
Robotica (2024), 42, pp. 3552–3569
doi:10.1017/S0263574724001541

RESEARCH ARTICLE

Lie-theory-based dynamic model identification of serial
robots considering nonlinear friction and optimal
excitation trajectory
Ruiqing Luo1,2 , Jianjun Yuan1,2, Zhengtao Hu1, Liang Du1, Sheng Bao1,2 and Meijie Zhou1,2,3

1Shanghai Robotics Institute, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
2Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai, China
3Shanghai Robot Industrial Technology Institute, Shanghai, China
Corresponding author: Sheng Bao; Email: baos@shu.edu.cn

Received: 1 January 2024; Revised: 20 May 2024; Accepted: 3 July 2024; First published online: 16 October 2024

Keywords: dynamic model; nonlinear friction model; excitation optimization; lie-theory; serial robots

Abstract
Accurate dynamic model is essential for the model-based control of robotic systems. However, on the one hand,
the nonlinearity of the friction is seldom treated in robot dynamics. On the other hand, few of the previous stud-
ies reasonably balance the calculation time-consuming and the quality for the excitation trajectory optimization.
To address these challenges, this article gives a Lie-theory-based dynamic modeling scheme of multi-degree-of-
freedom (DoF) serial robots involving nonlinear friction and excitation trajectory optimization. First, we introduce
two coefficients to describe the Stribeck characteristics of Coulomb and static friction and consider the dependency
of friction on load torque, so as to propose an improved Stribeck friction model. Whereafter, the improved friction
model is simplified in a no-load scenario, a novel nonlinear dynamic model is linearized to capture the features of
viscous friction across the entire velocity range. Additionally, a new optimization algorithm of excitation trajec-
tories is presented considering the benefits of three different optimization criteria to design the optimal excitation
trajectory. On the basis of the above, we retrieve a feasible dynamic parameter set of serial robots through the hybrid
least square algorithm. Finally, our research is supported by simulation and experimental analyses of different com-
binations on the seven-DoF Franka Emika robot. The results show that the proposed friction has better accuracy
performance, and the modified optimization algorithm can reduce the overall time required for the optimization
process while maintaining the quality of the identification results.

1. Introduction
Robotic dynamics has broad applications in industrial production scenarios [5, 30]. Model-based torque
predictions are crucial in developing serial industrial robots to get superior performance in terms of accu-
racy and speed [25]. Hence, the accurate dynamic model is important and necessary for serial robots,
which are used to design advanced control laws with superior performance and offline programming with
task optimization [34]. However, due to many uncertainties in manufacturing and application situations,
the dynamic parameters are typically unknown or only partially provided [2]. Experimental identifi-
cation of dynamic parameters is a relatively low-cost and reliable approach for obtaining an accurate
model, which is divided into five parts: modeling, excitation trajectory optimization, data acquisition
and processing, parameter identification, and model validation [17, 41].

Over the years, a lot of related studies have been conducted about dynamic models of a robot in the
context of parameter identification, which usually include two parts: the inertial dynamics [1, 6, 9, 11,
18, 19, 21, 32, 38, 43] and the joint frictions [7, 8, 10, 12, 14, 16, 20, 26, 31, 37, 39]. In the former,
the Lagrangian approach or the recursive Newton–Euler equation can effectively construct the inertial
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dynamic model. Accurate robot dynamic modeling is challenging for the latter due to inherent joint
friction effects. So far, the classical static friction model, which combines Coulomb friction with lin-
ear viscous friction, is usually applied in parameter identification. Although the classical static model
accounts for the major friction features at medium and high velocities, but it fails to fully capture the
behavior during startup and low velocities in practice [5], resulting in the derivation between the esti-
mated friction torques and its real ones because the real friction has strong nonlinearity. That is, the
accuracy of dynamic modeling will be inevitably affected. Several schemes have been employed so that
the issue mentioned above can be effectively solved. Zhang et al. [45] built the comprehensive dynamics
of industrial robots and calibrated the corresponding parameters by a nonlinear method. Han et al. [13]
proposed an iterative algorithm of the dynamic model identification for serial robots to estimate the non-
linear frictions in a unified way with linear regression. Wu et al. [40] identified the inertial parameters
without the assumed friction model via utilizing the baseplate sensor, and the friction coefficient of the
joint can be estimated by fitting the joint friction model after subtracting the inertial torques from the
joint torques. Dong et al. [5] modified the Tustin friction model, in which two parameters were used to
describe the Stribeck features of static and Coulomb frictions, and the friction and inertial parameters
were identified based on the LS with SOS algorithm. Roveda et al. [29] exploited a 6D virtual sensor
to quantify the joint friction effects and proposed a Bayesian optimization-based algorithm to enhance
the impedance control performance by tuning the model-based friction compensator parameters. Huang
et al. [15] proposed an IHLS-BPNN approach of parameter identification for robot dynamics, where
the Stribeck friction model was substituted for the Coulomb-viscous friction model. For the methods
mentioned above, the velocity-dependent effects on the friction, including the Stribeck effect, are only
taken into account. In a word, the accurate nonlinear friction model has not yet been built because the
friction coefficients related to the temperature–load-dependent were neglected.

Since an exciting trajectory fundamentally affects the robustness and accuracy of dynamic model
identification results, optimizing the excitation trajectory is also significant among experimental iden-
tification parts. To simplify the analysis and conditions of the measurements, we typical select
finite-Fourier-series (FS)-based periodic trajectory as the excitation trajectory [33, 34]. Generally, two
commonly used optimality criteria are employed to determine the optimal trajectory parameters. One
criterion focuses on minimizing the condition number of the regression matrix [3, 4, 6, 22, 28, 42], which
effectively mitigates the impact of noise errors on parameter identification; another is minimizing the
logarithm of the determinant of the Fisher information matrix [4, 23, 33, 36], resulting in parameter
estimation with smaller uncertainty bounds. To reduce the computational complexity and optimization
time, Jin et al. [18] given a new optimization criterion by employing Hadamard’s inequality. However,
the identification results are easily interfered by system noise because the number of matching con-
ditions is greatly increased. Recently, combinatorial optimization based on different criteria has been
conducted concerning the mutual restriction of the objective function values for the single optimization
criterion. Jia et al. [17] gave an improved optimization method of the excitation trajectories through
introducing the feedback index as a constraint target. However, generating feasible initial parameters for
multi-degree-of-freedom (DoF) robots is hard due to the stochastic effect of the starting iteration values
in the optimization. Besides, the calculation time is greatly enhanced in finding the optimal trajectory
parameters.

As an alternative mathematical tool, formulas for Lie-theory-based inertial dynamics analysis proved
to be a simpler and more computationally efficient approach compared with one based on the Denavit–
Hartenberg law [6, 44]. Motivated by the above discussion, we propose a dynamic modeling scheme
for multi-DOF serial robots with/without external loads involving nonlinear friction and excitation
trajectory optimization. The significant contributions of this study are as follows:

1) We propose an improved Stribeck friction model, in which the dependency of friction is related
to velocity and load when the joint temperature reaches a relatively dynamic equilibrium.
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Figure 1. Schematic of the entire identification procedure.

2) A novel Lie-theory-based nonlinear dynamic model is linearized to capture the features of
viscous friction across the entire velocity range and introduce an accurate dynamic modeling
scheme.

3) We put forward a novel excitation trajectory optimization algorithm based on the advantages of
three different optimization criteria.

The remainder of this article is arranged as follows. Section 2 reviews the overview of the proposed
dynamic identification. Section 3 establishes a Lie-theory-based accurate dynamic model for robots
in joint space, which includes the improved friction model related to the velocity–load dependency.
Later, Section 4 describes the whole identification procedure of dynamic parameters. In Section 5, a
new optimality criterion is presented, thereby finding the optimization excitation trajectory in the short-
est duration. Additionally, Section 6 provides simulation and experiments to validate the performance
of improved optimization methods and an accurate dynamic framework. Finally, Section 7 gives the
conclusions and future works of the paper.

2. Overview
The overall approach for the dynamic identification is illustrated in Figure 1, as far as the authors know,
(1) a classical static friction model is usually adopted to the process of parameter identification, and
nonlinearity of the frictions related to the factors including velocity and load dependency is seldom
treated, causing the deviations from the real ones. Therefore, it’s crucial to give a accurate dynamic
model for serial robots with/without a external payload across the entire velocity range. (2) The excitation
trajectories are a basal and significant part of improving identification accuracy, but the most of previous
studies ignore its calculation time when improving the optimization quality. Thus, it’s essential to find
a reasonable balance between computational efficiency and optimization quality. This study presents a
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Figure 2. Variables relationship of adjacent links.

Lie-theory-based dynamic modeling scheme of multi-DoF serial robots involving nonlinear friction and
excitation trajectory optimization.

3. Lie-theory-based robot dynamics analysis
3.1. Recursive Newton–Euler formulation derivation
Owing to the effects of inertia, centrifugal force, Coriolis force, gravity, and external force vectors in joint
space, the associated inverse dynamics for an n-DOF serial robot can be described by the second-order
differential equation:

τ d = M(q)q̈ + V (q, q̇) q̇ + G(q) + JT(q)Fext (1)

where M(q) is the inertia matrix, Coriolis and centripetal effects are captured by matrix V(q, q̇), G(q)
is the gravity vector, J(q) signifies the corresponding Jacobian matrix, and Fext is the external wrench
exerted by the end-effector.

Due to Newton–Euler-based formulations for dynamics, using Lie theory require only four equations,
resulting in a more concise dynamic modeling process, which involves a two-step recursion, that is,
forward recursion and backward recursion [27, 44]. As shown in Figure 2, taking the i-th joint as an
example, the corresponding recursion process can be summarized as follows.

3.1.1. Forward recursion
The six-dimensional generalized velocity Vi and acceleration Ai of i-th link expressed in the frame{i}
can be computed by the ones Vi−1 and Ai−1 of (i − 1)-th link, and the velocity q̇i and acceleration q̈i of
i-th joint:

Vi = Adg−1
i−1,i

(Vi−1) + ξ iq̇i

Ai = Adg−1
i−1,i

(Ai−1) − adAd
g−1

i−1,i
(Vi−1)

(
ξ iq̇i

) + ξ iq̈i (2)

where ξ i is the twist coordinate of the i-th joint in the link frame.

3.1.2. Backward recursion
On the basis of the kinematic variables in Eq. (2), the generalized force Fi can be calculated by the
generalized force Fi+1 of the (i + 1)-th link on the i-th link, as following:

Fi = AdT
g−1

i,i+1
(Fi+1) + EiAi − adT

Vi
(EiVi)

τ di = ξ
T
i Fi (3)

where Ei =
[

Ii − mir̂2
i mir̂i

−mir̂i miI3

]
is the generalized inertial matrix with respect to i-th link.
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On the basis of the above analysis, the Newton–Euler dynamic model of the robot based on Lie theory
can be expressed as (refer to [6] for the detailed derivation):

τ d = ξ
TBTEBξ q̈ − ξ

TBT(EB�ξ q̇� + �VE)Bξ q̇ + ξ
TBTEB�V0A0 + ξ

TBT�T
F0

Fext (4)

where

M(q) = ξ
TBTEBξ

V (q, q̇) = −ξ
TBT(EB�ξ q̇� + �VE)Bξ

G(q) = ξ
TBTEB�V0A0

J(q) = �F0Bξ (5)

3.2. Nonlinear friction modeling
The joint friction, which is relatively complex and presents typical nonlinear characteristics, should
be considered for accurate dynamic modeling in practical applications. This is because the friction
torque decreases with increasing velocity after overcoming static friction. After the improvement of
the nonlinear Tustin friction model [35], the nonlinear friction model is constructed as:

τ f = f vq̇ + f csgn (q̇)
(

1 − e−(sgn(q̇)q̇/q̇e)
δs
)

+ f ssgn (q̇) e−(sgn(q̇)q̇/q̇e)
δs

(6)

where f v is viscous friction, f c represents the Coulomb friction, f s is static or stiction friction, q̇e is
Stribeck velocity, δs is the exponent parameter of the Stribeck nonlinearity, and sgn (q̇) is sign function
of q̇.

In the Gaussian parametrization as used in [35], the exponent parameter is δs = 2. Moreover, the
parameter 1

q̇e
that corresponds to f s and f c terms is replaced by two empirical parameters, namely f s1

and f c1 [5]. Thus, the nonlinear friction model at the commutation and low velocities can be modified
through introducing a third-order polynomial as follows:

τ f = f v1
q̇ + f v2

sgn (q̇)q̇2 + f v3
q̇3 + f ssgn (q̇) e−(q̇/f s1)

2 + f csgn (q̇)
(

1 − e−(q̇/f c1)
2
)

(7)

A significant dependence on the temperature and external load has been observed for friction torque.
In previous studies (see ref. [7, 14]), we find that friction increases exponentially with temperature,
while load torque has a positive correlation with friction, resulting in a Stribeck effect at low speeds.
The corresponding joint temperature reaches a relatively dynamic equilibrium state when each joint was
run continuously for a period of time at a set trajectory. Thus, the nonlinear friction model (7) can be
further extended as follows:

τ f = f v1
q̇ + f v2

sgn (q̇)q̇2 + f v3
q̇3 + f csgn (q̇)

(
1 − e−(q̇/f c1)

2
)

+ f ssgn (q̇) e−(q̇/f s1)
2

+ (
f τ ext

|τ ext| + f τ ext1
e−f τext2

|τ ext |/q̇) sgn (q̇) (8)

where τ ext represents the load torque vector, including gravity torque of the robot itself, inertial torque,
coupling torque, and external load torque; f cτ ext

, f sτ ext
, and q̇τ0

are three parameters of the load-dependent
friction term.

3.3. Lie-theory-based dynamics generation
Combining the Newton–Euler dynamics (1) based on the Lie theory with an improved nonlinear friction
model (8), the dynamic model for a serial robot consisting of n rigid links interconnected via joints can
be generated as:
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τ Joint = τ d + τ f = M(q)q̈ + V (q, q̇) q̇ + G(q) + JT(q)Fext + τ f

= ξ
TBTEBξ q̈ − ξ

TBT(EB�ξ q̇� + �VE)Bξ q̇ + ξ
TBTEB�V0A0 + ξ

TBT�T
F0

Fext

+ f v1
q̇ + f v2

sgn (q̇)q̇2 + f v3
q̇3 + f csgn (q̇)

(
1 − e−(q̇/f c1)

2
)

+ f ssgn (q̇) e−(q̇/f s1)
2

+ (
f τ ext

|τ ext| + f τ ext1
e−f τext2

|τ ext |/q̇) sgn (q̇) (9)

where τ Joint = [τ Joint1 · · · τ Jointi · · · τ Jointn]
T ∈ �n, τ d = [τ d1 · · · τ di · · · τ dn]

T ∈ �n, and τ f =[
τ f 1 · · · τ fi · · · τ fn

]T ∈ �n.

4. Model identification
4.1. Dynamic parameter identification
Traditionally, a lot of the related studies employ a linear form to friction modeling in the context
of dynamic identification for a serial robot. In general, the three coefficients are adopted to capture
the viscous friciton and Coulomb friciton [13, 15], incorporating the Lie-theory-based Newton–Euler
dynamics, the dynamic model of a serial robot is written as follows:

τ Joint = ξ
TBT(EBξ q̈ − (

EB�ξ q̇� + �VE
)

Bξ q̇ + EB�V0A0)

+ξ
TBT�T

F0
Fext + f vq̇ + f csgn (q̇) + f b (10)

where f c represents Coulomb friction coefficient vector, f v denotes viscous friction coefficient vector,
and f b is the corresponding friction offset vector.

Due to the proposed friction model being strongly nonlinear, the dynamics (9) cannot be expressed in
the parameter-linearized form. Simultaneously, the friction model in Eq. (10) is inaccurate for capturing
the main characteristics of viscous friction in the high-velocity range. Hence, it is worth mentioning
that one assumption is made to get the accurate inertia parameters, which is operating the robot with a
constant temperature and zero external payload, so as to eliminate the impacts from external load. On
the basis of the above assumption, the proposed dynamic model (9) can be simplified as follows:

τ Joint = ξ
TBT(EBξ q̈ − (

EB�ξ q̇� + �VE
)

Bξ q̇ + EB�V0A0)

+ f v1
q̇ + f v2

sgn (q̇)q̇2 + f v3
q̇3 + f csgn (q̇) + f b (11)

where f v1
, f v2

, and f v3
denote viscous friction coefficient vectors.

Using the Kronecker product and the Sylvester equation (for a more detailed derivation, please refer
to ref. [6]), Eq. (11) can be written as a linear equation form:

Y = J (q, q̇, q̈) · [XIner XFric

]T

= J (q, q̇, q̈) · X (12)

where X ∈ �15n×1 is the standard dynamic parameter vector.
However, it is impossible to identify all dynamic parameters in Eq. (12). When the null columns and

linear correlations of the matrix J (q, q̇, q̈) are removed, Eq. (12) is rewritten as:

Y = �

J (q, q̇, q̈) · �

X (13)

where
�

X is the base dynamic parameters.
Thus, the dynamic parameters can be obtained by CVX [13], as follows:

arg min

(∥∥∥Y − �

J · �

X
∥∥∥2

)
(14)
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4.2. Nonlinear friction parameter estimation
To identify the friction coefficients with velocity and load dependencies, we analyze the components
of the joint torque, thereby calculating the friction torque separately. To this end, we command the
joint in velocity mode by constructing a motion trajectory in the joint space [5]. When the joint rotates
forward and backward at the same velocity, the friction torque is symmetrical about the zero point of the
coordinate, indicating opposite torque with equal absolute values. Thus, we can get the friction torque
by subtracting the corresponding joint torque of the robot, as follows:

τ Joint (t) − τ Joint (T − t) = M (q (t)) q̈ (t) + V (q (t) , q̇ (t)) q̇ (t) + G (q (t))

+ JT
(q (t)) Fext + τ f (q̇ (t) , τ ext) − ( M (q (T − t)) q̈ (T − t)

+ V (q (T − t) , q̇ (T − t)) q̇ (T − t) + G (q (T − t))

+ JT
(q (T − t)) Fext + τ f (q̇ (T − t) , τ ext) )

= 2τ f (q̇ (t) , τ ext) (15)
Subsequently, the proposed friction model (8) is utilized to fit the friction curves obtained by

Eq. (13), and the friction coefficients can be also identified offline by the Levenberg–Marquardt nonlinear
least square (L-MNLS) method.

4.3. Accurate dynamic model
This model is to enhance the versatility of the dynamic model and ensure the accuracy of the estimated
torques. On the basis of the parameter identification, we can give an accurate dynamic model in the
following manner:

τ Joint =
{

M(q)q̈ + V (q, q̇) q̇ + G(q) + τ fsim Fext = 0
M(q)q̈ + V (q, q̇) q̇ + G(q) + JT(q)Fext + τ fcom Fext �= 0

(16)

where τ fsim represents the simplified joint friction model and τ fcom is the comprehensive friction model.
Letting

τ fsim = f v1
q̇ + f v2

sgn (q̇)q̇2 + f v3
q̇3 + f csgn (q̇) + f b (17)

τ fcom =f v1
q̇ + f v2

sgn (q̇)q̇2 + f v3
q̇3 + f csgn (q̇)

(
1 − e−(q̇/f c1)

2
)

+ f ssgn (q̇) e−(q̇/f s1)
2 + (

f τ ext
|τ ext| + f τ ext1

e−f τext2
|τ ext |/q̇) sgn (q̇) (18)

5. Optimal excitation trajectory design
In parameter identification, appropriate excitation trajectories should be designed and optimized to
fully simulate the mechanical properties of a real robot system. To this end, we proposed an improved
optimization criterion to find an optimal excitation trajectory of each joints.

5.1. Excitation trajectory
In order to discover excitation trajectories that offer enhanced signal-to-noise ratio and analytical deriva-
tives, one can define the FS-based periodic trajectory for the i-th joint as a function of the time t, and it
is made up of a finite sum of N harmonic sine and cosine functions in the following manner:

qi (t) = qi,0 +
N∑

k=1

(
ai,k

kωfi

sin
(
kωfit

) − bi,k

kωfi

cos
(
kωfit

))
(19)

where ωfi is the fundamental frequency, qi,0 is the initial position for the i-th joint, and ai,k and bi,k are the
Fourier coefficients, which represent the amplitudes of the cosine and sine functions, respectively. Note
that we can obtain the velocity and acceleration of each joint through differentiating Eq. (12).
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5.2. Proposed optimization criterion
In the literature, several ways are applied to optimize excitation trajectories, including minimizing the
Cond(·) [3, 4, 6, 22, 28, 42], 1∏

(·) [5, 18], and Log{det(·)} [4, 33, 36]. Considering the benefits of three
different optimization criteria [24], we proposed a new optimization criterion, where add Log {det(·)}
as the optimization index feedback when minimizing Cond(·). In the meantime, the 1∏

(·) is introduced
to quickly find a feasible initial guess in the shortest duration time as follows:

arg min

⎛
⎝ 1∏p

g=1

�

J
s

g

⎞
⎠ ai,k ,bi,k−−−→

qi,0

arg min
(
Cond

(�

J
))

≤ �1

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qmin ≤ q (ϒ) ≤ qmax

|q̇ (ϒ)| ≤ q̇max

|q̈ (ϒ)| ≤ q̈max

|Vc| ≤ Vcmax

q (ϒs) = q (ϒe) = 0

q̇ (ϒs) = q̇ (ϒe) = 0

q̈ (ϒs) = q̈ (ϒe) = 0

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Log
{
det

(
Jlog

)} ≤ �2

qmin ≤ q (ϒ) ≤ qmax

|q̇ (ϒ)| ≤ q̇max

|q̈ (ϒ)| ≤ q̈max

|Vc| ≤ Vcmax

q (ϒs) = q (ϒe) = 0

q̇ (ϒs) = q̇ (ϒe) = 0

q̈ (ϒs) = q̈ (ϒe) = 0

(20)

where Jlog = �

J
T �

J, qmin, qmax, q̇max, q̈max, and τmmax denote the minimum and maximum joint positions,
maximum joint velocities, accelerations, and torque, respectively. Vcmax is the maximum Cartesian veloc-
ity. Unexpected behavior will result at the start and end points if q̇ (ϒs) �= q̇ (ϒe) and q̈ (ϒs) �= q̈ (ϒe),
for example, at the start and end of the motion, the robot experiences sudden changes in velocity and
acceleration, leading to vibrations.

Hence, with respect to the problem of determining an optimal trajectory, the optimization procedure
can be synopsized in Table I.

6. Experiment and verification
6.1. Experimental setup
A Franka Emika robot system with seven revolute joints is used as the experiment setup. Figure 3 shows
the initial pose of the robot with an external load of 3.035 kg. The position variable of joint i is defined
as qi, the positions of joints 4 and 6 in the present relationship are acquired from the corresponding
measured ones using the relations, q4 = q4Panda − π/2 and q6 = q6Panda + π/2, and the temperature sen-
sors are respectively installed on the surface of the corresponding joint to measure the joint temperature
in real time. The aims of experiments are mainly twofold: 1) the accurate parameter identification for
dynamic model with the nonlinear friction and 2) the performance between the overall required time and
the quality for the excitation trajectory optimization. As seen in Figure 3, the kinematic model of the
robot is built by utilizing the spatial representation of its geometric twists, where the kinematic parame-
ters are provided in Table II. The experiments are conducted through the Franka Control Interface (FCI)
via the libfranka interface. For the experiments and verification, we utilize MATLAB 2019a to run the
complete computer programs. The optimization has been done over Inter(R) Core(TM) i9-12900H CPU
@ 2.5GHZ, 16GB RAM.

6.2. Data acquisition and processing
As described in Section 5, we choose the excitation trajectories with a period of 20 s. After that, the robot
joint is commanded to move in a designed trajectory using velocity mode; the measurement time is 100 s,
which equals five periods of the excitation trajectory. The motor-side encoder can track sine and cosine
curves for each robot joint, so positions and velocities can be gained. Additionally, the force/torque
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Table I. Optimal trajectory design process.

Step 1 Loading trajectory parameters:
• Design a persistent excitation trajectories based on the Fourier series,
• wfi = 0.05 Hz, and N = 5,
• Randomly generate 11 start coefficients including the initial position and Fourier

coefficients for each joint, and each joint trajectory covers the full motion range.
Step 2 Generating initial coefficients:

• Run the optimization of 1∏p
g=1

�
J

s

g

using fmincon function based on the sequential

quadratic programming (sqp) algorithm and the Hessian approximation matrix,
• Fit the trajectory parameters to met the constraint conditions,
• The fitted initial position and Fourier coefficients are the initial guess for the

following optimization process.
Step 3 Obtaining optimal trajectory:

• Minimize Cond
(�

J
)

including joint constraints and the optimization value of
Log

{
det

(
Jlog

)}
via fmincon function based on the interior point method,

• Obtaining optimal excitation trajectory. If the iteration fails, we will restart the
optimization process from Step 1.
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Figure 3. Experimental setup of Franka Emika robot system.

sensors can provide the joint torques. Since the excitation trajectory is periodic, we first improve the
signal-to-noise ratio by averaging data. Afterward, the measured joint positions and velocities undergo
additional high-frequency noise reduction through the application of a zero-phase low-pass filter. Next,
the joint accelerations can be computed via the central difference algorithm and then smoothed through
RLOESS. At the same time, we can also filter the averaged joint torques by using RLOESS to remove
the high-frequency noise and its ripples.

6.3. Excitation trajectory optimization
To make a comprehensive comparison between the proposed optimization criterion and others in terms
of robust, fast, and accurate identification, we analyze the computation time of the trajectory optimization
process and evaluate the quality of optimization results.
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Table II. Kinematic parameters of the robot.

Link i Twist coordinates in the base frame Reference configuration Parameter values Joint range Joint speed
1 ξL1 = [0; 0; 1; 0; 0; 0] d1 = 0.333 m +/-166 deg 150 deg/s
2 ξL2 = [0; 1; 0; − d1; 0; 0] d3 = 0.316 m +/-101 deg 150 deg/s⎡

⎢⎢⎣
1 0 0 d5 + a4 + a7

0 1 0 0
0 0 1 d1 + d3 + a4 − df

0 0 0 1

⎤
⎥⎥⎦

3 ξL3 = [0; 0; 1; 0; 0; 0] d5 = 0.384 m +/-166 deg 150 deg/s
4 ξL4 = [0; − 1; 0; d1 + d3; 0; − a4] a4 = 0.0825 m +/-86 deg 150 deg/s
5 ξL5 = [1; 0; 0; 0; d1 + d3 + a4; 0] a7 = 0.088 m +/-166 deg 180 deg/s
6 ξL6 = [0; − 1; 0; d1 + d3 + a4; 0; − d5 − a4] df = 0.107 m + 125/-91 deg 180 deg/s
7 ξL7 = [0; 0; − 1; 0; d5 + a4 + a7; 0] +/-166 deg 180 deg/s
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Table III. Comparison of different optimization criteria.

Optim. C1 C2 C3

Criterion C2 C4 Exe.time/s C2 C4 Exe.time/s C2 C4 Exe.time/s
1 95.5948 255.5948 453.7262 96.2914 279.1249 1119.1588 138.6745 255.1593 70.3045
2 95.8833 260.4898 389.1888 73.7711 290.3197 768.3834 128.1545 264.5950 88.2245
3 88.5006 261.5282 438.5736 92.7533 279.5590 1376.4074 142.1496 260.8683 79.0103
4 99.8173 255.1253 340.3633 65.1494 292.4321 1311.3994 127.0156 257.0689 113.5061
5 93.7374 253.2373 313.8902 91.9505 284.4556 1888.6977 135.9182 262.1316 87.5126
Aver.Exe.
time/s

- - 387.1484 - - 1292.8093 - - 87.7116

1. C1, C2, C3, and C4 are the proposed optimization criterion, Cond(·), 1∏
(·) , and Log {det(·)}, respectively.

2. To perform optimization of C1, we set �1 = 100 and �2 = 265, which are derived from the objective function values of C2
and C3, respectively.

According to Section 5, five groups of optimization excitation trajectories were generated for the
evaluation of various optimization criteria, in which the condition number is typically optimized to be
below 100 for the seven DoFs serial robot [22], that is, �1 = 100. Simultaneously, the single criterion

1∏
(·) is optimized to obtain the matched Log {det(·)} of the corresponding optimization value as the

goal weight �2 of the proposed optimization criterion. Furthermore, we record the computational time
during the optimization process and the matched Cond(·) and Log {det(·)} for each minimum value of
the objective function, as listed in Table III. The result shows that the average execution time for C1 is
approximately 29.95% of C2, and the matched C4 for C1 is better than that for the value of C2 when only
C2 is used as the optimization criterion, although the matched C2 after optimization of C1 was close
to the corresponding value of C2 when only C2 is used as the optimization criterion. Additionally, the
matched C4 is close to that when using only C3 as the optimization criterion, but the matched C2 is better
than that of the latter.

Reference [17] has shown that reducing the values of C2 and C4 can effectively improve the anti-
interference capability of the identification results against noises and the accuracy of the estimated
parameters, respectively. Hence, compared to other optimization criteria, the optimal trajectory selected
through the proposed criterion can achieve shorter overall trajectory optimization time while maintain-
ing parameter identification accuracy and robustness. In a word, a better compromise approach can
effectively balance the quality of identification results and the total required time for the optimization
process, thereby offering significant advantages in achieving fast, accurate, and robust identification.

6.4. Identification experiment results analysis
6.4.1. Identification experiment of the dynamic parameters in a no-load scenario
The main objective of this section is to get the accurate dynamic parameters by the experiment.
Furthermore, we can also give a fair and intuitive comparison by the prediction torque errors in the
static framework.

First, each joint of the robot runs continuously for a while at the trajectory with the minimal con-
dition number, and the corresponding joint temperature reaches a relatively dynamic equilibrium state,
in which the surface temperature of the joints is 37.8–39.1 ◦C, 41.4–42.9 ◦C, 41.0–42.7 ◦C, 42.0–43.5
◦C, 38.7–40.0 ◦C, 39.3–40.4 ◦C, and 37.5–38.1 ◦C under the environment temperature of 24.5–25.8
◦C, respectively. Subsequently, according to the filtered joint positions, velocities, and accelerations, we
can acquire the corresponding regressor matrix

�

J (q, q̇, q̈). Combining with the measured joint torques
after filtering, the final dynamic parameter results including the nonlinear friction can be estimated via
Eq. (14), as listed in Table IV. We can evaluate the effectiveness of the identified results through the two
evaluation criteria of root-mean-square (RMS) error εRMS and correlation coefficient σ [5].

Thus, Figure 4 compares the estimated joint torques, which are computed by the identified dynamic
parameters, with the measured joint torques. The calculated RMS errors of each joint, which quantify
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Table IV. The identification values of dynamic parameters.

Joint i 1 2 3 4 5 6 7
Ixx,i 0 1.1220 1.0939 0.3388 −0.3967 −0.0878 0.0524
Ixy,i 0 −0.0625 0.0236 −0.0058 −0.0637 0.0023 0.0187
Ixz,i 0 0.0139 −0.5857 −0.7128 −0.5911 0.0068 0.0425
Iyy,i 0 1.9006 1.3240 0.4063 0.4957 −0.1722 0.0010
Iyz,i 0 −0.0412 0.0018 0.0197 −0.0730 0.0177 −0.0208
Izz,i 0.5975 −0.7981 −0.1414 0.5252 0.4412 0.3821 −0.0666
mircx,i 0 0.0107 0.8730 0.9239 0.8194 0.1044 −0.0975
mircy,i 0 −0.0371 1.7923e−4 0.0033 0.0996 −0.0156 −1.3873e−4

mircz,i 0 1.0888 1.0888 −0.4123 −0.2323 −0.2381 −0.0740
mi 0 −2.4753 −2.4753 −1.4886 −0.3194 −0.1538 −0.1846
fv1,i 0.4002 0.2366 0.2701 0.3753 0.3108 0.1610 0.2998
fv2,i −0.1831 0.4893 0.2514 0.0901 0.8768 0.1447 −0.0166
fv3,i 0.6730 −0.4882 −0.3235 −0.3820 −1.2957 −0.3021 −0.1356
fc,i −0.2751 0.1120 −3.0309e−5 0.3389 0.5482 0.1370 0.0760
fb,i 0.1271 −0.2567 0.0014 −0.2268 0.0282 −0.0074 0.0059

Joint 1 Joint 2
Joint 3

Joint 4 Joint 5

Joint 6 Joint 7

Figure 4. Comparison between the measured and estimated joint torques for the parameter
identification.
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Table V. RMS errors and correlation coefficients for the identification experiment.

Category Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Sum
Eq. (10) εRMS 0.1933 0.2186 0.1868 0.1745 0.1283 0.0618 0.0704 1.0337

σ 0.9948 0.99997 0.9998 0.9998 0.9871 0.9975 0.9636 −
Eq. (16) εRMS 0.1946 0.2149 0.1788 0.1709 0.1181 0.0648 0.0698 1.0119

σ 0.9948 0.99997 0.9998 0.9998 0.9891 0.9973 0.9643 −
model from [6] εRMS 0.2330 0.2282 0.1925 0.1962 0.1385 0.0656 0.0733 1.1273

σ 0.9949 0.99997 0.9998 0.9998 0.9865 0.9973 0.9607 −

the difference between the measured and estimated torques, and the correlation coefficients of the seven
joints are shown in Table V. We can notice that the torque estimations are almost perfectly superim-
posing the measured ones for joints 2 . . . 4 and 6, and the estimated errors of other joints show some
discrepancies. When the joint velocity is close to zero, the errors are larger due to the friction model-
ing errors at low speed: this behavior is typical of joint friction. Simultaneously, the proposed dynamic
model with a nonlinear friciton exhibits smaller residuals for a comparison with others.

6.4.2. Estimation experiment of the nonlinear friction coefficients
To identify 10 coefficients in the improved friction model (8) related to the velocity–load-dependent,
an external payload of 3.035 kg is attached to the end-effector of the robot to increase the maximum
possible load torque. According to the constructed motion trajectory, we command a single robot joint
with different angular velocities in velocity mode, and all other joints remain stationary. Then, we can
obtain the actual joint velocities q̇ and link side torques τ Joint through the libfranka interface. The joint
torques corresponding to points with the same position but opposite velocities are selected, the velocity–
load-dependent frictions are obtained according to Eq. (15), and the optimum parameter of the model
(8) can be found by the L-MNLS algorithm (using MATLAB function, lsqnonlin). That is, the friction
coefficients of each joint can be estimated at different velocities, in which the velocity of each joint is
set to 0.1, 0.2, 0.4, 0.5, 0.8, 1, 1.2, 1.5, 1.6, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 4.5, 5, 6, 8, 10, 12, 15, 16,
20, 25, and 30 (all in ◦/s). The fitting diagram from the identification for the dependency of friction
on velocity–load is depicted in Figure 5, the calculated RMS errors of each joint are 0.0105, 0.0264,
0.0213, 0.0099, 0.0550, 0.0503, and 0.0033 (all in Nm), respectively, and the corresponding correlation
coefficients are 0.9437, 0.9572, 0.9853, 0.9703, 0.9507, 0.9776, and 0.9567.

6.5. Verification experiment results analysis
6.5.1. Verification experiment of accuracy dynamic model without the external load
To verify the accuracy of the dynamic models in the absence of an external load, the robot was operated
under a new excitation trajectory, which is different from the excitation trajectory used for parame-
ter identification. Using the identified dynamic parameters, the joint torques along the same exciting
trajectory are calculated via Eq. (10), Eq. (16), and the conventional model [6]. The measured and
the predicted torques are compared, and the results of this comparison are reported in Figure 6 and
Table VI, showing good result. In Table VI, we can observe that the predicted torques calculated by the
dynamic model (16) exhibit smaller residuals in all the joints. That is, our dynamic model has better fric-
tion characteristics than the model from ref. [6]. The simplified friction model can accurately describe
the robot dynamics in normal motion without external load, despite the coupling of joint frictions in
velocity–load-dependent items due to its ability to capture the main contribution of friction.

6.5.2. Verification experiment of nonlinear friction model with different loads
In order to verify the accuracy and reliability of the nonlinear friction model (8), three different external
payloads, including 1.015 kg, 2.020 kg, and 2.525 kg, are attached to the end-effector of the robot,
respectively. Simultaneously, three kinds of friction models of refs. [7, 14, 25] are used for comparison.
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Table VI. RMS errors and correlation coefficients for the verification experiment.

Category Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Sum
Eq. (10) εRMS 0.3429 0.3052 0.2024 0.1917 0.1015 0.0916 0.0752 1.3105

σ 0.9653 0.9999 0.9999 0.9995 0.9909 0.9907 0.9679 −
Eq. (16) εRMS 0.3526 0.2939 0.1924 0.2028 0.0947 0.0908 0.0766 1.3038

σ 0.9633 0.9999 0.9999 0.9994 0.9919 0.9906 0.9672 −
model from [6] εRMS 0.3827 0.3559 0.1862 0.2286 0.1058 0.0935 0.0759 1.4286

σ 0.9636 0.9999 0.9999 0.9995 0.9902 0.9907 0.9644 −

Figure 5. Dependency of the total friction torque on load and velocity.

Taking joint 3 as an example, we command a single robot joint with different angular velocities via the
constructed motion trajectory and the other joints remain stationary. Subsequently, we can obtain the
actual joint friction torques according to the actual joint velocities q̇ and link side torques τ Joint, and the
estimated friction torques are computed by four kinds of friction models. Note that all the parameters
in different friction models can be obtained under the identification methodology. The comparisons
between the actual and estimated friction values are depicted in Figure 7, which shows that the proposed
nonlinear friction model can better characterize the friction and has also been successfully validated in
the other six joints.
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Joint 1 Joint 2 Joint 3

Joint 5

Joint 6

Joint 7

Joint 4

Figure 6. Comparison between the measured and estimated torques for the parameter verification.

Figure 7. RMS errors between the actual and estimated friction values for different models.
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7. Conclusion
In our work, a Lie-theory-based accurate dynamic modeling scheme is given for multi-DOF serial robots
with/without external loads, where we propose the improved Stribeck friction model involving the non-
linear dependence of friction on the velocity–load and introduce a novel linearizable nonlinear dynamic
model. On the basis of the interaction between different optimization criteria, we modify the optimiza-
tion technique for the design of optimal excitation trajectories used in dynamic identification. Finally,
several experiments are carried out on the seven DoFs Franka Emika robot, and the experimental results
reveal twofold: (1) the proposed dynamics scheme has better fitting accuracy and higher versatility and
(2) the optimal excitation trajectory generated via the proposed criterion requires shorter optimiza-
tion time while ensuring the quality of identification results compared to others, which can provide
advantages for fast, robust, and accurate identification.

In the next work direction, the time-varying temperature-dependent friction phenomena will be
researched for fine modeling and compensation. Simultaneously, the developed friction will be seam-
lessly extended to the dynamic friction model and applied to robot dynamics in a unified way.
Concurrently, there is a need for further exploration at the robot planning level in conjunction with
advanced intelligent control theories.
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