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Abstract
The Hamming graphH(d, n) is the Cartesian product of d complete graphs on n vertices. Letm= d(n− 1)
be the degree and V = nd be the number of vertices of H(d, n). Let p(d)

c be the critical point for bond
percolation on H(d, n). We show that, for d ∈N fixed and n→∞,

p(d)
c =

1
m
+ 2d2 − 1

2(d− 1)2
1
m2
+O(m−3)+O(m−1V−1/3),

which extends the asymptotics found in [10] by one order. The term O(m−1V−1/3) is the width of the
critical window. For d= 4, 5, 6 we have m−3 =O(m−1V−1/3), and so the above formula represents the full
asymptotic expansion of p(d)

c . In [16] we show that this formula is a crucial ingredient in the study of
critical bond percolation on H(d, n) for d= 2, 3, 4. The proof uses a lace expansion for the upper bound
and a novel comparison with a branching randomwalk for the lower bound. The proof of the lower bound
also yields a refined asymptotics for the susceptibility of a subcritical Erdős–Rényi random graph.

2010 MSC Codes: Primary 60K35; Secondary 60K37, 82B43

1. Introduction andmain result
1.1 Percolation on the Hamming graph
The Hamming graph H(d, n) is the Cartesian product of d complete graphs on n vertices (e.g.
H(3, 7)=K7 ×K7 ×K7). Bernoulli bond percolation is the model where, given a graph, each edge
is retained independently with the same probability p. In this paper we study the location of the
critical point of bond percolation on H(d, n) for the phase transition in the size of the largest
connected component when d is fixed and n→∞.

Formally, we define the Hamming graph H(d, n) for d, n ∈N as the graph with vertex set
V := {0, 1, . . . , n− 1}d and edge set

E := {{v,w} : v,w ∈ V , vj �=wj for exactly one j}. (1.1)

Thus, H(d, n) is a transitive graph on V := nd vertices with degree m := d(n− 1). Bernoulli bond
percolation is synonymous with the probability space (�, Pp), where � := {0, 1}E and Pp is the
measure such that
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Pp(ω)=
∏
e∈E

((1− p)δ0,ω(e) + pδ1,ω(e)) for all ω ∈�, (1.2)

where δx,y is the Kronecker delta. When ω(e)= 1 we say that the edge e is open; when ω(e)= 0 we
say that the edge e is closed. Given a vertex x ∈ V , we write C (x) for the graph whose vertex set
consists of all vertices that can be reached from x through a path of open edges, and whose edge
set consists of all open edges between these vertices. We call C (x) the connected component of x,
or cluster of x, and write |C (x)| for its number of vertices. We write C1 for the cluster C (x) with
the largest cardinality |C (x)| (using some tie-breaking rule). Two of the main objects of study in
percolation are |C (x)| and |C1|, the cardinalities ofC (x) andC1. For percolation on infinite graphs
G it is often observed that the critical point of the percolation phase transition on G, defined by

pGc := inf{p ∈ [0, 1] : Pp(|C (x)| =∞)> 0}, (1.3)

is non-trivial, that is, pGc ∈ (0, 1) (see e.g. Grimmett [20]) for most infinite graphs (an exception
being Z

1). Moreover, Aizenman and Barsky [1] and independently Menshikov [34] proved that
on transitive graphs,

pGc = sup{p ∈ [0, 1] : Ep[|C (x)|]<∞}. (1.4)

Since we consider percolation onH(d, n) with d, n finite and Pp is a product measure, any event
that is measurable with respect to Pp has a probability that is a polynomial in p, and therefore is
continuous in p: the finite model cannot undergo a non-trivial phase transition in p as described
above. Nevertheless, it does make sense to study the percolation phase transition on finite graphs
in the limit as n→∞. To see why, let us give a rough sketch of an important related problem: the
emergence of the giant component in the Erdős–Rényi random graph (ERRG).

1.2 Giant component
The Erdős–Rényi random graph is the common name for percolation on the complete graph
Kn. Erdős and Rényi [14] proved that in the limit as n→∞, if p= p(n)= c/n with c< 1, then
|C1| =�( log n) w.h.p.,1 while if p= p(n)= c/n with c> 1, then |C1| =�(n) w.h.p. Moreover,
zooming in on the transition point n−1 by choosing p= (1+ εn)n−1 for a sequence (εn)n∈N such
that limn→∞ εn = 0, Bollobás [7] showed that:2

• |C1| =�(ε−2n log (ε3nn)) w.h.p. when ε3nn→−∞ (subcritical),
• |C1| =�(n2/3) w.h.p. when εnn3→ a ∈R (critical),
• |C1| =�(εnn) w.h.p. when εnn3→+∞ (supercritical).

What this shows is that the size of the largest component undergoes a sharp transition around n−1.
As mentioned above, there is no critical point for a finite graph, but the transition occurs in a slice
of the parameter space with a width of order n−4/3, which is asymptotically vanishing with respect
to the centre of the window located around n−1. This behaviour inspired the notion of critical
window: to indicate that the transition of the ERRG occurs around n−1 in a range of width n−4/3,
we use the shorthand notation3

pKn
c = n−1 +O(n−4/3). (1.5)

1Given a sequence of random variables (Xn)n∈N, we writeXn =�(f (n)) w.h.p. (with high probability) if there exist constants
C� c> 0 such that Pp(cf (n)� Xn � Cf (n))→ 1 as n→∞.

2Subsequent results in [3, 33, 36, 40] are much sharper and more comprehensive than is summarized here, and there is an
extensive body of literature on the problem.

3Given three sequences (an), (bn), (cn), we write that an = bn +O(cn) when there exists a constant K <∞ such that |an −
bn|�Kcn for all n.
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Erdős and Spencer [15] conjectured that if we replace Kn with a more ‘geometric’ graph
sequence (their primary candidate was H(d, 2), the d-dimensional hypercube, with d→∞), then
the critical behaviour should remain largely intact. In fact, it turned out that to a large extent the
picture is the same for a large class of graph sequences with ‘sufficiently weak’ geometries.

Of particular interest to us here are the papers by Borgs, Chayes, van der Hofstad, Slade and
Spencer [9, 10, 11], demonstrating that graph sequences satisfying the so-called triangle con-
dition (which serves as an indicator of what is meant by sufficiently weak geometry: see e.g.
[2, 9, 10, 11, 21]) have a phase transition that strongly resembles that of the ERRG, and that both
(H(d, 2))d∈N and (H(d, n))n∈N satisfy the triangle condition. More precisely, consider a sequence
(Gm)m∈N = (Vm, Em)m∈N of vertex transitive graphs of degree m, and write Vm := |Vm|. Write
x←→ y for the event that y ∈C (x), and define the two-point function τp(x− y) := Pp(x←→ y)
and the susceptibility χ(p) :=Ep[|C (x)|]=∑

y∈Vm τp(x− y) (note that χ(p) does not depend on
x by transitivity and that τp(x− y) depends on the relative difference of x and y only because the
graphs under consideration are tori). The triangle condition is satisfied for percolation on (Gm) if,
for all p such that χ(p)3/Vm � β0 for some sufficiently small β0, and for all x, y ∈ Vm, we have4

∇p(x, y) :=
∑
u,v
τp(x− u)τp(u− v)τp(v− y)= δx,y + 10

χ(p)3

V
+O(m−1). (1.6)

It is known that the triangle condition holds for a class of models that includes (H(d, n))n∈N for
any fixed d� 2 (see [10, Theorem 1.3]). An alternative proof, applying to Hamming graphs and
hypercubes for example, was given by van der Hofstad and Nachmias [26, 27].

1.3 Critical window
Fix some θ ∈ (0,∞) and define pGm

c (θ) as the unique solution of the equation

χ(pc(θ))= θV1/3. (1.7)

In [9, 10] it is proved that if we consider percolation on a sequence (Gm) that satisfies the trian-
gle condition (1.6) with p= pc(θ)(1+ εm) and εm→ 0, then we see subcritical behaviour when
ε3V→−∞ and critical behaviour when ε3V→ a ∈R, just as in the ERRG. Sharper results about
mean-field supercritical behaviour of percolation models when ε3V→∞ were derived later by
van der Hofstad and Nachmias [27, Theorem 1.4], who investigate the supercritical phase and
thus establish that (1.7) really constitutes the critical window for several high-dimensional tori
including the hypercube and Hamming graphs. Moreover, it was shown in [9, Theorem 1.1] that
the critical window satisfies

pc(θ)=m−1 +O(m−2)+O(m−1V−1/3), (1.8)

and that pc(θ1)− pc(θ2)=O(m−1V−1/3) for any θ1, θ2 > 0, that is, any choice of θ yields the same
critical window.

Compare (1.8) with the critical window of the ERRG in (1.5), and let us observe that Kn
has O(m−1V−1/3)=O(n−4/3) because m= n− 1 and V = n. Thus, by that analogy, the second
error term above corresponds to the width of the critical window, while the first error term can
be viewed as a ‘correction’ in m−1 to pc itself. In this interpretation, (1.8) describes the critical
window asymptotically precisely for the two-dimensional Hamming graph H(2, n), since in this
case m= 2(n− 1) and V = n2, so that the correction term m−2 is vanishingly small compared
to m−1V−1/3. Moreover, (1.8) is also asymptotically precise for H(3, n) because the two O-terms
coincide.

4Here and below we will frequently suppress sub- and superscripts when their presence is clear from the context. Likewise,
we do not always stress that we are considering asymptotic results for sequences.
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1.4 Expansion of the critical point
This brings us to the main result of our paper. We write p(d)c (θ) for the critical value of percolation
on H(d, n) defined in (1.8), and compute the second term of p(d)c (θ) for all d� 2.

Theorem 1.1. (critical window for percolation onH(d, n)). For all θ ∈ (0,∞) and all d� 2,

p(d)c (θ)=m−1 + 2d2 − 1
2(d− 1)2

m−2 +O(m−3)+O(m−1V−1/3), (1.9)

where the constants in the error terms may depend on θ .

Observe that for d� 4, the correction term of order m−2 is asymptotically larger than the
width of the critical window, and that when d= 4, 5, 6 the above expansion is again asymptotically
precise, since we havem−3 =O(m−1V−1/3).

To see the relevance of Theorem 1.1, we compare it with other expansions of pc in the literature.
Van der Hofstad and Slade [29] proved that for percolation on G, with G either the infinite lattice
Z
d with nearest-neighbour edges or the hypercube H(d, 2), as d→∞, pGc can be expanded up to

three terms as

pGc =m−1 +m−2 + 7
2
m−3 +O(m−4), (1.10)

where in both casesm denotes the degree of the graph G. Moreover, they also proved [28] that, for
any N ∈N,

pZ
d

c =
N∑
k=1

ak(2d)−k +O((2d)−N−1), pH(d,2)
c (θ)=

N∑
k=1

bkd−k +O(d−N−1), (1.11)

where (ak), (bk) are rational coefficients. Now, the critical window of the hypercube has width
O(d−12−d/3), so we believe that the expansion cannot be asymptotically precise, regardless of the
choice of N. Furthermore, it was conjectured that the expansion for pZd

c , although it may exist,
is divergent for all d as N→∞ (in the sense that the power series z 	→∑∞

k=1 akzk has radius of
convergence 0). We conjecture that the expansion for the Hamming graph is very different. We
believe that for any d� 2 there exist coefficients (ck(d)) such that

p(d)c (θ)=m−1 + 2d2 − 1
2(d− 1)2

m−2 +

d/3�∑
k=3

ck(d)m−k +O(m−1V−1/3), (1.12)

that is, we conjecture that p(d)c has an asymptotically precise expansion in m−1 of order 
d/3� for
all d. Heydenreich and van der Hofstad state the conjecture in (1.12) as [22, Open Problem 15.4].

Theorem 1.1 in [9] confirms this conjecture for d= 2, 3, and our current work confirms it
for d= 4, 5, 6. The argument of van der Hofstad and Slade [28] establishing (1.11) for the lattice
and the hypercube crucially uses the fact that a ball of a radius r restricted to a d′-dimensional
subspace has the same shape for all d� d′, so that we can express each coefficient in terms of
events that happen on a fixed subgraph. Balls in the Hamming graph instead grow very rapidly
when n increases. Each coefficient is obtained as a limit and it will be more involved to prove the
existence of this limit. Hence we do not have significant evidence suggesting that all coefficients
in (1.12) have to be rational.

We briefly note that although the restriction to the Hamming graph makes computations
easier for some parts of the proof (e.g. because of the relationship with subcritical ERRGs explored
in Section 3), in other places it leads to complications. The fact that the asymptotically precise
expansion is finite, in particular, makes the proof of the asymptotic expansion up to fixed order
more challenging for the Hamming graph than for the hypercube. Roughly speaking, because
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the critical window of the hypercube is exponentially narrower than any of the expansion terms,
one can approximate pH(d,2)

c up to any fixed order by a value p that is in fact subcritical, by
choosing a negative coefficient for the error term. This allows one to exploit the fact that χ(p) is
poly-logarithmic in V , which simplifies the analysis considerably. In our case, the approximating
p will be much closer to p(d)c , so one needs a much more refined analysis. We will explain this in
more detail in Section 5.5.

1.5 Scaling limit of largest cluster sizes
Besides offering an interesting comparison with other graphs with sufficiently weak geometry, the
expansion of p(d)c also has another motivation. The Hamming graph is an excellent example for
investigating the universality class of the ERRG, since it has a non-trivial geometry yet is highly
mean-field. See [24, 25, 17, 35] for a small sample of the literature from this perspective. A crucial
motivation for the present paper is that it serves as a companion paper to [16], where we establish
the scaling limit of the cluster sizes of the largest clusters within the critical window. More pre-
cisely, writing Cj for the jth largest cluster, we prove that for any fixed N ∈N and for d= 2, 3, 4
the largest critical clusters of Hamming graph percolation satisfy

(V−2/3|Cj|)j�1
d−→ (Xj)j�1 (1.13)

for a certain sequence of θ-dependent continuous random variables (Xi)i∈N supported on [0,∞).
Aldous [3] proved this scaling limit for the ERRG. Since then, many other random graph models
have been shown to have the same (or at least a similar) scaling limit. See for instance [5, 6, 32, 38]
and the references therein. The above result for the Hamming graph, however, is the first indi-
cation that the same scaling occurs for models with an underlying high-dimensional geometry.
Moreover, it is the most precise determination to date of the critical behaviour of percolation on a
finite transitive graph (other than the ERRG scaling limit of Aldous). The proof of (1.13) and var-
ious other results in [16] crucially rely on the asymptotically precise determination of the critical
window that we give here. The fact that our result allows us to prove the scaling limit when d= 4
(and that it provides a path to proving the limit more generally) is one strong motivation for the
current paper. Another important motivation is that the nature of critical points of percolation on
finite graphs is a topic about which much still remains unclear (see e.g. [31]). We believe that per-
colation on the Hamming graph can serve as an important example, since it offers the possibility
of answering some extant questions with relative ease, as we discuss next.

1.6 Alternative definition of the critical point
It is worth noting that a disadvantage of the definition pc in (1.7) is that it imposes an ad hoc
relation between pc and V1/3, which is known not to hold in general and believed to be associated
with ‘high-dimensional’ models. In other words, (1.7) is possibly only a valid definition of pc for
percolation models in the universality class of the ERRG. Nachmias and Peres in [37] observed
that it would be desirable to have a definition of pc that applies more generally, and they proposed

p̃Gc := argmax
p∈(0,1)

(d/dp)χG(p)
χG(p)

(1.14)

as a definition of the critical point for any graph G, where we now make the dependence on G
in the expected cluster size χG(p) explicit. Their motivation for this definition is that Russo’s for-
mula [42] implies that p= p̃Gc is the point where a small change in p has the greatest impact on
the relative size of the connected components, that is, χG(p) changes most dramatically at p̃Gc . A
serious downside of this definition appears to be that p̃Gc may be very difficult to compute. Thus
far, the only non-trivial determination of p̃Gc is given in recent work by Janson and Warnke [31].
They determine that, for the ERRG, |p̃Kn

c − 1/n| =O(n−4/3), so p̃Kn
c is a point inside the critical
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window (1.5), that χG(p)−1(d/dp)χG(p) around p̃Kn
c describes the critical window (1.5) as well,

and that, interestingly, p̃Kn
c does not equal either 1/n or 1/(n− 1). It would be interesting to see

whether their methods can be applied to the current setting of percolation on H(d, n).

1.7 Susceptibility of the subcritical ERRG
In Section 2 we prove Theorem 1.1, and also derive refined asymptotics for the susceptibil-
ity of a subcritical ERRG, its second moment, and its surplus: given a connected graph G, let
Sp(G) := |E(G)| − |V(G)| + 1 denote the number of surplus edges in G. As well as being inter-
esting in their own right, these will be crucial for proving the lower bound on p(d)c , because the
restriction of critical percolation on H(d, n) to a one-dimensional subspace of H(d, n) is equiva-
lent to a subcritical ERRG. To prove the lower bound of Theorem 1.1 we rely on the following
asymptotics, which, to the best of our knowledge, are sharper than results in the literature.

Theorem 1.2. (second-order asymptotics for susceptibility of the subcritical ERRG). Let
G=G(n, p) be the ERRG with p= λ/(n− 1) and 0<λ< 1. Then as n→∞,

χG(p)=Ep[|C (v)|]= 1
1− λ −

2λ2 − λ4
2(1− λ)4 n

−1 +O(n−2), (1.15)

Ep[|C (v)|2]= 1
(1− λ)3 +O(n−1), (1.16)

Ep[Sp(C (v))]= λ3

2(1− λ)2 n
−1 +O(n−2). (1.17)

The second-order coefficient computed in (1.15) improves the result by Durrett in [13,
Theorem 2.2.1], which states that χG(p)= (1− λ)−1 −O(n−1), while (1.16) provides the match-
ing lower bound to the well-known upper bound derived with the usual branching process
domination.5 To achieve the sharper asymptotics we need a new way to encode the usual breadth-
first search in the ERRG with the help of a branching random walk. We believe that there exists an
infinite polynomial expansion of χG(p) in powers of p for all p= λ/(n− 1) with 0<λ< 1. There
is a substantial literature related to (1.17): see for example the classic book on random graphs by
Bollobás [8, Section 5.2] as well as the seminal paper by Janson, Knuth, Łuczak and Pittel [30]
computing generating functions of components having various cycle structures. As far as we are
aware, the second-order asymptotics in (1.17) is new.

1.8 Outline
We prove Theorem 1.1 by separately proving a lower bound and an upper bound on p(d)c . In
Section 2 we prove Theorem 1.2. This theorem is used in Section 3 to prove the lower bound
in Theorem 1.1 with the help of an exploration process that uses the fact that the restriction of
critical bond percolation onH(d, n) to a one-dimensional subspace has the same distribution as a
subcritical ERRG. This is used to obtain a sufficiently sharp branching process upper bound on the
susceptibility. In Section 4 we estimate connection probabilities, as well as bubble, triangle and
polygon diagrams. In Section 5 we prove the upper bound in Theorem 1.1 with the help of the
lace expansion. Perhaps surprisingly, these disparate methods yield compatible bounds, due to the
fact that both methods are asymptotically sharp. The lace expansion method may be improved to
prove Theorem 1.1, but this would be more difficult than our current proof and less interesting.
We do not see how the exploration process proof could be improved to prove the upper bound in
Theorem 1.1 as well.

5Following the submission of this paper, Ráth [41] demonstrated an entirely different proof of (1.15) compared with the
one contained here, using a novel and powerful generating function approach.
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2. Susceptibility of the subcritical Erdős–Rényi Random Graph
In this section we prove Theorem 1.2. To give our estimate of the expected size of a subcritical clus-
ter, we couple a breadth-first exploration process of the cluster to a process related to a branching
random walk (BRW). The breadth-first exploration process is defined in Section 2.1, the branch-
ing random walk exploration in Section 2.2. The proof of the susceptibility asymptoticis is given
in Section 2.3.

2.1 Breadth-first/surplus exploration
We start by defining a version of the breadth-first (BF) exploration. This is a standard tool in the
study of the ERRG (see e.g. [23, Section 5.2.1]). In a nutshell, a breadth-first exploration is a pro-
cess that, starting from a vertex v, ‘discovers’ its adjacent edges, ‘activating’ the direct neighbours
of v in some fixed order, and then explores those vertices, discovering their adjacent edges and
activating any unexplored, unactivated neighbours, and so on, always choosing the vertex that
was activated the longest time ago as the next vertex to explore from. The BF exploration keeps
track of which vertices have been explored (the ‘dead’ set), which vertices have been activated but
not explored (the ‘active’ set), and the time at which a vertex was activated or explored. Crucially,
the ‘traditional’ BF exploration will only explore a vertex once, so the process terminates once all
vertices are explored, and the edges associated with newly activated vertices describe a subtree of
the component of v, but the process provides little information about the surplus, that is, the dis-
covered edges that do not activate new vertices (also sometimes referred to as the ‘tree excess’ of
the graph). For our purposes it is important that we also know about the surplus, so we consider
the following modification of the BF exploration.

Definition 2.1. (BF exploration process of a graph).Given a graphG= (V , E) and a vertex v ∈ V
we define the breadth-first/surplus (BF) exploration process as the sequence of dead, active and
surplus sets (D(t),A(t), Sp(t))t�0 as follows.

• Initiation. Initiate the exploration with the dead, active and surplus sets at time t= 0 as

D(0) :=∅, A(0) := {v}, Sp(0) :=∅, (2.1)

and at time t= 1 as

D(1) := {v},
A(1) := {w : {v,w} ∈ E},
Sp(1) :=∅. (2.2)

• Time t� 2. Choose the vertex vt ∈A(t− 1) that minimizes min{i : vt ∈A(i)}, breaking ties
according to an arbitrary but predetermined rule.6 Update the active, dead and surplus sets
as follows:

D(t) :=D(t− 1)∪ {vt},
A(t) := (A(t− 1) \ {vt})∪ {w /∈A(t− 1)∪D(t− 1) : {vt ,w} ∈ E},
Sp(t) := Sp(t− 1)∪ {{vt ,w} ∈ E : w ∈A(t− 1)}. (2.3)

• Stop. Terminate the exploration when A(t)=∅. Set T = t.

Note that D(t) and A(t) are subsets of V , whereas Sp(t) is a subset of E . When A(t)=∅,
this means that we have completely explored the connected component C (v) and T = |D(T)| =

6An example of such a rule: Fix an order on the vertex set V . If at step t− 1 we have explored and/or activated a total of k
vertices, and we activate �more at step t, then we assign to these � newly explored vertices the labels k+ 1 to k+ �, according
to the order on V . At time s+ 1 we explore from the active vertex with the smallest label.
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|C (v)|. In the BF we find a new edge every time we activate a vertex (except the initial vertex v) or
we discover an edge between active vertices. It follows that |E(C (v))| = |D(T)| − 1+ |Sp(T)|. We
conclude that that |Sp(T)| = |E(C (v))| − |D(T)| + 1= Sp(C (v)).

2.2 The branching randomwalk exploration
The subtree generated by a ‘traditional’ BF exploration is often studied through a comparison to a
branching process (see e.g. [13, 23]). To study our BF exploration, we define a suitable extension,
the branching random walk (BRW) exploration, in which we randomly embed a branching pro-
cess in the graph, and keep track of its self-intersections.7 This is made precise in the following
definition.

Definition 2.2. (branching random walk).Given anm-regular graph Gm = (V , E) and p ∈ [0, 1],
we define the p-branching random walk (p-BRW) on Gm starting at v ∈ V as the pair (T , φv),
where T is a Bin(m, p) Galton–Watson tree, and φv is a random mapping of T into the vertex set
V whose law satisfies: (1) φv maps the root ρ of T to v; (2) given any node x ∈ T and its set of
children C(x)⊂ T , the marginal law of φv(C(x)) is the same as that of |C(x)| distinct neighbours
of φv(x) in Gm chosen uniformly at random, independently for all x ∈ T . (Here, for a set A⊂ T
and a mapping φv : T →G, we define φv(A)=∪a∈A{φv(a)}, and by convention set φv(∅)=∅.)

Next, we define a process that explores a p-BRW and keeps track of any self-intersections.
Briefly, the idea is that we explore the p-BRW by exploring the tree T in a breadth-first fashion
from the root upward. If the p-BRW intersects its own trace, then we declare the particle that
intersected, and all its offspring, to have become ‘ghosts’. We differentiate between particles that
became ghosts through intersecting with active and dead vertices. In Proposition 2.4 below we
prove that this exploration process can be coupled to a BF exploration of a percolation cluster.

Definition 2.3. (BRW exploration process). Given an m-regular graph Gm = (V , E), a vertex
v ∈ V and a p-BRW (T , φv) on Gm, we define the BRW exploration process

(A(t), D(t), PA(t), PD(t))Tt=0
as the sequence of dead, active, active ghost and dead ghost sets as follows.

• Initiation. Initiate the exploration with the dead, active, active ghost and dead ghost sets at
time t= 0 as

D(0) :=∅, A(0) := {ρ}, PA(0)=∅, PD(0)=∅, (2.4)
and at time t= 1 as

D(1) := {ρ}, A(1) := {y ∈C(ρ)}, PA(1) :=∅, PD(1) :=∅. (2.5)
• Time t� 2. Choose the node xt ∈ A(t− 1) that minimizes min{i : xt ∈ A(i)}, breaking ties
according to an arbitrary but predetermined rule, and update the exploration as follows:

D(t) := D(t− 1)∪ {xt},
A(t) := (A(t− 1) \ {xt})∪ {y ∈C(xt) : φv(y) /∈ φv(D(t− 1)∪ A(t− 1))},

PA(t) := PA(t− 1)∪ {y ∈C(xt) : φv(y) ∈ φv(A(t− 1))},
PD(t) := PD(t− 1)∪ {y ∈C(xt) : φv(y) ∈ φv(D(t− 1))}. (2.6)

• Stop. If A(t)=∅, then terminate the exploration. Set T = t.

7From now on the term nodes will refer to elements of GW trees, while vertices will refer to elements of graphs. Moreover,
the progeny of a node x will indicate the set of nodes whose path to the root ρ passes through x, while the children of x are
only the nodes for which x is the first node encountered on such a path. We write C(x) for the set of children of x in T .
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Using the BRW exploration, we define the subgraph C̃ (v) as the graph traced out by a p-BRW
where the particles are killed when they intersect with the active set. More precisely, we let T̃ be
the subtree in T induced by D(T)∪ PA(T), and define

C̃ (v) := (φv(D(T)), {{φv(x), φv(y)} : {x, y} ∈ T̃ }). (2.7)

Note that, by Definition 2.3, φv(D(T)∪ PA(T))= φv(D(T)), so C̃ (v) is indeed a subgraph of Gm =
(V , E).

We now show that C̃ (v) has the same law as C (v), the connected component of v in an ERRG,
by coupling the BF and BRW explorations.

Proposition 2.4. (coupling of BF and BRW explorations). Consider percolation on an m-regular
graph Gm with parameter p. Consider the BF exploration on the percolated graph Gm(p) and the p-
BRW exploration processes on Gm, both starting from the vertex v (and using the same tie-breaking
rule). Then C (v) with respect to Pp has the same law as C̃ (v).

Proof. We show inductively that we can couple each step of the BRW and of the BF exploration in
such a way that C̃ (v)=C (v) almost surely. We start by showing that there exists a coupling such
that for all t� 0:

D(t)= φv(D(t)),
A(t)= φv(A(t)),
Sp(t)=

⋃
s�t
{{φv(xs),w} : w ∈ φv(PA(s) \ PA(s− 1))}. (2.8)

We start with the inductive base. At time t= 0, by Definitions 2.1 and 2.3,

D(0)=∅= φv(D(0)),
A(0)= {v} = φv({ρ})= φv(A(0)),
Sp(0)=∅= {{φv(x0),w} : w ∈ φv(PA(0))}. (2.9)

Next, we prove the inductive step: the induction hypothesis is that the relations in (2.8) hold
for all r< t. We extend the coupling so that they also hold at time t. Our assumption is that we
use the same tie-breaking rule for both explorations, so by the induction hypothesis we choose
vt = φv(xt).

Given φv(xt), fix a set U t
k = {u1, u2, . . . , uk} of k neighbours of φv(xt). By Definition 2.2, the

mapping φv is such that |C(xt)| neighbours of φv(xt) are distinct neighbours chosen uniformly at
random, so

P(φv(C(xt))= U t
k)= P(|C(xt)| = k) P(φv(C(xt))= U t

k | |C(xt)| = k)

=
(
m
k

)
pk(1− p)m−k

(
m
k

)−1
= pk(1− p)m−k. (2.10)

Next, consider the BF exploration at time t. Given (D(s),A(s), Sp(s))t−1s=0, we can determine vt .
For t� 0, let N(t) denote an independent set-valued random variable that contains the vertex w
with probability p, independently for all w such that {vt ,w} ∈ E , so that P(N(t)= U t

k)= pk(1−
p)m−k. For every set U t

k of neighbours of v
t we have P(N(t)= U t

k)= P(φv(C(xt))= U t
k), so there

exists a trivial coupling of N(t) and φv(C(xt)) such that P(N(t)= φv(C(xt))= 1.
Consider an edge {vt ,w}. Observe that if w /∈D(t− 1), then {vt ,w} has not been discovered by

the exploration, so it is open in the percolation conditionally independently with probability p,
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while if w ∈D(t− 1), then {vt ,w} has been discovered in the BF exploration, so its status can be
determined from (D(s),A(s), Sp(s))t−1s=0. Let X(t) denote the vertices that are end-points of edges
that are discovered in the tth step, that is,

X(t) := {{vt ,w} : {vt ,w} ∈C (v) \ {{vt , u} : u ∈D(t− 1)}}. (2.11)
Note that if w ∈X(t), then either w becomes activated at time t or w ∈A(t− 1). By the
above observation, we can couple X(t) to N(t) such that X(t)=N(t) \D(t− 1) almost surely,
conditionally on (D(s),A(s), Sp(s))t−1s=0.

Consider henceforth the setting in which X(t), N(t), φv(C(vt)), and (D(s),A(s), Sp(s))t−1s=0 are
simultaneously coupled according to the above description. (Since both N(t) and φv(C(xt)) are
essentially independent p-random subsets, it is easy to make this coupling explicit; we leave the
details to the reader.) Using this coupling, the induction hypothesis (2.8), and Definitions 2.1
and 2.3, we derive

D(t) \D(t− 1)= {vt} = φ(xt)= φv(D(t)) \ φv(D(t− 1)), (2.12)

A(t) \A(t− 1)=X(t) \A(t− 1)
=N(t) \ (D(t− 1)∪A(t− 1))
= (φv(C(xt)) \ (φv(D(t− 1))∪ φv(A(t− 1)))
= φv(A(t)) \ φv(A(t− 1)) (2.13)

and
Sp(t) \ Sp(t− 1)= {{vt ,w} : w ∈X(t)∩A(t− 1)}

= {{vt ,w} : w ∈N(t)∩A(t− 1)}
= {{φv(xt),w} : w ∈ φv(C(xt))∩ φv(A(t− 1))}
= {{φv(xt),w} : w ∈ φv(PA(t) \ PA(t− 1))}. (2.14)

Since φv(xt)= vt , we obtain that (2.8) also holds at time t almost surely, and thus, by induction,
for all t ∈ {0, 1, . . . , T}, almost surely.

To conclude the proof, we show that the coupling (2.8) for all t ∈ {0, 1, . . . , T} implies that
C̃ (v)=C (v) almost surely. Recall the definition of C̃ (v) in (2.7), and of T̃ above it. Since
φv(D(T))=D(T), it follows directly from (2.8) that the vertex sets of C̃ (v) and C (v) coincide.
To see that the edge sets coincide, note that, by Definition 2.3, T̃ contains only edges {x, y} ∈ T
such that y ∈C(x), with x ∈ D(T) and y ∈ D(T)∪ PA(T). Indeed, by the construction of the BRW
exploration it is impossible that both x, y ∈ PA(T), since vertices in PA are never explored fur-
ther. Let s=min{t : x ∈ D(t)}. Then, from the definition of the BRW exploration, x= xs and
y ∈ (A(s) \ A(s− 1))∪ (PA(s) \ PA(s− 1)). We then obtain

E(C̃ (v))=
T⋃
s=0
{{φv(xs), φv(y)} : φv(y) ∈ φv((A(s) \ A(s− 1))∪ (PA(s) \ PA(s− 1))}. (2.15)

An application of (2.8) now completes the proof.

We conclude by deriving some consequences of Proposition 2.4 that will be useful in the proof
of Theorem 1.2.

Corollary 2.5. Consider a BF exploration on an m-regular graph Gm with parameter p, and a p-
BRW exploration processes on Gm, both starting from the vertex v. Then

|D(T)| d= |C (v)|, (2.16)
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|PA(T)| d= Sp(C (v)), (2.17)

E[|PD(T)|]= pE

[ T∑
t=1
|D(t− 1)|

]
. (2.18)

Proof. Equations (2.16) and (2.17) follow immediately from Proposition 2.4. To prove (2.18) we
use (2.6) and (2.10), from which we get

E[|PD(t) \ PD(t− 1)| |F(t− 1)]= p|D(t− 1)|, (2.19)

where F(t− 1) is the σ -algebra generated by the first t− 1 steps of the BRW exploration.
Summing over t� T we get the claim.

2.3 Proof of the susceptibility asymptotics
Proof of Theorem 1.2. For a rooted tree T and x ∈ T , define the progeny of x as (also recall
footnote 7)

ProgT (x) := {y ∈ T : x is a node on the unique path from y to ρ}, (2.20)

and for X⊆ T define ProgT (X) :=
⋃

x∈X ProgT (x). Note that x ∈ ProgT (x).
Consider a BF exploration on G(n, p) and a BRW exploration of a p-BRW on Kn, both with

p= λ/(n− 1), coupled as in the proof of Proposition 2.4. Corollary 2.5 implies that χG(p)=
E[|C̃ (v)|]=E[|D(T)|]. From the definition of the BRW exploration it follows that T \ D(T) con-
sists of the nodes ProgT (PD(T)∪ PA(T)). Using (2.16) we can thus write, with C (v) the cluster of
v in G(n, p),

Ep[|C (v)|]=E[|D(T)|]=E[|T \ (T \ D(T))]
=E[|T |]−E[|ProgT (PD(T)∪ PA(T))|]. (2.21)

Observe that given a GW tree T , conditionally on x ∈ T and T \ ProgT (x), by the Markov
property, ProgT (x) is distributed as a GW tree with the same law as T , independent of T \
ProgT (x), so

E[ProgT (x) | T \ ProgT (x)]=E[|T |]. (2.22)

The BRW exploration is breadth-first, and the exploration never explores nodes in
ProgT (A(t− 1)) or ProgT (D(t− 1)) for any t� T by construction. As a result, the progenies of
different nodes in PD(T)∪ PA(T) are disjoint, that is, for all x ∈ PD(T)∪ PA(T),

ProgT (x)∩ ProgT ((PD(T)∪ PA(T)) \ {x})=∅, (2.23)

which implies that

|ProgT (PD(T)∪ PA(T))| =
∑

x∈PD(T)∪PA(T)

|ProgT (x)|.

Combining this fact with the tower rule and (2.22), we obtain

E[|ProgT (PA(T)∪ PD(T))|]=E

[ ∑
x∈PD(T)∪PA(T)

E[|ProgT (x)| | T \ ProgT (x)]
]

=E

[ ∑
x∈PD(T)∪PA(T)

E[|T ′|]
]
=E[|T |]E[|PD(T)∪ PA(T)|], (2.24)

where T ′ denotes an independent GW tree with the same law as T .
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Inserting this into (2.21), we proceed by applying (2.17) and (2.18):

Ep[|C (v)|]=E[|T |]−E[|T |]E[|PA(T)∪ PD(T)|]

=E[|T |]−E[|T |]
(
Ep[Sp(C (v))]+ pE

[ T∑
t=1
|D(t− 1)|

])
. (2.25)

Since |D(t− 1)| = t− 1 for all t� T and |D(T)| d= |C (v)|,

E

[ T∑
t=1
|D(t− 1)|

]
= 1

2
E[T(T − 1)]= 1

2
E[|C (v)|2 − |C (v)|]. (2.26)

As a result we obtain that

Ep[|C (v)|]=E[|T |](1−Ep[Sp(C (v))]− 1
2
pEp[|C (v)|2 − |C (v)|]). (2.27)

We know that E[|T |]= 1/(1− λ) (see e.g. [39]). Pakes proved in [39, Section 2.2] that

Var(|T |)= λ

(1− λ)3 +O(p), (2.28)

so that E[|T |2]= (1− λ)−3 +O(p). Moreover, Durrett shows in [13, Section 2] that Ep[|C (v)|]=
(1− λ)−1 −O(n−1).

We will prove that Ep[|C (v)|2]= (1− λ)−3 +O(p). It follows from Proposition 2.4 that

Ep[|C (v)|2]=E[|D(T)|2]�E[|T |2],
which establishes the upper bound. To determine the lower bound, we write

Ep[|C (v)|2]=E[(|T | − |T \ D(T)|)2]�E[|T |2]− 2E[|T ||T \ D(T)|], (2.29)

so it remains to prove that E[|T ||T \ D(T)|]=O(p). We write

E[|T ||T \ D(T)|]=E

[ ∑
x,y∈T

1{x/∈D(T)}
]

=
∞∑
k=1

P(|T | = k) kE
[∑

x
1{x/∈D(T),x∈T }

∣∣∣|T | = k
]
. (2.30)

Now we bound E[1{x/∈D(T),x∈T } | |T | = k]. We use the fact that x /∈ D(T) precisely when x is in the
progeny of a ghost. Suppose that x is in generation L, and that η is the path in T with η(0)= ρ
and η(L)= x. From the description of the BRW exploration it follows that x /∈ D(T) if and only if
there exists a t ∈ {0, . . . , T} such that vt ∈ η and φv(vt) ∈ PA(t− 1)∪ PD(t− 1). Since the mapping
of children of a node in the BRW is done uniformly at random, φv(η) has the same distribution
as a simple random walk path on Kn, conditioned on going from ρ to x in L steps. Conditionally
on |T | = k, we have |A(t− 1)∪ D(t− 1)|� k for all t, so for all t the probability that φv(vt) ∈
φv(A(t− 1)∪ D(t− 1)) is at most k/(n− 1) by the symmetry of Kn. Conditionally on |T | = k, we
have L� k− 1, so

E[1{x/∈D(T),x∈T } | |T | = k]� k(k− 1)
n− 1

. (2.31)

Inserting this into (2.30) we obtain

E[|T ||T \ D(T)|]=
n∑

k=1
P(|T | = k) k2

k(k− 1)
n− 1

� p
λ
E[|T |4]=O(n−1), (2.32)
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where we use the fact that all the moments of |T | are uniformly bounded, since the GW tree is
subcritical. Inserting this into (2.29) we get (1.16), and thus it also follows that

Ep[|C (v)|2]−Ep[|C (v)|]= 1
(1− λ)3 −

1
1− λ +O(n−1)= 2λ− λ2

(1− λ)3 +O(n−1). (2.33)

Next, we compute Ep[Sp(C (v))]. Note that Sp(C (v)) is bounded from above by the num-
ber of vertex-disjoint cycles in C (v), since removing a surplus edge from a graph destroys at
least one such cycle. Here, given a graph G= (V , E) and v1, . . . , vk ∈ V , we say that a sub-
graph Lk is a (vertex-disjoint) cycle of length k if Lk has vertex set {v1, . . . , vk} ⊂ V and edge set
∪ki=1{vi, vi+1 mod k}. We write Lk(G) for the set of cycles of length k in a graph G. For G(n, p) we
may thus bound

Ep[Sp(C (v))]�
n∑

k=3

∑
Lk∈Lk(Kn)

Pp(Lk ∈Lk(C (v))). (2.34)

Note that |Lk(Kn)| = n!/(2k(n− k)!). The probability that a given set of k edges is open in G(n, p)
is pk. Moreover, by a union bound, the probability that a vertexw inG(n, p) is connected to a given
set of k vertices is at most

k
Ep[|C (w)|]

n
� k

(1− λ)n for any w,

by the symmetry of Kn. Combining these estimates, and using that p= λ/(n− 1), we bound

Ep[Sp(C (v))]�
n∑

k=3

n!
2k(n− k)!p

k k
(1− λ)n

=
n∑

k=3

(n− 1)!
(n− k)!

1
(n− 1)k−1

λk−1

2(1− λ) p (1+O(n−1))

�
n∑

k=3

λk

2(1− λ)n
−1 +O(n−2)

= λ3

2(1− λ)2 n
−1 +O(n−2). (2.35)

This establishes the upper bound in (1.17).
It remains to prove a matching lower bound. Before we start, let us recall a standard tool

from percolation theory: the van den Berg–Kesten (BK) inequality [4]. We say that an event A
is increasing with respect to p if Pp(A)� Pq(A) whenever p� q. We say that two increasing events
A and B occur disjointly, and write A ◦ B if the occurrence of A and B can be verified by inspect-
ing disjoint sets of edges (which may depend on the percolation configuration). For instance, the
event {v↔w} is increasing, and {v↔w} ◦ {v′ ↔w′} implies that there exists a path of open edges
between v and w and another path of open edges between v′ and w′, and that these paths are edge
disjoint. The BK inequality states that Pp(A ◦ B)� Pp(A)Pp(B). For more details, see for example
Grimmett’s classic book on percolation [19].

We use the BK inequality to prove a lower bound on the expected surplus. Since the removal
of a surplus edge must destroy at least one cycle in the graph, we can bound Sp(C (v)) from below
by the number of vertex-disjoint cycles in C (v) that are edge-disjoint from any other cycle in
C (v). A cycle is edge-disjoint from other cycles if and only if the cycle does not contain a pair of
vertices that are connected by a path outside the cycle. Each cycle of length k has k(k− 1)/2 pairs
of vertices, and the probability that any two vertices are connected is at most 1/((1− λ)n) by the
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symmetry of Kn. Writing V(Lk) for the vertex set of the cycle Lk and using the same reasoning as
in (2.35) as well as inclusion–exclusion, we thus obtain

Ep[Sp(C (v))]�
n∑

k=3

∑
Lk∈Lk(Kn)

[
Pp(Lk ∈Lk(C (v)))

−Pp

⎛
⎝ ⋃
{x,y}⊂V(Lk)

{Lk ∈Lk(C (v))} ◦ {x↔ y}
⎞
⎠

⎤
⎦

�
n∑

k=3

n!
(n− k)!

pk

2(1− λ)n
(
1− k(k− 1)

2(1− λ)n
)

�
n∑

k=3

(
λk

2(1− λ) n
−1 +O(n−2)

)(
1− k(k− 1)

2(1− λ)n
−1

)

= λ3

2(1− λ)2 n
−1 +O(n−2), (2.36)

where in the first step the union is over all two-element subsets of V(Lk), in the second step we
first use the union bound and then the BK inequality, and in the third step we use the fact that
p= λ/(n− 1) and

(n− 1)!
(n− k)! = (n− 1)k−1 −O(knk−2).

This completes the proof of (1.17).
Inserting the bounds (2.33), (2.35), and (2.36) into (2.27), we conclude that

Ep[|C (v)|]= 1
1− λ

(
1− λ3

2(1− λ)2 n
−1 − 1

2
p
2λ− λ2
(1− λ)3 +O(n−2)

)

= 1
1− λ −

2λ2 − λ4
2(1− λ)4 n

−1 +O(n−2), (2.37)

which proves (1.15) and thus completes the proof of Theorem 1.2.

3. The lower bound on p(d)c (θ) via an exploration process
In this section we use the bound on the susceptibility of the subcritical ERRG to determine a
lower bound on p(d)c (θ), the critical value of the Hamming graph. We achieve this by bounding
χ(p) from above with the use of an exploration process, and then substituting this bound into
χ(p(d)c )= θV1/3, the equation that defines p(d)c (recall (1.7)). The exploration process that we use
is designed with the geometry of the Hamming graph in mind, so let us start by investigating this
geometry further.

Recall that the Hamming graph H(d, n) can be viewed as the (d− 1)-fold Cartesian product
of complete graphs Kn. If we arrange the nd vertices of H(d, n) on a d-dimensional hypercubic
grid in the obvious way, then the edges of H(d, n) are precisely those edges that have both end-
points on a line that is parallel to an axis of the grid. This inspires the following definition. Given
some i ∈ {1, . . . , d} and a vertex v= (v1, . . . , vd) ∈ {0, . . . , n− 1}d, we call the subgraph ofH(d, n)
induced by the set

{(v1, . . . , vi−1,w, vi+1, . . . , vd) ∈ V : w ∈ {0, . . . , n− 1}} (3.1)
the i-directional line of H(d, n) through v. When i and v are unimportant we refer to such sub-
graphs simply as lines. We write Ci(v) for the set of vertices that can be reached by a path of open
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edges in the i-directional line through v. Note that any line of H(d, n) is isomorphic to Kn, so
that Ci(v) has the same law as an Erdős–Rényi random graph on n vertices with parameter p.
Moreover, because this is a graph on n vertices and we choose p= (1+O(m−1))/(d(n− 1)) with
d� 2 (in accordance with (1.8)), this ERRG is subcritical. Writing χline(p) :=Ep[|Ci(v)|] for the
expected size of a connected component within a line (i.e. the set over vertices that can be reached
from v using only open edges in the line), we get from Theorem 1.2 that

χline

(
1+O(m−1)
d(n− 1)

)
= 1

1− p(d− 1)

(
1− 2d2 − 1

2(d− 1)3
m−1 +O(m−2)

)
. (3.2)

We use this fact repeatedly below.
We next define the exploration process that allows us to estimate χ(p). To first order, this

estimation simply yields a Galton–Watson branching process. But this is an overestimate, and we
can give a (negative) second-order correction to it by correcting for the over-counting that arises
because we have ignored loops in the graph. We will thus have to find a bound on the number
of loops. An important insight into the structure of percolation on the Hamming graph is that
loops are much more likely to occur within lines than outside lines. Our exploration crucially uses
this fact: we only subtract the correction for loops within lines, which gives us the desired upper
bound.

Roughly speaking, the line-wise exploration process defined below works as follows. We have
two sets, the active and dead sets A and D. We start with a single vertex in the active set. At any
given time we move an active vertex to the dead set, and add all the vertices connected to that
vertex through a line to the active set. Because we want to avoid ‘feedback loops’ in the process, we
need to keep track of the line that we have previously explored from. The parent set P of ordered
pairs of vertices and their parents in the exploration is a technical addition to the process that
takes care of this. The process stops when the active set becomes empty.

Definition 3.1. The line-wise exploration process (A(t), D(t), P(t))Tt=0 on H(d, n) starting at the
vertex v is the T-step discrete-time process defined as follows.

• Initiation. Define the dead, active and parent sets at time t= 0,

D(0) :=∅, A(0) := {v}, P(0) :=∅,

and at time t= 1,

D(1) := {v}, A(1) :=
⋃
i∈[d]
{w : w ∈ Ci(v)} \ {v}, P(1) := {{w, v} ∈ E : w ∈ A(1)}.

• Time t� 2. Choose a vertex vt according to an arbitrary but predetermined rule from A(t−
1). Let u be the vertex such that {u, vt} ∈ P(t− 1) and write jt for the unique direction such
that vtjt �= ujt . Update

D(t) := D(t− 1)∪ {vt},

A(t) :=
⎛
⎝A(t− 1)∪

⋃
i∈[d] : i�=jt

{w : w ∈ Ci(vt)}
⎞
⎠ \ {vt},

P(t) := P(t− 1)∪ {{w, vt} ∈ E : w ∈ A(t) \ A(t− 1)}.
(Note that, by the definition of P(t), the vertex w above is always unique.)

• Stop. Terminate the process when A(t)=∅. Set T = t.

Now we are ready to complete the proof of the lower bound on p(d)c (θ) in Theorem 1.1.
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Proof of the lower bound in Theorem 1.1. Note that D(T)= |C (v)|. Moreover, the line-wise
exploration process can be naturally coupled to the (modified) Galton–Watson process where
the offspring distribution is given by the law of the sum of the sizes of d− 1 independent ERRG
clusters minus one (where the d− 1 accounts for the fact that the line we are in has already been
explored, and the minus one accounts for the fact that the vertex vt has already been counted).
This Galton–Watson process has a modification at the root, where we consider d independent
ERRG cluster sizes, to account for the fact that in the first step we have not yet explored any lines.
Let Zp denote the total progeny of this GW-process. A standard argument tells us that |C (v)| is
stochastically dominated by Zp, because Zp ‘ignores’ the loops of |C (v)| that do not occur within a
line. The offspring distribution of this GW-process has mean μ= (d− 1)(χline(p)− 1) (except at
the root, where it has mean μρ = d(χline(p)− 1)), so

Ep[|C (v)|]�E[Zp]= 1+ μρ

1−μ =
χline(p)

1− (d− 1)(χline(p)− 1)
. (3.3)

Because χ(p) and χline(p) are monotonically increasing functions in p, the value p� that solves the
equation

θV1/3 = χline(p�)
1− (d− 1)(χline(p�)− 1)

(3.4)

is a lower bound on p(d)c (θ).
We use the fact that p� =m−1 +O(m−2) by (1.8) for d� 6, and we may thus insert (3.2) in

(3.4), to obtain

θV1/3 =
1

1− p�(n− 1)

(
1− 2d2 − 1

2(d− 1)3
m−1 +O(m−2)

)

1− (d− 1)
(

1
1− p�(n− 1)

(
1− 2d2 − 1

2(d− 1)3
m−1 +O(m−2)

)
− 1

) . (3.5)

Solving this with respect to p�, we find

p� =m−1 + 2d2 − 1
2(d− 1)2

m−2 +O(m−1V−1/3 +m−3), (3.6)

which gives us the desired lower bound on p(d)c (θ).

We have found a lower bound on p(d)c (θ) by rather explicitly using the product structure of
the Hamming graph to find a good branching process domination. To find an upper bound on
p(d)c (θ) with the same method would be much more involved, since then we would need to thin
the GW tree further to take into account the loops outside lines as well. Instead, we apply the lace
expansion, which is a less direct, but much more robust method.

4. Bounds on connection probabilities
In Section 5 we show how the lace expansion can be used to express an upper bound on p(d)c (θ) in
terms of products and sums of connection probabilities Pp(x↔ y). In this section, we collect some
preliminaries that will be used throughout the analysis in Section 5. This section is organized as
follows. In Section 4.1 we derive estimates on connection probabilities. In Section 4.2 we estimate
bubble, triangle and polygon diagrams.

One of the main ideas of the proofs in this section is that the diagrams, which are composed
of probabilities of path events, can be partitioned into terms due to short paths and terms due to
long paths.

For the long paths we use the heuristic that long critical percolation paths are statistically
similar to long random walk paths, and exhibit a behaviour similar to mixing. This mixing-type
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behaviour gives rise to almost uniform bounds on connection probabilities involving long paths,
and thus provides a powerful tool. This idea was used extensively in [27], where it formed the basis
for a large part of the analysis.

For the short paths we use path-countingmethods. Thesemethods are tailored to theHamming
graph, by using the fact thatH(d, n) naturally contains isomorphisms ofH(d′, n) for 1� d′ < d as
subgraphs, and by partitioning the paths according to the ‘lowest-dimensional’ Hamming graph
that they can be contained in (we call these ‘hyperplanes’ below). Here the main contributions will
come from paths that remain within a line (i.e. a one-dimensional hyperplane).

The combination of mixing-type bounds for long paths, and detailed path-counting for short
paths allows us to give an accurate bound on the connection probability (Proposition 4.2), and
on bubble, triangle and polygon diagrams (Lemmas 4.3 and 4.4). It also allows us to introduce a
powerful new bound on diagrams where one summand is constrained to remain close to a fixed
point (Lemma 4.5).

4.1 Connection probabilities
Given an event A for percolation onH(d, n), we define the event {Awithin one line} to be the sub-
set of all configurations ω ∈A such that it can be verified that ω ∈A by fixing a line ofH(d, n) and
then only inspecting the status of the edges of ω within that line. Likewise, we define {A through
multiple lines} :=A \ {A within one line}. We define {v �r←→w} to be the event that w ∈C (v) and
there exists a path of length at most r. We further write {v >r←→w} (respectively, {v =r←→w}) for
the event that w ∈C (v) and there is a (not necessarily shortest) simple path of open edges from v
to w containing more than (respectively, exactly) r edges. Not requiring minimality deviates a bit
from the common use of this notation, but for all the purposes of the present paper it makes little
difference and often simplifies proofs. This is because the event {v =r←→w} is increasing, whereas
the event that the graph distance equals r is not.

We start with a proposition about the probability of two points being connected by a path that
is longer than the mixing time of H(d, n). Given a graph G, we define the t-step non-backtracking
random walk (NBW) on G starting at x as the uniform measure on paths (X1, . . . , Xt) such that
X1 = x and Xi �= Xi−2 for all i ∈ {3, . . . , t} (i.e. the path never backtracks). For two vertices x, y
of G, we write ptNBW(x, y) for the probability that a t-step non-backtracking random walk starting
at x ends at y. Given a connected aperiodic graph G and α ∈ (0, 1), we define the uniform non-
backtracking mixing time as

tmix(G; α) := min
{
t : max

x,y
ptNBW(x, y)� (1+ α)V−1

}
. (4.1)

In the remainder of this paper we will use
tmix := tmix(H(d, n);n−1)=O( log n), (4.2)

so α = n−1. The above bound is proved by Fitzner and van der Hofstad [18]. For this choice of α,
the following proposition is a direct consequence of [27, Theorem 1.4 and Lemma 3.14].

Proposition 4.1. (uniform connection bound). Consider percolation on H(d, n) with d� 2 and
p� p(d)c . Then

Pp(x
>tmix←−−→ y)� χ(p)

V
(1+O(m−1)). (4.3)

Heuristically this proposition can be explained with the idea that percolation paths in suffi-
ciently high-dimensional graphs at criticality look like random walk paths, so if the path is longer
than the mixing time, then the connection probabilities become uniform over the graph. For
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Hamming graphs, there is little difference between non-backtracking walk and simple random
walk, so in many of our bounds we use simple random walk instead. Proposition 4.1 also holds
for simple random walk.

We proceed with a useful bound on the two-point function.

Proposition 4.2. (asymptotics for the two-point function on the Hamming graph). Consider
percolation on H(d, n) with d� 2 and p=m−1(1+O(m−1)) and p� p(d)c . For any v,w ∈ V ,

τp(v−w)= δv,w + d
d− 1

1
m
1{{v,w}∈E} + χ(p)V

(1+O(m−1))+O(m−(d(v,w)∨2)), (4.4)

where d(v,w) is the graph distance between v and w on H(d, n).

Proof. If v=w then τp(v−w)= Pp(v↔w)= 1 by definition. This gives rise to the term δv,w
above. Let us henceforth assume that v �=w. We divide the event {v↔w} into three disjoint events
as follows:

• A= {v >tmix←−−→w},
• B= {v �tmix←−→w through different lines},
• C= {v �tmix←−→w within one line}.

We bound their contributions separately.
By Proposition 4.1 we have

Pp(A)= χ(p)V
(1+O(m−1)). (4.5)

For the bound on Pp(B) we distinguish three different cases: d(v,w)= 1, 1< d(v,w)< d,
d(v,w)= d.

Case 1< d(v,w)< d.
Write pt(v,w) for the probability that a simple random walk starting at v is at w after t steps, and
let Pk(v,w) denote the set of all simple paths of length k from v to w in H(d, n). There are at most
mkpk(u, v) such paths, and so

Pp(B)�
tmix∑

k=d(v,w)

∑
η∈Pk(v,w)

Pp(η is open)�
tmix∑

k=d(v,w)
pkmkpk(v,w)

= (1+ o(1))
tmix∑

k=d(v,w)
pk(v,w), (4.6)

where for the last bound we use the fact that (mp)k = 1+ o(1) for all k� tmix by (1.8) and (4.2).
Define the set

H(v,w) := {u ∈ V : ui = vi for all i ∈ {1, . . . , d} such that vi =wi}. (4.7)
We can viewH(v,w) as the ‘lowest-dimensional hyperplane’ that contains both v and w. We write

pk(v,w) =: pkH(v,w)(v,w)+ pk¬H(v,w)(v,w), (4.8)

where pkH(v,w)(v,w) is the probability of going from v to w in k steps without leavingH(v,w).
If the walker started from v is to reach w, then it will need to take a step in each direction such

that vi �=wi. At each step of a walk on the Hamming graph the probability that the walk stays in
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H(v,w) and gets closer to w= (w1, . . . ,wd) is at most d(v,w)/m, since it has to move in one of at
most d(v,w) directions, say direction j, exactly to the unique neighbour that has jth coordinate wj.
There are at most kd(v,w) orders in which the distance-decreasing steps can occur among k steps.
Therefore

tmix∑
k=d(v,w)

pkH(v,w)(v,w)�
tmix∑

k=d(v,w)
kd(v,w)

(
d(v,w)
m

)d(v,w)(d(v,w)
d

)k−d(v,w)

�
(
d
m

)d(v,w) tmix∑
k=d(v,w)

kd(v,w)
(
d(v,w)

d

)k

=O(m−d(v,w)). (4.9)
If the path from v to w leaves H(v,w), then it will have to take at least d(v,w)+ 1 steps in the
direction of w. Since k� tmix, there are at most tmix places along the walk where these steps can
occur, so we can bound

tmix∑
k=d(v,w)

pk¬H(v,w)(v,w)� tmix · tmix
d(v,w)+1

(
d
m

)d(v,w)+1

=O(m−d(v,w)−1tmix
d(v,w)+2). (4.10)

Case d(v,w)= d.
The walk needs to take at least d steps in the direction of w. Hence, using the same argument as
for (4.10), we obtain

tmix∑
k=d

(mp)kpk(v,w)=O(m−dtmix
d+1). (4.11)

Case d(v,w)= 1.
Given a random walk starting from v, we write Z for the (random) first vertex on the walk such
that d(Z,w)= 2 and T for the number of steps it took to go from v to Z. A standard path-counting
argument gives an upper bound on Pp(B) for the case d(v,w)= 1 as follows:

Pp(B)�
tmix∑
t=1

∑
z∈V

Pp(Z= z, T = t)
tmix−t∑
k=1

(mp)k+tpk(z,w). (4.12)

By definition, the vertex Z is unique and Pp(Z= z) �= 0 only if d(z,w)= 2, and, by the transitivity
of H(d, n), for every k we know that pk(z,w)= pk(y,w) if d(z,w)= d(y,w). Thus

Pp(B)�
tmix∑
t=1

Pp(T = t)
tmix∑
k=1

(mp)tmixpk(z,w)=O(m−(2∨d(v,w)) +m−dtmix
d+1), (4.13)

where we have used the assumption that p�m−1(1+O(m−1)) and (4.2) for the second bound.
We have further assumed that p�m−1 for the first bound. Note that this can be done without loss
of generality.

It remains to bound Pp(C). We consider the cases d(v,w)= 1 and d(v,w)� 2. By definition,
Pp(C)= 0 if d(v,w)� 2, which takes care of the latter case. If d(v,w)= 1, then the probability of
connecting within that line is simply the two-point function of an ERRG with n vertices and edge
probability
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p= 1+O(m−1)
d(n− 1)

,

which is
χG(p)− 1
n− 1

= 1+O(m−1)
(d− 1)(n− 1)

, (4.14)

for every pair of distinct vertices, due to the symmetry of Kn. Here χG(p) denotes the expected
cluster size for G(n, p). We therefore obtain

Pp(C)= d
d− 1

1+O(m−1)
m

1{{v,w}∈E}. (4.15)

Adding δv,w and the three bounds in (4.5), (4.13) and (4.15) for Pp(A), Pp(B) and Pp(C),
respectively, completes the proof.

4.2 Bubble, triangle and polygon diagrams
The final estimates of this section involve the so-called bubble, triangle and polygon diagrams.
As was already alluded to in the Introduction, these diagrams, the triangle diagram in particular,
are very important quantities in the study of high-dimensional percolation. We start with their
definition.

Given an integer i� 2 and vertices v, x1, . . . , xi−1,w ∈ V , we define the i-gon diagrams
C(0)
i (v, x1, . . . , xi−1,w) := Pp(v↔ x1) · · · Pp(xi−1↔w), (4.16)

C(1)
i (u, x1, . . . , xi−1,w) :=

∑
v : {u,v}∈E

pC(0)
i (v, x1, . . . , xi−1,w), (4.17)

C�k
i (v, x1, . . . , xi−1,w) :=

∑
k1+···+ki�k

Pp(v
=k1←−→ x1)× · · · × Pp(xi−1

=ki←−→w), (4.18)

C>ki (v, x1, . . . , xi−1,w) :=
∑

k1+···+ki>k
Pp(v

=k1←−→ x1)× · · · × Pp(xi−1
=ki←−→w), (4.19)

where in the case i= 2 we mean C(0)
2 (v, x1, y), etc. Recall (1.6) and observe that

∑
x,y∈V

C(0)
3 (v, x, y,w)=∇p(v,w)� δv,w + 10

χ(p)3

V
+O(m−1), (4.20)

and recall that by the definition of pc(θ) in (1.7), we have χ(pc(θ))3 = θ3V . We recall, moreover,
the following useful bound from [10, Proposition 1.2 and (5.106)] (adapted to our setting). For
all v,w ∈ V , p=m−1(1+O(m−1 +V−1/3)), and all p� p(d)c (θ) with θ sufficiently small such that
θ3 � β0 for β0 such that (1.6) holds,∑

x1,x2
C(1)
3 (v, x1, x2,w)= 3

χ(p)3

V
+O(m−1). (4.21)

We proceed with a bound on ‘short’ polygons.

Lemma 4.3. Consider percolation on H(d, n)with p=m−1(1+O(m−1)). Then for all v,w ∈ V and
each integer i� 2,∑

x1,...,xi−1∈V
C�tmix
i (v, x1, . . . , xi−1,w)= δv,w +O(m−d(v,w)∨1 +m−dtmix

d+i). (4.22)
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Proof. We use the same path counting argument as in the proof of Proposition 4.2. Instead of
fixing x1, . . . , xi−1 and summing over all possible probabilities, we fix a random walk path of
length k� tmix between v and w and count the possible ways in which that path could appear
in the above sum. There are at most (k+ 1)i−1 possible ways to mark the path with the vertices
x1, . . . , xi−1. We thus bound

∑
x1,...,xi−1∈V

C�tmix
i (v, x1, . . . , xi−1,w)�

tmix∑
k=0

(k+ 1)i−1(mp)kpk(v,w). (4.23)

Compare this bound with (4.6). The only difference is the factor (k+ 1)i−1.

Case d(v,w)< d.
Recall the definition ofH(v,w) in (4.7). We again consider the contributions from walks that stay
withinH(v,w) and those that do not separately, starting with the contribution from the walks that
remain withinH(v,w).

If v=w thenH(v,w)= {v}, so the only contribution comes from the trivial path v= x1 = · · · =
xi−1 =w, which gives the term δv,w. If 1< d(v,w)< d, then to go from v to w the walk needs to
take at least one step in each direction j such that vj �=wj and move exactly to a neighbour with
jth coordinate wj. Using an argument similar to that in (4.9), we obtain

tmix∑
k=d(v,w)

(k+ 1)i−1(mp)kpkH(v,w)(v,w)=O(m−d(v,w)). (4.24)

Note in particular that the extra factor (k+ 1)i−1 compared to (4.9) does not affect the conver-
gence of the sum over k: it only changes the constant in the O(m−d(v,w))-term.

Next, consider the contribution of walks that leaveH(v,w). If the walk leavesH(v,w) along the
path from v to w, then it needs to take at least d(v,w)+ 1 distance-decreasing steps. By the same
argument as (4.10), we thus bound

tmix∑
k=d(v,w)

(k+ 1)i−1(mp)kpk¬H(v,w)(v,w)� (1+ o(1))tmix
d(v,w)+2+i−1

(
d
m

)−d(v,w)−1

=O(tmix
d(v,w)+i+1m−d(v,w)−1)

=O(m−d(v,w)). (4.25)

Case d(v,w)= d.
The walk needs to take at least d steps towards w to reach it. By the same argument as for the
previous bound, we have

tmix∑
k=d(v,w)

(k+ 1)i−1(mp)kpk(v,w)=O(m−dtmix
d+i). (4.26)

Summing these bounds we get the claim.

The next lemma combines the above estimates in a convenient form (and is especially useful
when i= 2).

Lemma 4.4. Consider percolation on H(d, n) with p� p(d)c (θ). For all i� 2, j ∈ {0, 1}, and v,w ∈ V ,∑
x1,...,xi−1∈V

C(j)
i (v, x1, . . . , xi−1,w)

= δv,wδj,0 + θ iVi/3−1(1+O(m−1))+O(m−d(v,w)∨1 +m−dtmix
d+i). (4.27)
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Proof. For j= 0, the lemma follows after combining Proposition 4.1 and Lemma 4.3 with (1.7).
For j= 1 we further observe that ∑

u : {v,u}∈E
p=mp= 1+O(m−1). (4.28)

Moreover, the factor δv,w does not arise, because this is due to the trivial path v= x1 = · · · = xi−1 =
w, which by Proposition 4.2 now contributes

C(1)
i (v, v, . . . , v, v)= p

∑
u : {v,u}∈E

C(0)
3 (u, v, . . . , v, v)= p

∑
u : {u,v}∈E

τp(v− u)=O(m−1).

Lastly, we derive an improved bound on the triangle diagram in the case where the two inter-
mediate points of the triangle are neighbours in H(d, n) and in the case where one intermediate
point of the triangle is constrained to be a neighbour of a fixed auxiliary point.

Lemma 4.5. Consider percolation on H(d, n) with p� p(d)c (θ). For all v,w ∈ V and j ∈ {0, 1},∑
x,y : {x,y}∈E

C(j)
3 (v, x, y,w)=O(m−1 +V−1/3) (4.29)

and

sup
z

∑
x,y : {y,z}∈E

C(j)
3 (v, x, y,w)=O(m−1 +V−1/3). (4.30)

Proof. We prove (4.29) for the case j= 0. The proof of (4.29) for the case where j= 1 and of (4.30)
are almost identical, so we leave them to the reader.

Consider first the contribution due to the cases where all the connections are due to short paths
(i.e. shorter than tmix in total). By Lemma 4.3, this is bounded by O(m−1), even without using the
constraint that {x, y} ∈ E . Next, consider the contribution to the left-hand side of (4.29) from the
case where the path from y to w is longer than tmix, that is,∑

x
Pp(v↔ x)

∑
y : {x,y}∈E

Pp(x↔ y) Pp(y
>tmix←−−→w). (4.31)

Applying Proposition 4.1 to the last term, Proposition 4.2 to the middle term and summing over
x and y, we obtain the upper bound

χ(p)mO(m−1)O
(
χ(p)
V

)
=O(V−1/3), (4.32)

where the final bound is due to (1.7). The contribution due to the case where the path from v to x
is longer than tmix is the same by symmetry.

To bound the contributions due to the case where the path from x to y is longer than tmix, we
consider the cases y=w and y �=w separately. The contribution due to a long path between x and
y and y=w is given by

∑
x

Pp(v↔ x) Pp(x
>tmix←−−→w)= χ(p)O

(
χ(p)
V

)
=O(V−1/3), (4.33)
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where the bound follows from Proposition 4.1 and (1.7). The contribution due to a long path
between x and y and y �=w is given by∑

x
Pp(v↔ x)

∑
y : {x,y}∈E ,

y �=w

Pp(x
>tmix←−−→ y) Pp(y↔w)= χ(p)mO

(
χ(p)
V

)
O(m−1)=O(V−1/3),

(4.34)
where the bound again follows from Propositions 4.1 and 4.2, and (1.7).

Adding the bound O(m−1) due to short paths and the bounds (4.32)–(4.34), we complete the
proof of (4.29) for the case j= 0.

5. The upper bound on pc(θ) via the lace expansion
In Section 5.1 we recall the background of the lace-expansion technique and state a proposition
in which we estimate lace-expansion coefficients. In Section 5.2 we use this proposition to prove
the upper bound on pc(θ). The proof of the proposition is given in Sections 5.3–5.5.

The estimate of pc(θ) from the lace-expansion coefficients in Sections 5.1 and 5.2 is standard.
To achieve the accuracy of the proposition, however, the bounds on the coefficients are tailored
to optimally use the geometry the Hamming graph, and crucially rely on the bounds derived in
the previous section. Special care needs to be taken with the higher-order lace-expansion coeffi-
cients, because their contribution is unusually large (compared with other percolation models), as
is explained in Section 5.5 below.

5.1 Background
The lace expansion is a method originated by Brydges and Spencer to study self-avoiding walk
[12], and was first applied to percolation by Hara and Slade [21]. Hara and Slade’s method gives
an expansion for the percolation two-point function τp(x). The version of the lace expansion that
we use here was derived by Borgs, Chayes, van der Hofstad, Slade and Spencer [10], where it is
proved for the Hamming graph, among others, that for any p ∈ [0, 1],

τp(x)= δ0,x +m(Jp ∗ τp)(x)+m(�p ∗ Jp ∗ τp)(x)+�p(x), (5.1)
where ( f ∗ g)(x)=∑

y∈V f (y)g(x− y) denotes the convolution between f and g,

Jp(x− y) := Pp({x, y} is open),
and �p(x) is the so-called irreducible two-point function or lace-expansion coefficient. The lace
expansion further determines that�p(x) is given by the alternating series

�p(x)=
∞∑

N=0
(− 1)N�(N)

p (x), (5.2)

and the lace-expansion coefficients �(N)
p have a well-defined structure that will play an important

role in the determination of the upper bound we derive here. Define the discrete Fourier transform
of a function f : V→R as f̂ (k)=∑

x∈V eik·xf (x) for k ∈Rd. Taking the Fourier transform of (5.1),
we obtain

τ̂p(k)= 1+ �̂p(k)
1−mĴp(k)(1+ �̂p(k))

. (5.3)

Observe that τ̂p(0)=∑
x τp(x)= χ(p) and Ĵp(0)=mp, so setting k≡ 0 and p≡ p(d)c (θ), and

applying (1.7), we obtain

mpc(θ)= 1
1+ �̂pc(0)

+ θ−1V−1/3. (5.4)
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(We will henceforth only consider �̂p(k) at k= 0 and therefore we will no longer write the argu-
ment.) Combining (5.2) and (5.4) with the following proposition allows us to determine the upper
bound on p(d)c (θ) for θ sufficiently small.

Proposition 5.1. (bounds on the lace-expansion coefficients). Consider percolation on H(d, n)
with d� 3. Let θ be such that 3θ3(1+ 10 θ3)< 1 and θ3 � β0 for β0 such that (1.6) holds, and let p
be such that p=m−1(1+O(m−1 +V−1/3)) and p� p(d)c (θ). Then

�̂(0)
p � 2d− 1

2(d− 1)2
m−1 +O(m−2 +V−1/3), (5.5)

�̂(1)
p � d2 + d− 1

(d− 1)2
m−1 +O(m−2 +V−1/3), (5.6)

∞∑
N=2

�̂(N)
p = O(m−2 +V−1/3). (5.7)

Note that we do not consider d= 2 in the above proposition. This is of no consequence, as our
main theorem is already proved for d= 2, 3 in [9]. The proofs below do apply to the case d= 2,
but the bounds become slightly less sharp (because Lemma 4.4 is less sharp when d= 2).

5.2 Proof of the upper bound on the critical point
Before starting with the proof of Proposition 5.1, which constitutes the bulk of what remains of
this paper, let us complete the proof of the upper bound in Theorem 1.1.

Proof of the upper bound in Theorem 1.1 subject to Proposition 5.1. As mentioned above,
Theorem 1.1 is already proved for d= 2, 3 in [9], so let d� 4. Suppose first that θ is such that
3θ3(1+ 10 θ3)< 1 and θ3 � β0 for β0 such that (1.6) holds. Using (5.2) and Proposition 5.1, we
bound

�̂p(d)c
= �̂(0)

p(d)c
− �̂(1)

p(d)c
+O(m−2 +V−1/3)

� 2d− 1
2(d− 1)2

m−1 − d2 + d− 1
(d− 1)2

m−1 +O(m−2 +V−1/3)

�− 2d2 − 1
2(d− 1)2

m−1 +O(m−2 +V−1/3). (5.8)

Applying this bound to (5.4), we get

p(d)c (θ)� m−1

1− 2d2−1
2(d−1)2m

−1 +O(m−2 +V−1/3)
+ θ−1m−1V−1/3

=m−1 + 2d2 − 1
2(d− 1)2

m−2 +O(m−1V−1/3 +m−3), (5.9)

which gives the upper bound for θ such that 3θ3(1+ 10 θ3)< 1 and θ3 � β0.
We have determined pc(θ) for some θ ∈ (0,∞). In [9, Theorem 1.1] it is shown that pc(θ ′)=

pc(θ)(1+O(V−1/3)) for every θ ′ ∈ (0,∞), and so we obtain the desired upper bound for arbitrary
θ , which completes the proof of the upper bound.

The remainder of this section is devoted to the proof of Proposition 5.1, which is divided into
three further subsections.
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5.3 Analysis of �̂(0)
p : proof of (5.5).

The lace-expansion method yields (see [10, Section 3.2])

�̂(0)
p :=

∑
x �=0

Pp(0⇐⇒ x), (5.10)

where v⇐⇒w denotes the event that there exist two edge-disjoint paths between v and w. In this
case we say that v and w are doubly connected. This is equivalent to the event that there exists an
edge-disjoint cycle of open edges containing both v and w.

Given a graphG and a vertex x inG, write Lk(G; x) for the set of vertex-disjoint cycles of length
k in G that contain x. Note that

|Lk(Kn;0)| = (n− 1)!
2(n− k)! ,

because we must choose the k− 1 other vertices for the cycle from n− 1 possible choices, and
although their order matters, the direction of the cycle does not, which explains the factor 1/2. By
only considering vertex-disjoint cycles in �̂(0)

p that are contained within a line that intersects 0, we
can apply an argument similar to that of (2.36) to bound

�̂(0)
p �

∑
x �=0

Pp(0⇐⇒ x within one line)

� d
n∑

k=3
(k− 1)

∑
Lk∈Lk(Kn;0)

[
Pp(Lk ∈Lk(C (0);0))

−Pp

⎛
⎝ ⋃
{x,y}⊂V(Lk)

{Lk ∈Lk(C (0);0)} ◦ {x↔ y}
⎞
⎠

⎤
⎦

� d
n∑

k=3
(k− 1)

(n− 1)!
2(n− k)!p

k
(
1− 1

2
k(k− 1)Pp(1 ∈C (0))

)
, (5.11)

where in the second inequality C (0) is to be viewed as the cluster of vertex 0 in G(n, p), and we
use the fact that every cycle of length k that passes through 0 passes through (k− 1) other vertices,
and in the third inequality Pp(1 ∈ C (0)) denotes the probability that vertices 0 and 1 of Kn are in
the same cluster in G(n, p). Use the fact that p=m−1(1+O(m−1 +V−1/3)) by assumption, that

(n− 1)!
(n− k)! = (n− 1)k−1 −O(knk−2),

and that

Pp(1 ∈C (0))= Ep|C (0)| − 1
n− 1

= d
(d− 1)n

(1+O(m−1 +V−1/3))

by Theorem 1.2, to bound (after a short computation)

�̂(0)
p � 2d− 1

2(d− 1)2
m−1(1+O(m−1 +V−1/3)).

5.4 Analysis of �̂(1)
p : proof of (5.6).

We start with a few definitions.
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Figure 1. Diagrammatic description of the events contributing to �̂(1)
p . Black lines

refer to connections that occur in level 0 of percolation, red lines to connec-
tions that occur in level 1. The directed edge (u, v) in (5.13) is represented by two
vertical dashes.

Definition 5.2. (connections through a subset and pivotal edges).

• We say that two vertices x, y are connected through a setW ⊂ V , and write x W←→ y, if x↔ y
occurs and all the paths connecting the two vertices in the percolation configuration have at
least one vertex inW .

• Given a vertex x and an edge e, we define the set C̃ e(x) as the percolation cluster of x in the
(possibly modified) percolation configuration where the edge e is set to closed.

• Given two vertices x, y and a directed edge (u, v), we say that (u, v) is pivotal for x↔ y
if x↔ y occurs on the (possibly modified) configuration where {u, v} is set to open, and
x↔ u and v↔ y occur, but x↔ y does not occur on the (possibly modified) configura-
tion where {u, v} is set to closed. Note that the direction of the edge is important and that
{(u, v) is pivotal for x↔ y} �= {(v, u) is pivotal for x↔ y}.

We define the event

E′(v, x;W) := {v W←→ x} ∩ {� pivotal (u′, v′) for v↔ x such that v W←→ u′}. (5.12)

This event is a central object of the percolation lace expansion (see e.g. [21, (1.36)]). We can now
give the definition of �̂(1)

p from [10]:

�̂(1)
p :=

∑
x

p
∑

u,v : {u,v}∈E
E0[1{0⇔u}P1(E′(v, x;C̃ (u,v)

0 (0))]. (5.13)

The subscripts 0 and 1 indicate that the events happen on two distinct percolation configurations
on the Hamming graph, and that these percolation configurations are ‘nested’ in such a way that
C̃ (u,v)
0 is a set-valued random variable with respect to E0, but for any fixed realization of C̃ (u,v)

0
it is viewed as a deterministic set with respect to P1 (see [10] for a more in-depth discussion of
this construction). Our proof strategy will be to first identify and bound the main contributions
to �̂(1)

p . For this we can apply the BK inequality to all the events in the formulation of �̂(1)
p and

replace the complicated probabilities that appear there with products of two-point functions.
The analysis of �̂(1)

p proceeds by a reduction of the complicated event to a collection of disjointly
occurring two-point events, followed by a repeated application of the BK inequality. Such bounds
are standard, and are known in the literature as diagrammatic bounds.

Inspecting (5.12) and (5.13), we see that on the percolation measure P1 we require that v is
connected to x through C̃ (u,v)

0 (0), that any vertex z ∈ C̃ (u,v)
0 (0) on the path from v to x must be

doubly connected to x (otherwise there would exist a pivotal (u′, v′)), and that on a path from z
to x there must be a vertex y that is connected to v. Moreover, on the percolation measure P0, the
vertex z is connected to 0, and 0 is doubly connected to u, so there must exist a vertex t on a path
from 0 to u such that t is connected to z. See Figure 1.

The main contribution will come from the simple case when 0= u= t and x= y= z. To get
a sharp bound on this term, it is necessary to use the fact that (5.12) implies that the connection
from 0 to x on the P0-percolation configuration is not allowed to use the edge {0, v}. We will
therefore bound this contribution by
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M := p
∑
x

∑
v : {0,v}∈E

Pp(0↔ x without using {0, v})Pp(v↔ x). (5.14)

Following the same derivation as in [10, Section 4.1], but isolating the main contribution, we can
use the BK inequality to derive the following upper bound from (5.13):

�̂(1)
p �M+

∑
u,t,z,y,x

C(0)
3 (0, u, t, 0)C(1)

3 (u, y, z, t)C(0)
2 (y, x, z)(1− δ0,uδ0,tδx,yδy,z). (5.15)

Our bound on (5.15) will rely heavily on the kind of path-counting methods that we applied in
the previous sections.

We proceed by bounding the main termM. We claim that

M� p
∑

v : {0,v}∈E

⎛
⎜⎜⎝(p+ Pp(v

�2←→ 0))+ Pp(0
�2←→ v)+

∑
x : x �=v,
x �=0

P(0↔ x)Pp(v↔ x)

⎞
⎟⎟⎠

� p
∑

v : {0,v}∈E

(
p+

∑
x

C�2
2 (0, x, v)

)
. (5.16)

The first term in the first inequality is due to the case x= 0, the second term to x= v, and the third
term to the remaining cases. Note that if we had not restricted the connection from 0 to x to occur
without using {0, v}, then the second term would have had an additional p, so the same argument
would have given the upper bound p

∑
v (2p+

∑
x C

�2
2 (0, x, v)), which, as it will turn out, is not

sharp enough.
We use the (now) familiar path-counting estimates to bound the right-hand side of (5.16) by

p
∑

v : {0,v}∈E

(
p+

∑
x

C�2
2 (0, x, v)

)

� p2m+ p
∑

v : {0,v}∈E

( ∞∑
k=2

(k+ 1)pkH(0,v)(0, v)+
tmix∑
k=3

(k+ 1)pk¬H(0,v)(0, v)+
∑
x

C>tmix
2 (0, x, v)

)

= : p2m+M1 +M2 +M3, (5.17)

where the factors (k+ 1) in the second and third term on the right-hand side are due to inter-
changing the sum over k with the sum over x. The term M1 is the contribution from walks that
are constrained to remain within one line, and is bounded by

M1 � pm
∞∑
k=2

(k+ 1)pk(n− 1)k−1

= p
∞∑
k=2

(k+ 1)d−k+1(1+O(m−1 +V−1/3))

= 3d− 2
(d− 1)2

m−1(1+O(m−1 +V−1/3)). (5.18)

Using that d(v,w)� 1 and using an estimate similar to (4.12), we further bound

M2 � p
∑

v : {0,v}∈E

tmix∑
k=3

(mp)kk(k+ 1)(n− 1)−1 =O(m−2). (5.19)
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Next, we use Proposition 4.1 and (1.7) to bound

M3 = p
∑

v : {0,v}∈E

∑
x

C>tmix
2 (0, x, v)= pm

χ(p)2

V
(1+O(m−1))

� θ2V−1/3(1+O((m−1 +V−1/3)). (5.20)

Inserting the bounds forM1,M2 andM3 into (5.17), we conclude that

M� p2m+ 3d− 2
(d− 1)2

m−1 +O(m−2 +V−1/3)= d2 + d− 1
(d− 1)2

m−1 +O(m−2 +V−1/3), (5.21)

and so it remains to show that the other terms in (5.15) are error terms.
We split the remaining contributions on the right-hand side of (5.15) according to the relative

locations of y and z as follows: y= z, d(y, z)= 1, d(y, z)� 2.

Case d(y, z)� 2.
Apply Lemma 4.4 twice and (4.21) once to obtain∑

t,u,y,z
C(0)
3 (0, u, t, 0)C(1)

3 (u, y, z, t) sup
z′ : d(y,z′)�2

∑
x

C(0)
2 (y, x, z′)=O(m−2 +V−1/3). (5.22)

Case d(y, z)= 1.
Apply Lemma 4.4 twice and Lemma 4.5 once to obtain∑

t,u
C(0)
3 (0, u, t, 0) sup

t′

( ∑
y,z : {y,z}∈E

C(1)
3 (u, y, z, t′)

)
sup

z′ : d(y,z′)=1

(∑
x

C(0)
2 (y, x, z′)

)

=O(m−2 +V−1/3). (5.23)

Case y= z.
Split again, according to whether d(t, u)� 2, d(t, u)= 1, t= u. To bound the case y= z and
d(t, u)� 2, apply Lemma 4.4 three times to obtain∑

t,u
C(0)
3 (0, u, t, 0) sup

t′ : d(t′,u)�2

(∑
y

C(1)
2 (u, y, t′)

) ∑
x

C(0)
2 (y, x, y)=O(m−2 +V−1/3). (5.24)

Similarly, to bound the case y= z and d(t, u)= 1, apply Lemma 4.4 twice and Lemma 4.5 once to
obtain∑

t,u : {t,u}∈E
C(0)
3 (0, u, t, 0) sup

t′ : d(t′,u)=1

(∑
y

C(1)
2 (u, y, t′)

) ∑
x

C(0)
2 (y, x, y)=O(m−2 +V−1/3). (5.25)

All that remains is the case y= z and t= u. Recall that in M we have already accounted for the
term where t= u= 0 and x= y= z. Applying Proposition 4.2 with the constraint t= u �= 0 to the
first sum in (5.15) and Lemma 4.4 to the second and third sums, we obtain∑

t �=0
C(0)
2 (0, t, 0)

∑
y

C(1)
2 (t, y, t)

∑
x

C(0)
2 (y, x, y)=O(m−2 +V−1/3). (5.26)

The cases t= u= 0 and y= z �= x are analogous and give the same bound.
We have thus shown that all the remaining terms in (5.15) are of orderO(m−2 +V−1/3), which,

combined with the bound (5.21) on the main termM, completes the proof of (5.6).
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Figure 2. Diagrammatic descriptions of D1, D2 and D3.

5.5 Analysis of �̂(N)
p forN � 2: proof of (5.7).

In [28] the identification of the first three terms of the asymptotic expansion (1.10) for the hyper-
cube H(m, 2) with m→∞ uses the fact that the critical window is exponentially narrow in m
at O(m−1V−1/3) (with V = 2m) to establish that there exist p=m−1 +m−2 + 7

2m
−3 +O(m−4)

such that p is far outside the critical window. In particular, there exist p in this range for which
χ(p)=O( log6 V). The bounds on probabilities of long triangles are proportional to χ(p)3/V , and
thus vanish at an exponential rate as m→∞ for this p. For H(d, 2) the leading contributions to
�̂

(N)
p withN � 2 thus come from the short triangles, which yields �̂(N)

p =O(m−N). ForH(d, n) with
d fixed and n→∞, this proof strategy does not work because the critical window is not exponen-
tially narrow in m (because now V = nd,m= d(n− 1)). As a result, for d� 6 we cannot find a p
within O(m−3 +m−1V−1/3) of p(d)c (θ) with sub-polynomial χ(p), and the bounds on �̂(N)

p for p
within this range therefore do contain relevant contributions due to long triangles. This explains
why the proof of (5.7) below is more complicated than the analogous bound in [28].

To investigate �̂(N)
p for N � 2, we again bound the events in terms of products of two-point

functions. We define the quantities
D1(ti, ui, yi, zi, ti+1, ui+1) := C(1)

3 (ti, yi, zi, ui)C(0)
3 (yi, ti+1, ui+1, zi), (5.27)

D2(ti, ui, yi, zi, ti+1, ui+1) := C(1)
5 (ti, yi, ui+1, zi, ti+1, ui)Pp(yi↔ zi), (5.28)

D3(tN , uN , yN , zN , x) := C(1)
3 (tN , yN , zN , uN)C(0)

2 (yN , x, zN). (5.29)

See Figure 2. We write the bounds on �̂(N)
p from [10, Section 4] in the current notation:

�̂(N)
p �

∑
t1,...,tN

∑
u1,...,uN

∑
y1,...,yN

∑
z1,...,zN

∑
x

C(0)
3 (0, t1, u1, 0) (5.30)

×
N∏
i=2

[D1(ti, ui, yi, zi, ti+1, ui+1)+D2(ti, ui, yi, zi, ti+1, ui+1)]D3(tN , uN , yN , zN , x).

Our strategy for bounding (5.30) will be to first show that the ‘tails’ of the diagrams, that is,

F1 := sup
a

∑
b,c,f ,g,h,k,x

D1(0, a, b, c, f , g)D3(f , g, h, k, x), (5.31)

F2 := sup
a

∑
b,c,f ,g,h,k,x

D2(0, a, b, c, f , g)D3(f , g, h, k, x), (5.32)

(see Figure 3) are of order O(m−2 +V−1/3) because of the bounds derived in Section 4, and
then to bound what remains of (5.30) by O(θN−2) with the help of repeated applications of the
bounds in (1.6) and (4.21). Summing �̂(N)

p over N, we will thus also get O(m−2 +V−1/3) when θ
is sufficiently small.

To bound F1, we treat the cases h= k, d(h, k)= 1, d(h, k)� 2 separately.
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Figure 3. Diagrammatic description of the summands in F1, F2.

Case d(h, k)� 2.
Apply Lemma 4.4 to the sum over x in D3(f , g, h, k, x), and again to the resulting sum over k, h in
D3. Then, apply Lemma 4.4 again to the remaining two triangle diagrams. This yields the bound
O(m−2 +V−1/3).

Case d(h, k)= 1.
Apply Lemma 4.5 to the sum over x in D3(f , g, h, k, x), Lemma 4.4 to the resulting sum over k, h
in D3, and (1.6) and (4.21) to the sums in D1, to again obtain the bound O(m−2 +V−1/3).

Case h= k.
Apply Lemma 4.4 to the second sum in D3, to obtain the bound

sup
a

∑
b,c,f ,g,h

C(1)
3 (0, b, c, a)C(0)

3 (b, g, h, c)C(1)
2 (f , g, h)O(1). (5.33)

Compare this with the bound (5.15) on �̂(1)
p . The main difference is that the placement of the

extra open edges is different (i.e.where the zeros and ones are in the superscripts). We can analyse
(5.33) essentially in the same way as (5.15). The most important difference is that here the term
due to 0= a= b= c and f = g = h does not give main contribution, because j= 1 in the first
term here, and so by Lemma 4.4 the term in (5.33) that corresponds to M in (5.15) is of order
O(m−2 +V−1/3) here. Following the same steps as in the bound on (5.15) above, we conclude
that all other terms are also of order O(m−2 +V−1/3), and hence

F1 =O(m−2 +V−1/3). (5.34)
To bound F2 we again treat the cases h= k, d(h, k)= 1, d(h, k)� 2 separately.

Cases d(h, k)= 1 and d(h, k)� 2.
The sums in D3 can be bounded in the same way as above, to yield a factor O(m−2 +V−1/3). In
[10, (4.47)] it is proved that

sup
a

∑
b,c,f ,g

D2(0, a, b, c, f , g)� (1+ 10 θ3 +O(m−1))(3θ3 +O(m−1)), (5.35)

so the bound on D2 is O(1). Consequently, these cases contribute O(m−2 +V−1/3) to F2, as
required.

Case h= k.
The final case is more subtle. We consider the contributions from f = g, d(f , g)= 1, d(f , g)� 2
separately.
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If h= k and d(f , g)� 2, then we may apply Lemma 4.4 to the first sum in D3 for a factor
O(m−2 +V−1/3), and to the second sum in D3 for a factor O(1). Further applying (5.35) to the
D2-term in F2, we find that this case contributes O(m−2 +V−1/3).

The contribution due to h= k and f = g is given by

sup
a

∑
b,c,f ,h,x

C(1)
5 (0, b, f , c, f , a)Pp(b↔ c)C(1)

2 (f , h, f )C(0)
2 (h, x, h). (5.36)

By Lemma 4.4, the sum of the fourth term over x is, uniformly in h, bounded by O(1) and the
sum of the third term over h is, uniformly in f , bounded by O(m−1 +V−1/3). To bound the two
remaining terms, we write

sup
a

∑
b,c,f

C(1)
5 (0, b, f , c, f , a) Pp(b↔ c) (5.37)

= sup
a

∑
b,c,f

Pp(0↔ b) C(0)
3 (b, c, f , b) Pp(c↔ f )

∑
v : {a,v}∈E

p Pp(f ↔ v)

= sup
a′

∑
b

C(1)
2 (0, b, a′)

∑
c,f

C(0)
3 (b, c, f , b) Pp(c↔ f ),

where for the second equality we use translation invariance of the two-point function to shift the
vertex a to a′ = a− f + b and f to b in the term

∑
v : {a,v}∈E p Pp(f ↔ v). Using that Pp(c↔ f )� 1

and applying Lemma 4.4 twice, we find that the remaining terms are bounded byO(m−1 +V−1/3).
Combined with the bounds on the other two terms, we thus conclude that the case where h= k
and f = g contributes O(m−2 +V−1/3).

It remains to bound the case h= k and d(f , g)= 1. We use Lemmas 4.4 and 4.5 to bound the
two sums in D3 by O(m−1 +V−1/3) and write the remaining D2-terms as

sup
a

∑
b,c,f

∑
g : {f ,g}∈E

C(1)
5 (0, b, g, c, f , a) Pp(b↔ c)

� sup
a′

∑
b,f ′

C(1)
3 (0, b, f ′, a′) sup

f

∑
c,g : {f ,g}∈E

C(0)
3 (b, c, g, b), (5.38)

where for the bound we use the translation invariance of the two-point function again to shift a to
a′ = a− c+ b, f to f ′ = f − c+ b and c to b, and we take the supremum over f in the second sum
for an upper bound. Apply Lemma 4.5 to the second sum and Lemma 4.4 to the first, to bound
this factor by O(m−1 +V−1/3) as well.

We have thus bounded all contributions to F2, and conclude that
F2 =O(m−2 +V−1/3). (5.39)

The remaining terms in (5.30) are O(θN−2). This is proved in [10]. More precisely, combining
[10, (4.42)] with (1.6), (1.7), (4.21), (5.34) and (5.39), we may conclude that for all N � 2,

�̂(N)
p = (1+ 10θ3)(3θ3(1+ 10 θ3))N−2O(m−2 +V−1/3). (5.40)

Hence, the sum
∑∞

N=2 �̂
(N)
p is of order O(m−2 +V−1/3) when 3θ3(1+ 10 θ3)< 1, which is the

constraint on θ that we have assumed.
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