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Abstract
Neutrophilic bronchiolitis is the primary lesion in asthma-affected horses. Neutrophils are key actors in
host defense, migrating toward sites of inflammation and infection, where they act as early responder cells
toward external insults. However, neutrophils can also mediate tissue damage in various non-infectious
inflammatory processes. Within the airways, these cells likely contribute to bronchoconstriction, mucus
hypersecretion, and pulmonary remodeling by releasing pro-inflammatory mediators, including the cyto-
kines interleukin (IL)-8 and IL-17, neutrophil elastase, reactive oxygen species (ROS), and neutrophil
extracellular traps (NETs). The mechanisms that regulate neutrophil functions in the tissues are complex
and incompletely understood. Therefore, the inflammatory activity of neutrophils must be regulated with
exquisite precision and timing, a task achieved through a complex network of mechanisms that regulates
neutrophil survival. The discovery and development of compounds that can help regulate ROS, NET
formation, cytokine release, and clearance would be highly beneficial in the design of therapies for this
disease in horses. In this review, neutrophil functions during inflammation will be discussed followed
by a discussion of their contribution to airway tissue injury in equine asthma.
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Introduction

Horses naturally develop an asthma-like condition after stabling
and exposure to dusty hay and straw, currently known in the vet-
erinary scientific community as ‘heaves’ or recurrent airway
obstruction (RAO) (Robinson, 2001). Recently, several authors
suggested that RAO and inflammatory airway disease (IAD), a
mild form of non-infectious airway hyper-responsiveness to
inhaled allergens, should be grouped as moderate-to-severe
and mild forms, respectively, of a single disease termed equine
asthma (Bullone and Lavoie, 2015; Couetil et al., 2016; Pirie
et al., 2016). Asthma-affected horses respond to this exposure
by developing airway bronchoconstriction, neutrophilic inflam-
mation, and airway hyper-responsiveness. The disease is charac-
terized by pulmonary neutrophilia and excessive mucus
production, resulting in reduced dynamic lung compliance and

increased pulmonary resistance and pleural pressure excursions
(Jackson et al., 2000). This disease presents with episodes of
acute airway obstruction (crisis) followed by periods of apparent
remission (Robinson et al., 1996, 2001). Aspergillus fumigatus, an
opportunistic fungus, is commonly observed in a horse’s envir-
onment and is considered one of the inciting agents in equine
asthma (Morán et al., 2009). Horses aged more than 5 years
are the most frequently affected, with the prevalence increasing
with age (Leguillette, 2003). There does not appear to be a pre-
disposition by gender; however, disease incidence within differ-
ent breeds and evidence of family predisposition suggest that
there is a heritable component. Moreover, a genetic predispos-
ition for this asthma-like disease has been demonstrated
(Ramseyer et al., 2007; Gerber et al., 2009). Various reports
also suggest that the risk of developing equine asthma is
increased in the offspring of affected horses (Scharrenberg
et al., 2010). Most likely, horses develop asthma as a conse-
quence of an interaction between genetic and environmental fac-
tors (Moran and Folch, 2011).*Corresponding author. E-mail: gmoran@uach.cl
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Neutrophils are the major pathogen-fighting immune cells
and are observed in many organisms, ranging from insects to
mammals (Ribeiro and Brehelin, 2006). Central to their function
is the ability to be recruited to sites of infection, to recognize and
phagocytose microbes, and subsequently to kill pathogens
through a combination of cytotoxic mechanisms (Mayadas
et al., 2014). Neutrophils kill microbes via the release of destruc-
tive molecules, such as proteases, highly reactive oxygen species
(ROS) and neutrophil extracellular traps (NETs); they also pro-
duce a variety of proteins, including cytokines, chemotactic
molecules, and other mediators that are involved in their
effector functions (Cheng and Palaniyar, 2013). Although
these molecules are generally effective in destroying microbes,
a fraction of them leak from living and dying leukocytes, and
in so doing, damage adjacent normal tissue cells. The programed
death of neutrophils blocks their secretory pathways, limiting tis-
sue damage by the release of pro-inflammatory mediators.
Numerous mechanisms participate in this last event, tightly
regulating the gravity and duration of airway inflammation. If
unresolved, acute lung injury (ALI) and/or lung inflammation
can progress to chronic inflammation, which occurs in lung dis-
eases such as acute respiratory distress syndrome, asthma, cystic
fibrosis (CF), chronic obstructive pulmonary disease (COPD)
(Robb et al., 2016), and equine asthma (Perez et al., 2016).

Equine asthma is a good model for research on the role of
neutrophils in human asthma, the regulation of chronic neutro-
philic inflammation, and their possible implications in pulmonary
allergic responses. Furthermore, since the features of pulmonary
remodeling in equine asthma closely resemble the features of
human neutrophilic asthma, this animal model is useful for
research on the kinetics, reversibility, and physiological conse-
quences of tissue remodeling (Bullone and Lavoie, 2015).
Given that neutrophils are the main cell type in equine asthma
and in certain types of human asthma, this animal model may
also be of use for the development of novel pharmacological
therapies with neutrophils as a drug target. This review will dis-
cuss neutrophil functions during inflammation and their contri-
bution to airway tissue injury in equine asthma.

Equine asthma is an immune-mediated disease

Airway inflammation is a component of an asthma-affected
horse’s response to aeroallergens and is considered one of the
primary characteristics of this disease. Equine asthma has
been extensively studied, but the precise sequence of disease
events is still not well-understood (Leguillette, 2003).
Generally, airway inflammation involves the activation of
pathogen-specific inflammatory cells, the modulation of gene
transcription factors, and the release of inflammatory mediators
(Bureau et al., 2000a, b). The immunological background of
severe equine asthma remains not fully elucidated, despite
many studies on its pathogenesis. Type I hypersensitivity,
which is IgE-mediated (Curik et al., 2003; Künzle et al., 2007;
Tahon et al., 2009; Morán et al., 2010a, b; Morán et al., 2012),
and type III hypersensitivity reactions have been suggested to
play a role in airway inflammation (Lavoie et al., 2001;

Robinson, 2001). IgE plays an important role in the induction
of type I immediate hypersensitivity reactions in asthma-affected
horses (Morán et al., 2010a, b; Morán et al., 2012). The inflam-
matory response associated with equine asthma is also character-
ized by neutrophilic bronchiolitis, which is considered evidence
of a type III hypersensitivity response resulting from antigen–
antibody complex formation and the subsequent activation of
the complement cascade, with the release of anaphylatoxin
and C3a and C5a peptides (Lavoie et al., 2000). Additional
reports suggest that the inflammatory influx of neutrophils to
the airways of chronically affected horses may be maintained
by chemokines released from the same marginated granulocytes
(Bureau et al., 2000a, b; Ainsworth et al., 2007).
T cells also play an important role in the modulation of the

immune response in asthma equine pathogenesis. Many results
suggest that pulmonary helper T lymphocytes may be implicated
in heaves through the secretion of Th1-type or Th2-type cyto-
kines (Lavoie et al., 2001; Giguere et al., 2002; Ainsworth et al.,
2003; Cordeau et al., 2004; Ainsworth et al., 2007; Riihimäki
et al., 2008). Asthma-affected horses produce both type 1 and 2
cytokines, depending on the stage of their disease and the timing
of sample collection. Cytokine expression in airway lymphocytes
is also influenced by the length of time that an asthma-affected
horse has experienced clinical disease (Pietra et al., 2007).
Furthermore, lymphocytes retrieved from asthma horses after
prolonged exposure to allergens (months) demonstrate an
increase in the production of interleukin (IL)-8 and interferon-γ
(Horohov et al., 2005). Moreover, IL-17 is known to induce the
expression of pro-inflammatory cytokines such as tumor necrosis
factor (TNF)-α, IL-1B, and IL-6 as well as chemokines CXCL1,
2, and 8, all of which are hallmarks of acute inflammatory pro-
cesses (Schmidt-Weber et al., 2007). Finally, regulatory T cells
(Treg) appear to play a role in the immune response in
asthma-affected horses (Henriquez et al., 2014).

Neutrophil migration and activation in the lungs of
horses with asthma

The neutrophil recruitment cascade is mediated by the sequen-
tial interaction of receptors present on neutrophils with ligands
induced on the surface of the activated endothelium (Mayadas
et al., 2014). Neutrophils are observed in higher concentrations
in the pulmonary capillaries compared with systemic blood even
in the absence of inflammatory stimuli. This phenomenon
allows neutrophils to readily migrate into the lungs in response
to inflammatory stimuli (Cheng and Palaniyar, 2013). During
inflammation, neutrophils become activated upon stimulation
and may produce ROS and NETs, undergo degranulation, or
exhibit other functions. The activation of neutrophils is required
before migration into the lungs (Ley et al., 2007). In
asthma-affected horses, the neutrophils migrate within hours
into the airway lumen followed by the development of airway
obstruction and a late phase of migration (Fairbairn et al.,
1993; Franchini et al., 1998; Brazil et al., 2005).
The principal lesion in asthma-affected horses is bronchiolitis.

The peribronchiolar accumulation of lymphocytes is accompanied
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by the intraluminal accumulation of neutrophils (Leguillette, 2003)
and occurs within 7 h after environmental challenge (Fairbairn
et al., 1993). A type III hypersensitivity reaction explains, in part,
the neutrophilic inflammation in the airways of asthma-affected
horses, but the factors that initiate neutrophilia in the airways of
affected horses have not been completely elucidated. As previously
mentioned, bronchoalveolar cells retrieved from asthma-affected
horses after antigenic challenge demonstrate the increased expres-
sion of the neutrophil chemokine, IL-8 (Giguere et al., 2002;
Ainsworth et al., 2003). An increase in the concentration of IL-8
in broncheoalveolar lavage fluid (BALF) has also been demon-
strated (Franchini et al., 2000; Ainsworth et al., 2003), and
Riihimaki et al. (2008) reported that IL-8 mRNA expression was
upregulated in BALF cells and in endobronchial biopsies from
asthma-affected horses in acute crisis. Several authors also suggest
that alveolar macrophages can contribute to the airway inflamma-
tion by the release of IL-8, macrophage inflammatory protein-2
and TNF-α (Giguere et al., 2002; Ainsworth et al., 2002; Joubert
et al., 2011). In addition, bronchial nuclear factor-κB (NF-κB) activ-
ity strongly correlates to the percentage of neutrophils present in the
bronchi; this result suggests that the sustainedNF-κB activity in the
airways of asthma-affected horses is driven mainly by the granulo-
cytic and non-granulocytic cells that remain or appear in the bron-
chi after antigen challenge (Bureau et al., 2000a, b). BALF
granulocytes from asthma-affected horses demonstrate a signifi-
cant delay in apoptosis compared with blood granulocytes from
the same horses or blood and BALF granulocytes from healthy
horses (Bureau et al., 2000b; Turlej et al., 2001). Furthermore,
since airway neutrophilia is a well-recognized characteristic of clin-
ical equine asthma, several researchers have attempted to establish a
relationship between IL-17 and the immediate influx of neutrophils
into the airways of asthma-affected horses (Murcia et al., 2016).
IL-17 is produced by CD4 + T helper 17 cell and other types of
cells such as γ/δ T cells, natural killer cells, lymphoid tissue inducer
cells, macrophages, eosinophils, and neutrophils (Gaffen 2009;
Ramirez-Velazquez et al., 2013). IL-17 can indirectly promote the
activation and recruitment of neutrophils into the airways by indu-
cing the production of such chemokines as IL-8, CXCL1, and
granulocyte colony-stimulating factor (G-CSF) in endothelial and
epithelial cells (Ouyang et al., 2008). Neutrophil influx into the air-
ways and surrounding pulmonary tissues coincides with a signifi-
cant increase in IL-17 mRNA expression in the airway cells
obtained from endobronchial biopsies and BALF compared with
controls during provocation studies (Ainsworth et al., 2006;
Riihimaki et al., 2008). Additionally, Debrue et al. (2005) suggested
that IL-17 may induce neutrophil chemotaxis and activation,
mucus hypersecretion and alterations in airway function. Korn
et al. (2015) also found an increased IL-17 response focused on
NF-κB and a downregulation of the IL-4 gene in asthma-affected
horses through immunohistochemistry and global gene expression
profiles in mediastinal lymph nodes. This finding provides add-
itional evidence of the involvement of IL-17 in the chronic stages
of equine asthma.

Conversely, the innate immune response plays an important
role in neutrophil activation during allergic airway diseases in
both humans and horses (Feleszko et al., 2006; Berndt et al.,
2007). Among the innate mechanisms described is the formation

of NETs, which serve as possible promotors of disease in
asthma-affected horses. The pathogenic role of NETs has
been described for many infectious and non-infectious human
diseases, including respiratory cases with a massive influx of neu-
trophils into the airways (Porto and Stain, 2016). Excessive NET
release is particularly deleterious in lung diseases because NETs
can expand easily in the pulmonary alveolar space and cause lung
injury. NETs and their associated molecules can also directly
induce epithelial and endothelial cell death (Xu et al., 2009;
Saffarzadeh et al., 2012). NETs have been identified in lungs
with CF, ALI, neutrophilic asthma, and bacterial, viral, or fungal
infections. The primary role of NETs is to prevent microbial dis-
semination because of their stringy structure and to kill patho-
gens due to the high local concentrations of antimicrobial
molecules (Manzenreiter et al., 2012). However, studies reveal
that NETs can exert adverse effects in a number of diseases,
including diseases of the lung (Cheng and Palaniyar, 2013).
NETs are composed of a backbone of nuclear DNA combined
with a multitude of nuclear proteins, as well as the contents of
neutrophil granules, including Myeloperoxidase (MPO) and elas-
tase and peptidylarginine deiminase type IV (Martinelli et al.,
2004; Urban et al., 2009; Papayannopoulos et al., 2010). These
DNA–protein complexes are then released extracellularly as
NETs. The potent neutrophil chemoattractant, IL-8, has also
been shown to induce NETosis (Brinkmann et al., 2004;
Gupta et al., 2005). However, their contribution to disease sever-
ity is not clearly understood. In asthma-affected horses, NETs
were present in BALF in exacerbated cases but not in fluid
from horses in remission periods or in healthy challenged horses
(Côté et al., 2014).
Pathogen-associated molecules are recognized by pattern rec-

ognition receptors, such as Toll-like receptors (TLRs). Thus,
TLRs are important for the activation of antigen-presenting
cells during innate and adaptive immune responses (Casale and
Stoke, 2008). TLRs are expressed by different cells involved in
asthma-related airway inflammation, such as epithelial cells,
macrophages, dendritic cells, and mast cells (Takeda et al.,
2003) and airway smooth muscle (Sukkar et al., 2006). In
asthma-affected horses, TLR4 mRNA expression is increased
in the BALF of horses that have been exposed to stable dust
compared with unaffected horses (Ainsworth et al., 2006). This
finding suggests that exposure to stable dust leads to increased
TLR4 mRNA expression in bronchial epithelial cells from asth-
matic horses. In addition, the upregulation of epithelial TLR4
mRNA correlates with IL-8 mRNA expression (Berndt et al.,
2007). These results could explain the exacerbated neutrophilic
airway inflammation of asthma-affected horses in response to
airborne endotoxin (Pirie et al., 2002, 2003; Berndt et al.,
2007). Interestingly, other reports also state that microbial-
derived products, such as endotoxins, play an important role
in allergy-induced human lung disease (Feleszko et al., 2006).

Role of ROS in asthma-affected horses

ROS are produced during oxygen reduction and are character-
ized by high reactivity. ROS participate in many important
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physiological processes, but if they are produced in high concen-
trations, they may lead to oxidative stress development and dis-
turb the pro-oxidative/antioxidative balance toward an
oxidation reaction, thereby leading to the damage of lipids, pro-
teins, carbohydrates, or nucleic acids (Kleniewska and
Pawliczak, 2017). Oxidative stress has been shown to occur in
many human respiratory conditions, including COPD and
human asthma (Kirkham and Barnes, 2013; Zuo et al., 2013).
ROS derived from inflammatory cells (neutrophils, macro-
phages), which migrate in large numbers to the lungs, are crucial
in the oxidant–antioxidant imbalance observed during the
course of the above‐mentioned diseases (Niedzwiedz and
Jaworski, 2014).

ROS formation is a multi-step process involving the trans-
location of cytosolic components of NADPH (p47phox,
p67phox, and Rac) to the NADPH components found on the
cytoplasmic or phagosome membrane (gp91phox and
gp22phox). When this occurs, NADPH transports electrons
to molecular oxygen, generating a superoxide anion. This phe-
nomenon, in turn, undergoes a rapid and spontaneous dismuta-
tion to hydrogen peroxide, which serves as a substrate for
myeloperoxidase for the subsequent generation of hypohalous
acids, the most important of which is hypochlorite acid
(Tintinger et al., 2013).

Horses that suffer from asthma have a decreased pulmonary
antioxidant capacity, which may render them more susceptible
to oxidative challenge. Research on oxidative stress in horses
with asthma has been conducted, and some authors demon-
strated that neutrophilia induced by exposure to organic dust
is associated with increases in elastase and decreases in ascorbic
acid concentrations in BALF retrieved from horses with asthma
(Deaton et al., 2005a, b). Concurrently, affected horses experi-
ence significant antioxidant depletion in the trachea, which
may be related to inflammation, and oxidative processes in per-
ipheral airways (Deaton et al., 2006). Acute exacerbations are
associated with a significant increase in the levels of markers
of oxidative stress (oxidized glutathione and glutathione redox
ratio) in pulmonary epithelial lining fluid (Robinson, 2001).
These markers correlate significantly with the number of neutro-
phils in BALF (Art et al., 1999).

Asthmatic patients and mouse models typically exhibit vary-
ing degrees of airway inflammation; oxidizing agents interfere
with the structure of epithelial cells, resulting in the increased
production of mucus. This phenomenon eventually leads to
structural changes and bronchial remodeling (Weiss and
Bellino, 1986; Adler et al., 1990; Doelman et al., 1990;
Katsumata et al., 1990), although the precise role of ROS in
modulating equine airway smooth muscle tone and the airway
wall is unclear and may depend on the presence of other inflam-
matory mediators (Deaton et al., 2005a). The destructive nature
of ROS may contribute to increased inflammation, apoptosis, or
necrosis by modifying nucleotide chains and disrupting DNA
stability. This property may also lead to the proliferation of
smooth muscle cells in the airways, or an increase in the amount
of mucus in the lungs (Cooke et al., 2003; Kamiya, 2003; Reddy
et al., 2005; Höhn et al., 2013); these changes have been
described in horses with asthma (Herszberg et al., 2006;

Bullone and Lavoie 2015). ROS overproduction may also
activate transcription factors, such as NF-κB or AP-1 (activator
protein 1) proteins (Csiszar et al., 2008; Noutsios and Floros.,
2014; Schuliga, 2015), which in turn may lead to the expres-
sion of many pro-inflammatory cytokines, including TNF-α,
IL-4, IL-5, IL-6, and IL-13, and aggravate the disease (Frossi
et al., 2003). Moreover, studies reveal that NETosis is dependent
on the generation of ROS by NADPH oxidase (Porto and
Stein, 2016). Furthermore, several authors suggest that dietary
antioxidant cocktails may improve the lung function of
asthma-affected horses by modulating oxidant–antioxidant bal-
ance and airway inflammation (Kirschvink et al., 2002). Finally,
all of the described data support the hypothesis that defects in
the intracellular antioxidant defense system may be critical con-
tributors to the development of equine asthma under increased
ROS production. Further studies on oxidative stress markers
and the efficacy of selected antioxidants in equine asthma
treatment are needed to determine the optimal control of this
disease.

Neutrophils and the resolution of inflammation

Airway epithelial cells are the first line of defense against inhaled
pathogens and antigens in the airways. Once the triggering anti-
gen reaches the airways, epithelial cells launch signals that acti-
vate tissue-resident cells of the innate immune system,
initiating the inflammatory response and recruiting circulating
neutrophils (Hallstrand et al., 2014). To leave their intravascular
location, neutrophils must interact with the endothelial cells of
the local vessels, which increase adhesion molecule expression
after being activated and allow the migration of neutrophils to
the underlying tissue. This effect, in turn, promotes the recruit-
ment of inflammatory monocytes and potentiates the
pro-inflammatory environment, allowing control of the insulting
agent that triggered the initial inflammation (Mantovani et al.,
2011) and permitting the resolution of the inflammatory
event. However, in some cases, such as neutrophilic asthma,
an exacerbated inflammatory response occurs. The resolution
of this acute process relies on many soluble molecules; such
molecules as Annexin A1 (AnxA1) (Perretti and D’Acquisto,
2009), ChemerinC15 (Cash et al., 2008), lipoxins (Serhan et al.,
2008), and resolvins (Ariel and Serhan, 2007) play an important
role in stopping the recruitment of neutrophils. These signals act
in conjunction with the apoptosis of neutrophils, which is cen-
tral in the resolution process; dying neutrophils are known to
stimulate their own efferocytosis, inducing macrophagic transi-
tion from a pro-inflammatory (M1) to an anti-inflammatory
(M2) profile (Ortega-Gomez et al., 2013). AnxA1 (37 kDa) is
an abundant protein in the cytosol of resting neutrophils.
AnxA1 translocates to the plasma membrane when the cell is
activated and interacts with the formyl peptide receptor 2 to
moderate leukocyte adhesion and migration (Perretti et al.,
2002; Dalli et al., 2008). AnxA1 also promotes neutrophil apop-
tosis and clearance by macrophages (Perretti and Solito, 2004;
Scannell et al., 2007). Another neutrophil-derived protein with
similar activities is lactoferrin. This protein is contained within
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the secondary granules of neutrophils, and when released, lacto-
ferrin binds to specific receptors that trigger Mitogen-Activated
Protein Kinases (MAPK)-mediated intracellular signaling, which
is crucial in the regulation of cytoskeletal remodeling and cell
adhesion (Bournazou et al., 2009). Additionally, in a model of
ALI, lactoferrin application prevented neutrophil tissue infiltra-
tion and edema formation and improved lung function (Li
et al., 2012). Neutrophils that have started their apoptotic pro-
cess are cleared by macrophages via efferocytosis. Apoptotic
neutrophils promote their own clearance by expressing ‘find
me’ and ‘eat me’ signals. ‘Find me’ signals are secreted factors
that attract scavengers. To date, four major ‘find me’ signals
have been described (Lauber et al., 2003; Gude et al., 2008;
Truman et al., 2008; Elliott et al., 2009). ‘Eat me’ signals are sur-
face markers that permit the identification of a dying cell. These
signals can either be molecules exposed de novo at the cell mem-
brane or existing ones that undergo modifications during apop-
tosis; the best-known such molecule is phosphatidylserine,
which is also the best-studied marker of early apoptosis
(Ortega-Gomez et al., 2013). Furthermore, neutrophils induce
a change in phagocytic macrophages from a pro-inflammatory
to an anti-inflammatory mode. Upon apoptotic cell efferocyto-
sis, macrophages turn off the production of pro-inflammatory
cytokines and lipid mediators and launch an anti-inflammatory
transcriptional program characterized by the release of IL-10
and Transforming growth factor (TGF)-β (Fadok et al., 1998)
and the secretion of lipid mediators that play a key role in the
orchestration of inflammation and its resolution (Serhan et al.,
2008). Moreover, neutrophils may also stimulate regulatory-
suppressive cells. Apoptotic neutrophils or efferocytes induce
the recruitment of myeloid-derived suppressor cells (MDSC)
after phagocytosis (Bronte et al., 2000; Ribechini et al., 2010)
that secrete IL-10 and TGF-β. Lymphoid regulatory cells,
such as B regulatory cells and Treg, are also attracted to the
inflammatory site, where IL-10 and TGF-β secreted by effero-
cytes and MDSC induce their expansion and potentiate their
suppressor activity, increasing the expression of FoxP3
(Savage et al., 2008). Treg cells are important players in the pro-
resolution mechanism that occurs after injury, because their
absence delays the resolution of lung inflammation (D’Alessio
et al., 2009). In this sense, several authors demonstrated that
more Tregs are present in the airways of asthma-affected horses,
probably due to allergic inflammation, and that these cells are
possibly a heterogeneous population with different physiologic
attributes and roles in the regulation and final resolution of air-
way allergic inflammation (Henriquez et al., 2014).

On the other hand, in human asthma patients with more severe
disease, the asthmatic-repairing epithelium can generate pro-
neutrophilic factors that can have profound chemotactic and
apoptosis-delaying actions (Uddin et al., 2013). There is a persist-
ence of apoptosis-resistant neutrophils in the airways of patients
with severe asthma that may impede timely neutrophil clearance
and thereby delay the resolution of airway inflammation (Louis
and Djukanovic, 2006). Moreover, neutrophilic asthma is relatively
resistant to glucocorticoids (GCs) (Bruijnzeel et al., 2015). A similar
phenomenon occurs in asthma-affected horses. Murcia et al.
(2016) showed that IL-17 directly activates equine neutrophils at

24 h and that the expression of IL-8 is not attenuated by GCs.
Additionally, IL-17 increases neutrophil viability and decreases
apoptosis. Therefore, treatments that target neutrophilic inflamma-
tion could be useful to modify the course of the disease and
improve clinical outcomes in both humans and horses. Several
alternative treatments with proposed resolution effects on inflam-
mation have been evaluated. These include the optimization of
GC treatment protocols (Cesarini et al., 2006; DeLuca et al.,
2008; Robinson et al., 2009; Leclere et al., 2010; Franke and
Abraham, 2014; Barton et al., 2016), autologous bone marrow-
derived mononuclear cell therapy (Barussi et al., 2016), nanoparti-
culate immunotherapy (Klier et al., 2015), and tamoxifen treatment
(Sarmiento et al., 2013; Perez et al., 2016; Borlone et al., 2017).
Tamoxifen promotes early neutrophil apoptosis and dampens
the chemotactic index and respiratory burst production in vitro
(Borlone et al., 2017). Overall, extensive research is still required
to identify effective therapeutic targets and interventions to achieve
the resolution of inflammation in diseased patients’ lungs.

Conclusions

The mechanism by which airway inflammation develops in
asthma-affected horses is a multifaceted and dynamic process.
Equine asthma was first recognized as a debilitating disease in
horses many years ago, but the pathology of the inflammatory
component of this airway disease remains an enigma (Moran
and Folch, 2011). Current knowledge suggests that the inflam-
matory component of this disease results from a combination
of elements from both the innate and adaptive immune
responses. Although neutrophils are critical to the immune sys-
tem in the event of microbial infections, an overabundance of
neutrophils in circulation or in tissues has been shown to be a
problem in a number of lung diseases. In asthma-affected
horses, during airway inflammation, neutrophils become
activated upon stimulation and may produce ROS and
NETs, undergo degranulation, or exhibit other functions.
Dysregulated apoptosis and mechanisms of inflammation may
play an important role in the pathogenesis of asthma in horses.
The persistence of apoptosis-resistant neutrophils in the airways
of horses with asthma may also impede timely neutrophil clear-
ance and delay the resolution of airway inflammation. The dis-
covery and development of compounds to help regulate ROS,
NETs formation, cytokine release, and clearance would be
highly beneficial in designing therapies for this disease in horses.
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