
which the rotational speed of the inner cylinder is quasi-statically increased from rest over
a large range of ωi successively, which has not been checked for this case (see figure 21
and the text in appendix A on related issues).

The bifurcation diagram in figure 10(a) is replotted as figure 10(c) in terms of the
following order parameter:

Δρ = max
z

ρ(z) − min
z

ρ(z), (4.10)

called the axial density contrast; refer to figure 6(d) for related axial variations of density
for Γ = 2. It is clear that Δρ increases with increasing ωi in the Taylor-vortex regime,
and its behaviour with ωi mirrors that of Δvr in figure 10(a). The inset (schematic) of
figure 10(c) reconfirms that the ‘2 ↔ 3’ roll transition is indeed hysteretic, with a mild
increase in Δρ at ωi ≈ 0.263, which implies that the axial density contrast increases in
the three-roll state compared to its value in the two-roll state.

The analogue of figure 10(a,b) for the case of Γ = 4 is displayed in figure 11(a,b). Here
the primary bifurcation from CCF results in a four-roll state at ωi ≈ 0.054 that persists over
a range of ωi ≤ 0.3. The inset of figure 11(a) represents its zoomed-in version, with the
left and right dashed lines indicating possible hysteretic transitions, respectively, between
the ‘4 ↔ 5’ and ‘5 ↔ 6’ roll states. The hysteretic nature of secondary bifurcations (the
‘4 ↔ 5’ and ‘5 ↔ 6’ rolls) is made clear in figure 11(b), which shows the variation of the
net circulation ζ , (4.9), with ωi. The non-zero circulation branches in figure 11(b) refer to
the five-roll state that persists over the range of 0.18 ≤ ωi ≤ 0.37; on the other hand, the
four-roll and six-roll states persist over 0.054 ≤ ωi ≤ 0.3 and ωi ≥ 0.34, respectively. It is
interesting to note that the range of ωi over which the system is bistable (the ‘4 + 5’ roll
and ‘5 + 6’ roll states) is much larger at Γ = 4 compared to the bistable regime for Γ = 2
(see figure 10). The above hysteretic transition scenario needs to be verified via numerical
continuation as discussed in appendix A.
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It should be noted that the bifurcation diagrams depicted in different panels of figures 10
and 11 are, in fact, appropriate projections of a multidimensional hypersurface (A, ωi),
with the order parameter A = (ζ, Δvr,Δρ,ΔT, . . .) being a vector-valued function
(Golubitsky & Schaeffer 1985). This can lead to different solution branches nearly
touching each other (such as in figure 11a) in a two-dimensional projection of the full
bifurcation diagram. This has been further verified by carrying out simulations in a much
larger TC cell with Γ = 10 (not shown) – we found that the bifurcation sequence among
different-numbered (10, 11, 12, 13 and 14 rolls) states for Γ = 10 appears to be smooth
when Δvr is used as an order parameter, although the odd-numbered rolls are clearly
picked up when the net circulation ζ is used as an order parameter.

4.2. Single-vortex and asymmetric two-vortex states: Γ ≤ 1
Here we discuss results pertaining to short cylinders with aspect ratios of Γ ≤ O(1); some
of the observed patterns are marked in the phase diagram in figure 4. The bifurcation
diagram for Γ = 1 is shown in the middle panel of figure 12 in the (Δvr, ωi) plane.
The primary bifurcation from the CCF state yields a ‘single-vortex’ state for which three
snapshots are displayed on the left (ωi = 0.065) and top (ωi = 0.15 and 0.3) panels of
figure 12. We use the terminology ‘single vortex’ to refer to the existence of one vortex
spanning the axial height of the TC cell. Each snapshot represents streamline patterns (at
the steady state) in the (r, z) plane. This has been drawn by employing the ‘surface-LIC’
(surface line integral convolution) module of the ParaView software (Ahrens, Geveci
& Law 2005). Note that the single-vortex state is slightly off-centred, indicating its
geometrical asymmetry, which persists over the range of ωi studied. The bottom row and
the right column of figure 12 display streamline patterns that belong to the lower branch
of the bifurcation diagram. An asymmetric pair of vortices is found at ωi = 0.085 (the
bottom left panel) that persists up to a rotation rate of ωi = 0.1. Both these asymmetric
two-roll states consist of a stronger vortex lying below a weaker one. With increasing
rotation rate, the asymmetric two-vortex state degenerates into a symmetric two-roll state;
see the snapshots for ωi = 0.25 (the bottom right panel), ωi = 0.3 (middle right panel)
and ωi = 0.4 (top right panel) in figure 12.

The above sequence of pattern evolution can be understood from the bifurcation diagram
(viz. the middle panel in figure 12) on which the upper and lower branch solutions are
connected via two limit points through an unstable branch (marked by the dashed line).
It is clear that the underlying bifurcation is mediated via a hysteretic transition, resulting
in (i) ‘1-roll → 2-rolls’ transition with increasing ωi from the CCF, with the transition to
the two-roll state occurring at the right limit point ωi ≈ 0.3, and (ii) ‘symmetric 2-rolls →
asymmetric 2-rolls → 1-roll’ transition with decreasing ωi from the symmetric two-roll
state, with the transition to the single-roll state occurring at the left limit point ωi ≈ 0.08.
We have verified that the above bifurcation sequence also holds at smaller values of Γ =
0.75 for which the bifurcation diagram looks similar to that in figure 12. These findings
on the overall bifurcation scenario for the single-vortex mode and the impact of stationary
endwalls on them will be compared and contrasted with related works on incompressible
TCF (Benjamin & Mullin 1981; Furukawa et al. 2002) in § 5.2.

The hydrodynamic fields for Γ = 1 are displayed in figure 13. Note that the radial
profiles of the azimuthal velocity vθ(r) look structurally similar (with the formation of
a plateau around the mid-gap at ωi ≥ 0.15) to those for Γ = 2 (figure 6c) and Γ = 4
(figure 9b). The asymmetric vθ(z) profiles for ωi = 0.065 and 0.15 in figure 13(d) represent
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FIGURE 12. Evolution of Taylor rolls with increasing ωi along the upper and lower branches of
the bifurcation diagram (middle panel) for Γ = 1. The middle panel represents the bifurcation
diagram in the (Δvr, ωi) plane, with the circles and diamonds representing single-roll and
two-roll states, respectively, obtained from simulations in which the inner cylinder is started from
the rest state to a specified ωi as described in § 2.2. The triangles on the upper and lower branches
were obtained from two separate ‘continuation’ runs in which the inner-cylinder rotation ωi is
(i) increased from ωi = 0.25 (upper branch) to 0.35 and (ii) decreased from ωi = 0.17 (lower
branch) to 0.06 in steps of Δωi = 0.01. The ramping rate is |dωi/dt| = 2 × 10−5 for both cases.
Refer to figure 21 for the protocol on ‘ωi continuation’ runs.

the single-vortex mode (viz. figure 12). The remaining profiles for ωi = 0.1, 0.3 and
0.4 represent two-roll modes and confirm the existence of a mid-height ‘inward’ jet
and two ‘outward’ jets near two walls in each case. The key signature of compressible
Taylor vortices is strong density stratification along both radial and axial directions that
persists also in short cylinders with Γ ≤ O(1) as is evident from figure 13(b,e). The
specific angular momentum field L(r) in figure 13(c) indicates the emergence of its
non-monotonic radial variation with increasing ωi ≥ 0.25, similar to those uncovered for
Γ = 2 (figure 7b) and Γ = 4 (figure 9c).
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FIGURE 13. Radial (top row) and axial (bottom row) variations of (a,d) azimuthal velocity,
(b,e) reduced density and (c,f ) specific angular momentum for Γ = 1. The corresponding
snapshots can be found in figure 12, which refer to single-roll (ωi = 0.065, 0.15), asymmetric
two-roll (ωi = 0.1) and symmetric two-roll (ωi = 0.25, 0.4) states.

About the last issue, the origin of the non-monotonic angular momentum profiles
(viz. figures 7b, 9c and 13c) can be tied to the underlying density stratification, as we
explain below. Recall that we have found strong radial variation of density (see figures 6a,
9a and 13b), with the density maximum shifting towards the stationary outer cylinder
with increasing ωi. As explained in § 4.1, the constancy of the shear stress across the
Couette gap immediately leads to the formation of a plateau in the azimuthal velocity
(figures 6c, 9c and 13a) around the mid-gap with increasing ωi. Therefore, the coupling
of the density and azimuthal velocity via the shear stress is likely to be responsible for
the non-monotonic radial variation of the angular momentum (L(r) = 〈ρvθr〉) in the
compressible TCF of a dense gas. Collectively, the signature of the fluid compressibility
is implicated as stratifications in all hydrodynamic fields, and the structural characteristics
of the hydrodynamic profiles with increasing ωi look similar at all Γ (irrespective of the
number of vortices along the axial direction).

5. Discussion: role of axial boundary conditions

5.1. Stationary endwalls and the imperfect bifurcation
So far all the presented results have been obtained with reflection boundary conditions
(2.4) at both endwalls. The role of ‘stationary’ endwalls was checked by implementing the
zero-slip velocity by using the following protocol:

c′
x = 0 = c′

y and c′
z = −cz, (5.1a,b)
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FIGURE 14. (a) Bifurcation diagrams for stationary/no-slip (open squares) and reflection (filled
circles) endwalls; the solid line is a least-squares fit, Δvr = α(ωi − ωcr)β with ωcr = 0.054,
α = 2.05 and β = 0.576, through the circles. The aspect ratio of the TC cell is Γ = 2, with other
parameters as in figure 3. (b) Schematic of imperfect bifurcation. While the reflection boundary
condition (BC) admits perfect/symmetric pitchfork bifurcation at CCF → TVF, the no-slip axial
BC makes this bifurcation ‘imperfect’, with normal (upper disconnected branch, red colour) and
anomalous (lower disconnected branch, red colour) modes being separated from the bifurcation
point for ideal pitchfork; see the text in § 5.1 for details.

i.e. the x- and y-component velocities of the reflecting particles are set to zero. The
bifurcation diagrams for reflective and stationary endwalls are compared in figure 14(a) for
the representative case of Γ = 2, with other parameters being identical as in figure 3(b).
Figure 14(a) indicates that the reflection boundary condition admits a perfect pitchfork
bifurcation at CCF → TVF, with its canonical amplitude equation being given by

dA
dt

= ΩA − A3 = f (A,Ω) ≡ −f (−A,Ω), (5.2)

where A = Δvr/α is the order parameter (amplitude) and Ω = ωi − ωcr is the control
parameter (the distance from the bifurcation point). Both A = ±√

Ω (i.e. Δvr = ±α(ωi −
ωcr)1/2) are stable solutions of (5.2) at ω > ωcr, indicating the symmetric/perfect nature
of pitchfork bifurcation (see figure 14b). In the present context, the two solutions ±A
correspond to Taylor-vortex pairs with inward and outward jets, respectively, adjacent to
the two endwalls.

In the case of stationary (no-slip) endwalls, the two-roll configuration persists at
arbitrarily small values of ωi (see the square symbols in figure 14a), which is due to the
existence of Ekman vortices (Coles 1965; Andereck et al. 1986). The centrifugal force
is weaker near the no-slip endwalls and hence a shear/boundary layer forms near each
endwall – the latter constrains the fluid to flow towards the inner cylinder, leading to
Ekman vortices near the two endwalls. The square symbols in figure 14(a) indicate that
the bifurcation point is not identifiable and seems to be shifted to ωi � ωcr for stationary
endwalls. This is an example of ‘imperfect’ pitchfork bifurcation, which is described by
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the following normal-form equation (Golubitsky & Schaeffer 1985):

dA
dt

= ΩA − A3 + α0 + α1A2 = f (A,Ω;α0, α1), (5.3)

where α0 and α1 are the imperfection parameters that measure the degree of deviation
from the ideal (α0 = 0 = α1) pitchfork bifurcation. The stationary solutions of (5.3) have
been obtained with α0 = 5 × 104 and α1 = 0, marked by the red lines in figure 14(b).
It is clear that the no-slip axial boundary condition makes this bifurcation imperfect,
with normal (upper disconnected branch, red colour) and anomalous (lower disconnected
branch, red colour) modes being separated from the bifurcation point (ωi = ωcr) for ideal
pitchfork. The normal modes are preferred solutions with stationary endwalls at which
the tangential velocity is zero and consequently the centrifugal force becomes weaker as
one approaches the two endwalls, enabling the formation of inward jets near the endwalls.
The lower disconnected branch of figure 14(b) is called ‘anomalous’ mode (Benjamin
1978a,b) – the corresponding vortex pairs have an inward jet at mid-height and two
outward jets near the two endwalls. In the language of bifurcation theory (Schaeffer
1980; Golubitsky & Schaeffer 1985), the no-slip boundary condition plays the role of
imperfection, thereby destroying the ideal pitchfork bifurcation that holds for reflection
axial boundary condition.

That the reflection endwalls admit a pair of symmetric Taylor vortices with both
inward and outward jets near the endwalls during its time evolution is demonstrated in
figure 15 for the case of Γ = 1.35 and ωi = 0.075. While the main panel of figure 15(a)

displays the evolution of system temperature over a long time, the snapshots in its inset
correspond to patterns at four specific time instants. It is seen that the initial equilibrium
state corresponds to a pair of Taylor rolls with an outward jet at the mid-height (see the
snapshot at A) which persists up to a dimensionless time of approximately t = 4500, but
at later times (t > 5000) this state evolves to a Taylor-vortex pair with an inward jet at the
mid-height as seen in the snapshot D. The above transition is mediated via a single-roll
state (snapshot B) and an asymmetric two-roll state (C) over a short time interval, and the
system temperature also undergoes a sharp change during this change-over.

Figure 15(b) and its inset display the radial and axial variations of the azimuthal velocity
field at times that correspond to A, B, C and D. While the inset of figure 15(b) indicates
that the azimuthal velocity profiles at A and D are almost indistinguishable, its main panel
clarifies that the patterns A and D (see the inset of panel a) are in fact mirror images of
each other and that there is a finite fluid velocity near the endwalls. Clearly, both patterns
A and D are valid solutions, representing upper and lower branch solutions arising out
of an ideal pitchfork bifurcation CCF → TVF for the present problem with reflection
axial boundary conditions; these two possible solutions are marked by the black lines in
figure 14(b). With parameter values as in figure 15, changing the axial boundary condition
to stationary endwalls resulted in a vortex pair with an outward jet at the mid-height
and two inward jets near the two endwalls; see the velocity-vector plots in the inset of
figure 16(a). This solution belongs to the upper disconnected branch of the bifurcation
diagram in figure 14(a,b). Note that the axial variation of vθ(z) in figure 16(b) confirms
the no-slip condition at stationary endwalls for this case.

Based on the above results we conclude that the role of stationary (no-slip) endwalls is to
break the perfect pitchfork bifurcation (figure 14) that holds with reflecting endwalls. We
have not attempted to track the anomalous branch of the bifurcation diagram (figure 14b)
with stationary endwalls. The two sets of axial boundary conditions can be tied via the
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FIGURE 15. (a) Transition from ‘inward’ to ‘outward’ jets near the endwalls of the TC cell for
Γ = 1.35 and ωi = 0.075. (b) Axial variations of the azimuthal velocity vθ (z) averaged over
time windows of interest, with parameter values as in panel (a). The profiles at A and D are
averaged over a time window of 100 000 time steps, while those at B and C are averaged over
20 000 time steps. The inset of panel (b) displays the radial variations of vθ (r) at four time
instants (A, B, C, D).
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FIGURE 16. Same as figure 15, but with no-slip endwalls that yield ‘normal’ Taylor rolls with
inward flows near the endwalls.

following protocol:

c′
T = εcT and c′

z = −cz, (5.4a,b)

where cT = (cr, cθ ) is the tangential velocity of reflecting particles (cz = −c′
z), and

ε = 1 and 0 refer to reflective and stationary (no-slip) endwalls, respectively. The mixed
boundary condition (5.4a,b) can be implemented in future to shed light on the emergence
of anomalous modes in compressible TCF.
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FIGURE 17. Centre panel: bifurcation diagram with ‘stationary’ (no-slip) endwalls for Γ =
3/4, with a gap width of δ = 50σ and other parameters η = 2/3 and κ = 1/2. Surrounding
panels: surface-LIC plots, depicting streamline patterns, for different values of (ωi, Re):
(i) (0.01625, 81.25), (ii) (0.02125, 106.25), (iii) (0.03, 150), (iv) (0.0375, 187.5), (v) (0.05, 250),
(vi) (0.1, 500), (vii) (0.15, 750) and (viii) (0.25, 1250).

5.2. Role of endwalls on single-vortex mode and the emergence of twin-cell pattern
To ascertain the effect of stationary endwalls on the single-vortex mode (such as those
in figure 12), we show the bifurcation diagram in terms of (Δvr, ωi) in the centre
panel of figure 17; the corresponding streamline patterns for different values of ωi (with
corresponding Reynolds number being calculated from Re = ωiRiδ/(μ/�) by setting the
kinematic viscosity to ν = μ/� = 1) are displayed in the surrounding panels. The aspect
ratio is set to Γ = 0.75 and the analogous bifurcation diagram for Γ = 1 looks similar (not
shown). Note that these simulations were carried out using a larger gap width of δ = 50σ
with Ri = 100σ such that η = 2/3 (the radius ratio) and κ = 1/2 (the curvature) are fixed
– this amounts to an increase in the number of particles, (2.5), by a factor of 4 compared to
the case of δ = 25σ and Ri = 50σ . We have verified that the overall topological features
of patterns in figure 17 remain unaffected even for a smaller system with gap width of
δ = 25σ .

It is clear from figure 17 that the single-vortex mode found at Γ ≤ 1 for reflective
endwalls (see figure 12 that holds for Γ = 1) disappears in the case of stationary endwalls.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 18. Surface-LIC patterns (a–c) and velocity-vector maps (d–f ) at different times
for the case of Re = 106 with stationary endwalls; other parameters as in figure 17. (a) t =
1000; (b) t = 3000; (c) t = 5000; (d) t = 1000; (e) t = 3000; ( f ) t = 5000.

Instead, each meridional-plane pattern at Re = 81, 106 and 150 consists of two symmetric
large vortices near the inner cylinder coexisting with an array of smaller vortices near
the stationary outer cylinder. The pattern near the outer cylinder looks irregular and
changes with time – see the three snapshots in figure 18 at different times. The related
velocity-vector plots (bottom row of figure 18) confirm that the smaller transient vortices
near the outer cylinder are of much weaker strength compared to the two primary vortices
near the inner cylinder. With increasing Re, two large vortices grow laterally in size
and the smaller vortices are squeezed towards the outer cylinder – see the snapshot for
Re = 150 in figure 17. With further increasing Re, we find an asymmetric state of one large
vortex coexisting with smaller corner vortices (Re = 188, 250, 500 and 750). The centre
of the large vortex shifts towards the outer cylinder with increasing Re, a consequence
of increased centrifugal force in conjunction with density stratification along the radial
direction. At large enough values of Re, only a two-roll state (with vortex centres being
located closer to the outer cylinder) survives with stationary endwalls – see the snapshot
for Re = 1250 in figure 17.

To quantify the time dependence of patterns at smaller Re (such as those in figure 18), we
show the temporal evolutions of the radial and axial velocities, measured at the mid-height
(z = h/2), in figure 19(a) and (d) at two radial locations of r = Ri + δ/4 and r = Ri +
3δ/4, respectively; the Reynolds number is Re = 106. The corresponding phase portraits
in terms of (vr, vz) in figure 19(b) and (e) suggest the existence of an outward jet (vr > 0)
near the inner cylinder (at r = Ri + δ/4) and a transient state near the outer cylinder (at
r = Ri + 3δ/4). The above phase portraits do not show any closed orbit and hence there
is no characteristic frequency associated with the coexisting states shown in figure 18.
The latter finding is reconfirmed from the power spectral density (PSD) plots displayed in
figure 19(c) and ( f ), which are featureless, having no distinct peak.

By analysing the hydrodynamic fields of figure 18 we have verified that the azimuthal
velocity decays faster (compared to the reflective endwall case) close to the rotating inner
cylinder and the velocity levels are very small away from the mid-gap location. This is
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FIGURE 19. (a,d) Time series of radial and axial velocities (vr(t) and vz(t)), (b,e) their phase
portraits in the (vr, vz) plane and (c,f ) power spectral density. All measurements are taken at the
mid-height (z = h/2) at radial locations of (a–c) r = δ/4 and (d–f ) r = 3δ/4 for Re = 106; other
parameters as in figure 18.

due to the added viscous dissipation near the stationary endwalls, which affects the bulk
flow, especially in short cylinders (Γ ≤ 1). Consequently, the outward angular momentum
transport is diminished, resulting in the formation of a twin-cell pattern, which is able to
penetrate partially into the Couette gap that coexists with a transient irregular pattern near
the outer cylinder. The above scenario holds in short cylinders at smaller values of Re (see
figure 17), and the angular momentum transport is enhanced with increasing Re and the
irregular pattern near the outer cylinder eventually disappears at large enough Re.

In the context of incompressible fluids, Furukawa et al. (2002) reported a twin-cell
mode, i.e. two vortices spanning across the Couette gap, in short cylinders (Γ = 2/3
and η = 1/2) at a Reynolds number of approximately Re = 300; they also reported an
unsteady mode, consisting of vortex splitting and merging, at a much higher Reynolds
number of approximately Re = 1500. These states are qualitatively different from the
present finding of the coexistence of two large symmetric vortices near the inner cylinder
with an array of transient (smaller) vortices near the outer cylinder that appear at
near-critical Re. On the other hand, the ‘asymmetric’ two-roll states (see the right side
panels in figure 17), comprising a primary (larger) vortex and a secondary (smaller) vortex,
look structurally similar to those in incompressible TCF. This was first uncovered in
experiments by Benjamin & Mullin (1981) and later verified by Cliffe (1983) in direct
numerical simulations. Note that the structure of the present twin-cell mode coexisting
with a transient irregular pattern can be studied as a function of the homotopy parameter
ε in (5.4a,b), which is likely to help in establishing the connection between the two
bifurcation diagrams in figure 12 (reflective endwalls) and figure 17 (no-slip endwalls).
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This, along with the possible effect of asymmetric axial boundary conditions (no-slip at
one end and free-slip at the other end (Cole 1976; Nakamura et al. 1989)), is left to a future
work.

6. Conclusions and outlook

The pattern formation scenario in compressible Taylor–Couette flow (TCF) of a
dense gas, with the inner cylinder rotating (ωi > 0) and the outer one at rest (ω0 = 0),
was investigated using large-scale molecular dynamics simulations for the repulsive
Lennard-Jones potential embodied with a microscopic damping mechanism (representing
a dissipative or athermal system). The results on both primary and secondary bifurcations
were found to be qualitatively similar even in the absence of microscopic damping, as
demonstrated in appendix A. Most simulations were carried out with reflection boundary
conditions at two axial endwalls. This represents symmetric boundary conditions that
are expected to yield midplane symmetric Taylor vortices beyond a minimum value of
the inner-cylinder rotation (or Reynolds number, (3.3)). The critical Reynolds number for
the onset of TVF matched well with that of incompressible TCF since the stratifications
remained small in the CCF regime. However, the analogy with incompressible TCF cannot
be carried over to the Taylor-vortex regime of a dense gas since the degree of stratification
(in density, temperature, angular momentum and related hydrodynamic fields, along both
radial and axial directions) increases markedly with increasing rotation, thus making
the present system fundamentally different from its incompressible analogue. The axial
locations of the maximum and minimum density (and angular momentum) were found
to be along the inward and outward jets, respectively, and therefore the outward jets are
relatively rarefied or dilute compared to inward jets.

All observed patterns, summarized in figure 4 in terms of a phase diagram in the (ωi, Γ )
plane, are believed to be new in the context of the compressible TCF of a dense athermal
gas. Along with even-roll states, we uncovered a single-vortex state and an asymmetric pair
of vortices at Γ ∼ O(1), along with three and five vortices at higher values of Γ . For Γ =
2 and 4, the primary bifurcation from the CCF states resulted in an array of symmetric
Taylor vortices with two and four vortices, respectively. With increasing rotation rate, a
secondary transition from a ‘symmetric’ even-roll state to an ‘asymmetric’ odd-roll state
was found beyond some critical value of ωi; this transition occurred via a saddle-node
bifurcation, leading to hysteresis loops. Such hysteretic transitions were more prominent
in short cylinders with Γ ≤ O(1) that admit a single-vortex coexisting with an asymmetric
two-roll or symmetric two-roll states, respectively, at smaller and larger values of ωi. In
fact, the single-roll branch represented the primary bifurcation from the CCF state for
Γ ≤ 1, which was found to be connected to the two-roll branch via an unstable branch
with two limit points. In the latter case, the transition from an asymmetric two-vortex state
to a symmetric two-vortex state was smooth with increasing ωi.

The underlying bifurcations were quantified in terms of the net circulation ζ , (4.9),
or the maximum radial velocity Δvr, (3.1), or the axial density contrast Δρ, (4.10), as
order parameters. The last parameter (Δρ) was identified as a key structural signature
of compressible TVF, as it characterized the degree of axial density stratification, which
became stronger with increasing rotational speed of the inner cylinder. In the Taylor-vortex
regime, the radial variation of the specific angular momentum field was found to be
non-monotonic, with a centrifugally/Rayleigh-stable part being located near the inner
cylinder and a Rayleigh-unstable part near the outer cylinder. The neutral surface,
demarcating the centrifugally stable and unstable regimes, gradually shifted towards the
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outer cylinder with increasing rotation. The density maximum occurring away from the
outer cylinder was shown to be a salient feature of the present system that arises due to
the ‘denseness’ of the gas, which is in contrast to the TCF of a dilute/ideal gas where
the density maximum occurs at the outer cylinder. Since the radial density stratification
is tied to the stratification in shear viscosity along the radial direction, the constancy of
the shear stress led to the formation of a low-shear region (high viscosity) around the
mid-gap, i.e. a plateau on the azimuthal velocity profile, which, in turn, was shown to be
responsible for the genesis of non-monotonic radial variations of the angular momentum
at large ωi � ωcr.

While most results were presented for reflecting endwalls, the role of stationary (no-slip)
endwalls was checked for a few cases. The noteworthy findings are: (i) the stationary
endwalls preferred to pick the so-called ‘normal’ mode vortices (figure 14), having
inward jets near the endwalls (figure 16), in agreement with the imperfect bifurcation
scenario of Benjamin (1978a,b); and (ii) in short cylinders (Γ ≤ 1), the single-roll branch
(representing primary bifurcation) disappeared and was replaced by a new state. The latter
consisted of two symmetric large vortices (near the inner cylinder) coexisting with an array
of transient (smaller and weaker) vortices near the stationary outer cylinder at the onset of
instability. With increasing ωi, this state degenerated into (i) an asymmetric two-roll state
with two corner eddies and finally to (ii) a symmetric two-roll state at large enough values
of ωi. We conclude that the bistability between single-roll and two-roll states (figure 12 for
reflective endwalls) is inhibited by stationary endwalls in small-aspect-ratio compressible
TCF.

Comparing results between undamped (appendix A) and damped (see figure 3b and
the analysis at the end of § 3.1) cases, we find that the critical Reynolds number for
the onset of TVF is larger (Recr(γn = 5) ≈ 85.6 > Recr(γn = 0) ≈ 71.4) in the damped
case, for which the density variations are also found to be relatively larger compared to
its undamped counterpart (see figures 23a, 24a and 6a). The latter finding indicates that
the effect of compressibility is, in general, to stabilize the TCF of a dense gas. This is
similar to the linear stability results (Manela & Frankel 2007; Welsh et al. 2014) and
direct numerical simulations (Aghor & Alam 2020) for a ‘dilute’ gas undergoing TCF.
A systematic study to reveal compressibility effects on the genesis of Taylor vortices would
require additional simulations by varying the Mach number, which can be achieved in MD
simulations by changing the mean density (ρ = 0.5 in present simulations) – this can be
taken up in a future work. A crucial effect of the microscopic damping force is to make the
secondary transition to asymmetric vortices (figures 11 and 20) into a disconnected branch
that coexists with the primary branch over a range of ωi as discussed in appendix A.

The implications of the observed radial and axial stratifications in hydrodynamic fields
(such as density and temperature) on the stability of Taylor vortices at large enough Re
have not been investigated; this can also be done from a theoretical analysis of continuum
equations for dense gases and would be an interesting avenue for future work. In this
regard, a complementary work on the TCF of a ‘dilute’ gas is currently under consideration
(Aghor & Alam 2020). Apart from the fluid being a dilute molecular gas, the latter work
also differs from the present work on four major points: (i) its solves the compressible
Navier–Stokes–Fourier equations numerically via direct numerical simulation; (ii) it
focuses solely on the effect of ‘stationary’ endwalls on flow multiplicity and bifurcation;
(iii) the effect of Mach number is studied, which confirmed its stabilizing role; and (iv)
the ramping protocol of increasing/decreasing the cylinder height, as in the experiments
of Benjamin (1978a,b), is followed, which is difficult to implement in MD simulations
with a pre-specified mean density. From the viewpoint of MD simulations, it would
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be worthwhile to map out the phase diagram such as figure 4 in the (ωi, ωo) plane
by considering both counter-rotation and co-rotation of the two cylinders (Coles 1965;
Andereck et al. 1986) as functions of (Γ, η) in compressible TCF.
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Appendix A. Role of damping force on pattern transitions and hydrodynamic fields

All the results presented in the main text (except in figure 2b) correspond to a finite
value of the microscopic damping coefficient, γn = 5, and the corresponding damping
force is given by Fd = −mγnvn , with vn being the relative velocity of the colliding pair
along its contact vector. As discussed in § 2, γn can be tied to a ‘velocity-dependent’
normal restitution coefficient and hence the present microscopic model is akin to a dense
‘granular’ gas with a velocity-dependent restitution coefficient. To isolate the effect of
microscopic damping, especially on the onset of asymmetric vortices and the underlying
hysteretic bifurcations, the simulations at Γ = 3/4, 1, 2 and 4 (viz. figure 4) were repeated
over a range of rotation rates ωi ≤ 0.4 by setting γn = 0, which represents a dense
‘molecular’ gas. In general, we found that the onset of bifurcation is delayed at γn = 0
but (i) the nature of the primary bifurcation as well as (ii) the hysteretic transition
to asymmetric states remain qualitatively similar to those for γn = 5. A comparative
discussion of these results, along with an explanation for the radial temperature profiles in
figure 6(b), is presented below.

Figure 20 displays the bifurcation diagrams in the (a) (Δvr, ωi) and (b) (|ζ |, ωi) planes
for Γ = 4 and γn = 0 – these should be compared with figure 11(a,b), which holds
for the damped case (γn = 5). The major finding is that the critical rotation rate for
the onset of Taylor vortices is ωcr

i ≈ 0.07, which is larger than that in the presence of
finite damping, ωcr(γn = 5) ≈ 0.054 (viz. figure 4). As discussed in § 3.1, for this case,
the average temperature is T∗

av ≈ 0.403 and hence the critical Reynolds number, (3.5), is
Recr(γn = 0) ≈ 71.4 < Recr(γn = 5) = 85.6. That the normal damping force increases the
value of the critical Reynolds number has been verified for the range of Γ ≤ 4 studied.

Comparing figures 20(b) and 11(b), we find that the five-roll branch (denoted by
pentagons and triangles) seems to be disconnected from the four-roll branch having a
lower limit point at ωi ≈ 0.08. On the other hand, in contrast to the damped case (γn = 5,
figure 11b), we did not find six-roll states over the range of ωi ≤ 0.4 – possibly the onset
of 4-rolls → 6-rolls transition is delayed (ωi > 0.4) for the undamped case. It should be
noted that, while the squares (representing four-roll states) and pentagons (five-roll state)
in figure 20 have been obtained by running simulations at each ωi from the rest state
as described in the last paragraph in § 2.2, the triangles have been obtained from two
independent (up-sweep and down-sweep) ‘ωi continuation’ runs. The ‘up-sweep’ protocol
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FIGURE 20. Same as figure 11(a,b), but with γn = 0. The squares and pentagons denote
four-roll and five-roll states, respectively, that have been obtained by slowly increasing the
inner-cylinder rotation rate from rest to a specified value ωi; the solid lines, representing stable
solutions, and the dashed line (conjectured), representing unstable solutions, are drawn to guide
the eye. The filled triangles have been obtained from an up-sweep ‘ωi continuation’ run as
described in figure 21, while the inverted triangles correspond to a ‘down-sweep’ run starting
from ωi = 0.25.

is summarized in figure 21. First, the inner cylinder is uniformly accelerated over 105Δt
(where Δt is the time step) from the rest state to the prescribed rotation rate ωi = 0.25,
and the coarse-grained fields are evaluated next over a time window of 5 × 105Δt. The
‘up-sweep’ ωi continuation protocol then sets in, wherein the inner cylinder is uniformly
accelerated from ωi = 0.25, over the next 104 time steps, to ωi = 0.26, which is maintained
over another time window of 4 × 105Δt to evaluate hydrodynamic fields before increasing
further to ωi = 0.27. This procedure is continued up to ωi = 0.35 in steps of Δωi =
0.01; see figure 21 for details. The related ‘down-sweep’ protocol is the same but with
decreasing rotation rate from ωi = 0.25, and these data are marked by inverted triangles
in figure 20(a,b). The latter figure confirms that the four- and five-roll states can coexist
with each other over a large range of ωi ∈ (0.08, 0.4) even in the absence of damping
(γn = 0), with the left limit point being located at ωi ≈ 0.08 – these overall findings are
similar to those for the damped case in figure 11. Note that we have not been able to
identify the right limit point (if any) in figure 20, since these simulations are extremely
time-consuming, especially for γn = 0 at ωi > 0.3 that requires a much smaller time step
(Δt ≤ 0.0025) for convergence – this can be studied in future.

Figure 22 shows a comparison between updamped (γn = 0) and damped (γn = 5 as
in the main text) cases for four-roll (panels a–c at ωi = 0.1) and five-roll (panels d,e
at ωi = 0.28) states. The corresponding (axially averaged) radial profiles of density,
temperature and azimuthal velocity are compared in figure 23(a–c) for both symmetric and
asymmetric vortices. The axial–radial velocity vectors in figure 22(a,d) and the density
maps in figure 22(b,e) in the meridional plane look structurally similar for γn = 0 and 5.
The temperature fields in figure 22(c,f ) look qualitatively different: while the temperature
maximum occurs within the annular gap at any ωi with γn = 0, the temperature is
maximum near the inner cylinder and decays towards the outer cylinder at larger rotation
rates for γn = 5. The above characteristic features are made clearer in figure 23(b), which
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FIGURE 21. Evolution of system temperature (2.10) for the ‘ωi continuation’ run over ωi ∈
(0.25, 0.35), with parameter values as in figure 20. The inner-cylinder rotation rate ωi is
increased quasi-statically from ωi = 0.25 to 0.35 at a ramping rate of dωi/dt = 2 × 10−5. The
two insets display the zoomed part of the ramp-up region when the inner cylinder is accelerated
uniformly over 104 time steps to reach ωi = 0.26 (left inset) and ωi = 0.32 (right inset).

reconfirms that the role of microscopic dissipation (γn > 0) is to qualitatively change the
concave shape of T(r) with its maximum in the annular gap to a convex T(r) profile having
a minimum within the gap at ωi = 0.1 that gradually shifts towards the outer cylinder
with increasing ωi = 0.28. Recall from § 4.1 that the latter findings are similar to those
in figure 6(b) that holds for Γ = 2 with γn = 5. A closer look at figure 22(c, f ) reveals
that the fluid is in thermal equilibrium with both walls (Tw = 1 ≈ Tfluid(r = ri, ro) at both
cylinders) for the undamped case (γn = 0), but there is a considerable temperature slip
(Tw /= Tfluid(r = ri, ro)) in the presence of finite damping force (γn = 5).

Because of the thermal equilibrium of the fluid with two isothermal walls in the absence
of any damping mechanism, the added shear work (P : ∇u, where P is the stress tensor)
due to the rotating inner cylinder naturally leads to a rise of the fluid temperature in
the annular gap, resulting in a concave T(r) profile. This argument holds in both dilute
(Welsh et al. 2014; Aghor & Alam 2020) and dense gases wherein the thermal diffusion
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FIGURE 22. Comparison between undamped (γn = 0, left part of each pair) and damped (γn =
5, right part) cases for (a,d) radial–axial velocity map, (b,e) density and (c,f ) temperature in the
(r, z) plane. The upper panels (a–c) represent a four-roll state at ωi = 0.1 and the lower panels
(d–f ) represent a five-roll state at ωi = 0.28. The aspect ratio is Γ = 4. Refer to the bifurcation
diagrams in figures 11 and 20 for γn = 5 and γn = 0, respectively.

(∇ · (κ(ρ, T)∇T), where κ(ρ, T) is thermal conductivity) balances the shear work term.
In contrast, the presence of a microscopic damping force (γn > 0) makes the fluid
‘athermal’ (such as an inelastic or granular gas) for which the energy equation (Goldhirsch
2003; Saha & Alam 2016),

∇ · (κ(ρ, T)∇T) + P : ∇u − γnD(ρ, T) = 0, (A 1)

contains an additional sink term (D) that takes care of the cooling mechanism due to the
finite microscopic damping force (γn > 0). Clearly, the last term in (A 1) must dominate
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FIGURE 23. Comparison between undamped (γn = 0, filled symbols) and damped (γn = 5,
open symbols) cases for the radial profiles of (a) reduced density, (b) temperature (T∗ =
T/(ωiδ)

2) and (c) azimuthal velocity; other parameters as in figure 22.
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FIGURE 24. Same as in figure 6(a–c) but with γn = 0: (a) ρ(r), (b) T∗(r) = T(r)/(ωiδ)
2 and

(c) v∗
θ (r) = vθ (r)/(ωiδ).

over the shear work term for the decrease of the gas temperature in the bulk (such as in
figure 6b). Therefore, we conclude that the competition among the three mechanisms in
(A 1) is responsible for the anomalous radial temperature profiles found in figures 23(b)
and 6(b) for γn = 5. A detailed theoretical analysis would require a solution of (A 1) along
with the momentum equation and appropriate boundary conditions, and is beyond the
scope of the present paper.

The comparison of density profiles in figure 23(a) between γn = 0 and 5 indicates that
the density variations are relatively milder when the damping force is absent (γn = 0).
This may be understood by drawing an analogy of the present damped system with a
granular gas (or a gas–solid suspension), which is known to readily admit strong density
inhomogeneities due to a dissipation-driven clustering instability. The axially averaged
azimuthal velocity profiles in figure 23(c) are found to develop a plateau with increasing
ωi even at γn = 0 – this is similar to those discussed in figures 6(c) and 9(b) for γn = 5.

The above characteristic features about the radial variations of density, temperature and
azimuthal velocity can be further confirmed from a comparison between figures 24(a–c)
and 6(a–c) that hold for γn = 0 and 5, respectively, with Γ = 2. Note, in particular, that
the radial temperature profiles in figure 24(b) possess a maximum within the annular gap
in contrast to a temperature minimum in figure 6(b) for the damped case. Therefore, the
athermal nature (γn > 0) of the gas is responsible for the qualitative changes in the radial
variations of the kinetic temperature.
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FIGURE 25. Comparison between undamped (γn = 0, left part of each pair) and damped (γn =
5, right part) cases for (a,b) radial–axial velocity map, (c,d) density and (e,f ) temperature in the
(r, z) plane. While panels (a,c,e) represent a one-roll state at ωi = 0.15, panels (b,d,f ) denote
two-roll states at ωi = 0.4. The aspect ratio is Γ = 1. Refer to the corresponding bifurcation
diagram in figure 12 for γn = 5.

Lastly, recall from the bifurcation diagram in figure 12 that single-roll and two-roll states
can coexist with each other over a large range of ωi in the presence of a normal damping
force (γn = 5). Additional simulations at Γ = 1 with γn = 0 confirmed that the overall
bifurcation diagram remains similar (not shown). Figure 25(a–f ) displays a comparison
between undamped (γn = 0) and damped (γn = 5) cases for single-roll (panels a,c,e at
ωi = 0.15) and two-roll (panels b,d,f at ωi = 0.4) states. While the axial–radial velocity
maps are strikingly similar, the differences show up in the density and temperature maps
in the meridional plane as discussed in the preceding paragraphs.
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