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Abstract. We investigate a parametric extension of the classical s-dimensional Halton
sequence where the bases are special Pisot numbers. In a one-dimensional setting the
properties of such sequences have already been investigated by several authors. We
use methods from ergodic theory in order to investigate the distribution behavior of
multidimensional versions of such sequences. As a consequence it is shown that the
Kakutani–Fibonacci transformation is uniquely ergodic.

1. Introduction
In this article we consider the distribution properties of deterministic point sequences in
[0, 1)s . We use the following notation: for two points a, b ∈ [0, 1)s put a≤ b and a< b if
the corresponding inequalities hold in each coordinate; furthermore, we write [a, b) for the
set {x ∈ [0, 1)s : a≤ x< b}, and such a set is called an s-dimensional interval. Moreover,
we denote by 1I the indicator function of the set I ⊆ [0, 1)s and by λs the s-dimensional
Lebesgue measure; we use λ instead of λ1. Vectors are written in bold face and 0 denotes
the s-dimensional vector (0, . . . , 0).

A sequence (xn)n∈N of points in [0, 1)s is defined to be uniformly distributed modulo 1
(u.d.) if

lim
N→∞

1
N

N∑
n=1

1[a,b)(xn)= λs([a, b))

for all s-dimensional intervals [a, b)⊆ [0, 1)s . A characterization of uniform distribution
is due to Weyl [29]: a sequence (xn)n∈N of points in [0, 1)s is u.d. if and only if for every
real-valued continuous function f the relation

lim
N→∞

1
N

N∑
n=1

f (xn)=

∫
[0,1)s

f (x) dx
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holds. Weyl’s criterion suggests a numerical integration technique which is usually called
quasi Monte Carlo (QMC) integration. However, this characterization gives no information
on the quality of the estimator.

The Koksma–Hlawka inequality [18] states that the error term of QMC integration can
be bounded by the product of the variation of f (in the sense of Hardy and Krause), denoted
by V ( f ), and the so-called star-discrepancy D∗N of the point sequence (xn)n∈N, that is,∣∣∣∣ 1

N

N∑
n=1

f (xn)−

∫
[0,1]s

f (x) dx
∣∣∣∣≤ V ( f )D∗N (xn),

where D∗N is defined by

D∗N (xn)= D∗N (x1, . . . , xN )= sup
a∈[0,1)s

∣∣∣∣ 1
N

N∑
n=1

1[0,a)(xn)− λs([0, a))
∣∣∣∣.

Thus in order to minimize the integration error we have to use point sequences with
small discrepancy. There are several constructions for sequences which achieve a
star-discrepancy of order O(N−1(log N )s), so-called low-discrepancy sequences. This
convergence rate, which is best possible among known sequences, is for all s ≥ 1 better
than that of the probabilistic error of the standard Monte Carlo method, where a sequence
of random instead of deterministic points is used. QMC integration is successfully
used in several different areas of applied mathematics, for example in actuarial and
financial mathematics, where high-dimensional numerical integrals frequently appear;
see, for example, [4, 23]. For a detailed survey on low-discrepancy sequences and their
applications we refer to [10].

In this article we construct point sequences by a combination of methods from uniform
distribution theory and dynamical systems. In particular, we give answers to problems
considered in [1, 8]. For the basic definitions we refer to these articles and to standard
textbooks such as [28].

An important tool for analyzing the properties of a dynamical system is the construction
of an isometry to a known ergodic or uniquely ergodic system. A classical example of
a uniquely ergodic system is (Zb, τ ) (see, for instance, [28]), where Zb is the compact
group of b-adic integers and τ : Zb −→ Zb the addition-by-one map (or odometer). In the
following we briefly recall the connection between (Zb, τ ) and low-discrepancy sequences
on [0, 1). For an integer b ≥ 2, every z ∈ Zb has a unique expansion of the form

z =
∑
j≥0

z j b
j

with digits z j ∈ {0, 1, . . . , b − 1}. For z ∈ Zb we define the b-adic Monna map ϕb :

Zb −→ [0, 1) (see also [13]) by

ϕb

(∑
j≥0

z j b
j
)
=

∑
j≥0

z j b
− j−1.

The restriction of ϕb to N0 is called the radical-inverse function in base b and the sequence

(ϕb(n))n∈N

is the so-called van der Corput sequence in base b which is a low-discrepancy sequence.
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The Monna map is continuous and surjective but not injective. In order to make it an
isomorphism we only consider the so-called regular representations, that is, representations
with infinitely many digits z j different from b − 1. The Monna map restricted to regular
representations admits an inverse (called a pseudo-inverse) ϕ−1

b : [0, 1)−→ Zb, defined by

ϕ−1
b

(∑
j≥0

z j b
− j−1

)
=

∑
j≥0

z j b
j ,

where
∑

j≥0 z j b− j−1 is a b-adic rational in [0, 1).
Moreover, ϕb is measure preserving from Zb onto [0, 1) and it transports the normalized

Haar measure on Zb to the Lebesgue measure. Hence, by the unique ergodicity of τ
it follows that the sequence (τ nz)n∈N is uniformly distributed in Zb for all z ∈ Zb, in
particular for z = 0. Thus the van der Corput sequence (ϕb(τ

n0))n∈N in base b is uniformly
distributed modulo 1.

In order to construct multidimensional sequences we need a criterion to ensure that the
Cartesian product of ergodic systems is again ergodic (see, for example, [13]).

THEOREM 1. Let Ti = (X i , Ti ), i = 1, . . . , s, be ergodic dynamical systems. Then the
dynamical system T1 × · · · × Ts is ergodic if and only if for all i, j ∈ {1, . . . , s}, i 6= j,
the discrete parts of the spectra of Ti and T j intersect only at 1.

In [13], the spectrum of (Zb, τ ) is given explicitly. Furthermore, the authors show
that if b1, b2 denote positive integers and τbi denotes the addition-by-one on Zbi , then
the dynamical systems (Zb1 , τb1) and (Zb2 , τb2) are spectrally disjoint if and only if b1

and b2 are coprime. This is exactly the condition proved by Halton in [17] in order to
obtain a low-discrepancy sequence in [0, 1)s by combining coordinatewise van der Corput
sequences. The resulting sequence (φb(n))n∈N = (φb1(n), . . . , φbd (n))n∈N is called
b-adic Halton sequence, where b is an s-dimensional vector of pairwise coprime integers
bi , i = 1, . . . , s.

The aim of the present article is to extend the above idea to point sequences with
irrational bases. In a one-dimensional setting such sequences have been investigated by
several authors. For instance, Barat and Grabner [5] consider the so-called β-adic van
der Corput sequence (φβ(n))n∈N on [0, 1) and similar constructions. They prove that
(φβ(n))n∈N is low-discrepancy, if β is the characteristic root of a special linear recurrence.
Ninomiya [22] considers the discrepancy of point sequences on [0, 1) for a slightly greater
class of irrational bases β. Furthermore, Steiner [26] investigates so-called bounded
remainder sets in a similar setting. In a second article Steiner [27] considers van der Corput
sequences on abstract numeration systems and gives conditions under which they are low-
discrepancy. Discrepancy bounds for a multidimensional extension of [22] are formulated
by Mori and Mori [21] by using algebraic methods. Note that the construction in [21] is
different from that in the present article.

Carbone [7] and Drmota and Infusino [9] investigate the discrepancy of point sequences
generated by the so-called Kakutani splitting procedure. Carbone completely characterizes
the growth order of the discrepancy for a two parametric subfamily, so-called LS-
sequences. Moreover, Aistleitner et al [1] give conditions under which an s-dimensional
vector of LS-sequences is not u.d. in [0, 1)s .
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The remainder of this article is structured as follows: in the next section we formulate
a characterization of uniquely ergodic systems which are constructed as Cartesian
products of odometers on numeration systems related to linear recurrences. In the third
section we give conditions under which the s-dimensional β-adic Halton sequence is
uniformly distributed in [0, 1)s . Furthermore, we present a parametric class of sequences
which satisfies these conditions. Finally, we prove that the ergodic Kakutani–Fibonacci
transformation, presented in [8], is in fact uniquely ergodic.

2. General G-odometers
In this section we consider odometers on numeration systems with respect to a linear
recurring base sequence. For a detailed discussion of such number systems we refer
to [11, 14–16].

Definition 1. Let (Gn)n≥0 be an increasing sequence of positive integers with G0 = 1.
Then every positive integer can be expanded as

n =
∞∑

k=0

εk(n)Gk for all n ∈ N,

where εk(n) ∈ {0, . . . , bGk+1/Gkc} and bxc denotes the integer part of x , that is, the
greatest integer less than or equal to x ∈ R. This expansion (called the G-expansion) is
uniquely determined and finite, provided that for every K ,

K−1∑
k=0

εk(n)Gk < G K . (1)

We write εk for the kth digit of the G-expansion.

The digits εk can be computed by the greedy algorithm (see, for instance, [11]) and
G = (Gn)n≥0 is called a numeration system.

We denote by KG the subset of sequences that satisfy (1), and the elements of KG are
called G-admissible. In order to extend the addition-by-one map defined on N to KG we
introduce K0

G ⊆KG :

K0
G =

{
x ∈KG : ∃Mx , ∀ j ≥ Mx ,

j∑
k=0

εk Gk < G j+1 − 1
}
. (2)

Put x( j)=
∑ j

k=0 εk Gk , and set

τ(x)= (ε0(x( j)+ 1) · · · ε j (x( j)+ 1))ε j+1(x)ε j+2(x) · · · , (3)

for every x ∈K0
G and j ≥ Mx . This definition does not depend on the choice of j ≥ Mx

and can be easily extended to sequences x in KG\K0
G by τ(x)= 0= (0∞). In this way

the transformation τ is defined on KG and it is called a G-odometer. We refer to [14] for a
complete survey on odometers related to general numeration systems.

In this article we consider only numeration systems where the base sequence is a linear
recurrence. Let G0 = 1 and Gk = a0Gk−1 + · · · + ak−1G0 + 1 for k < d . Then Gn for
n ≥ d is determined by a recurrence of order d ≥ 1, that is,

Gn+d = a0Gn+d−1 + · · · + ad−1Gn, n ≥ 0. (4)
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The solution of the characteristic equation of the numeration system G,

xd
= a0xd−1

+ · · · + ad−1, (5)

plays a crucial role. We are only interested in numeration systems where the solution of
(5) is a Pisot number β. Note that β is always a Pisot number if

a0 ≥ · · · ≥ ad−1 ≥ 1; (6)

see [12, Theorem 2]. Parry [24] shows that in this case the so-called Parry’s β-expansion
of β is finite, that is,

β = a0 +
a1

β
+ · · · +

ad−1

βd−1 , (7)

where a0 = bβc. At the end of the last section we also consider numeration systems where
(6) does not hold.

For numeration systems where the characteristic root β is a Pisot number which satisfies
(7), a sum

∑M
k=0 εk Gk , M <∞, is the expansion of an integer if and only if the digits εk

of the G-expansion satisfy

(εk, εk−1, . . . , ε0, 0∞) < (a0, a1, . . . , ad−1)
∞, (8)

for every k and < denoting the lexicographic order (see [24]). Representations
(εk, . . . , ε0) satisfying this condition are called admissible representations and thus they
belong to KG .

In [14, Theorem 5], the authors show that the odometer on an admissible numeration
system G is uniquely ergodic and the corresponding invariant measure µ is given by

µ(Z)

=
FK ,0β

d−1
+ (FK ,1 − a0 FK ,0)β

d−2
+ · · · + (FK ,d−1 − a0 FK ,d−2 − · · · − ad−2 FK ,0)

βK (βd−1 + βd−2 + · · · + 1)
,

(9)

where FK ,r := #{n < G K+r : (ε0(n), ε1(n), . . .) ∈ Z} and Z is a cylinder with length K .
Note that the corresponding formula in [14, Theorem 5] contains a misprint which was
corrected in [5].

In the following we want to apply Theorem 1, thus we need information on the spectrum
of the G-odometer. We introduce the following two hypotheses.

HYPOTHESIS 1. (Grabner et al [14]) There exists an integer b > 0 such that for all k and

N =
k∑

i=0

εi (N )Gi +

∞∑
j=k+b+2

ε j (N )G j ,

the addition of Gm to N, where m ≥ k + b + 2, does not change the first k + 1 digits in
the greedy representation, that is,

N + Gm =

k∑
i=0

εi (N )Gi +

∞∑
j=k+1

ε j (N + Gm)G j .
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HYPOTHESIS 2. (Frougny and Solomyak [12]) The characteristic root β of the numer-
ation system G is a Pisot number such that all elements of the set Z[β−1

] have finite
β-expansions.

There are only a few results concerning Hypothesis 1. In [14] the authors remark that
the Multinacci sequence, a0 = · · · = ad−1 = 1, satisfies Hypothesis 1. Furthermore, Bruin
et al [6] show that the numeration system with coefficients (a0, a1, a2)= (1, 0, 1) satisfies
Hypothesis 1.

Several researchers have worked on algebraic characterizations of Pisot numbers
β which satisfy Hypothesis 2. Frougny and Solomyak [12] show that (6) implies
Hypothesis 2 and they give a full characterization of all Pisot numbers of degree two
with this property. Furthermore, Hollander [19] states another sufficient condition for
Hypothesis 2, and Akiyama [2] characterizes all Pisot units of degree three satisfying
Hypothesis 2. Further progress was also made by Akiyama et al [3] who prove
Hypothesis 2 for a large class of Pisot numbers of degree three by using the theory of shift
radix systems. Nevertheless, there exists no complete algebraic characterization for Pisot
numbers satisfying Hypothesis 2 of degree greater than two. Note that both hypotheses can
be satisfied by the same numeration system but, to the best of the authors’ knowledge, it is
unknown if the two hypotheses are equivalent; see [14].

Grabner et al [14, Theorem 6] and Solomyak [25, Theorem 4.1] show that the odometer
on the base system G has purely discrete spectrum provided that one of the above
Hypotheses holds. Furthermore, we obtain in both cases that the set of eigenvalues of
the transformation is given by

0 :=

{
z ∈ C : lim

n→∞
zGn = 1

}
. (10)

THEOREM 2. Let G1, . . . , Gs be numeration systems defined by

Gi
n+di
= ai

0Gi
n+di−1 + · · · + ai

di−1Gi
n

and let the coefficients of the linear recurrences be given as ai
j = bi , j = 0, . . . ,

(di − 1), i = 1, . . . , s, with pairwise coprime positive integers bi , i = 1, . . . , s.
Furthermore, let βk

i /β
l
j /∈Q, for all l, k ∈ N, where β1, . . . , βs denote the characteristic

roots of the numeration systems. Then the dynamical system which is constructed as
the s-dimensional Cartesian product of the odometers, ((KG1 , τ1)× · · · × (KGs , τs)), is
uniquely ergodic.

Proof. It follows by [25, Main theorem] that each numeration system G j , j = 1, . . . , s,
satisfies Hypothesis 2, thus the components of the s-dimensional dynamical system are
uniquely ergodic. Furthermore, we obtain that their spectrum is given by (10). By
Theorem 1, we derive that the Cartesian product is uniquely ergodic if and only if
0 j ∩ 0k = {1} for all 1≤ j < k ≤ s. As noted in [14], we have

lim
n→∞

G j
n

βn
j
= C j , (11)
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where the constant C j can be computed by residue calculus. Using the standard notation
∼ for asymptotic equality (if n→∞) we obtain for fixed l ∈ N,

exp
(

2π i
G j

n

βl
j

)
∼ exp(2π iC jβ

n−l
i )

∼ exp(2π iG j
n−l),

and thus

lim
n→∞

exp
(

2π i
G j

n

βl
j

)
= lim

n→∞
exp(2π iG j

n−l)= 1,

where C j is given by (11). Furthermore, it is easy to see that for every k ∈ N there exists

an n0 with bk
j | G

j
n for all n ≥ n0 and there exist no b′, n′0 ∈ N with gcd(b′, b j )= 1 such

that b′ | G j
n for all n ≥ n′0. Then 0 j can be written as

0 j =

{
exp

(
2π i

c

bm
j β

l
j

)
: m, l, c ∈ N ∪ {0}

}
.

By Theorem 1 the s-dimensional dynamical system is ergodic. Since, by our assumption,
the spectrum is purely discrete the system is isomorphic to a group rotation, and thus
uniquely ergodic. 2

3. Uniform distribution of the β-adic Halton sequence
First we extend the definition of the Monna map to irrational bases β > 1. Let

n =
∑
j≥0

ε j (n)G j

be the G-expansion of an integer n. We write ε j for short and define the β-adic Monna
map φβ : KG→ R+ as

φβ(n)= φβ

(∑
j≥0

ε j (n)G j

)
=

∑
j≥0

ε j (n)β
− j−1.

Furthermore, we define the radical inverse function as the restriction of φβ on K0
G

and the pseudo-inverse φ−1
β similarly. In this context the β-adic Halton sequence is

given as (φβ(n))n∈N = (φβ1(n), . . . , φβs (n))n∈N, where β = (β1, . . . , βs) and the βi are
characteristic roots of the numeration systems Gi , respectively.

Note that even if one of the Hypotheses 1 or 2 holds, this does not imply that the image
of K0

G under φβ is contained and dense in [0, 1).

LEMMA 1. Let a= (a0, . . . , ad−1), where the integers a0, . . . , ad−1 ≥ 0 are the
coefficients defining the numeration system G, and assume that the corresponding
characteristic root β satisfies (7). Furthermore, assume that there is no b=
(b0, . . . , bk−1) with k < d such that β is the characteristic root of the polynomial defined
by b. Then φβ(N)⊂ [0, 1) and φβ(N) 6⊂ [0, x) for all 0< x < 1 if and only if a can be
written either as

a= (a0, . . . , a0) (12)
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or as

a= (a0, a0 − 1, . . . , a0 − 1, a0), (13)

where a0 > 0.

Proof. It follows by (7) that
a0

β
+ · · · +

ad−1

βd = 1. (14)

Furthermore, for all admissible representations (ε0, ε1, ε2, . . .) we have

(εk, εk−1, . . . , ε0, 0∞) < (a0, a1, . . . , ad−1)
∞ (15)

for every k and < denoting the lexicographic order.
We consider a representation given by c= (c0, . . . , ck−1)

∞ for k > 0 and assume that
there are no positive integers c′i and m < k such that c= (c′0, . . . , c′m−1)

∞. We obtain

φβ(c) =
∞∑

i=0

(
c0

β
+ · · · +

ck−1

βk

)(
1
βk

)i

=

(
c0

β
+ · · · +

ck−1

βk

)
1

1− (1/βk)

=

(
c0

β
+ · · · +

ck−1

βk

)
βk

βk − 1
.

To finish the proof of the lemma, it will be shown that the maximum of φβ(c) (extended
over all representations c) is 1, provided that (12) or (13) are satisfied, that is,

c0

β
+ · · · +

ck−2

βk−1 +
ck−1 + 1
βk = 1. (16)

We obtain k ≥ d since a is by assumption the minimal representation of β. In the case
k = d we get

c0

β
+ · · · +

cd−2

βd−1 +
cd−1 + 1
βd =

a0

β
+ · · · +

ad−1

βd = 1,

thus c0 = a0, . . . , cd−2 = ad−2 and cd−1 + 1= ad−1. Moreover, by (15), we have
maxi=0,...,d−1 ci ≤ a0 and thus a0 =max(maxi=0,...,d−2 ai , ad−1 − 1). Let m ≥ 0 be the
maximal integer such that ai = a0 for i ≤ m. Then, if ad−1 = a0 + 1 we obtain that
c= (a0, a1, . . . , ad−2, a0)

∞ contains m + 1 successive a0s, thus c is not admissible
and a0 =maxi=0,...,d−1 ai . Similar arguments yield k ≤ d since by assumption c 6=
(c′0, . . . , c′m−1)

∞ for m < k.
Assume now that k = d, a0 =maxi=0,...,d−1 ai and let m ≥ 0 be defined as above. By

(14) and (15) c∗ = (a0, . . . , am, (a0 − 1, a0, . . . , am)
∞) is admissible and

φβ(c∗)≥ 1,

where equality holds if m is either 0 or d − 1, which are the cases (12) and (13). This
yields assertion (16), thus the proof of the lemma is complete. 2

https://doi.org/10.1017/etds.2013.70 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.70


Ergodic properties of β-adic Halton sequences 903

If we drop the condition that d has to be minimal, we obtain the following additional
cases for which the above lemma is satisfied:

a= (a0, . . . , a0, a0 + 1) (17)

and
a= (a′, . . . , a′, a′′), (18)

where a0 > 0, a′, a′′ are of equal length and of the form

a′ = (a0, . . . , a0, a0 − 1), a′′ = (a0, . . . , a0)

or

a′ = (a0, a0 − 1, . . . , a0 − 1), a′′ = (a0, a0 − 1, . . . , a0 − 1, a0).

Note that (17) is another way to represent the (a0 + 1)-adic number system, which is a
special case of (12) and obviously satisfies the lemma. Furthermore, condition (18) is a
reformulation of (12) and (13), thus in the following we only consider numeration systems
which satisfy (12) or (13).

LEMMA 2. Let G be a numeration system of the form (4), assume that the coefficients of
the linear recurrence are given by a j = a, j = 0, . . . , (d − 1), for a positive integer a
and let β denote the corresponding characteristic root. Then µ(Z)= λ(φβ(Z)) for every
cylinder set Z.

Proof. Let the cylinder set Z be defined by the fixed digits ε0, . . . , εk−1. Assume first that
εk−1 < a, then Fk,r = (a + 1)r for 0≤ r < d . Thus, by (9), we obtain that

µ(Z)= β−k .

Consider the β-adic Monna map of n ∈ N, that is,

φβ(n)=
∞∑

i=0

εi

β i+1 .

If εk−1 < a we easily see that φβ(Z) is dense in

I =

[k−1∑
i=0

εi

β i+1 ,

k−2∑
i=0

εi

β i+1 +
(εk−1 + 1)

βk

)
and that φβ(x ′) /∈ I if x ′ /∈ Z . Thus φβ(Z) is λ-measurable and λ(φβ(Z))= λ(I )= β−k .

Assume now that Z is defined by the fixed digits ε0, . . . , εk−2 and εk−1 = a. By the
above argument we derive that a cylinder with fixed digits ε0, . . . , εk−2, with εk−2 < a,
has measure β−(k−1).

Now compute the measure of Z :

µ(Z)= β−(k−1)
− (a − 1)β−k .

Next we consider φβ(Z), hence

φβ(Z)=

[k−1∑
i=0

εi

β i+1 ,

k−3∑
i=0

εi

β i+1 +
(εk−2 + 1)

βk

)
and thus λ(φβ(Z))= µ(Z).
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Let 2≤ h ≤min(k, d − 1) and consider a cylinder set Z with fixed digits
ε0, . . . , εk−h−1 < a and εk−l = a for l = 1, . . . , h. Then, the cylinder with fixed digits
ε0, . . . , εk−h−1 has measure β−(k−h) and every cylinder with digits ε0, . . . , εk−h+1 has
measure β−(k−h+2). Thus it follows that

µ(Z)= β−(k−h+1)
− (a − 1)β−(k−h+2).

Considering φβ(Z), we have

φβ(Z)=

[k−h+1∑
i=0

εi

β i+1 ,

k−h∑
i=0

εi

β i+1 +
(εk−h−1 + 1)

βk−h+2

)
,

and thus λ(φβ(Z))= µ(Z). 2

As mentioned in the previous section, a result of Frougny and Solomyak [12, Lemma
3] implies that the dominant root of

x2
− a0x − a1, a0, a1 ≥ 1,

is a Pisot number if and only if a0 ≥ a1. Lemma 1 shows that the image of K0
G under φβ is

not a subset of [0, 1), when a0 > a1. Thus Lemma 2 characterizes all van der Corput-type
constructions for d = 2.

THEOREM 3. Let G1, . . . , Gs be numeration systems as in Theorem 2 and let β1, . . . , βs

denote the roots of the corresponding characteristic equations. Then the s-dimensional
β-adic Halton sequence (φβ(n))n∈N is u.d. in [0, 1)s .

Proof. By Lemma 2 and the definition of the Monna map we obtain an isometry
between the dynamical systems ((KG1 , τ1)× · · · × (KGs , τs)) and (([0, 1), T1)× · · · ×

([0, 1), Ts)), where

Ti : [0, 1)→ [0, 1), Ti (x) := φβi ◦ τi ◦ φ
−1
βi
(x).

Let Tx= (T1x1, . . . , Ts xs) for x= (x1, . . . , xs) ∈ [0, 1)s . Hence by Birkhoff’s ergodic
theorem, (Tnx)n∈N is u.d. in [0, 1)s for all x ∈ [0, 1)s . In particular, (φβ(n))n∈N =
(Tn0)n∈N is u.d. 2

Note that the classical b-adic Halton sequence with pairwise coprime integer bases
b1, . . . , bs ≥ 2, is covered by Theorem 3.

THEOREM 4. Let the numeration system G be defined by the coefficients (a0, a1, a2)=

(1, 0, 1), β be its characteristic root and τ the odometer on G. Then µ(Z)= λ(φβ(Z))
for all cylinder sets Z. Thus T (x)= φβ ◦ τ ◦ φ

−1
β (x) is uniquely ergodic and (T n x)n∈N is

u.d. for all x in [0, 1). Furthermore, the spectrum of T is given by

0 =

{
exp

(
2π i

c

βl

)
: l, c ∈ N ∪ {0}

}
. (19)
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Proof. It is well known that β is a Pisot number and equation (7) holds since bβc = 1= a0.
Hypothesis 1 was proved for this case in [6, Theorem 4]. The proof that Hypothesis 2
is satisfied can be found in [2, Theorem 3]. Equation (19) follows from the proof of
Theorem 2.

Now we have to prove that φβ transports the measure µ to the Lebesgue measure
on [0, 1). First we assume k ≥ 3. Let the cylinder Z be defined by the fixed digits
ε0, . . . , εk−1. We consider four different cases, the first of which is εk−3 = εk−2 = εk−1 =

0. Then Fk,0 = 1, Fk,1 = 2, Fk,2 = 3 and we get by (9) that

µ(Z)= β−k .

Furthermore, by the same argument as in the first part of the proof of Theorem 3 we obtain

φβ(Z)=

[k−1∑
i=0

εi

β i+1 ,

k−2∑
i=0

εi

β i+1 +
(εk−1 + 1)

βk

)
,

and thus λ(φβ(Z))= β−k .
Now let εk−3 = 1, εk−2 = εk−1 = 0. Hence Fk,0 = 1, Fk,1 = 2, Fk,2 = 3 and µ(Z)=

β−k . We have

φβ(Z) =

[k−1∑
i=0

εi

β i+1 ,

k−1∑
i=0

εi

β i+1 + β
−k
∞∑

i=0

β−(3i+1)
)

=

[k−1∑
i=0

εi

β i+1 ,

k−1∑
i=0

εi

β i+1 + β
−k
)
,

thus again λ(φβ(Z))= β−k . Now assume that εk−2 = 1, εk−1 = 0. Hence Fk,0 =

1, Fk,1 = 1, Fk,2 = 2 and

µ(Z)= β−k β−2
+ 1

β−2 + β−1 + 1
.

Similarly as above we obtain

φβ(Z) =

[k−1∑
i=0

εi

β i+1 ,

k−1∑
i=0

εi

β i+1 + β
−(k+1)

∞∑
i=0

β−(3i+1)
)

=

[k−1∑
i=0

εi

β i+1 ,

k−1∑
i=0

εi

β i+1 + β
−(k+1)

)
,

thus λ(φβ(Z))= β−(k+1). Now we have

β−(k+1)
= β−k β−2

+ 1

β−2 + β−1 + 1
,

which is equivalent to β−3
+ β−2

+ β−1
= β−2

+ 1 and holds by (5). In the last case we
assume εk−1 = 1, thus Fk,0 = Fk,1 = Fk,2 = 1 and

µ(Z)= β−k 1

β−2 + β−1 + 1
.
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As above we get λ(φβ(Z))= β−(k+2) and the result follows since

β−(k+2)
= β−k 1

β−2 + β−1 + 1

is equivalent to β−3
+ β−1

= 1. The cases where k < 3 follow by the same arguments. 2

As a consequence of Theorem 1 we can construct uniformly distributed two-
dimensional sequences (φβ1(n), φβ2(n))n∈N, where β1 is the characteristic root in
Theorem 4, β2 is the characteristic root of a numeration system in Theorem 2 and
βk

1/β
l
2 /∈Q for all integers k, l > 0.

Theorem 4 extends the examples given in [5, Proposition 13,14], where the authors
consider G-additive functions which lead to u.d. point sequences in the unit interval.
Furthermore, it is possible to show that the one-dimensional point sequence in the previous
theorem is a low-discrepancy sequence by mimicking the proof for the b-adic van der
Corput sequence; see, for example, [5, 7, 20].

In [8], the authors present the so-called Kakutani–Fibonacci transformation, proving
ergodicity on the unit interval and showing that the orbit of 0 is precisely the LS-sequence
with parameters L = S = 1 defined in [7]. With our different approach we can show that
this transformation is uniquely ergodic, thus the orbit of x under the transformation is u.d.
for every x ∈ [0, 1).

The Kakutani–Fibonacci transformation was first introduced and discussed in detail
in [8] (for a related transformation see [13]). In the following we give an informal
description.

Let us consider the unit interval [0, 1) and split it into two consecutive subintervals
[0, α) and [α, 1) of lengths α and α2, respectively, where α is the reciprocal golden ratio
(
√

5− 1)/2. So we obtain two systems of half-open intervals, in the first step L1 = {[0, α)}
(‘long’) and S1 = {[α, 1)} (‘short’). One can easily iterate this procedure in the following
way. Let us split all intervals contained in L1, proportionally to α2 and α3, respectively.
Thus we obtain two systems of half-open intervals L ′2 and S′2, the first one containing
intervals of length α2 and the second of length α3, respectively.

This yields two new systems of half-open intervals, L2 = {L ′2 ∪ S1}, S2 = S′2. Note that
the ordering of the intervals is essential and follows from the illustration in the picture
below.

In general, at the kth step, we split only the intervals in Lk−1, proportionally to αk

and αk+1 forming two systems of half-open intervals L ′k and S′k , the first one containing
intervals of length αk and the second of length αk+1, respectively. Again this yields a
system of half-open intervals Lk = {L ′k ∪ Sk−1} and Sk = S′k . This construction procedure
is well known as the cutting-stacking method and the transformation associated to it is
defined as the translation from the first interval of Lk onto the second, the second onto the
third and so on, till the last interval of the column Lk . Then the transformation is given as
a contraction with factor β from the top of Lk to the bottom of Sk , and then again as the
translation from the first interval of Sk onto the same and so on.

In the following we give an explicit expression for the Kakutani–Fibonacci
transformation T , which is the limit transformation of the above construction; see [8].

https://doi.org/10.1017/etds.2013.70 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2013.70


Ergodic properties of β-adic Halton sequences 907

L1 S1 L2 S2

L3 S3 L4 S4

0

0 0

01

1

1

1

Definition 2. The Kakutani–Fibonacci transformation is a piecewise linear map T :
[0, 1)→ [0, 1), whose restriction to Ik is Tk , where

T1x = x + α if x ∈ I1 = [0, α2)

and, for every k ≥ 1,

T2k x = x + α2k
−

k−1∑
j=0

α2 j+1 if x ∈ I2k =

[k−1∑
j=0

α2 j+1,

k∑
j=0

α2 j+1
)

and

T2k+1x = x + α2k+1
−

k−1∑
j=0

α2( j+1) if x ∈ I2k+1 =

[k−1∑
j=0

α2( j+1),

k∑
j=0

α2( j+1)
)
.

To prove unique ergodicity of the Kakutani–Fibonacci transformation we need the
following lemma.

LEMMA 3. Let β be the golden ratio (
√

5+ 1)/2. Then we have T x = φβ ◦ τ ◦ φ
−1
β x for

all β-adic rationals

x =
k∑

i=1

εi

β i

with coefficients εi ∈ {0, 1}.
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Proof. This follows from [1, Lemma 3] specializing L = S = 1. Applying this lemma
combined with [1, Equation (2), §2] yields that the β-adic Monna map is bijective on the
set of all β-adic rationals. Combining this with [8, Theorem 16] completes the proof of
Lemma 3. 2

THEOREM 5. The Kakutani–Fibonacci transformation is uniquely ergodic.

Proof. By Theorem 3, φβ ◦ τ ◦ φ
−1
β is uniquely ergodic, thus by Lemma 3 and the

denseness of the β-adic rationals T is uniquely ergodic. 2
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