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SUMMARY
The optimum selection of a structure for a given application is a capital phase in typological synthe-
sis of parallel robots. To help in this selection, this paper presents a performance evaluation of four
translational parallel robots: Delta, 3-UPU, Romdhane-Affi-Fayet, and Tri-pyramid (TP). The prob-
lem is set as a multiobjective optimization using genetic algorithm methods, which uses kinematic
criteria, that is, global dexterity and compactness, to ensure a prescribed workspace. The results are
presented as Pareto fronts, which are used to compare the performances of the aforementioned struc-
tures. The obtained results show that the TP robot has the best kinematic performance, whereas the
3-UPU robot is the most compact for a given prescribed workspace.

KEYWORDS: Dimensional synthesis; Compactness; Dexterity; Genetic algorithm.

1. Introduction
In the last decades, there was an increasing interest in parallel robots due to their excellent accu-
racy relative to serial robots. However, the parallel architectures with six Degree Of Freedom (DOF)
have complex kinematic and dynamic models, which led some researchers to present parallel struc-
tures with less than six DOFs. Moreover, several applications do not require six DOFs. Therefore,
translational parallel manipulators (TPMs) became popular for their ease of modeling and for their
wide range of applications (e.g., pick and place tasks, machining and assembly operations).1–5

Among more than 100 TPMs in the literature, very few of them have been commercialized like
the well-known Delta robot.6

The design problem of parallel robots has been the subject of extensive research activities in
recent years. One of the dimensional design approaches is the one based on minimizing an objective
function. It consists of establishing a cost function for the criterion to optimize and associate the
appropriate constraints with the problem.

Interval analysis method has been widely used for solving optimization problems. Chablat et al.7

used this method to compare two 3-DOF TPMs to obtain the largest dexterous workspace. Another
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234 Dimensional synthesis and performance evaluation

method based on an exhaustive search algorithm was used by Stock et al.8 to optimize the workspace
and the manipulability of a linear Delta manipulator.

The work of Yunjiang Lou et al.9 deals with different nonlinear optimization algorithms to find
the optimal design of two parallel manipulators: the Delta robot and the Gough–Stewart platform.
Five algorithms were investigated: the sequential quadratic programming, the controlled random
search, the genetic algorithm (GA), the differential evolution, and the particle swarm optimization.
The study showed that there is no a unique best method but a suitable algorithm can be selected
as a function of the nature of the problem. Kelaiaia et al.10 applied a methodology for dimensional
synthesis to a linear Delta robot, based on multiobjective optimization of a geometric criterion versus
kinematic and dynamic performances. Another work by the same authors11 was interested in the
analysis and comparison of two optimization approaches: the single-objective and the multiobjective
optimization. This study showed that the multiobjective approach based on non dominated sorting
genetic algorithm (non-dominated sorting-based GA) is more effective than the single-objective one,
since it enables to find a compromise between several performances even when they are antagonist.
Jamwal et al.12 proposed an optimization of a soft parallel manipulator dedicated to rehabilitation,
using a modified GA, where the objective was the minimization of the global conditioning number.
Laribi et al.13 presented the mathematical concept of power of a point as a criterion of the geometric
optimization of the Delta robot for a prescribed workspace using GA. The same concept was used for
a robust optimization of the Romdhane-Affi-Fayet (RAF) robot to have a specified workspace and a
high dexterity.14

This paper presents a new approach to develop the mathematical model of the TPMs workspace
without the need to solve the geometric model. The efficiency of this new workspace formulation
is illustrated through four TPMs with different topologies: Delta, 3-UPU, RAF, and Tri-pyramid
(TP). These translational structures present different shapes of legs’ workspace and different types of
actuation. The 3-UPU, the RAF, and the TP have linear actuation and the Delta has rotary actuation.
Because of the diversity in the designs of the TPMs, it is difficult to find a common ground to compare
all these structures, and this work handles candidates with topologies covering a large panel.

The objective consists of finding the optimal design of each of these robots, which allows them
to access a prescribed workspace with the smallest size and the highest dexterity. A multiobjective
genetic algorithm (MOGA) will be used for the optimization problem.

The architectural and design parameters of the four robots are presented in Section 2. The formu-
lation of the dimensional optimization problem for the four robots is established in Section 3. The
obtained results, discussion, and comparison are presented in Section 4. Finally, some conclusions
and perspectives of this work are given in the last section.

2. Geometric and Kinematic Study of Translational Robots
In this section, we present the four studied robot structures: their geometric and kinematic models
as well as their workspaces. The mathematical evaluation of the manipulators’ workspaces will be
determined through the power of a point concept used in refs. [13, 14]. This approach has been the
subject of a previous work.15

2.1. The Delta robot
The Delta robot is the most known and commercialized TPM. Its originality resides in the use of three
parallelogram structures to restrain the rotations of the mobile platform. As shown in Fig. 1(a), the
Delta robot consists of three identical legs, each one is composed of two successive parallel revolute
joints relating the base to the parallelogram structure. The mobile platform is connected by three
revolute joints to the three parallelograms.

The structural design parameters are L1, L2, rb, rp, α1, α2, and α3, where L1 and L2 are the arms’
lengths, rb and rp are, respectively, the radius of the base and the mobile platform, and αi are the
intersection angles between OAi and the axis X as shown in Fig. 1(b). ϕ1i are the input rotations of
the three legs, whereas ϕ2i and ϕ3i are the passive rotations (i = 1, 2, 3).

2.1.1. Geometric model and Jacobian matrix. The geometric model of the Delta robot can be
obtained through the closed loop equation of one leg. Then, the position of the mobile platform
is given by the following equation where X P , YP, and Z P are the coordinates of the point P in the
reference frame R(O, X, Y, Z) (see Fig. 1(b)).
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Fig. 1. The Delta robot: (a) CAD model and (b) parameters of one leg.

⎧⎪⎨
⎪⎩

X P = cos αi
(
rb + L2 cos ϕ1i + L1 cos ϕ3i cos (ϕ1i + ϕ2i ) − rp

) − L1 sin αi sin ϕ3i

YP = sin αi
(
rb + L2 cos ϕ1i + L1 cos ϕ3i cos (ϕ1i + ϕ2i )−rp

) + L1 cos αi sin ϕ3i

Z P = L2 sin ϕ1i + L1 cos ϕ3i sin (ϕ1i + ϕ2i )

i = 1, 2, 3 (1)

By squaring and addition of these equations, the passive variables are eliminated and the direct
geometric model is obtained in Eq. (2).

[Bi − X P ]2 + [Ci − YP ]2 + [Di − Z P ]2 = L1
2 (2)

where Bi = (r + L2 cos ϕ1i ) cos αi , Ci = (r + L2 cos ϕ1i ) sin αi , Di = −L2 sin ϕ1i

i = 1, 2, 3 & r = rb − rp

The kinematic model of the Delta robot, Eq. (3), is obtained by differentiating Eq. (2) with respect to
time.

Ẋ P (X P − Bi ) + ẎP (YP − Ci ) + Ż P (Z P − Di )

= Ḃi (X P − Bi ) + Ċi (YP − Ci ) + Ḋi (Z P − Di ) (3)

where Ḃi = −L2 cos αi sin ϕ1i ϕ̇1i , Ċi = −L2 sin αi sin ϕ1i ϕ̇1i , and Ḋi = −L2 cos ϕ1i ϕ̇1i

By rearranging the three equations in a matrix form, we obtain the Jacobian matrix J.

J = JP
(
Jϕ

)−1
(4)

where

JP =
⎛
⎜⎝

X P − B1 YP − C1 Z P − D1

X P − B2 YP − C2 Z P − D2

X P − B3 YP − C3 Z P − D3

⎞
⎟⎠ , Jϕ =

⎛
⎜⎝

Jxx 0 0

0 Jyy 0

0 0 Jzz

⎞
⎟⎠

Jxx = −L2 [ cos α1 (X P − B1) + sin α1 (YP − C1)] sin ϕ11−L2(Z P − D1) cos ϕ11

Jyy = −L2 [ cos α2 (X P − B2) + sin α2 (YP − C2)] sin ϕ12−L2 (Z P − D2) cos ϕ12

Jzz = −L2 [ cos α3 (X P − B3) + sin α1 (YP − C3)] sin ϕ13−L2(Z P − D3) cos ϕ13

2.1.2. Workspace evaluation. The workspace of the Delta robot is given by the intersection of three
volumes generated by the three legs. The workspace generated by the ith leg is a torus of center Ai
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Fig. 2. The workspace of one leg of the Delta robot.

Fig. 3. The 3-UPU robot: (a) CAD model and (b) parameters of one leg.

and axis Yi where Ri (Ai , Xi, Yi, Zi) is a fixed frame corresponding to the ith leg (see Fig. 2). L2 and
L1 are, respectively, the minor and major radii of the torus given in Eq. (5).

(
xPi

2 + yPi
2 + zPi

2 + L2
2 − L1

2
)2 = 4L2

2
(
xPi

2 + zPi
2
)

(5)

where

xPi = cos αi X P + sin αi YP − r, yPi = −sin αi X P + cos αi YP , zPi = Z P

Thus, the limits of the workspace can be given by the following function:

Fi
DE LT A (P) = (

xPi
2 + yPi

2 + zPi
2 + L2

2 − L1
2
)2 − 4L2

2
(
xPi

2 + zPi
2
)

i = 1, 2, 3 (6)

2.2. The 3-UPU robot
The 3-UPU is TPM proposed by Tsai in 1996.16 It consists of three identical legs with three lin-
ear actuators. Each leg is composed of a sequence of three joints U, P, and U (U: universal joint,
P: prismatic joint) as shown in Fig. 3(a).

The design parameters and joint variables are given in Fig. 3(b) where rb and rp are, respectively,
the radii of the base and the mobile platform and αi are the intersection angles between OAi and the
axis X. The actuators positions are parametrized by li (i = 1, 2, 3).

2.2.1. Geometric model and Jacobian matrix. The geometric model can be defined through the
closed loop equation of one leg given by the vector OP.

OP = rb + li − rp, i = (1, 2, 3) (7)
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Fig. 4. The workspace of one leg of the 3-UPU robot.

By decomposing this equation on the reference frame R(O, X, Y, Z), we obtain the coordinates of
the mobile platform.

⎧⎪⎨
⎪⎩

X P = rb cos αi + li x − rp cos αi

YP = rb sin αi + liy − rp sin αi

Z P = li z

(8)

Then, the inverse geometric model is obtained by squaring and summing the previous equations.

li =
√

(X P − r cos αi )
2 + (YP − r sin αi )

2 + (Z P)2 (9)

where r = rb − rp and i = 1, 2, 3
The inverse kinematic model is obtained by differentiating Eq. (9) with respect to time.

⎛
⎜⎜⎝

l̇1

l̇2

l̇3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X P − r cos α1

l1

YP − r sin α1

l1

Z P

l1

X P − r cos α2

l2

YP − r sin α2

l2

Z P

l2

X P − r cos α3

l3

YP − r sin α3

l3

Z P

l3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

Ẋ P

ẎP

Ż P

⎞
⎟⎟⎠ (10)

Thus, the Jacobian matrix is given by the following equation

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X P − r cos α1

l1

YP − r sin α1

l1

Z P

l1

X P − r cos α2

l2

YP − r sin α2

l2

Z P

l2

X P − r cos α3

l3

YP − r sin α3

l3

Z P

l3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(11)

2.2.2. Workspace evaluation. The workspace generated by one leg of the 3-UPU robot (see Fig. 4)
is the volume limited by two concentric spheres of center Ai and radii lmax and lmin corresponding,
respectively, to the upper and lower limits of the extension of the actuator. Thus, the workspace
boundaries are defined through Eqs. (12) and (13).

Fi_ max
3U PU = (X P − r cos αi )

2 + (YP − r sin αi )
2 + Z P

2 − l2
max (12)

Fi_ min
3U PU = (X P − r cos αi )

2 + (YP − r sin αi )
2 + Z P

2 − l2
min (13)

i = (1, 2, 3)
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Fig. 5. The RAF robot: (a) CAD model and (b) parameters of one leg.

2.3. The RAF robot
The RAF robot is a TPM proposed by Romdhane et al.4 It consists of a mobile platform related to a
fixed base by three active legs and two passive kinematic chains used to prevent platform’s rotations.
The actuators are linear and are connected to the base and the mobile platform by two spherical joints
(see Fig. 5(a)).

Figure 5(b) presents the design parameters and joint variables of the RAF robot. For the active legs,
we consider rb and rp are the radii of the base and the mobile platform, respectively, and li (i = 1, 2, 3)

are the input motion. L1 and L2 are the lengths of the arms of the passive chains and ra and rd are
the radii of the base and the mobile platform, respectively.

2.3.1. Geometric model and Jacobian matrix. Due to the similarity between the active part of the
RAF robot and the 3-UPU robot, the geometric model is determined by the same way.

li =
√

(X P − r cos αi )
2 + (YP − r sin αi )

2 + (Z P)2 (14)

where r = rb − rp and i = (1, 2, 3)

X P , YP, and Z P are the coordinates of the center of the mobile platform in the reference frame R
(O, X, Y, Z).

The Jacobian matrix of the RAF robot given in Eq. (15) is obtained by differentiating the inverse
geometric model with respect to time.

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

X P − r cos α1

l1

YP − r sin α1

l1

Z P

l1

X P − r cos α2

l2

YP − r sin α2

l2

Z P

l2

X P − r cos α3

l3

YP − r sin α3

l3

Z P

l3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

2.3.2. Workspace evaluation. The workspace of the RAF robot is made by the intersection of two
regions: active and passive workspaces presented in Fig. 6.

The resemblance between the active legs and the 3-UPU legs leads to the same equations for the
active workspace limits.

Fimax
RAF(P) = (X P − r cos αi )

2 + (YP − r sin αi )
2 + Z P

2 − l2
max (16)

Fimin
RAF(P) = (X P − r cos αi )

2 + (YP − r sin αi )
2 + Z P

2 − l2
min (17)

i = (1, 2, 3)
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Fig. 6. The workspace of one leg of the RAF robot: (a) active leg and (b) passive leg.

Fig. 7. The TP robot: (a) CAO and (b) parameters of one leg.

Equivalently, the similarity of passive chains and the Delta robot legs leads to the following equation
for passive workspace.

Fj
R AF(P) = (

xPj
2 + yPj

2 + zPj
2 + L2

2 − L1
2
)2 − 4L2

2
(
xPj

2 + zPj
2
)

j = 1, 2 (18)

where xPj = cos β j X P + sin β j YP − e, yPj = − sin β j X P + cos β j YP , zPj = Z P

e = ra − rd

2.4. The TP robot
The TP robot proposed by Zeng17 consists of a mobile platform connected to a fixed base by three
identical legs. For each leg, a prismatic joint is connecting two revolute joints and the whole is
attached to the base by another prismatic joint (see Fig. 7).

The actuators are chosen to be fixed on the base on the first prismatic joint in order to ensure a
high stiffness for the structure. This configuration gives the platform three degrees of freedom. To
obtain a translational manipulator, the axes of the two rotational joints, in each leg, must be parallel.

2.4.1. Geometric model and Jacobian matrix. As shown in Fig. 7(b), the position of the mobile
platform is given by = r0. The closed loop equation of each subchain is described by the following
relation:

hi = li − ri − r0 (19)

where:

r0 = [X P YP Z P ]T

li = li
[

cos αp cos αi cos αpsin αi sin αp
]T

ri = r
[

cos(αp − αR) cos αi cos(αp − αR) sin αi sin(αp − αR)
]T
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By rewriting Eq. (19), we obtain the expression of hi.

hi =
⎡
⎢⎣

li cos αp cos αi−r cos(αp − αR) cos αi − X P

li cos αp sin αi − r cos(αp − αR) sin αi − YP

li sin αp − r sin(αp − αR) − Z P

⎤
⎥⎦ (20)

The kinematic position solutions are given by solving the following equation:

hi.ri = hi .r.cos(γ ) (21)

Eq. (21) is solved to give the actuators coordinates involving the platform coordinates.

li

Ai cos2 γ − Bi cos αR − r cos αR sin2 γ

=
+

√√√√
[
Ai cos2 γ − Bi cos αR − r cos αRsin2γ

]2

−(cos2γ − cos2αR)
(
cos2γ

(
X P

2 + YP
2 + Z P

2 + r2 + 2r Bi
) − (Bi + r)2

)

(cos2γ − cos2αR)
(22)

where

Ai = (X P cos αi + YP sin αi ) cos αP + Z P sin αP

Bi = (X P cos αi + YP sin αi ) cos(αP − αR) + Z P sin(αP − αR)

The Jacobian matrix is obtained from the velocity equation, which is obtained from differentiating
the kinematic position solution with respect to time.

l̇i = ki
ki·li
li

⎡
⎢⎣

Ẋ P

ẎP

Ż P

⎤
⎥⎦ (23)

where ki =
(

ri
r × hi

hi

)
× hi

hi

The Jacobian matrix of the TP robot is given by Eq. (24).

J =
⎡
⎢⎣

J1

J2

J3

⎤
⎥⎦ (24)

where Ji = ki
ki ·li

li

2.4.2. Workspace evaluation. The workspace of the TP is obtained by the intersection of three vol-
umes generated by the three legs. For each leg, the workspace is constrained by limits of the two
prismatic joints li and hi as shown in Fig. 8.

The volume generated by the first prismatic joint is a succession of conical surfaces given by the
following equation. The reachable workspace of one leg is limited by two surfaces corresponding to
li = lmax and li = lmin.

Fli (P, li ) = x2
i + y2

i − (zi − r)2(tan γ )2 i = 1, 2, 3 (25)

where
⎧⎪⎨
⎪⎩

xi = X Psin(αi ) − YPcos(αi )

yi = −li sin (αR) + Z P cos (αP − αR) − sin (αP − αR) (X P cos (αi ) + YP sin(αi ))

zi = li cos (αR) − Z P sin (αP − αR) − cos (αP − αR) (X P cos (αi ) + YP sin(αi ))
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Fig. 8. The workspace of one leg of the TP robot.

In the following, we will consider the moving platform flat. Therefore, the angles αP and αR are
equal. The equations of the bounding surfaces are given in Eqs. (26) and (27).

Flimin
T P(P) = (X P sin αi − YP cos αi )

2 + (Z P − lmin sin αP )2

− (lmin cos αP − X P cos αi − YP sin αi − r)2(tan γ )2 (26)

Flimax
T P(P) = (X P sin αi − YP cos αi )

2 + (Z P − lmax sin αP )2

− (lmax cos αP − X P cos αi − YP sin αi − r)2(tan γ )2 (27)

The motion of the passive prismatic joint generates a cylindrical volume bounded by the limits of the
limb extension (hmin and hmax). The corresponding equations of the two bounding surfaces are given
by the following equation:

Fhimin
T P (P) = X2

P + Y 2
P + Z2

P

−
(

cos αp cos αi X P + cos αpsinαi YP + sin αp Z P
)2

(
cos αp cos αi

)2 + ( cos αpsinαi )
2 + (

sin αp
)2 (28)

− (hmin sin γ )2

Fhimax
T P (P) = X2

P + Y 2
P + Z2

P

−
(

cos αp cos αi X P + cos αpsinαi YP + sin αp Z P
)2

(
cos αp cos αi

)2 + ( cos αpsinαi )
2 + (

sin αp
)2 (29)

− (hmax sin γ )2

3. Dimensional Synthesis of Translational Parallel Robots

3.1. Problem formulation
The aim of this section is to formulate an optimization problem suitable for all considered TPMs. The
objective is to find a set of design parameters that guarantee the smallest size of the structure as well
as the maximum dexterity distribution within a prescribed workspace. The optimization problem is
stated as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Maximize F(I ) = [F1(I )F2(I )]T

Subject to Ci (I, P) ≤ 0

I = [x1, .., xn]

xj min < xj < xj max
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Table I. Bounding intervals of the Delta design parameters.

rb rp L1 L2 H

Min 5 5 5 5 10
Max 70 60 50 50 100

Fig. 9. The desired workspace.

where

P is a point belonging to the desired workspace.
F(I ) is vector containing the two objective functions defining the criteria to optimize
Ci (I, P) are constraint functions
x1, .., xn are the design variables of the robot, and x j min and x j max define the search domain for
each variable x j .

The considered desired workspace presented in Fig. 9 is defined by a set of vertices and can be
considered in our case as a cube of length � a � and center C(0, 0, H).

3.2. Design parameters
For each robot, a set of geometric parameters defining the structure was defined. The design vector
will contain the geometric parameters of the robot and H , which defines the height of the cube with
respect to the base (see Fig. 9).

• The Delta robot

The design parameters of the Delta robot that are considered in the optimization problem are

– rb: is the base’s radius
– rp: is the platform’s radius
– L1: is the length of the parallelogram’s arm
– L2: is the length of the arm linked to the base
– H : is the position of the cube’s center on Z-axis

The design vector is then given by I = [
rb, rp , L1, L2, H

]T
. The bounding search interval for each

parameter is given in Table I.
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Table II. Bounding intervals of the 3-UPU design parameters.

rb rp lmax H

Min 5 5 0 1
Max 70 60 200 100

Table III. Bounding intervals of the RAF design parameters.

rb rp lmax ra rd L1 L2 H

Min 5 5 0 5 5 5 5 1
Max 70 60 200 60 60 50 50 100

• The 3-UPU robot

For 3-UPU robot, four design parameters are considered:

– rb: is the base’s radius
– rp: is the platform’s radius
– lmax : is the maximum length of the prismatic joint
– H : is the position of the cube’s center on Z-axis

The design vector I is then given by I = [
rb, rp, lmax, H

]T
. The bounding search interval for each

parameter is given in Table II.

• The RAF robot

The design vector of the RAF robot is composed of design parameters of the active legs and the
design parameters of the passive kinematic chains defined below:

– rb: is the base’s radius of the active legs
– rp: is the platform’s radius of the active legs
– lmax: is the maximum length of the active prismatic joint
– ra: is the base’s radius of the passive chains
– rd : is the platform’s radius of the passive chains
– L1: is the length of the parallelogram’s arm in the passive chains.
– L2: is the length of the arm linked to the base in the passive chains.
– H : is the position of the cube’s center on Z-axis.

The design vector is given by I = [
rb, r p, lmax, ra, rd , L1, L2, H

]T
. The bounding search interval

for each parameter is given in Table III.

• The TP robot

The design parameters of the TP robot that are considered are

– r : is the platform’s radius
– αp: is the angle between the horizontal plane and the direction and the active prismatic joint
– γ : is the angle between the axis of the first rotational joint and the direction and the passive

prismatic joint
– lmax: is the maximum length of the active prismatic joint
– hmax: is the maximum length of the passive prismatic joint
– H : is the position of the cube’s center on Z-axis

The design vector is given by I = [
r, αp, γ, lmax, hmax, H

]T
. The bounding search interval for each

parameter is given in Table IV.
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Table IV. Bounding intervals of the Tri-pyramid design parameters.

r αp γ lmax hmax H

Min 5 −70 −90 30 10 10
Max 70 0 0 200 100 100

Fig. 10. The cylinder containing the Delta robot.

3.3. The objective functions
3.3.1. Compactness. Compactness function is evaluated by computing the ratio between the volume
occupied by the structure and the volume of the desired workspace and expressed as follows:

C% = desired workspace

bounding cynlinder volume
100 (30)

The bounding cylinder is the smallest cylinder containing the structure and every point within the
desired workspace.

• The Delta robot

The cylinder containing the Delta robot is shown in Fig. 10. The corresponding function to compute
the compactness criterion is given in Eq. (31)

C%
Delta

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a3

π.(rb + L2)
2(H + a

2 )
if max

(
ϕ1i (Pj )

) ≤ 0

a3

π.(rb + L2)
2 (

H + a
2 + L2 sin

(
max

(
ϕ1i (Pj )

))) if max
(
ϕ1i (Pj )

)
> 0

(31)

where i = 1, 2, 3 and j = 1,..,8

• The 3-UPU robot

The compactness of the 3-UPU robot is given by the volume of the cylinder containing the structure
(see Fig. 11). The objective function of compactness criterion is given by Eq. (32).

C%
3−U PU = a3

π. rb
2
(
H + a

2

) (32)

• The RAF robot

The cylinder containing the RAF robot is presented in Fig. 12 and the corresponding compactness
function is given by Eq. (33).
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Fig. 11. The cylinder containing the 3-UPU robot.

Fig. 12. The cylinder containing the RAF robot.

C%
R AF = a3

π(max((ra + L2), rb))
2 (

H + a
2

) (33)

• The TP robot

The TP robot structure contained in the cylinder is shown in Fig. 13. The compactness function of
the robot is given by Eq. (34).

C%
T P = a3

π(lmax cos αP)2 (
H + a

2

) (34)

3.3.2. Dexterity. To describe the overall kinematic behavior of the robots, we use the error ampli-
fication factor, which is calculated using the inverse of the condition number K (J ), introduced by
Gosselin.18 The use of the condition number is not appropriate for manipulators having translational
and rotational DOF. This problem of non-homogeneity of the Jacobean matrix is not encountered in
our case, since this work deals only with translational robots.

μ= 1

K (J )
(35)

where, K (J ) = ‖J‖ .
∥∥J T

∥∥
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Table V. Constraints functions of the four robots.

The Delta robot Fi
DELTA(Pj ) ≤ 0 Torus equation

The 3-UPU robot Fimax
3UPU(Pj ) ≤ 0 Exterior limit sphere

Fimin
3UPU(Pj ) ≥ 0 Interior limit sphere

The RAF robot Fimax
RAF(Pj ) ≤ 0 Exterior limit of the active workspace

Fimin
RAF(Pj ) ≥ 0 Interior limit of the active workspace

Fk
RAF(Pj ) ≤ 0 k = 1, 2 Passive workspace

The TP robot Flimax
T P(Pj ) ≤ 0 Limit surfaces of the active prismatic joint

Flimin
TP(Pj ) ≥ 0

Fhimax
TP(Pj ) ≤ 0 Limit surfaces of the passive prismatic joint

Fhimin
TP

(
Pj

) ≥ 0

Fig. 13. The cylinder containing the TP robot.

To evaluate the global dexterity within the desired workspace, a global conditioning index ranging
between 0 and 1 was defined in Eq. (36)

μG =
∑N

j=1 μ j

N
(36)

where N is the discretization parameter of the desired workspace.
The best kinematic performance is reached when μG = 1
The Jacobian matrices of the four robots have been defined in the previous section.

3.4. Constraint functions
Constraint functions are the functions defining the boundaries of the robot workspace. They depend
on the joint’s limits and types of each robot. Table V summarizes the constraint functions of the
robots: Pj ( j = 1..8) are the desired cube vertices and i = 1..3 are the three legs of the robots. The
point Pj belongs to the robot’s workspace if it satisfies the following equations.

4. Results and Comparison
The problem was solved using the MOGA toolbox under Matlab software with the following
parameters:

Population size 2000
Crossing probability 0.9
Probability of mutation 0.1
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Fig. 14. Pareto front of the TPMs: (a) the Delta robot, (b) the 3-UPU robot, (c) the RAF robot, and (d) the TP
robot.

Fig. 15. Overlay of the four resulted Pareto fronts.

The cube’s length was fixed at a = 20 mm. The obtained result for each robot is a Pareto front,
which is a set of non-dominated optimal solutions that presents the best compromise between the
two objectives. The Pareto front of the four robots is presented in Fig. 14.

It is noticed that there is a contradiction between the two objectives for the four robots; the
improvement of the compactness yields the degradation of the dexterity and vice versa.

For the Delta robot, the compactness ranges between 0.5% and 7% whereas the dexterity ranges
between 0.16 and 0.3, which is relatively low compared to RAF, UPU, and TP robots where the
dexterity exceeds 0.7.

The 3-UPU robot has the largest range of variation for both dexterity (from 0.1 to 0.8) and com-
pactness (from 0 to 50%); however, the solutions having a good dexterity higher than 0.5 correspond
to a low compactness varying from 0 to 5% (see Fig. 15).
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Table VI. Objective functions of the selected solutions.

Delta 3-UPU RAF TP

Solution 1 Solution 2 Solution 1 Solution 2 Solution 1 Solution 2 Solution 1 Solution 2

C% 0.54 6.5 0.91 49.04 0.85 5.8 0.53 3.8
μG 0.3 0.16 0.74 0.08 0.75 0.53 0.84 0.62

Fig. 16. CAD models of extreme solutions from the Pareto fronts: (a) the Delta robot, (b) the 3-UPU robot, (c)
the RAF robot, and (d) the TP robot.

(a) (b)

Fig. 17. Performances comparison of three translational parallel manipulators: (a) compactness and (b)
dexterity.

For a better analysis, two solutions are selected from the Pareto front of each robot: the first
one favoring the dexterity criterion (Solution 1) and the second favoring the compactness crite-
rion (Solution 2). Their corresponding objective functions values are given in Table VI. The CAD’s
models of both solutions are presented in Fig. 16.

Figure 17 represents a comparative overview of the performances for the four robots. As it can be
seen, the 3-UPU robot reached largely the best compactness with the value 49%; however, the three
other robots have almost the same range that does not exceed 7%.

On the other hand, the TP robot has the best dexterity ranging between 0.62 and 0.84. The 3-UPU
and RAF robots have practically the same maximum of dexterity equal to 0.75; however, the Delta
robot has the poorest dexterity ranging between 0.16 and 0.3. The poor dexterity of the Delta robot
can be explained by the use of rotary actuators.

5. Conclusion
In this work, we presented a multiobjective optimization approach of geometric and kinematic per-
formances of four TPMs: Delta, 3UPU, RAF, and TP. The mathematical formulation of the problem
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was defined by the maximization of two objective functions, that is, compactness and dexterity,
for a desired workspace. The MOGA method was used to solve the problem. The obtained Pareto
front for each robot shows that the two objective functions, that is, compactness and dexterity, are
contradictory. The Pareto front presented the non-dominated solutions.

A comparison of the results of the four robot shows that there is no architecture that excels in
both criteria. From a kinematic point of view, the TP robot has the highest dexterity with a global
conditioning index ranging between 0.6 and 0.9. However, this architecture has the bulkiest structure
with a compactness function that does not exceed 4%. The results show also that the 3-UPU robot has
the best compactness, which can reach 50%. However, more than half of the corresponding Pareto
front presents a poor dexterity, which does not exceed 0.2.

It is clear that no structure comes best in all cases of kinematic criteria and some recommendations
to the designer on the choice of the structure, as a function of his application, represent one of the
contributions of this work.

More criteria could be added, such as maximum required torque and stiffness, which will give
more insight into the overall performance of these robots. In addition, combining typological and
dimensional syntheses could be an interesting and challenging problem to be addressed as a future
work.
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