
J. Fluid Mech. (2015), vol. 766, pp. 468–498. c© Cambridge University Press 2015
doi:10.1017/jfm.2015.27

468

Enumeration, orthogonality and completeness
of the incompressible Coriolis modes in a sphere

D. J. Ivers1,†, A. Jackson2 and D. Winch1

1School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
2Institut für Geophysik, ETH, Sonneggstrasse 5, 8092 Zürich, Switzerland

(Received 24 June 2014; revised 28 October 2014; accepted 10 January 2015;
first published online 4 February 2015)

We consider incompressible flows in the rapid-rotation limit of small Rossby number
and vanishing Ekman number, in a bounded volume with a rigid impenetrable rotating
boundary. Physically the flows are inviscid, almost rigid rotations. We interpret the
Coriolis force, modified by a pressure gradient, as a linear operator acting on smooth
inviscid incompressible flows in the volume. The eigenfunctions of the Coriolis
operator C so defined are the inertial modes (including any Rossby modes) and
geostrophic modes of the rotating volume. We show C is a bounded operator and that
−iC is symmetric, so that the Coriolis modes of different frequencies are orthogonal.
We prove that the space of incompressible polynomial flows of degree N or less in a
sphere is invariant under C. The symmetry of −iC thus implies the Coriolis operator
is non-defective on the finite-dimensional space of spherical polynomial flows. This
enables us to enumerate the Coriolis modes, and to establish their completeness
using the Weierstrass polynomial approximation theorem. The fundamental tool,
which is required to establish invariance of spherical polynomial flows under C
and completeness, is that the solution of the polynomial Poisson–Neumann problem,
i.e. Poisson’s equation with a Neumann boundary condition and polynomial data, in
a sphere is a polynomial. We also enumerate the Coriolis modes in a sphere, with
careful consideration of the geostrophic modes, directly from the known analytic
solutions.

Key words: rotating flows, waves in rotating fluids

1. Introduction
We consider the flow of a fluid, which fills a volume V with a rigid closed

boundary ∂V and outward normal n. If the fluid is non-rotating, homogeneous and
inviscid, it cannot support incompressible wave motions, even in a gravitational field.
For, if the velocity v is irrotational, then there is a potential Φ such that v = ∇Φ
and ∇2Φ =∇ · v= 0 in V with ∂nΦ = n · v= 0 on ∂V . These equations imply that Φ
is constant and v = 0. However, if the fluid is rotating, it can support wave motions.
Thomson (1877, p. 297) rotated a spherical shell filled with liquid and mounted on
gimbals. The spherical copper shell ran smoothly even at high rotation rates. An
oblate spheroid also ran smoothly, but a prolate spheroid reacted violently, destroying
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the gimbal mounting through resonance of the container with internal waves in the
fluid. Such free oscillations, which depend on the dynamically dominant rotation and
are almost rigid rotations, are usually referred to as inertial waves, but other terms
including Poincaré waves, Rossby waves or gyroscopic waves are also used. There
may also be steady geostrophic modes. Our general interest is in the spatial modes of
free oscillations and in the effects of forcing, when rotation is dynamically dominant.
The specific aim of the present paper is to enumerate the spatial modes of inertial
waves and the geostrophic modes if V is a sphere, and to establish their orthogonality
and completeness.

Let v′ be the fluid velocity in an inertial reference frame O′. The velocity v′ is
an almost rigid rotation if there exists an angular velocity Ω such that maxV |v′ −
Ω × r| � maxV |v′|. There is no unique method to determine Ω from v′. Let O be
a reference frame rotating with the undetermined angular velocity Ω , with O′ and O
sharing a common origin so that r′= r. Let R2

1 be the ratio of the kinetic energies of
the flow in the two frames O and O′, i.e. R2

1 :=K/K ′, where 2K := ∫V ρ(v
′−Ω× r)2dV

and 2K ′ := ∫V ρv′2dV . Minimisation of R2
1 yields the angular velocity Ω1 := I−1

V · LV ,
where IV :=

∫
V ρ(r

2I − rr)dV and LV :=
∫

V ρr × v′dV are the inertia tensor and the
angular momentum of the fluid in O′. Minimisation of R2

2 := K/KΩ , where 2KΩ :=∫
V ρ(Ω × r)2dV , yields the alternative angular velocity, Ω2 = Ω1(2K ′/LV · Ω1). The

two values Ω1 and Ω2 differ only slightly, if min R1 =min R2� 1. We will consider
flows with the same rigidly rotating base.

We non-dimensionalise t, Ω , r, v and ρ on the rotation time scale (2Ω?)
−1 with

a typical length L?, rotation rate Ω?, speed v? and density ρ?. Thus the velocities
are related by v′ = Ro v + Ω × r, scaling v′ with a typical speed Ω?L? relative to
O′ and introducing the Rossby number Ro := v?/Ω?L? ≈min(R1, R2). The description
in the rotating frame is simpler than the inertial frame O′ for flows that are almost
rigid rotations. Under the transformation from O′ to O, a vector field F′ defined
independently of the reference frame maps to F = F′ and the spatial gradient is
invariant, ∇′F′ = ∇F. This is false for frame-dependent (relative) fields such as the
velocity, thus

Ro−1 v′ · ∇′v′ = Ro v · ∇v +Ω × v + Ro−1 Ω × (Ω × r)+Ω × r · ∇v. (1.1)

Thus v′ · ∇′v′ in the inertial frame cannot be neglected. Combined with 2Ro−1 ∂ ′tv
′ =

2∂tv+Ω× v+2Po Ω̇× r−Ω× r ·∇v, this gives the transformation for the convective
derivative,

Ro−1 D′tv
′ =Dtv +Ω × v + Po Ω̇ × r+ 1

2 Ro−1 Ω × (Ω × r), (1.2)

where Dtv := ∂tv + (Ro v · ∇v)/2, D′tv
′ := ∂ ′tv′ + (v′ · ∇′v′)/2 and Po is the Poincaré

number. Thus Ro→ 0 does not remove the advective term in the inertial frame.
Thus the effects of steady rotation can be characterised mathematically by the

Coriolis force in a rotating reference frame. In a frame O rotating with angular
velocity Ω the velocity v is governed by the momentum equation,

∂tv +Ω × v + ρ−1∇p=− 1
2 Ro v · ∇v −∇Ue + E∇2v − Po Ω̇ × r+ El ρ−1FL, (1.3)

where Ω̇ := dΩ/dt, r is the radius vector and Ue is the effective gravitational
potential modified by the centripetal acceleration Ω × (Ω × r). If the fluid is
electrically conducting there is also the Lorentz force FL. The pressure has been
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non-dimensionalised with a typical pressure ρ?4Ω2
?L?. The dimensionless rotation rate

Ω may be time-dependent with only |Ω| ≈ 1; if Ω is constant, then Ω is a unit
vector, which will be denoted Ω̂ . The dimensionless Rossby, Ekman, Poincaré and
Elsasser numbers, Ro, E := ν/2Ω?L2

?, Po and El, are typical magnitude ratios of the
advective, viscous, Poincaré and Lorentz forces to the Coriolis force. The factor (1/2)
in (1.3) is due to the definition of the Rossby number and arises from the time scale.
We are interested in the rapid-rotation regime Ro� 1 and E� 1. The limit E→ 0
removes the viscous term in an inertial frame, since ∇′v′ + (∇′v′)T = ∇v + (∇v)T

and ∇′ · v′ = ∇ · v imply E(∇′)2v′ = E Ro∇2v. In the non-magnetic rapid-rotation
limit El, Ro, E, Po→ 0, with constant angular velocity and uniform density (ρ = 1),
the momentum equation (1.3) and its solution v(r, t; Ro, E, Po, El) reduce on setting
El= Ro= E= Po= 0 to

∂tv +Ω × v =−∇P, (1.4)

where the velocity is v(r, t; 0, 0, 0, 0) and P := p + Ue. We do not consider
in the present work if the velocity v(r, t; Ro, E, Po, El) → v(r, t; 0, 0, 0, 0) as
Ro, E, Po, El→ 0.

We assume ∂V is impenetrable, so n · (v− v∂V)= 0 on ∂V , where n is a (possibly
non-unit) normal on ∂V . We further assume that ∂V rotates with a constant angular
velocity, which is consistent with the almost rigid rotation flows. We do not consider
free surfaces or impulsive motion of ∂V (e.g. see Bryan 1889 and Hough 1895).
Henceforth, O is the boundary frame, n is steady and the boundary condition
reduces to

n · v = 0 on ∂V. (1.5)

We assume the flow is incompressible,

∇ · v = 0 in V, (1.6)

except for a brief discussion in the final section § 9.
Mathematically the inertial wave problem consists of (1.4)–(1.6). Analytic solutions

are usually derived from the formulation in terms of the pressure P outlined in § 2.
The velocity can be eliminated, yielding the free Poincaré equation,

∂2
t ∇2P+ (Ω̂ · ∇)2P= 0. (1.7)

Thomson (1880) determined the solutions for inertial waves in a cylinder and
cylindrical shell rotating about the cylindrical axis. Poincaré (1885a, pp. 355–365) (not
to be confused with Poincaré (1885b,c) of the same title), in a study of the stability
of a fluid ellipsoid with a free surface, gave an incomplete derivation of the inertial
modes for an ellipsoid rotating about a principal axis in terms of Lamé functions;
see also Hough (1895, Appendix p. 479). Bryan (1889) gave a full derivation
of the inertial modes in terms of spheroidal harmonics for a spheroid rotating
about its symmetry axis; see also Kudlick (1966). Taylor (1922), Rao (1966) and
Nurijanyan, Bokhove & Maas (2013) computed the inertial modes for a rectangular
prism rotating about a centred axis perpendicular to a face. Rieutord (1991) and
Rieutord & Valdettaro (1997) computed the viscous inertial modes for a spherical
shell with no-slip and stress-free boundary conditions. Solutions for the periodic plane
layer and the periodic duct rotating about a centred axis perpendicular to impenetrable
plane boundaries are well known. Pedlosky & Greenspan (1967) derived approximate
solutions for the sliced cylinder {(x, y, z) ∈ E3 | x2 + y2 < 1, ay< z< b}, where E3 is
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Euclidean space with a set of Cartesian coordinates (x, y, z) and a, b are constants.
Inertial waves underlie many geophysical and astrophysical phenomena (see Zhang
1993; Cui, Zhang & Liao 2014).

To study the spatial modes of inertial waves we consider the steady incompressible
Coriolis operator C defined by

CCCv := Ω̂ × v +∇p, (1.8)

subject to ∇ · v= 0 in V and n · v= 0 on ∂V , i.e. (1.5) and (1.6). The operator C is a
time-independent linear operator. This definition of C is incomplete until the auxiliary
function or pressure p has been defined. We require that Cv satisfies (1.6) and (1.5),
i.e.

∇ · (CCCv)= 0 in V, n ·CCCv = 0 on ∂V, (1.9a,b)

and hence p must satisfy the elliptic Poisson–Neumann problem,

∇2p=−∇ · (Ω̂ × v) in V; ∂np=−n · Ω̂ × v on ∂V, (1.10a,b)

where v is prescribed. This associates to each v a p which is unique, if the condition∫
V pdV = 0 is imposed. We give an explicit expression for Cv in terms of v in § 3.
It is useful to formulate the problem in terms of the space of functions v on

which C acts. Let Vk
(V), where k is a positive integer, be the space of Ck (k-times

continuously differentiable) inviscid solenoidal velocities in V , i.e. which satisfy (1.5)
and (1.6). Thus Vk

(V) := {v ∈ [Ck(V)]3 | ∇ · v = 0 in V, n · v = 0 on ∂V} with the
inner product

(v1, v2) :=
∫

V
v1 · v∗2dV, (1.11)

where the asterisk denotes complex conjugation and Ck(V) is the space of complex-
valued Ck scalar functions on V . The associated norm is ‖v‖ = (v, v)1/2, (v1, v2) =
(v2, v1)

∗ and the Cauchy–Schwartz inequality |(v1, v2)|6 ‖v1‖ ‖v2‖ holds. The flows
have finite kinetic energy. Thus we require that the linear operator C maps flows in
V1
(V) into V1

(V). The space V1
(V) is not complete and therefore not a Hilbert space;

but see the discussion in § 9. This does not limit the present results since we do not
need to prove the general existence of solutions. Instead we consider restrictions of
C to finite-dimensional spaces of polynomial flows and use the Weierstrass theorem
on uniform polynomial approximation of continuous functions in a bounded region to
approximate flows in V1

(V). We also introduce the associated space of pressures on
V , Pk(V) := {p ∈Ck(V) | ∫V pdV = 0}, with inner product

(p1, p2) :=
∫

V
∇p1 · ∇p∗2dV. (1.12)

A second useful operator associated with the Navier–Stokes equation (1.3) is the
Stokes operator,

SSSv :=−∇2v +∇p (1.13)

with ∇ · v= 0 in V , n · v= 0 on ∂V , additionally subject to either the no-slip condition
n× v= 0 or the stress-free condition n · [∇v+ (∇v)T] × n= 0 on ∂V . S maps a flow
v ∈V2

(V) into V2
(V). Here p must satisfy the Poisson–Neumann problem,

∇2p= 0 in V; ∂np= n ·∇2v on ∂V. (1.14a,b)
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In terms of the operators C and S with associated pressures pC and pS, the Navier–
Stokes equation (1.3) with uniform density or in the Boussinesq approximation can
be written as

∂tv +CCCv + ESSSv =−∇(p− pC − pS)+ Po FP + 1
2 Ro Fa + El FL +Fg, (1.15)

where FP, Fa, FL, Fg are the Poincaré, advective, Lorentz and gravitational or
buoyancy force. The forces FP, Fa, FL, Fg can be projected individually onto Vk

(V)
by subtracting a pressure gradient: F= f +∇pF and pF is chosen so that f ∈Vk

(V),
i.e.

∇ · f = 0 in V, n · f = 0 on ∂V. (1.16a,b)

Thus the pressure pF is the solution of the Poisson–Neumann problem,

∇2pF =−∇ ·F in V; ∂npF =−n ·F on ∂V;
∫

V
pFdV = 0. (1.17a−c)

Observe that this problem, and the specific cases (1.10) and (1.15), are self-consistent.
Hence projecting FP, Fa, FL, Fg yields f P, f a, f L, f g ∈Vk

(V) with associated pressures
pP, pa, pL, pg satisfying (1.17). The momentum equation reduces to

∂tv +CCCv + ESSSv = Po f P + 1
2 Ro f a + El f L + f g. (1.18)

The divergence of (1.15) yields ∇2(p − pC − E pS − pP − (Ro pa/2) − El pL − pg) =
0. Further, since n is independent of time, taking the dot product of n with (1.16)
yields ∂n(p − pC − E pS − Po pP − (Ro pa/2) − El pL − pg) = 0 on the boundary ∂V .
Hence p− pC−E pS−Po pP− (Ro pa/2)−El pL− pg= 0. Thus we consider the model
forced-momentum equation in the rapid-rotation limit,

∂tv +CCCv = f , (1.19)

where f satisfies conditions (1.16).
We consider properties of C for general fluid volumes V in § 3, in particular we

show that C is a bounded operator on V1
(V) and −iC is symmetric on V1

(V). Our
primary interest is the discrete spectrum of C, which consists of the eigenvalues λ of
C, and the eigenfunctions v (6= 0), which satisfy Cv = λv. Throughout we associate
with an eigenvalue λ of C an angular frequency ω=−iλ, so that −iCv=ωv. We will
refer to (v,λ) as a (discrete) Coriolis mode. Physically, Coriolis modes are geostrophic
modes or the spatial modes of inertial waves, or more generally Rossby waves, e.g. in
a sliced cylinder (Pedlosky & Greenspan 1967). We will refer to Coriolis modes of
zero and non-zero frequency as geostrophic and inertial modes respectively. In § 4 we
enumerate by construction the Coriolis velocity modes vm

n,j in a sphere. The index n
is the polynomial degree of the velocity mode, m is the azimuthal wavenumber and j
labels the frequency. For the zero frequency, an infinite orthogonal set of geostrophic
modes must be constructed, since it is infinitely degenerate.

In § 5 we determine the dimension of the space of polynomial flows in a sphere.
This together with Theorem 6.4 provides an alternative method for enumerating the
Coriolis modes which avoids explicit construction of the modes. In § 6 we show in
Theorem 6.3 that the Coriolis operator is well defined on the space of polynomial
flows in a sphere. Theorem 6.4 follows from this. This is based on the fundamental
tool, Theorem 6.2, that the solution in a sphere of the polynomial Poisson–Neumann
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problem, i.e. Poisson’s equation with a Neumann boundary condition and polynomial
data, is polynomial.

Consider the integral

Im1,m2
n1,j1,n2,j2 := (∇2vm1

n1,j1, v
m2
n2,j2). (1.20)

Zhang et al. (2001) derived a representation for vm
n,j in terms of the monomial basis

{sizjeimφ} and showed that Im,m
n,j,n,j = 0 for a sphere. Zhang, Liao & Earnshaw (2004)

extended this result to a spheroid rotating about its axis. Liao & Zhang (2009)
showed that Im,m

n1,j1,n2,j2 = 0 for a sphere if n1 6 n2. A proof of this directly from
the governing equations remains elusive. Indeed, these remarkable results were our
original motivation for studying the polynomial properties of inertial modes and the
Coriolis operator. It is shown in § 7 that Im,m

n1,j1,n2,j2 = 0 for a sphere if n1 6 n2 + 1, as
a simple corollary of the results in § 6.

In § 8 we again use Theorem 6.2 to establish the most important result of the
paper, namely Theorem 8.1, that the Coriolis modes in a sphere V are complete.
Completeness of inertial modes has been established for a periodic duct (Cui et al.
2014).

In the concluding § 9 we outline an abstract existence theorem for Coriolis modes
in a general bounded fluid volume. We also briefly discuss applications and the
generalisations of the important time-dependent incompressible Coriolis operator and
the anelastic Coriolis operator.

2. Poincaré’s equation
Since Ω is constant in time, the velocity v can be eliminated from (1.19) and (1.6)

as follows. The cross product of (1.19) with Ω̂ , noting (1.8), gives ∂t(Ω̂ × v)+ (Ω̂ ·
v)Ω̂ − v =−Ω̂ × (∇p− f ). Substituting Ω̂ × v =−(∇p− f )− ∂tv,

∂2
t v + v =−∂t(∇p− f )+ Ω̂ × (∇p− f )+ (Ω̂ · v)Ω̂. (2.1)

The dot product of (1.19) with Ω̂ gives

∂t(Ω̂ · v)=−Ω̂ · (∇p− f ). (2.2)

Differentiating (2.1) with respect to t and using the previous equation (2.2) to
eliminate ∂t(Ω̂ · v) from the right-hand side,

∂3
t v + ∂tv =−∂2

t (∇p− f )+ Ω̂ × ∂t(∇p− f )− Ω̂ · (∇p− f )Ω̂. (2.3)

The divergence of (2.3) yields the forced Poincaré equation,

∂2
t ∇2p+ (Ω̂ · ∇)2p= Ω̂ · ∇× ∂t f + Ω̂ · ∇(Ω̂ · f ), (2.4)

noting ∇ · f = 0. Since the boundary ∂V and n are steady in the rotating frame O, the
dot product of (2.3) with n yields the boundary condition,

∂2
t ∂np− n× Ω̂ · ∂t∇p+ (Ω̂ · ∇p)n · Ω̂ =−n · Ω̂ × ∂tf + Ω̂ · fn · Ω̂, (2.5)

noting n · f = 0.
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The initial value problems consisting of (1.19), subject to (1.6) and (1.5), or (2.4),
subject to (2.5), with v or p prescribed at t = 0 can be solved in principle using
Laplace transforms in t. Alternatively, there is the modal approach adopted here of
separating the time dependence. Thus, if f (r, t) = f (r)e−λt, then (1.19) has a forced
solution of the form v(r, t) = v(r)e−λt with p(r, t) = p(r)e−λt. The time dependence
can also be expressed in terms of the angular frequency ω = −iλ introduced in the
introduction. The momentum equation (2.1) and Poincaré’s equation (2.4) reduce to

−λv + Ω̂ × v =−∇p+ f (2.6)

λ2∇2p+ (Ω̂ · ∇)2p=−λΩ̂ · ∇× f + Ω̂ · ∇(Ω̂ · f ). (2.7)

From (2.3), or using the fact that ax+ b× x= c implies (a2+ b2)x= ac− b× c+ (b ·
c/a)b in (2.7),

λ(1+ λ2)v = λ2(∇p− f )+ λΩ̂ × (∇p− f )+ Ω̂ · (∇p− f )Ω̂. (2.8)

The boundary condition (2.4) becomes

λ2∂np+ λn× Ω̂ · ∇p+ (Ω̂ · ∇p)n · Ω̂ = λn · Ω̂ × f + Ω̂ · fn · Ω̂. (2.9)

The forced Poincaré equation (2.7) in V must be solved subject to this condition on
∂V .

For real frequencies ω, (2.7) is elliptic if |ω| > 1 and hyperbolic if |ω| < 1.
The characteristics of (2.7) are the cones z = ±ωs/

√
1−ω2, which are real in the

hyperbolic case. The kinetic energy of the mode {v, ω} is (v, v)/2, which is constant
since (ve−iωt, ve−iωt) = (v, v). If V is axisymmetric, Ω̂ and the z-axis are co-axial
with the symmetry axis, then the solutions decouple into azimuthal modes P(r)∝ eimφ ,
m ∈ Z and P(r, t) ∝ ei(mφ−ωt). Thus we adopt the convention that ω > 0 corresponds
to eastward (westward) propagation for positive (negative) azimuthal wavenumbers
m> 0 (m< 0).

3. The Coriolis operator
In this section we prove some general results for the Coriolis operator C acting on

the space V1
(V) for a general bounded fluid region V , not just for a sphere. Given v∈

V1
(V), then Cv ∈V1

(V) if the pressure p is determined from the Poisson–Neumann
problem (1.10). This elliptic problem is well posed, unlike the ill-posed hyperbolic
problem, equations (2.7) and (2.9) for real −1<ω< 1, which determines the pressure.
The infinite-dimensional operator C is linear, non-local and can be expressed explicitly
in terms of v,

CCCv = Ω̂ × v +
∫

V
[∇∇′G(r′, r)] · (Ω̂ × v′)dV ′, (3.1)

where G is the Green’s function of the Poisson–Neumann problem, ∇2G = δ(r − r′)
in V with ∂nG= 0 on ∂V . Equation (3.1) can be derived using Green’s representation
formula,

p(r′)=−
∫

V

∇2p
4π|r− r′|dV−

∫
∂V

dS ·
{

p∇
(

1
4π|r− r′|

)
− ∇p

4π|r− r′|
}
, r′ ∈V. (3.2)
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Substituting from (1.10) yields

p(r′)=
∫

V

∇ · (Ω̂ × v)

4π|r− r′| dV −
∫
∂V

dS ·
{

p∇
(

1
4π|r− r′|

)
+ Ω̂ × v

4π|r− r′|

}
. (3.3)

To eliminate p from the surface integral choose a harmonic function h(r, r′) such that

∇2h(r, r′)= 0 in V, n · ∇h(r, r′)=−n · ∇(4π|r− r′|)−1 on ∂V. (3.4a,b)

Then, by Green’s first theorem in p and h,∫
V

h(r, r′)∇ · (Ω̂ × v)dV −
∫
∂V
[p∇h(r, r′)+ h(r, r′)Ω̂ × v] · dS= 0. (3.5)

Combining the last two integral equations,

p(r′)=−
∫

V
G(r, r′)∇ · (Ω̂ × v)dV +

∫
∂V

G(r, r′) Ω̂ × v · dS, (3.6)

where G(r, r′) :=−h(r, r′)− (4π|r− r′|)−1 is the (interior) Neumann Green’s function
for V . Integrating by parts gives

p(r′)=
∫

V
∇G(r, r′) · (Ω̂ × v)dV (3.7)

and interchanging r and r′ yields (3.1). For the sphere r< a,

4πG(r, r′)= 1
a

ln(a2 − r · r′ + |rr′ − a2r′/r′|)− a
|rr′ − a2r′/r′| −

1
|r− r′| . (3.8)

The operator C is bounded (Chossat 1979) on V1
(V), since

‖CCCv‖2 = (CCCv, Ω̂ × v)+ (CCCv,∇p)= ‖CCCv‖ ‖Ω̂ × v‖6 ‖CCCv‖ ‖v‖, (3.9)

using the Cauchy–Schwartz inequality and noting (Cv, ∇p) = 0 by the divergence
theorem, ∇ · (Cv)= 0 in V and n · Cv= 0 on ∂V . Hence ‖Cv‖6 ‖v‖ or, in terms of
the operator norm ‖C‖ of C induced by the vector norm ‖v‖,

‖CCC‖ := sup
v 6=0

‖CCCv‖
‖v‖ = sup

‖v‖=1
‖CCCv‖6 1. (3.10)

A useful property of the operator norm used below is ‖Cv‖6 ‖C‖ ‖v‖, which follows
directly from its definition. Thus C is bounded and continuous, since, if limn→∞ vn= v

then limn→∞Cvn=Cv in V1
(V). Since C is bounded, it is the generator of a uniformly

continuous semigroup (see Pazy 1983, § 1.1), T (t)= exp(−tC)=∑∞k=0(−tC)k/k!. The
solution of ∂tv=−Cv with v= v0 at t= 0 can be written in terms of the operator T
as v =T (t)v0.
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3.1. The spectrum of C
The spectrum of C may be defined in terms of its resolvent operator (C − λI)−1 on
V1
(V). The resolvent set Γ of C is the set of λ in the complex plane C for which

(C − λI)−1 is a bounded operator. The forced solution of (2.6) is given in terms of
the resolvent by v = (C − λI)−1f . The solution is well behaved, and in particular no
resonance occurs, if λ lies in the resolvent set. The resolvent has been useful in the
analysis of stability problems with non-normal operators (see the review by Trefethen
1997).

THEOREM 3.1. The resolvent set Γ of C contains C \ [−i, i].

Proof. The inner product of (2.6) with v gives

(Ω̂ × v, v)− λ(v, v)= (f , v), (3.11)

since (∇p, v)= 0 by the divergence theorem, ∇ · v= 0 in V and n · v= 0 on ∂V . The
identity

(v× v∗)∗ =−v× v∗, (3.12)

implies Re(Ω̂ × v, v)= 0 and thus, if λr, λi are the real and imaginary parts of λ,

λr‖v‖2 =−Re(f , v), λi‖v‖2 =−i(Ω̂ × v, v)− Im(f , v). (3.13a,b)

By the Cauchy–Schwartz inequality |(f , v)|6 ‖f‖ ‖v‖ and |(Ω̂ × v, v)|6 ‖v‖2. Hence

‖v‖6 |λr|−1 ‖f‖; ‖v‖6 (|λi| − 1)−1 ‖f‖, if |λi|> 1. (3.14a,b)

Since v= (C− λI)−1f , ‖(C− λI)−1‖6 |λr|−1 and ‖(C− λI)−1‖6 (|λi| − 1)−1 if |λi|> 1.
Hence the resolvent set contains all λ such that λr 6= 0 or |λi|> 1.

The spectrum of C is the complement C \Γ of the resolvent set Γ in the complex
plane C. Theorem 3.1 shows that the spectrum lies in [−i, i] on the imaginary axis. In
general, the spectrum is the disjoint union of the point (or discrete) spectrum σp(C),
the continuous spectrum σc(C) and the residual spectrum σr(C). The discrete spectrum
σp(C) consists of the eigenvalues of C, i.e. the values of λ∈C for which Cv= λv for
some non-zero v ∈ V1

(V). These discrete modes, which we will refer to simply as
Coriolis modes, are the free modes (f = 0) of C and can be physically interpreted
as inertial modes or geostrophic modes, or Rossby modes, of frequency ω = −iλ.
As indicated in the introduction we regard the Coriolis modes of zero and non-zero
frequency as the geostrophic modes and inertial spatial modes respectively. There is a
further discussion of σc(C) and σr(C) in § 9. The following theorem is important for
the spectrum of C, but particularly for σp(C).

THEOREM 3.2. The operator −iC is symmetric, i.e. (−iCv1, v2)= (v1,−iCv2) for all
v1, v2 ∈V1

(V).

Proof. There exists a pressure p1 ∈ P such that (−iCv1, v2) = (−iΩ̂ × v1, v2) −
i(∇p1, v2). But (∇p1, v2)= 0, noting ∇ · v2= 0 in V , applying the divergence theorem
and n · v2 = 0 on ∂V . Interchanging subscripts yields (−iCv1, v2) = (−iCv2, v1)

∗ =
(v1,−iCv2), since iΩ̂ × v1 · v∗2 = (iΩ̂ × v2 · v∗1)∗.
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Completeness of incompressible Coriolis modes in a sphere 477

The values λ = ±i are not eigenvalues of C, i.e. ±i /∈ σp(C). Physically, there are
no Coriolis modes of frequency ω=±1, but if the fluid occupies all space E3, modes
with frequency ω = ±1 are possible. Equation (2.6) with λ = i and f = 0 implies
Ω̂ × v = iv −∇p and hence (Ω̂ × v, Ω̂ × v)= (iv −∇p, iv −∇p). Simplifying using
(v,∇p)= (∇p, v)∗= 0 yields ‖∇p‖2+‖Ω̂ · v‖2= 0. Thus p is constant and Ω̂ · v= 0.
Equation (2.6) reduces to ±iv+ Ω̂× v= 0. From ∇ · v= 0, it follows that Ω̂ ·∇× v=
0. Hence, there exists a potential ϕ(x, y, z) such that v = ∇⊥ϕ, where ∇⊥ is the
gradient perpendicular to Ω̂ and ∇2

⊥ϕ = 0. Multiplying the last equation by ϕ∗ and
integrating by parts over a plane section of V with z constant yields

∫
z=const |v|2dA= 0,

since n · v= 0 on the boundary ∂V . It follows that v= 0 everywhere in V . The case
λ=−i is similar.

3.2. Eigenvalues and orthogonality of Coriolis modes
Using the symmetry of −iC from Theorem 3.2, we now show the eigenvalues of C are
imaginary, i.e. the frequencies ω=−iλ are real, and that Coriolis modes with different
eigenvalues are orthogonal. We also use the boundedness of C to show |ω| = |λ|6 1.
These results are consistent with the restriction on the spectrum found in Theorem 3.1.
We denote the pressure of the Coriolis modes by P.

THEOREM 3.3. The Coriolis modes have the following properties: the eigenvalues λ
of C are imaginary and |λ|6 1: and modes (v1,P1, λ1) and (v2,P2, λ2) with different
eigenvalues (frequencies) λ1 = iω1 6= λ2 = iω2 are orthogonal, (v1, v2)= 0.

Proof. The proofs rely on the symmetry of −iC and the boundedness of C. Alternative
proofs are given in Greenspan (1968). From ω = −iλ, −iCv = ωv. Since −iC is
symmetric and v 6= 0, ω‖v‖2 = (−iCv, v)= (v,−iCv)= ω∗‖v‖2, i.e. ω is real. Since
‖C‖6 1, |λ| ‖v‖6 ‖λv‖=‖Cv‖6 ‖C‖ ‖v‖6 ‖v‖, i.e. |λ|< 1. Since −iC is symmetric,
0= (−iCv1, v2)− (v1,−iCv2)= (ω1 −ω2)(v1, v2).

The orthogonality property of Theorem 3.3 does not apply to modes of the same
eigenvalue. Thus, for any eigenvalue with an eigenspace of dimension greater than
one, as is true for the geostrophic modes in a sphere, an orthogonal basis must be
constructed, for example using the Gram–Schmidt method. For this purpose it is useful
to express the inner product of two inertial modes (v1,P1, λ1= iω1) and (v2,P2, λ2=
iω2) in terms of the pressures P1 and P2. Equation (2.2) with f = 0 or the dot product
of (2.6) with Ω̂ if ω2 6= 1 gives the useful result

iωΩ̂ · v = Ω̂ · ∇P. (3.15)

Using (2.8) with f = 0, (3.15), integrating over V and using the boundary condition
(1.6) yields, if ω1ω2 6= 0,

(v1, v2)= (1−ω1ω2)
−1
∫

V

{
∇P1 · ∇P∗2 +

1
ω1ω2

(Ω̂ · ∇P1)(Ω̂ · ∇P∗2)
}

dV. (3.16)

Formula (3.16) fails if one or both modes are geostrophic, since then ω1ω2 = 0. The
formula for the inner product of two geostrophic modes is derived in § 3.3 below.
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3.3. Inertial modes
In some simple geometries inertial modes can be constructed analytically using the
pressure. With f = 0, (2.8) reduces to

iω(1−ω2)v =−ω2∇P+ (Ω̂ · ∇P)Ω̂ + iωΩ̂ ×∇P in V (3.17)

and
−ω2∂nP+ (Ω̂ · ∇P)n · Ω̂ + iωn× Ω̂ · ∇P= 0 in ∂V. (3.18)

Poincaré’s equation (1.7) must be solved for P subject to the boundary condition
(3.18) and the velocity then determined from (3.17). The construction for a sphere
(Bryan 1889) is outlined in § 4 during the enumeration of the spherical inertial modes.

3.4. Geostrophic modes
The Coriolis modes of zero frequency, i.e. the geostrophic modes, require special
treatment. Their properties can occasionally be found from those of inertial modes
by taking the limit ω→ 0. Thus the limit as ω→ 0 of (3.15) yields Ω̂ · ∇P= 0, i.e.
P= P(r− r · Ω̂Ω̂), so these modes have no vertical structure.

The velocity v can be found by substituting (3.15) into (3.17), dividing by iω and
then taking the limit ω→ 0 to obtain v= Ω̂ ×∇P+ (Ω̂ · v)Ω̂ , or by taking the cross
product of (2.6) with Ω̂ . The axial component Ω̂ · v of the flow is still undetermined.
Letting ω1, ω2 → 0 in the inner product formula (3.16) using (3.15) leads to the
undetermined axial components of v1, v2. We derive an expression for Ω̂ · v in
terms of the pressure and the geometry following Greenspan (1968). Let (x, y, z)
be Cartesian coordinates with the z-axis aligned along Ω̂ . We assume that any line
parallel to Ω̂ intersects ∂V in the top z= zt(x, y) and bottom z= zb(x, y) boundaries,
with outward normals nt := ∇(z − zt) and nb := −∇(z − zb). Clearly nt · Ω̂ = 1 and
nb · Ω̂ =−1. Imposing n · v = 0 on ∂V yields −nt · Ω̂ ×∇P= Ω̂ · v = nb · Ω̂ ×∇P
or ∇zt · Ω̂ ×∇P=∇zb · Ω̂ ×∇P, i.e. ∇h×∇z · ∇P= 0, where h(x, y) := zt − zb is
the height of the boundary. Hence, P = P(h, z), if ∇h 6= 0. But Ω̂ · ∇P = 0 implies
P = P(h) and so Ω̂ · v = ∇zt · Ω̂ × ∇P = ∇zt × ∇zb · Ω̂ P′(h). So the horizontal
structure of geostrophic flows is restricted to one degree of freedom. Finally, using
∇zt ×∇zb =−∇((zt + zb)/2)×∇h,

v = [Ω̂ −∇ 1
2(zt + zb)] ×∇P= P′(h) t, (3.19)

where t :=∇[z− (zt+ zb)/2]×∇h is tangent to the streamlines of v. The inner product
of two geostrophic modes with pressures P1 and P2 is

(v1, v2)=
∫

V

[
Ω̂ −∇ 1

2(zt + zb)
]
×∇P1 ·

[
Ω̂ −∇ 1

2(zt + zb)
]
×∇P∗2dV. (3.20)

If V is symmetrical about some z-plane, then zt+ zb is constant and the inner product
reduces to

(v1, v2)=
∫

V
∇P1 · ∇P∗2dV. (3.21)

An orthogonal set of geostrophic modes can be constructed by applying Gram–
Schmidt orthogonalisation to a linearly independent set of geostrophic pressure
modes using the inner product (3.21).
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The spectrum of C depends only on the geometry of V and Ω̂ , not on the rotation
rate nor on any flow parameters. The simplest dependence is between closed curves
and geostrophic modes. The intersection of the level surfaces of z− (zt + zb)/2 and h,
which depend only on V and Ω̂ , are called geostrophic curves, or contours if they lie
on the boundary z= zt or z= zb. The streamlines of the geostrophic flow (3.19) are
geostrophic curves. If G is a geostrophic curve,∮

G
v · dl= P′(h)

∮
G
|t|dl 6= 0. (3.22)

There is no non-zero geostrophic flow along a curve which terminates on the boundary
with n · t 6= 0. If all curves are of this form there is no geostrophic flow, e.g. as in
a sliced cylinder rotating about its axis, and therefore no Coriolis mode of frequency
zero. Of course, curves need not terminate on the boundary, as in the case of a sliced
cone rotating about its axis.

Geostrophic and inertial modes can be separated by frequency or orthogonality, but
also geometrically by geostrophic cylinder average. The geostrophic contours that have
the same boundary projections along Ω̂ generate a geostrophic cylinder of constant
height, which need not be of circular cross-section. The geostrophic cylinder average
of a vector field F over a geostrophic cylinder C is

〈F〉C := 1
|C|
∫

C
F · t̂dS, (3.23)

where |C| is the surface area of C and t̂ is the unit tangent field along the geostrophic
curves generating C. We show that, if C divides the fluid into two disjoint components
V = V1 ∪ V2, then

ω〈v〉C = 0, (3.24)

and hence for the inertial modes (ω 6= 0) the geostrophic cylinder average of v
vanishes: 〈v〉C = 0. The proof follows from the geostrophic cylinder average of (2.6),
−iω〈v〉C + 〈Ω̂ × v〉C =−〈∇p〉C and

0=
∫

Vi

∇ · vdV =
∫

C
v · dS=

∫∫
C

v · dl× Ω̂dz= |C|〈Ω̂ × v〉C, (3.25)

using ∇ · v= 0 in Vi and n · v= 0 on the boundary. Also 〈∇p〉C= 0, since
∮

G∇p · dl=
0 for any geostrophic contour G on C. So, unlike geostrophic modes, inertial modes
have vertical structure Ω̂ · ∇P 6= 0 and hence an axial flow along the rotation axis by
(3.15). The result (3.24) is also known as the mean circulation theorem (Greenspan
1968), that the circulation of a depth-averaged inertial (geostrophic) mode around a
closed geostrophic contour is zero (non-zero).

3.5. Angular momentum of Coriolis modes
Inertial and geostrophic modes also differ in angular momentum effects. Geostrophic
modes transmit the component of the pressure torque along the rotation axis between
the ends of a geostrophic cylinder or annulus. Inertial modes lose torque to the
angular momentum of the fluid. This mechanism of torque transfer is significant if
the region is periphractic, i.e. the outer fluid boundary encloses one or more inner
fluid boundaries so not every closed surface in V can be continuously shrunk to a
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point without leaving V (Maxwell 1891, pp. 18, 24, 25). For then the geostrophic
modes transmit the axial component of the pressure torque from the outer boundary
to the inner boundary (Hide 1995). The results follow from the identity

Ω̂ ·
∫
∂C

r× PdS= iωΩ̂ · LC − d(Ω̂ · IC · Ω̂)
dt

, (3.26)

where IC and LC are the inertia tensor of C and the angular momentum of C in the
rotating frame, noting that Ω̂ · IC · Ω̂ is constant if C is a geostrophic cylinder or
annulus. In dimensional form, IC :=

∫
C ρ(r

2I − rr)dV and LC :=
∫

C r× ρvdV . Since Ω̂
is constant the last term in (3.26) vanishes, giving the result. For a sphere or spherical
shell the result is trivial. Identity (3.26) is established by combining the dimensional
identities

dIC

dt
=
∫

C
ρDt(r2I − rr)dV +

∫
∂C
ρ(r2I − rr)(v∂C − v) · dS, (3.27)

Dt(r2I − rr)= 2r · vI − rv − vr and r× (Ω̇ × r)= (r2I − rr) · Ω̇ to yield the following
identity for the moments of the Coriolis and Poincaré forces,∫

C
r× (ρ2Ω × v)dV +

∫
C

r× (ρΩ̇ × r)dV

+
∫
∂C

Ω · ρ(r2I − rr)(v∂C − v) · dS= d(Ω · IC)

dt
+Ω × LC. (3.28)

If Ω̇ = 0 and C moves so that (v∂C− v) ·n= 0, which implies the angular momentum
flux across the boundary ∂C due to Ω vanishes, the (dimensionless) identity reduces
to

d(Ω̂ · IC)

dt
+ Ω̂ × LC =

∫
C

r× (Ω̂ × v)dV = iω
∫

C
r× vdV −

∫
∂C

r× PdS. (3.29)

The component along the rotation axis gives (3.26).

3.6. Inversion of C − λI and resonance

Applications usually require, in principle, calculation of the resolvent (C − λI)−1 and
forced solutions v= (C− λI)−1f , where f satisfies (1.16). For this the velocity can be
eliminated as in (2.7) and (2.9), which can be solved for p. Equation (2.8) then gives
v. Alternatively, elimination of p from (1.19) yields the vorticity equation,

∂t∇× v − Ω̂ · ∇v =∇× f , (3.30)

or from (2.6) the modal form,

Ω̂ · ∇v + λ∇× v =−∇× f . (3.31)

Uncurling recovers (1.19) or (2.6). In principle, if λ is in the resolvent set Γ of C,
this can be done for all f ∈ V1

(V). However, if λ is in the spectrum C\Γ , f may
have to satisfy non-resonance conditions.
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We consider only the point spectrum λ∈σp(C). If λ=0, (1.19) reduces to the steady
form Cv= f and the resolvent is then the inverse of C. If a geostrophic mode exists,
then 0∈σp(C) and C is not invertible. Taylor (1963) considered this important case for
the dynamo problem in the rapid-rotation limit E, Ro→ 0. In this case the force f is
the (projected) Lorentz force f L and the force balance is magnetostrophic. We state a
general existence theorem, Theorem 3.4, for solutions of Cv= f ; a constructive proof
is given in appendix A. We assume the region V is axisymmetric with Ω̂ oriented
along the symmetry z-axis. We assume the top and bottom boundaries, z= zt(s) and
z= zb(s), where the cylindrical radius s satisfies s0 6 s6 s1, are smooth. For a given Ω̂ ,
V is geostrophically guided if there is exactly one geostrophic contour through each
point on the boundary. We assume V is geostrophically guided: ∇(zt − zb) 6= 0 except
at isolated values of s.

THEOREM 3.4. A necessary and sufficient condition for the existence of a single-
valued solution v ∈V1

(V) of

Ω̂ · ∇v =−∇× f, ∇ · v = 0 in V, n · v = g on ∂V, (3.32a−c)

where f and g are prescribed subject to the consistency condition
∫
∂V g dS= 0, is

|C(s)|〈f〉C(s) +
∫

S(s)
gdS= 0, (3.33)

for all geostrophic cylinders C(s), where S(s) are the caps of C(s). The solution is
only determined up to an arbitrary additive function of s to vφ . If the further condition,

〈v〉C(s) = 0 for all s0 6 s 6 s1, (3.34)

is imposed, then the solution is unique.

The function g allows for Ekman suction or a moving boundary. Imposing g = 0
gives the result for the Coriolis operator.

COROLLARY 3.1. A necessary and sufficient condition for the existence of a single-
valued solution v ∈ V1

(V) of Cv = f is that all geostrophic cylinder averages of f
vanish,

〈f〉C(s) = 0. (3.35)

The non-resonance or solvability condition (3.35) is well known in dynamo theory
as Taylor’s (1963) condition for the magnetostrophic momentum equation. The
theorem fails if zt(s) or zb(s) are not smooth, e.g. in a spherical shell. The proof
produces a smooth solution v over each interval of s for which zt(s) and zb(s)
are smooth but the smooth pieces of v do not fit together smoothly. This remains
an outstanding problem (Hollerbach & Proctor 1993; Hollerbach 1994a,b; Kleeorin
et al. 1997; Dormy, Cardin & Jault 1998; Soward & Hollerbach 2000; Livermore &
Hollerbach 2012).

The invertibility of C can also be treated spectrally:

THEOREM 3.5. If f has an expansion in discrete Coriolis modes, f =∑α fαvα with
fα = (f, vα), then Cv = f has the solution v =∑α ifαvα/ωα, if the non-resonance or
solvability conditions,

(f, vβ)= 0, (3.36)

hold for all ωβ = 0, i.e. for all geostrophic modes, and
∑

α |fα/ωα|2‖vα‖2 <∞.
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The proof is elementary. The solvability conditions in Theorem 3.5 are equivalent to
condition (3.34) in Theorem 3.4, but may be more tractable. If the Coriolis modes are
complete, so that any f can be expanded in discrete Coriolis modes, then the spectral
inversion in Theorem 3.5 works for any f which satisfies the solvability conditions.
This highlights the usefulness and importance of completeness for the Coriolis modes,
which we prove in § 8 if V is a sphere. For the general forced problem, (C− λI)−1f =∑

α i(ω−ωα)−1fα vα, where ω=−iλ, if (f , vβ)= 0 for all β for which ω=ωβ .

4. Coriolis modes in a sphere
In §§ 4–8 the fluid region V is the (non-dimensionalised) sphere |r| < 1. In the

present section we enumerate the Coriolis modes in a sphere. The geostrophic modes
require special treatment due to the zero frequency.

4.1. Inertial pressure modes
Poincaré’s equation (2.7) in cylindrical polar coordinates (s, φ, z) with f = 0 is

s−1∂s(s∂sP)+ s−2∂2
φP− (ω−2 − 1)∂2

z P= 0, s2 + z2 < 1 (4.1a,b)

and the boundary condition (2.8) is

ω2s ∂sP+ iω∂φP− (1−ω2)z ∂zP= 0, s2 + z2 = 1, (4.2a,b)

since n = s1s + z1z. We transform the problem to the non-orthogonal frequency-
dependent spheroidal coordinates (ξ , ζ , φ) (Bryan 1889) given by

σ s=
√

1− ζ 2
√

1− ξ 2, ωz= ξζ , 0 6 ζ 6ω, ω6 ξ 6 1, (4.3a,b)

where σ 2+ω2=1. The relation between σ and ω removes the mixed second derivative
from Poincaré’s equation, allowing the variables to separate into Legendre’s equation
in ζ and in ξ , and also ensures the spherical boundary s2 + z2 = 1 is a ζ -surface,
ζ =ω. The transformation is degenerate if ω= 0. The ζ -surfaces (ξ -surfaces) are non-
confocal oblate (prolate) spheroids with semi-axes

√
1− ζ 2/

√
1−ω2> 1 and ζ/ω< 1

(respectively,
√

1− ξ 2/
√

1−ω2 < 1 and ξ/ω > 1), co-axial with the z-axis. Thus the
spherical inertial modes are

P= Pm
n,ω := Pm

n (ζω)Pm
n (ξω)e

imφ, (4.4)

where Pm
n is the associated Legendre function of degree n and order m, m∈Z, |m|6 n,

ω 6= 0 and the ω-dependence of ζ and ξ is indicated.
The product Pm

n (ξ)P
m
n (ζ ) is a polynomial in s and z of degree n, and Pm

n (ξ)P
m
n (ζ )e

imφ

is a polynomial in x, y, z of degree n (Kudlick 1966; Zhang et al. 2001), even if σ 2+
ω2 6= 1. In fact,

Pm
n,ω =

{
(σ seiφ)m(ωz)qUm

n (σ
2s2, ω2z2), if m > 0;

(σ se−iφ)|m|(ωz)qUm
n (σ

2s2, ω2z2), if m< 0; (4.5)

where q := n − |m|(mod 2) is either 0 or 1, and Um
n (σ

2s2, ω2z2) is a polynomial
in σ 2s2 and ω2z2 of degree (n − |m| − q)/2. To establish this, note the associated
Legendre function Pm

n (w) = (1 − w2)|m|/2wqum
n (w

2), where um
n (w

2) is a polynomial
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in w2 of degree (n − |m| − q)/2. Thus Pm
n,ω = (σ seiφ)m(ωz)qum

n (ξ
2)um

n (ζ
2) if m > 0;

and Pm
n,ω = (σ se−iφ)|m|(ωz)qum

n (ξ
2)um

n (ζ
2) if m < 0. The result (4.5) follows, since the

product um
n (ξ

2)um
n (ζ

2) is a polynomial Um
n (σ

2s2, ω2z2) in (σ s)2 and (ωz)2 of degree
(n − |m| − q)/2 with coefficients independent of ω and σ by the following lemma.
Expressions (4.5) are polynomials in x, y, z since se±iφ = x± iy. The z-parity of Pm

n,ω,
which is not immediately apparent from ζ and ξ , is determined by q.

LEMMA 4.1. Let s1 =
√

1− ζ 2
√

1− ξ 2, z1 = ξζ . If p(w) is a polynomial of degree
K, then p(ξ 2)p(ζ 2) is a polynomial in s2

1 and z2
1 of degree K.

Proof. Let p(w)=∑K
k=0 pkwk, where the pk are constants. Then

p(ξ 2)p(ζ 2)=
K∑

k=0

{
p2

kz2k
1 +

K−k∑
l=1

pkpk+lz2k
1 (ξ

2l + ζ 2l)

}
. (4.6)

By rearranging the binomial expansion of (ξ 2 + ζ 2)l in the form,

ξ 2l + ζ 2l = (ξ 2 + ζ 2)l −
b l−1

2 c∑
j=1

lCj(ξζ )
2j(ξ 2(l−2j) + ζ 2(l−2j)) (4.7)

and using the identity ξ 2+ ζ 2= 1− s2
1+ z2

1, it follows by induction that ξ 2l+ ζ 2l is a
polynomial in s2

1 and z2
1 of degree l. Hence p(ξ 2)p(ζ 2) is a polynomial in s2

1 and z2
1

of degree K.

The boundary s2+ z2= 1 is given by s= sin θ and z= cos θ , or in oblate spheroidal
coordinates by ξ = cos θ and ζ =ω. The boundary condition implies ω is a root of

(1−ω2)
dPm

n (ω)

dω
+mPm

n (ω)= 0. (4.8)

Now Pm
n (ω) = (1 − ω2)|m|/2pm

n (ω), where pm
n (ω) is a polynomial in ω of degree

n − |m|. Moreover, {pm
n (ω)}∞n=|m| form an orthogonal set of polynomials on [−1, 1]

with weight function (1−ω2)|m| even in ω, since

1
2

∫ 1

−1
Pm

n (ω)P
m
N(ω)dω= δnN . (4.9)

Thus pm
n (ω) has n− |m| simple zeros ωk, k= 1 : n− |m|, on (−1, 1) symmetric about

ω = 0 and hence pm
n (ω)= cm

n

∏n−|m|
k=1 (ω − ωk), where cm

n is a constant. The frequency
equation (3.4) can be written as d ln Pm

n (ω)/dω=−m/(1−ω2) or

n−|m|∑
k=1

1
ω−ωk

=−
1
2(|m| +m)
ω+ 1

−
1
2(|m| −m)
ω− 1

. (4.10)

For m 6= 0 this equation has n− |m| zeros; for m= 0 there are n− 1 zeros. Figure 1
shows the generic case for n − |m| = 4. The zeros are not symmetrically distributed
about ω = 0. Geostrophic modes ω = 0 occur if and only if m = 0 and n is even.
There are no m = ±n modes: in fact, the dispersion relation gives ω = 1 (−1) for
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–1 1

FIGURE 1. Schematic plot of the two sides of (5.6) for inertial frequencies ω with n−
|m| = 4. The right-hand side curves are labelled by m> 0 and m< 0; the m= 0 curve is
the ω axis.

m> 0 (< 0) in these cases. Thus we label the non-zero frequencies for 0<m6 n− 1
by ωm

n,j, where j∈Z, j 6= 0 and j=−(n−m+ 1)/2 : (n−m− 1)/2, if n−m is odd, or
j=−(n−m)/2 : (n−m)/2, if n−m is even. The zero frequencies are ω0

n,0, where n
is even, m= 0 and j= 0. For −(n− 1)6m< 0, ωm

n,j=ω−m
n,−j. We define the associated

inertial pressure mode for the non-zero frequency ωm
n,j by

Pm
n,j := Pm

n,ωm
n,j
. (4.11)

Note that Pm
n,j = P−m∗

n,−j . We construct the geostrophic modes in § 4.2.
The number of Coriolis pressure modes of degree N + 1 or less, which equals the

number of Coriolis velocity modes of degree N or less, is

CN =
N+1∑
n=1

n∑
m=−n

(n− |m| − δm
0 )=

1
6

N(N + 1)(2N + 7). (4.12)

For N= 1, 2, 3 there are 3, 11, 26 modes and for N� 1 CN ≈N3/3. Greenspan (1968)
counts n− |m| (n− |m| − 1) inertial modes if n−m is even (odd), in agreement with
(4.12).

4.2. Geostrophic pressure modes
We construct the geostrophic modes by taking the limit ω → 0 in the solutions
(4.4). They are the natural choice, since they are hierarchical in polynomial degree.
These geostrophic modes can also be constructed by applying Gram–Schmidt
orthogonalisation with the inner product (1.11) to the polynomials {1, s2, s4, . . .}.
See figure 2. Other geostrophic bases are possible.

LEMMA 4.2. For m = 0 and ω → 0 the solutions (4.4) reduce to the geostrophic
modes,

P0
n,0(s)= Pn(0)Pn(

√
1− s2)− [Pn(0)]2, (4.13)

where n is even. Here, P0
n,0(s) is a polynomial in s2 of even degree n in s and Pn is

the Legendre polynomial of degree n.
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FIGURE 2. (Colour online) The geostrophic modes P0
n,0 as a function of cylindrical radius

s for n= 2, 4, 6, 8, 10.

Proof. From (4.3) ξ 2 + ζ 2 = 1 − σ 2s2 + (ξζ )2 = 1 − σ 2s2 + ω2z2. Thus as ω→ 0,
ξ 2 + ζ 2 → 1 − s2 and, by (4.7), ξ 2l + ζ 2l → (ξ 2 + ζ 2)l, since σ → 1 and (ξζ )2 =
ω2z2→ 0. If n is even, Pn(z)=

∑n/2
k=0 pn,2kz2k, where the pn,2k are constants, and

Pn(ξ)Pn(ζ )= pn,0

[ n/2∑
k=0

pn,2k(ξ
2k + ζ 2k)− pn,0

]
+

n/2∑
k=1

n/2∑
l=1

pn,2kpl,2kξ
2kζ 2l. (4.14)

The double sum is O(ξζ )2. Thus, for n even, Pn(ξ)Pn(ζ )→ P0
n,0 in (4.13) as ω→ 0,

since pn,0 = Pn(0). If n is odd, Pn(ξ)Pn(ζ )→ 0 as ω→ 0.

Linearly independent Coriolis modes of the same frequency may be non-orthogonal.
The modes (4.13) are orthogonal: evaluating the inner product (v1, v2) of two modes
using (3.21), noting n1 and n2 are even and substituting v2= 1− s2 yields, apart from
the factor Pn1(0)Pn2(0),∫

V
∇Pn1(

√
1− s2) · ∇Pn2(

√
1− s2)dV = 2π

∫ 1

−1
P′n1
(v)(1− v2)P′n2

(v)dv. (4.15)

An integration by parts and Legendre’s differential equation shows the last integral
vanishes if n1 6= n2.

4.3. Velocity modes
The velocity modes are constructed from the pressure modes using (3.17). Thus
associated with the pressure mode Pm

n+1,j is the velocity mode vm
n,j. Define

vm
n (ω) :=


iω

1−ω2
(∇Pm

n+1,ω −ω−2Ω̂Ω̂ · ∇Pm
n+1,ω)+

1
1−ω2

Ω̂ ×∇Pm
n+1,ω, ω 6= 0;

Ω̂ ×∇P0
n+1,0, ω= 0,m= 0, n odd.

(4.16)
The Coriolis velocity modes are thus

vm
n,j :=Nm

n,jv
m
n (ω

m
n+1,j), |m|6 n, (4.17)
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486 D. J. Ivers, A. Jackson and D. Winch

where j=−(n−m+ 1)/2 : (n−m− 1)/2 if n−m is odd, j=−(n−m)/2 : (n−m)/2 if
n−m is even, and j 6=0 unless m=0 and n is odd. The normalisation constant Nm

n,j>0
is chosen so that the mode is normalised to (vm

n,j, vm
n,j) = 1. The complex conjugate

vm∗
n,j = v−m

n,−j. No modes vm
n,ω arise from m= n+ 1, i.e. P±(n+1)

n+1 . For m 6= 0 the associated
inertial waves propagate eastward (westward) if j> 0 (j< 0). Equatorial symmetries
are determined by n − m: the velocity modes are quadrupole symmetric if n − m =
0(mod 2) and dipole symmetric if n−m= 1 (mod 2); and rotational symmetries about
Ω̂ are determined by m. The velocities of the geostrophic modes (4.13) agree with
Liao & Zhang (2010a) up to normalisation and phase: in terms of Jacobi polynomials
their φ-components can be written as

v0
2n−1,0 =N0

2n−1,0

dP0
2n,0(s)
ds

=N0
2n−1,0(−)n(2n+ 1)P2n(0)sP(1/2,1)n (2s2 − 1). (4.18)

Below we label the Coriolis modes using a 3-index Greek letter, e.g. vα ≡ v
mα
nα ,jα , and

denote the degree of the polynomial flow vα by deg α.

5. Polynomial flows in a sphere

Let PN be the space of polynomials in (x, y, z) of degree N or less with complex
coefficients. The space P3

N of polynomial vectors in (x, y, z) of degree N or less with
complex coefficients has finite dimension

dim P3
N = 3

∑
06i+j+k6N

1= 1
2
(N + 1)(N + 2)(N + 3). (5.1)

We define the space of (inviscid) complex polynomial flows of degree N on V ,
PN(V)= {v ∈ P3

N |∇ · v = 0 in V, n · v = 0 on ∂V} with inner product (1.11). It is
not immediately obvious, due to the boundary condition (1.5), that PN(V) contains
non-zero flows; for a sphere n is a polynomial. We now show that, if V is a sphere,
the dimension of PN(V) is CN given by (4.12), the number of Coriolis modes of
degree N or less. Since PN(V)(P3

N , dim PN(V) < 1
2(N + 1)(N + 2)(N + 3).

Constructing or even enumerating a basis of PN(V) from linear combinations of the
power basis {xiyjzki, xiyjzkj, xiyjzkk}, i, j, k ∈N and i+ j+ k 6N, of P3

N is difficult due
to the solenoidal condition and particularly the boundary condition (1.5). It is much
simpler to construct a basis for PN(V) using spherical toroidal and poloidal fields: if
v ∈PN(V) then v = S{s} + T{t}, where

T{t} :=∇× tr, S{s} :=∇× T{s},
∮

tdΩ = 0,
∮

sdΩ = 0, (5.2a−d)

with t∈PN , s∈PN+1 and dΩ= sin θdθdφ the element of solid angle, and conversely if
t∈PN , s∈PN+1 then v ∈PN(V). Note that t and s are not the time nor the cylindrical
radius in this section. The boundary condition (1.5) is equivalent to s = 0 on r = 1.
Indeed, the Cartesian component of v in the direction of a constant vector c is c · v=
−(c · r)∇2s + c · ∇(r · ∇s) − c × r · ∇t. Thus, if t ∈ PN and s ∈ PN+1, then v ∈ P3

N .
Conversely, if v ∈P3

N , then t ∈PN and s∈PN+1, since for any spherical harmonic Ym
n

of degree n> 1 and order m, Λ−2f (r)Ym
n =−f (r)Ym

n /[n(n+ 1)] for any radial function
f (r), where Λ := r×∇.
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To construct a polynomial toroidal–poloidal basis of PN(V) and for the theorems in
§ 6, we need the spherical harmonic expansion of a polynomial f ∈PN (see MacRobert
1947, p. 140),

f =
N∑

n=0

′ N∑
p=n

n∑
m=−n

f m
n,prpYm

n (θ, φ) (5.3)

where the f m
n,p are constant and the prime on the p-sum indicates summation over p=

n, n+ 2, n+ 4, . . . . The polynomial f is not necessarily harmonic. Thus, noting (5.2),
the potentials t ∈PN and s ∈PN+1 have spherical harmonic expansions of the form

t=
N∑

n=1

n∑
m=−n

b 1
2 (N−n)c∑

j=0

tm
n,jr

2j

 rnYm
n (θ, φ), (5.4)

s=
N+1∑
n=1

n∑
m=−n

b 1
2 (N+1−n)c∑

j=0

s̃m
n,jr

2j

 rnYm
n (θ, φ), (5.5)

where the coefficients s̃m
n,j are adjusted below to satisfy the boundary condition s= 0

on r= 1. The dimension of the toroidal subspace PT
N of PN(V) is

dimPPPT
N =

N∑
n=1

n∑
m=−n

b 1
2 (N−n)c∑

j=0

1=
{

1
6 N(N2 + 6N + 8), N even;
1
6(N + 1)(N2 + 5N + 3), N odd.

(5.6)

The boundary condition (1.5) must still be imposed on the poloidal flows: on r= 1,∑b 1
2 (N+1−n)c

j=0 s̃m
n,j = 0. Elimination of s̃m

n,0 gives

s=
N−1∑
n=1

n∑
m=−n

b 1
2 (N+1−n)c∑

j=1

s̃m
n,j(r

2j − 1)

 rnYm
n (θ, φ), (5.7)

from which it is clear that 1− r2 is a factor of s. Hence we can write

s= (1− r2)

N−1∑
n=1

n∑
m=−n

b 1
2 (N+1−n)c−1∑

j=0

sm
n,jr

2j

 rnYm
n (θ, φ), (5.8)

where the new coefficients sm
n,j are independent. Thus the dimension of the poloidal

subspace PP
N of PN(V) is

dimPPPP
N =

N−1∑
n=1

n∑
m=−n

b 1
2 (N+1−n)c−1∑

j=0

1=
{

1
6 N(N2 + 3N − 1), N even;
1
6(N − 1)(N + 1)(N + 3), N odd.

(5.9)

Finally,

dimPPPN(V)= dimPPPT
N(V)+ dimPPPP

N(V)= 1
6 N(N + 1)(2N + 7)=CN, (5.10)

i.e. the dimension of PN(V) equals the number of Coriolis velocity modes of degree
N or less as in (4.12). If tm

n,j := ∇ × {rn+2jYm
n (θ, φ)r}, then {tm

n,j}, where n = 1 : N,
|m| 6 n, j = 0 : b 1

2(N − n)c, is a basis of PT
N(V). Similarly, if sm

n,j := ∇ × ∇ × {(1 −
r2)rn+2jYm

n (θ, φ)r}, then {sm
n,j} for n= 1 :N − 1, |m|6 n, j= 0 : b 1

2(N + 1− n)c − 1 is a
basis of PP

N(V).
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6. The Coriolis operator on polynomial flows in a sphere

If the Coriolis operator C is restricted to act on polynomial flows PN(V) of degree
N or less, it is not true that C : PN(V)→ PN(V) for any V , i.e. that it produces
only polynomial flows of degree N or less. However, if V is a sphere the restricted
Coriolis operator C :PN(V)→PN(V) is well defined, i.e. C maps polynomial flows
to polynomial flows of the same degree. This is the essential result of the paper,
Theorem 6.3, and follows from the fundamental tool, Theorem 6.2.

THEOREM 6.1 (Polynomial Laplace–Neumann Problem in a Sphere). There exists
a unique solution ϕ of Laplace’s equation ∇2ϕ = 0 in the sphere V (r < a), subject
to n · ∇ϕ = q on ∂V, where n (= r/a) is a linear polynomial and q ∈ PN1 , and to
the respective uniqueness and consistency conditions,∫

V
ϕdV = 0,

∫
∂V

qdS= 0, (6.1a,b)

and ϕ ∈PN1 .

Proof. Since n = r/a, n · ∇ϕ = q reduces to ∂rϕ = q on r = a. On r = a, ∂rϕ =∑N1
n=1

∑n
m=−n qm

n Ym
n (θ, φ), since q ∈ PN1 . The general solution of ∇2ϕ = 0 is ϕ =∑∞

n=1

∑n
m=−n ϕ

m
n (r/a)

nYm
n (θ, φ). Thus ϕm

n = qm
n /n for 16 n6N1 and ϕm

n = 0 for n>N1,
i.e. ϕ ∈PN1 .

LEMMA 6.1 (Polynomial Integral of the Polynomial Poisson–Neumann Problem inE3).
If f ∈PN2 , then there exists a solution ϕp of Poisson’s equation ∇2ϕ= f with ϕp ∈PN2+2

in E3.

Proof. Since f ∈PN2 , it can be expanded in spherical harmonics as in (5.3). Define

ϕp :=
N2∑

n=0

′ N2∑
p=n

n∑
m=−n

ϕm
n,prp+2Ym

n (θ, φ), (6.2)

where ϕm
n,p = f m

n,p[(p+ 2)(p+ 3)− n(n+ 1)]−1 and p > n. Then ϕp ∈PN2+2 and ∇2ϕp =
f .

The fundamental theorem of the paper is

THEOREM 6.2 (Polynomial Poisson–Neumann Problem in a Sphere). There exists a
unique solution ϕ of Poisson’s equation ∇2ϕ = f in the sphere V (r < a) subject to
f ∈PN2 , n ·∇ϕ=q on ∂V, where n= r/a and q∈PN1 , and to the respective uniqueness
and consistency conditions∫

V
ϕdV = 0,

∫
V

f dV =
∫
∂V

qdS, (6.3a,b)

and ϕ ∈PN3 , where N3 =max(N1,N2 + 2).
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Proof. By Lemma 6.1 there exists a polynomial ϕp ∈ PN2+2 such that ∇2ϕp = f and∫
V ϕpdV = 0. Thus ∇2(ϕ− ϕp)= 0 in V and n · ∇(ϕ− ϕp)= q− n · ∇ϕp on ∂V . Since

the uniqueness and consistency conditions of Theorem 6.1 hold, i.e.
∫

V(ϕ−ϕp)dV = 0
and ∫

∂V
(q− n · ∇ϕp)dS=

∫
∂V

qdS−
∫

V
∇2ϕpdV =

∫
∂V

qdS−
∫

V
f dV = 0, (6.4)

Theorem 6.1 applies and implies ϕ − ϕp ∈PN1 . Hence ϕ ∈PN3 .

The essential theorem of the paper is that C maps polynomial flows of degree N
or less in a sphere to polynomial flows of degree N or less.

THEOREM 6.3 (Invariance of Polynomial Flows in a Sphere). The space PN(V)
of polynomial flows of degree N or less on a sphere V is invariant under C, i.e.
CPN(V)⊆PN(V).

Proof. To show the Coriolis operator C is well defined on PN(V) we must show for
v ∈PN(V) that the pressure p exists, p ∈PN+1 and Cv= Ω̂ × v+∇p ∈PN(V). Note
that v is a polynomial flow, but not necessarily an inertial mode, i.e. of the form (4.4).
We can construct p as in (1.10) so that ∇ · (Cv) = Ω̂ · ∇ × v + ∇2p = 0 in V and
n · (Cv)= n · Ω̂ × v+ n · ∇p= 0 on ∂V , by Theorem 6.2 with f =−Ω̂ · ∇× v ∈PN−1

and q = −n · Ω̂ × v ∈ PN+1. Thus N1 = N + 1 and N2 = N − 1 in that theorem, i.e.
N3 =N + 1 and hence p ∈PN+1. Of course, ∇p ∈P3

N and thus Cv ∈PN(V).

We now show the operator C on PN(V) is non-defective, i.e. its eigenvectors span
PN(V). In fact, −iC can be represented by a hermitian matrix. The proof is simple
on the finite-dimensional space PN(V) and does not require the explicit construction
of the modes as a basis of PN(V). The result is used to prove the completeness of
the Coriolis modes in the infinite-dimensional space V1

(V) in Theorem 8.1.

THEOREM 6.4 (Existence and Polynomial Nature of Coriolis Modes in a Sphere).
The finite-dimensional operator −iC on PN(V) is self-adjoint. The eigenvalues λ= iω
of C are purely imaginary and satisfy |λ| = |ω| < 1 and the eigenvectors of distinct
eigenvalues of C are orthogonal. The eigenvectors of C span the finite-dimensional
space PN(V). The number of Coriolis modes of degree N or less is CN .

Proof. If v1, v2 ∈ PN(V), then (−iCv1, v2) = (v1, −iCv2) by Theorem 3.2 and −iC
is self-adjoint since PN(V) is finite-dimensional. Thus the eigenvectors of −iC span
PN(V), the eigenvectors of distinct eigenvalues are orthogonal and its eigenvalues are
real. If v is an eigenvector of −iC corresponding to the eigenvalue ω, then −iCv=ωv
and hence Cv = λv, i.e. v is an eigenvector of C corresponding to the eigenvalue
λ= iω. Thus the eigenvectors of C are complete in the finite-dimensional space PN(V)
and its eigenvalues are purely imaginary. The bound |ω|<1 follows as in Theorem 3.3
and the result that ω 6= ±1.

The spaces PN(V) are hierarchical in the sense that if N1 6 N2 and (v, ω) is an
eigenmode of C in PN1(V) then (v, ω) is an eigenmode of C in PN2(V). Moreover,
(v, ω) is an eigenmode of C in V1

(V). Moreover, for any polynomial flow v ∈PN(V),
(v, vα)= 0 for all Coriolis modes vα with deg α >N.
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7. The Stokes and other operators in the Coriolis basis
The Coriolis operator C restricted to polynomial flows in a sphere V of degree n or

less Pn(V) is a diagonal Cn×Cn matrix in the Coriolis basis vα with degα6 n. What
forms do other operators restricted to Pn(V) take in the Coriolis basis? Consider
the operator ∇2: if v ∈ Pn(V), it does not follow that ∇2v ∈ Pn(V), due to the
impenetrable boundary condition. Instead, we can adjust ∇2v by subtracting the
gradient of a harmonic function p, where p is the solution of the Poisson–Neumann
problem (1.14). This leads naturally to the Stokes operator Sv := −∇2v +∇p. Since
n ·∇2v ∈Pn−1, it follows from Theorem 6.2 that p ∈Pn−1 and Sv ∈Pn−2(V). Hence,
for any v ∈Pn(V) there exist coefficients uα such that

SSSv =
∑

degα6n−2

uαvα (7.1)

and for any vβ with deg β > n− 1,

(∇2v, vβ)= (∇2v, vβ)− (∇p, vβ)=−(SSSv, vβ)=−
∑

degα6n−2

uα(vα, vβ)= 0, (7.2)

since (∇p, vβ) = 0. In particular, Im,m
n,j,N,J = 0 if n 6 N + 1, which is consistent with

Liao & Zhang (2009). The Stokes matrix in the Coriolis basis decomposes further on
subspaces of PN(V) invariant under rotations about the rotation axis and subspaces
invariant under reflection in the equator. Analogous results hold for the operators ∂2

x ,
∂2

y , ∂2
z , s−1∂s(s∂s) or s−2∂2

φ .
The advection operator A(v1, v2) := v1 · ∇v2+∇p maps two polynomial flows vi ∈

Pni(V), i= 1, 2, of degrees n1 and n2 to a polynomial flow of degree n1+ n2− 1, if
p satisfies (1.17) with F=A(v1, v2). In particular, for any three Coriolis modes vα,
vβ and vγ , if deg α + deg β 6 deg γ or mα +mβ 6=mγ ,

(vα · ∇vβ, vγ )=
∫

V
(vα · ∇vβ) · v∗γ dV = 0. (7.3)

Thus the operator A maps PN(V)×PN(V) to P2N−1(V). In fact, if v ∈PN(V), there
exist coefficients uα such that

AAA(v, v)=
∑

degα62N−1

uαvα, (7.4)

and for any vβ with deg β > 2N, (v · ∇v, vβ)= (A(v, v), vβ)= 0.

8. Completeness of the Coriolis modes in a sphere
In this section we establish in Theorem 8.1 the most important result in the paper,

that the Coriolis modes in a sphere are complete in V1
(V). The proof relies on the

uniform polynomial approximation theorem of Weierstrass to approximate a flow in
V1
(V) by a polynomial vector field and the fundamental Theorem 6.2 to project this

polynomial field onto PN(V) for sufficiently high degree N by subtracting a pressure
gradient.

THEOREM 8.1. The Coriolis modes in a sphere V are complete in V1
(V).
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Proof. Let v ∈ V1
(V) and ε > 0. By application of the Weierstrass approximation

theorem (see Davis 1975, § 6.6) to each Cartesian component of v, there exists an
integer N > 0 and a vector polynomial u ∈ P3

N , such that |v − u|< ε in V . However,
u ∈ PN may be false, since the conditions ∇ · u = 0 in V and n · u = 0 on ∂V do
not necessarily hold. By Theorem 6.2 there exists a polynomial π ∈ PN+1 such that
u−∇π ∈PN . Hence there are constants uα such that

u=∇π +
∑

degα6N

uαvα =∇π +
∑

degα6N

(u, vα)vα, (8.1)

where the vα are the orthonormal Coriolis modes in PN(V). Now, using (8.1),∥∥∥∥∥v − ∑
degα6N

(v, vα)vα

∥∥∥∥∥
2

=
∥∥∥∥∥(v − u+∇π)+

∑
degα6N

(u− v, vα)vα

∥∥∥∥∥
2

= ‖v − u+∇π‖2 +
∑

degα6N

(u− v, vα)
∗(v − u+∇π, vα)

+
∑

degα6N

(u− v, vα)(vα, v − u+∇π)+
∥∥∥∥∥ ∑

degα6N

(u− v, vα)vα

∥∥∥∥∥
2

= (v − u+∇π, v − u)−
∑

degα6N

|(u− v, vα)|2

6 ‖v − u‖2 + ‖∇π‖ ‖v − u‖, (8.2)

since (v,∇π)= 0, (u−∇π,∇π)= 0 as u−∇π ∈PN , (∇π, vα)= 0 and (vα, vβ)=
δαβ . We bound ‖∇π‖ in terms of ‖v‖. Now (u − ∇π, ∇π) = 0 implies ‖∇π‖2 =
(u, ∇π) 6 ‖u‖ ‖∇π‖, i.e. ‖∇π‖ 6 ‖u‖, and |u − v| 6 ε implies ‖u − v‖ 6 ε

√|V|.
Thus ‖∇π‖6 ‖u‖ = ‖v + (u− v)‖6 ‖v‖ + ‖u− v‖6 ‖v‖ + ε√|V|, where |V| is the
volume of V; i.e. ‖∇π‖6 ‖v‖ + ε√|V|. Thus finally,∥∥∥∥∥v − ∑

degα6N

(v, vα)vα

∥∥∥∥∥
2

6
√|V|(‖v‖ + 2ε

√|V|)ε. (8.3)

Since the right-hand side is independent of N, u and π , it follows that v =∑
α(v, vα)vα in V1

(V), where the sum is over Coriolis modes. The Coriolis modes
are therefore complete in a sphere.

We showed that the Coriolis modes are polynomials by construction in § 4. We now
show this also follows from Theorem 6.2 and that there are no missed eigenfunctions.

THEOREM 8.2. The spherical Coriolis modes are polynomials.

Proof. Let v =∑α vαvα and Cv =∑α λαvαvα, then ‖v‖2 =∑α |vα|2 and ‖Cv‖2 =∑
α |λα|2|vα|2. If (v, λ) is an eigenmode, then 0 = ‖(C − λI)v‖2 =∑α |λα − λ|2|vα|2.

The series all converge since the kinetic energy is finite, ‖v‖<∞, and |λα|< 1 for
all α. Thus λ= λβ for some index β, vβ 6= 0 and vα = 0 for α 6= β.
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The operator C can be approximated elementwise by a finite-rank operator CN ,
i.e. an operator with a finite-dimensional range. Let PN be the projection onto PN ,
vN = PNv :=∑degα6N(v, vα)vα and CN := C ◦ PN :V1

(V)→PN(V). Then

‖(CCC −CCCN)v‖ = ‖CCC(v − vN)‖6 ‖CCC‖ ‖v − vN‖6
√√|V|(1+ 2ε

√|V|)√ε (8.4)

using (8.3). However, the approximation is non-uniform, since N in (8.3) depends not
only on ε but also v. Hence it does not follow from (8.4) that for all ε > 0 there
exists N such that CN approximates C in the uniform operator norm, i.e. ‖C−CN‖=
sup‖v‖=1 ‖(C − CN)v‖ < ε, which would imply that C is a compact operator. In fact,
we show in the next theorem that C is not compact and hence cannot be uniformly
approximated by the CN or any finite-rank operator (Schechter 1971, § 4.3).

THEOREM 8.3. The Coriolis operator C is not compact if V is a sphere.

Proof. We prove the theorem by contradiction. Assume C is compact. Then the only
point of accumulation of the frequencies ωm

n,j of C is zero (Friedman 1982, Corollary
5.3.3), i.e. for all δ > 0 there are finitely many frequencies ω with δ < |ω| < 1.
However, from § 4 the m = 0 frequencies ω0

n,j are interlaced by the zeros ωj of Pn

which satisfy cos[2jπ/(2n + 1)] 6 ωj 6 cos[(2j − 1)π/(2n + 1)], i.e. there exists a
δ > 0 such that δ < |ω|< 1 contains infinitely many m= 0 frequencies, a contradiction.
Hence C is not compact.

Despite the lack of a uniform finite-dimensional approximation of C, Theorem 8.3
importantly precludes an accumulation of near-resonance conditions, i.e. (f , vβ) =
O(ωβ)‖f‖ with |ωβ | � 1 compared to (3.36). Although Theorem 8.3 is only a
partial result, the proof shows that minn6N,j6=0 |ω0

n,j| = O(N−1), which indicates
that with axisymmetry frequencies near zero behave uniformly with N and allow
some regularity in inverting C. The behaviour is also true for m 6= 0, since
minn6N,m,j6=0 |ωm

n,j| is O(N−1), using the estimate ω|m|n,j =− sin{πj/(n+ (1/2))} + o(n−1)

(see Ivanov & Papaloizou 2010), equation (B5) with j shifted so that ω|m|n,0 = 0.
Thus the convergence condition on v in Theorem 8.3 becomes

∑
α |fα deg α|2 <

∞, where the sum is over the spherical inertial modes. Splitting the sum into
O[δ(deg α)2] frequencies in the range O(deg α)−1 < |ωα| 6 δ < 1 near 0 and
O[(1 − δ)(deg α)2] frequencies in δ < |ωα| < 1 gives an upper bound of order∑∞

n=1[n4δ + n2δ−2(1− δ)] maxdegα=n |fα|2. Minimising over δ yields δ = O(deg α)−2/3

and the convergence condition
∑∞

n=1(n
5/3 maxdegα=n |fα|)2 <∞.

9. Discussion and conclusions

We defined the Coriolis operator C, which maps the space of continuously
differentiable incompressible flows V1

(V) in a bounded region V to itself. We
showed that C is bounded with ‖C‖ 6 1 and −iC is symmetric, thus establishing
that the Coriolis modes are orthogonal with real frequencies ω, |ω| < 1. We proved
the polynomial Poisson–Neumann Theorem 6.2 for a sphere, thus showing that the
space of incompressible polynomial flows PN(V) of degree 6 N in a sphere is
invariant under C. This and the self-adjointness of −iC on PN(V) enabled us to
simply enumerate the Coriolis modes in a sphere and to establish their completeness,
by invoking the Weierstrass approximation theorem and using Theorem 6.2 again. We
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also enumerated the modes directly from the known analytic solutions, with careful
consideration given to the geostrophic modes.

The first approach, based on the polynomial Poisson–Neumann Theorem 6.2, is
especially useful, since it does not require analytic expressions for the Coriolis modes.
It will be shown elsewhere that Theorem 6.2 can be extended to spheroids and tri-axial
ellipsoids, even if the rotation axis is tilted from the principal axes, and hence that
the Coriolis modes are polynomials and complete in these cases. In fact, it has been
known since Poincaré (1885a) (see also Hough 1895) that the inertial modes in a tri-
axial ellipsoid are polynomials in Cartesian coordinates. It will also be shown that the
spaces of incompressible rotating periodic plane layer flows and rotating periodic duct
flows can be decomposed using Fourier techniques into a sum of finite-dimensional
spaces, which are invariant under the Coriolis operator C. Consequently, the Coriolis
modes are complete in periodic plane layer flows and a rotating periodic duct (Cui
et al. 2014). Decomposition of incompressible flows in a rotating rectangular prism
into finite-dimensional spaces invariant under the Coriolis operator fails.

Theorem 6.2 has no analogue in some simple geometries, which is consistent with
these geometries having non-polynomial Coriolis modes. Thus the inertial pressure
modes of a finite circular cylinder of radius a rotating about its axis (Thomson 1880)
are Pm

n,j := J|m|(λ|m|,js/a) eimφ cos nπz, where n ∈ N, m ∈ Z, J|m| is a Bessel function
of the first kind and λ|m|,j is the jth positive zero of λJ′|m|(λ) − (m/ω)J|m|(λ). The
frequencies are given by ω2 = 1/[1 + (λ|m|,j/nπa)2] 6= 0. If m = 0 and ω → 0
this condition reduces to J′0(λ) = 0. Thus the geostrophic pressure modes are
P0

0,j(s) := J0(λ0,js/a), where λ0,j is the jth positive zero of J′0(λ) = 0. The Coriolis
modes are clearly not polynomials, specifically J|m|(s) eimφ cos nπz is not polynomial.
Thus it is not possible to construct the pressure p in the Coriolis operator so that it
maps PN(V) to PN(V), if V is a cylinder, and Theorem 6.2 has no analogue in this
case. Completeness of the discrete Coriolis modes for a cylinder is currently an open
question; as the abstract completeness result outlined below indicates, it depends on
the continuous spectrum.

A full analytical solution for the Coriolis modes in a spherical shell is not known.
The difficulty with the separable solutions of the Poincaré’s equation in the coordinate
system (4.3) is that only one ζ -surface is spherical, ζ =ω corresponding to s2+ z2=
1. Theorem 6.1 for polynomial solutions of the Laplace–Neumann problem fails in
a shell. Hence the existence Theorem 6.3 and the polynomial form of such modes
also fails. Ray theory arguments suggest that the continuous spectrum is non-empty
for a spherical shell (Israeli 1972; see also Stewartson 1972; Rieutord & Valdettaro
1997). In fact, the existence of inertial modes in a spherical shell has been questioned
(Stewartson & Rickard 1969; Rieutord, Georgeot & Valdettaro 2001).

We outline a general abstract existence argument for the Coriolis modes in a
bounded volume with smooth boundaries. By a standard theorem in functional
analysis the inner-product space V1

(V) can be completed to a Hilbert space V1
(V),

although the elements of the space may be difficult to characterise. The operator C
can be extended to a bounded linear operator C on V1

(V), using continuity, and the
operator −iC is therefore a bounded self-adjoint operator. It follows (Friedman 1982)
that the residual spectrum σr of C is empty and that the spectrum of C, which is the
union of the discrete and continuous spectrums, lies in [−i, i]. The spectral theorem
for bounded self-adjoint operators (Friedman 1982, § 6.7, Kreyszig 1978, § 9.9 or
Taylor & Lay 1980, § 6.6) applies to −iC and implies that there exists a unique
family of projection operators Eω, which satisfy the conditions Eω = 0 if ω 6 −1
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and Eω = I if ω > 1, such that −iC has the following representation in terms of a
Riemann–Stieltjes integral (with a right upper limit following Friedman 1982),

−iCCC =
∫ 1+

−1
ωdEEEω. (9.1)

Moreover, any v ∈V1
(V) has the spectral resolution

v =
∫ 1+

−1
dEEEωv. (9.2)

This is the general completeness result for the discrete and continuous modes of C.
If the spectrum is purely discrete the Riemann–Stieltjes integral reduces to a sum
over the eigenvalues of −iC. The difficulty with the spectral theorem is that explicit
construction of the spectral resolution is not possible except in special cases. Simple
and practical characterisation of the spectral resolution is the subject of future work.

Spherical Coriolis modes are useful in applications and potentially even in
computations, due to their explicit polynomial form and completeness. Spherical
harmonic expansions of the pressure modes, toroidal–poloidal potentials and vector
spherical harmonic expansions of the velocity modes will be given elsewhere. One
application is to viscous solutions of the momentum equation, γ v + Cv + ESv = 0,
or the viscous form of Poincaré’s equation, and how the modes for E= 0 approximate
solutions in the limit E → 0. Viscous asymptotic approximations have been given
for spheres (Liao & Zhang 2010b) and for a slender torus approximation to a
spherical shell (Rieutord, Valdettaro & Georgeot 2002). A second application is
magnetohydrodynamic dynamos, including the kinematic dynamo action of Coriolis
modes. It is known that plane inertial modes have maximal helicity, a property
exploited by Moffatt (1970) to produce a mean-field dynamo alpha effect. In the
spherical case simple spatial inertial modes are not mean-field dynamos at leading
order, due to the absence of any Stokes drift (Herreman & Lesaffre 2011), but simple
linear combinations of spatial Coriolis modes do act as dynamos, such as polynomial
Dudley–James flows (Dudley & James 1989). The minimum magnetic Reynolds
number minv∈PN (V) Rm for dynamo action over polynomial flows of degree N or less
would be interesting, as would some analogue for Coriolis modes. A third application
is forcing with feedback, such as in magnetohydromagnetic torsional oscillations,
where the forcing depends on the magnetic field, which depends on the velocity via
the magnetic induction equation.

Extensions of the Coriolis operator are possible. If the rotation is time-dependent,
such as in precession, the incompressible Coriolis operator is time-dependent,
C(t)v = Ω(t) × v + ∇p, where ∇ · v = 0 in V(t) and n(t) · v = 0 on ∂V(t). A
useful extension to fully compressible flows appears unlikely due to the variable
density. Morton & Shaughnessy (1972), Gans (1974) and Miles (1981) considered
fully compressible inertial waves of an ideal gas in a cylinder rotating about its axis.
Restricted compressible flows occur in various forms of the anelastic approximation,
which all neglect the time dependence of the density in the equation for mass
conservation (see Jones et al. 2011, § 2). If ρ ′ and p′ are the density and pressure
perturbations of the basic state values ρ̄ and p̄ of a stably stratified gas shell modelling
gaseous planets and stars, a generalisation of the Coriolis operator to this case (see
Jones et al. 2011, Eq. (15)) is Cv := Ω̂ × ρ̄v + ρ̄∇(p′/ρ̄) with ∇ · (ρ̄v) = 0. The
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properties of this C, which clearly depend on ρ̄, are not pursued any further here.
Further work is also required on anelastic approximations with ∇ · (ρv) = 0, for
which the Coriolis operator may be generalised to Cu := Ω̂ × u+∇p, where u := ρv.
This operator can be restricted to the space of polynomial momentum densities of
degree N or less, PN(V) = {u ∈ P3

N | ∇ · u = 0 in V, n · u = 0 on ∂V} and the
results for the incompressible operator would follow in this compressible case. An
extension to moving boundaries, when v= 0 is not a viscous solution in any rotating
frame, is possible through linearisation. For example, consider a spherical shell with
differentially rotating boundaries (Baruteau & Rieutord 2013). The flow v = 0 is a
valid inviscid flow in any rotating reference frame concentric with the shell, but it is
incompatible with a viscous solution. Let v0 satisfy

v0 · ∇v0 + Ω̂ × v0 =−∇p0 + E∇2v0 (9.3)

and v0 = v∂V , e.g. Taylor–Couette flow, and consider v′ := v − v0. The linearised
inviscid problem for v′ is ∂tv

′+ (C+A0)v
′= f , where the linearised advective operator

A0v
′ := v0 · ∇v′ +∇vT

0 · v′. It is easily shown that (−iA0v
′
1, v

′
2)= (v′1,−iA0v

′
2) and

hence −iA0 is symmetric; but it is unbounded, unlike C.
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Appendix Proof of Theorem 3.4
We give an extension of Taylor’s 1963 proof to Theorem 3.4.

Proof. Condition (3.33) is necessary, since integration of the φ-component of (2.6)
with λ= 0 over C(s) gives∫

C(s)
fφdS=

∫
C(s)

v · dS=−
∫

S(s)
v · dS=−

∫
S(s)

gdS, (A 1)

noting that the total flux through the side C(s) and ends S(s) of the cylinder V(s) is
zero by (3.32c).

Condition (3.33) is also sufficient. Let nt (nb) be the outward unit normal on the
top (bottom) boundary z= zt (z= zb). Then vt= vs sin θt+ vz cos θt and vb= vs sin θb−
vz cos θb, where cos θt = 1z · nt and cos θb =−1z · nb, and

vs = vt cos θb + vb cos θt

sin(θt + θb)
, vz = vt sin θb − vb sin θt

sin(θt + θb)
. (A 2a,b)

Integration of the nt and nb components of (3.32a) yields

vt = gt −
∫ z

zt

(∇× f )tdz, vb = gb −
∫ z

zb

(∇× f )bdz. (A 3a,b)

Transforming (A 2) to cylindrical polar coordinates yields

vs = v0
s (f )+

gt cos θb + gb cos θt

sin(θt + θb)
, vz = v0

z (F)+
gt sin θb − gb sin θt

sin(θt + θb)
, (A 4a,b)
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where

v0
s (f ) = −

(
sin θt cos θb

sin(θt + θb)

∫ z

zt

+cos θt sin θb

sin(θt + θb)

∫ z

zb

)
(∇× f )sdz

+ cos θt cos θb

sin(θt + θb)

∫ zt

zb

(∇× f )zdz (A 5)

v0
z (f ) = −

(
cos θt sin θb

sin(θt + θb)

∫ z

zt

+sin θt cos θb

sin(θt + θb)

∫ z

zb

)
(∇× f )zdz

− sin θt sin θb

sin(θt + θb)

∫ zt

zb

(∇× f )sdz. (A 6)

The notation highlights the functional dependence of v0
s and v0

z on f . Both vs and vz
are clearly unique, if g is known.

The component vφ must be determined by integrating (3.32b) and the φ-component
of (3.32a), namely

∂φvφ =−∂s(svs)− s∂zvz, ∂zvφ = ∂sfz − ∂zfs, (A 7a,b)

where vs and vz are given by (A 5) and (A 6). The equations (A 7) are integrable
since the divergence of the right-hand side of (3.32a) is identically zero. When the
φ-integration in (A 7) is performed, a single-valued solution is obtained if and only if∮
(∂s(svs)+ s∂zvz)dφ = 0. Substitution of the z-component of (3.32a) and (A 7) yields∮

(∇× f )sdφ =−∂z

∮
fφdφ,

∮
(∇× f )zdφ = 1

s
∂ss
∮

fφdφ, (A 8a,b)

∂s

∫
C(s)

fφdS=
∫ zt

zb

∂ss
∮

fφdφdz+
[

s
∮

fφdφ
dz
ds

]zt

zb

, (A 9)

dzt/ds=−tanθt and dzb/ds= tan θb gives∮
(∂s(svs)+ s∂zvz)dφ = ∂s

(
s
∮

cos θbgt + cos θtgb

sin(θt + θb)
dφ + cos θt cos θb

sin(θt + θb)
∂s

∫
C(s)

fφdS
)
.

(A 10)
The last expression vanishes since

s
∮
(sec θtgt + sec θbgb)dφ + ∂s

∫
C(s)

fφdS= 0, (A 11)

which follows by differentiating (3.33) with respect to s, noting that dS= sec θtsdsφ
(dS= sec θbsdsφ) on z= zt(z= zb). Hence (3.33) is a necessary and sufficient condition
for the single valuedness of vφ . The non-uniqueness of vφ up to an arbitrary function
of s is obvious, as is the uniqueness from imposing condition (3.34).
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