# X-ray powder diffraction data for 17-hydroxy-16-methyl-9,11-epoxypregna-1,4,6-triene-3,20-dione, $C_{22}H_{26}O_4$

Q. Wang <sup>(D)</sup>,<sup>a)</sup> X. Bian, and X. Chen

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China

(Received 18 April 2019; accepted 17 June 2019)

X-ray powder diffraction data, unit-cell parameters, and space group for 17- hydroxy-16-methyl-9,11epoxypregna-1,4,6-triene-3,20-dione,  $C_{22}H_{26}O_4$ , are reported [a = 18.435(1) Å, b = 12.269(3) Å, c = 8.251(5) Å,  $\alpha = 90^\circ$ ,  $\beta = 90^\circ$ ,  $\gamma = 90^\circ$ , unit-cell volume V = 1866.43 Å<sup>3</sup>, Z = 4,  $\rho_{cal} = 1.261$  g cm<sup>-3</sup> and space group  $P2_12_12_1$ ]. All measured lines were indexed and are consistent with the  $P2_12_12_1$  space group. No detectable impurities were observed. © 2019 International Centre for Diffraction Data. [doi:10.1017/S088571561900054X]

Key words: pharmaceutical intermediate, anticoagulant, dexamethasone

# 1. INTRODUCTION

Dexamethasone is a glucocorticoid commonly used for treatment of many inflammatory and autoimmune conditions, such as rheumatoid arthritis and bronchospasm (Hossain, *et al.*, 2018; Formica, *et al.*, 2019). The title compound (Figure 1) is an intermediate in the synthesis of dexamethasone.

In order to better study the effect of the minor difference in the structure on the steroids binding to human serum albumin, Lin *et al.* (2017) analyzed the single-crystal structures of some novel steroids. The single crystallographic data of the title compound [a = 8.26215(13) Å, b = 12.27870(19) Å, c = 18.4797(3) Å,  $\alpha = 90^{\circ}$ ,  $\beta = 90^{\circ}$ ,  $\gamma = 90^{\circ}$ , unit-cell volume V = 1874.73(5) Å<sup>3</sup>, Z = 4,  $\rho_{cal} = 1.256$  g cm<sup>-3</sup> and space group P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>] were deposited with the Cambridge Crystallographic Data Center (CCDC) with a supplementary publication number of CCDC-1471422. To date, the detailed X-ray powder diffraction (PXRD) data for the title compound have not been reported.

# II. EXPERIMENTAL

### A. Sample preparation

The sample was purchased from J&K Scientific (Beijing, People's Republic of China). The melting point and measured density of the title compound are 244–245 °C and 1.253 g cm<sup>-3</sup>, respectively. Crystallization of the title compound at room temperature was successful using methanol as solvent. The crystals have a prismatic and transparent crystal structure. Then, part of crystals was dried, smashed, and screened through 75  $\mu$ m mesh size.

# B. Diffraction data collection and reduction

PXRD measurement was performed at room temperature using an X'Pert PRO diffractometer (PANalytical Co., Ltd.,

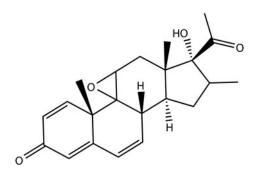



Figure 1. Molecular diagram of the title compound.

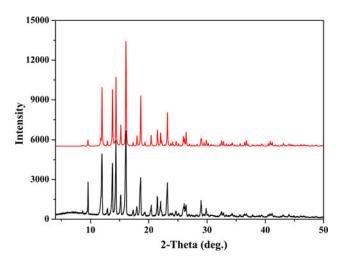



Figure 2. (colour online) X-ray powder diffraction pattern of the title compound using  $CuK\alpha$  radiation (black line) and the simulated pattern of the crystal structure (red line).

Netherlands) with a PIXcel 1D detector and Cu  $K\alpha$  radiation (generator setting: 40 kV and 40 mA). The diffraction data were collected over the angular range from 4° to 50° 2 $\theta$  with a step size of 0.01313° 2 $\theta$  and a counting time of 30 ms step<sup>-1</sup> (Figure 2).

https://doi.org/10.1017/S088571561900054X Published online by Cambridge University Press

<sup>&</sup>lt;sup>a)</sup>Author to whom correspondence should be addressed. Electronic mail: qingwang@yzu.edu.cn; jstxwangqing@163.com.

| TABLE I. | Indexed X-ray powder diffraction data | for the title compound. The <i>d</i> -values | were calculated using $CuK\alpha_1$ radiation ( $\lambda = 1.54056$ Å). |
|----------|---------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|
|----------|---------------------------------------|----------------------------------------------|-------------------------------------------------------------------------|

| $2\theta_{\rm obs}(^{\circ})$ | $d_{ m obs}({ m \AA})$ | I <sub>obs</sub> | h      | k             | l      | $2\theta_{\rm cal}(^{\circ})$ | $d_{\rm cal}({ m \AA})$ | $\Delta 2\theta$   |
|-------------------------------|------------------------|------------------|--------|---------------|--------|-------------------------------|-------------------------|--------------------|
| 8.6516                        | 10.2122                | 10               | 1      | 1             | 0      | 8.6500                        | 10.2140                 | 0.0015             |
| 9.5838                        | 9.2208                 | 42               | 2      | 0             | 0      | 9.5872                        | 9.2175                  | -0.003             |
| 11.7503                       | 7.5251                 | 24               | 1      | 0             | 1      | 11.7401                       | 7.5317                  | 0.0102             |
| 11.9735                       | 7.3853                 | 74               | 2      | 1             | 0      | 11.9993                       | 7.3695                  | $-0.025^{\circ}$   |
| 12.9320                       | 6.8400                 | 12               | 0      | 1             | 1      | 12.9183                       | 6.8472                  | 0.013              |
| 13.7724                       | 6.4245                 | 64               | 1      | 1             | 1      | 13.7847                       | 6.4188                  | -0.012             |
| 14.3632                       | 6.1615                 | 88               | 2      | 0             | 1      | 14.3948                       | 6.1481                  | -0.0316            |
| 14.4026                       | 6.1447                 | 63               | 3      | 0             | 0      | 14.4020                       | 6.1450                  | 0.0000             |
| 15.1904                       | 5.8278                 | 28               | 1      | 2             | 0      | 15.2086                       | 5.8209                  | -0.0182            |
| 16.0964                       | 5.5018                 | 100              | 2      | 1             | 1      | 16.1116                       | 5.4966                  | -0.0152            |
| 17.3438<br>18.0003            | 5.1088<br>4.9239       | 10<br>12         | 2<br>0 | 2<br>2        | 0<br>1 | 17.3498<br>18.0028            | 5.1070<br>4.9232        | -0.0060<br>-0.0025 |
| 18.6003                       | 4.9239                 | 44               | 0      | $\frac{2}{2}$ | 1      | 18.6393                       | 4.9232                  | -0.0023            |
| 19.2477                       | 4.6075                 | 44 7             | 4      | 0             | 0      | 19.2424                       | 4.6088                  | 0.0053             |
| 19.2477                       | 4.5735                 | 7                | 3      | 0             | 0      | 19.3928                       | 4.5734                  | -0.0007            |
| 20.4294                       | 4.3436                 | 16               | 3      | 2             | 0      | 20.4392                       | 4.3415                  | -0.0098            |
| 20.5607                       | 4.3161                 | 5                | 4      | 1             | 0      | 20.5690                       | 4.3144                  | -0.0083            |
| 21.4930                       | 4.1310                 | 25               | 0      | 0             | 2      | 21.5199                       | 4.1259                  | -0.0270            |
| 22.0444                       | 4.0289                 | 20               | 4      | 0             | 1      | 22.0731                       | 4.0237                  | -0.0287            |
| 22.2414                       | 3.9936                 | 8                | 1      | 3             | 0      | 22.2466                       | 3.9927                  | -0.0052            |
| 23.1474                       | 3.8393                 | 34               | 3      | 2             | 1      | 23.1300                       | 3.8422                  | 0.0174             |
| 23.2393                       | 3.8244                 | 25               | 4      | 1             | 1      | 23.2455                       | 3.8234                  | -0.0062            |
| 23.7776                       | 3.7390                 | 7                | 2      | 3             | 0      | 23.7818                       | 3.7383                  | -0.0042            |
| 24.1190                       | 3.6868                 | 7                | 5      | 0             | 0      | 24.1178                       | 3.6870                  | 0.0012             |
| 24.6968                       | 3.6019                 | 9                | 2      | 1             | 2      | 24.7093                       | 3.6001                  | -0.0126            |
| 24.7624                       | 3.5925                 | 6                | 1      | 3             | 1      | 24.7511                       | 3.5941                  | 0.0113             |
| 25.2088                       | 3.5299                 | 5                | 5      | 1             | 0      | 25.2004                       | 3.5310                  | 0.0085             |
| 25.9967                       | 3.4246                 | 14               | 3      | 0             | 2      | 25.9908                       | 3.4254                  | 0.0059             |
| 26.1411                       | 3.4060                 | 15               | 3      | 3             | 0      | 26.1518                       | 3.4047                  | -0.0108            |
| 26.4562                       | 3.3662                 | 13               | 5      | 0             | 1      | 26.4556                       | 3.3663                  | 0.0006             |
| 27.0208                       | 3.2971                 | 5                | 3      | 1             | 2      | 27.0031                       | 3.2992                  | 0.0177             |
| 27.4541                       | 3.2461                 | 4                | 5      | 1             | 1      | 27.4521                       | 3.2463                  | 0.0020             |
| 28.3470                       | 3.1458                 | 4                | 3      | 3             | 1      | 28.3333                       | 3.1473                  | 0.0137             |
| 29.0560                       | 3.0706                 | 16               | 6      | 0             | 0      | 29.0380                       | 3.0725                  | 0.0180             |
| 29.0823                       | 3.0679                 | 9                | 0      | 4             | 0      | 29.0879                       | 3.0673                  | -0.0056            |
| 29.4893                       | 3.0265                 | 6                | 1      | 4             | 0      | 29.4968                       | 3.0257                  | -0.0075            |
| 29.8438                       | 2.9914                 | 12               | 3      | 2             | 2      | 29.8498                       | 2.9908                  | -0.0060            |
| 29.9357                       | 2.9824                 | 8                | 4      | 1             | 2      | 29.9410                       | 2.9819                  | -0.0053            |
| 30.2509                       | 2.9520                 | 4                | 5      | 2             | 1      | 30.2599                       | 2.9512                  | -0.0091            |
| 30.7630                       | 2.9040                 | 4                | 0      | 3             | 2      | 30.7569                       | 2.9046                  | 0.0060             |
| 31.0649                       | 2.8765<br>2.7704       | 5<br>5           | 6<br>2 | 0<br>3        | 1<br>2 | 31.0330<br>32.2876            | 2.8794                  | 0.0320<br>-0.0015  |
| 32.2861                       |                        |                  |        |               |        |                               | 2.7703                  | -0.0013<br>-0.0162 |
| 32.5093<br>32.6800            | 2.7519<br>2.7379       | 8<br>5           | 0<br>5 | 0<br>3        | 3<br>0 | 32.5255<br>32.6734            | 2.7506<br>2.7385        | -0.0162            |
| 32.0800                       | 2.7379                 | 5                | 1      | 0             | 3      | 32.8957                       | 2.7205                  | 0.0000             |
| 33.7304                       | 2.6550                 | 4                | 1      | 1             | 3      | 33.7182                       | 2.6560                  | 0.0072             |
| 34.1112                       | 2.6263                 | 4                | 3      | 3             | 2      | 34.1144                       | 2.6260                  | -0.0033            |
| 34.3869                       | 2.6058                 | 5                | 6      | 2             | 1      | 34.3771                       | 2.6065                  | 0.0098             |
| 34.7677                       | 2.5782                 | 4                | 2      | 1             | 3      | 34.7846                       | 2.5769                  | -0.0169            |
| 35.6999                       | 2.5129                 | 5                | 3      | 0             | 3      | 35.7350                       | 2.5106                  | -0.0351            |
| 36.4221                       | 2.4648                 | 6                | 6      | 0             | 2      | 36.4295                       | 2.4643                  | -0.0074            |
| 36.5009                       | 2.4596                 | 5                | 3      | 1             | 3      | 36.5012                       | 2.4596                  | -0.0003            |
| 36.7766                       | 2.4418                 | 6                | 1      | 4             | 2      | 36.8056                       | 2.4399                  | -0.0290            |
| 37.9190                       | 2.3708                 | 4                | 2      | 5             | 0      | 37.9113                       | 2.3713                  | 0.0076             |
| 38.7987                       | 2.3191                 | 4                | 4      | 1             | 3      | 38.7941                       | 2.3193                  | 0.0045             |
| 39.0613                       | 2.3041                 | 3                | 8      | 0             | 0      | 39.0560                       | 2.3044                  | 0.0052             |
| 39.4158                       | 2.2842                 | 5                | 3      | 4             | 2      | 39.3995                       | 2.2851                  | 0.0163             |
| 40.5713                       | 2.2217                 | 5                | 7      | 0             | 2      | 40.6067                       | 2.2199                  | -0.0354            |
| 40.9127                       | 2.2040                 | 5                | 5      | 0             | 3      | 40.8995                       | 2.2047                  | 0.0132             |
| 41.0702                       | 2.1959                 | 5                | 3      | 5             | 1      | 41.0553                       | 2.1967                  | 0.0150             |
| 41.2803                       | 2.1852                 | 5                | 7      | 1             | 2      | 41.2958                       | 2.1844                  | -0.0155            |
| 43.1448                       | 2.0950                 | 4                | 1      | 5             | 2      | 43.1364                       | 2.0954                  | 0.0084             |
| 44.1690                       | 2.0488                 | 4                | 6      | 0             | 3      | 44.1556                       | 2.0494                  | 0.0134             |
| 44.1690                       | 2.0488                 | 4M               | 9      | 0             | 0      | 44.1786                       | 2.0483                  | -0.0096            |
| 44.7992                       | 2.0214                 | 3                | 1      | 1             | 4      | 44.7826                       | 2.0221                  | 0.0167             |
| 45.0356                       | 2.0113                 | 3                | 8      | 0             | 2      | 45.0232                       | 2.0119                  | 0.0123             |
| 46.2436                       | 1.9616                 | 3                | 9      | 1             | 1      | 46.2224                       | 1.9624                  | 0.0211             |

The software package Material Studio 8.0 (Accelrys Co., Ltd., CA, USA) was used to process the data in the Analytical & Testing Center (Sichuan University, Chengdu, China). The XRD pattern was pre-treated by subtracting the background, smoothing, and stripping off the  $K\alpha_2$  component. Automatic indexing results were obtained by DICVOL91 method (Boultif and Louër, 1991). The indexing results were then refined using Pawley ( $R_{wp}$ =9.63%) (Pawley, 1981), which involves assigning the Miller indices (h, k, l) to each observed peak in the experimental PXRD pattern.

### **III. RESULTS**

Pawley refinement results confirmed that the title compound is orthorhombic with space group  $P_{2_12_12_1}$  and unit-cell parameters: a = 18.435(1) Å, b = 12.269(3) Å, c = 8.251(5) Å,  $\alpha = 90^\circ$ ,  $\beta = 90^\circ$ ,  $\gamma = 90^\circ$ , unit-cell volume V = 1866.43 Å<sup>3</sup>, Z = 4,  $\rho_{cal} = 1.261$  g cm<sup>-3</sup>. The values of  $2\theta_{obs}$ ,  $d_{obs}$ ,  $I_{obs}$ , h, k, l,  $2\theta_{cal}$ ,  $d_{cal}$ ,  $\Delta 2\theta$  are listed in Table I. The results are in good agreement with the single-crystal data and the deviations of the unit-cell parameters and unit-cell volume were between 0.07% and 0.44%. The comparison of PXRD pattern (Supplementary Material) with the simulated pattern is shown in Figure 2.

#### SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S088571561900054X.

#### Acknowledgements

This work was supported by the Scientific Research Staring Foundation of Yangzhou University (grant number 5010/137011392) and Yangzhou Green Yang Gold Phoenix plans.

- Boultif, A. and Louër, D. (1991). "Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method," J. Appl. Crystallogr. 24, 987–993.
- Formica, F. A., Barreto, G., and Zenobi-Wong, M. (2019). "Cartilage-targeting dexamethasone prodrugs increase the efcacy of dexamethasone," J. Control. Release 295, 118–129.
- Hossain, M. S., Rashid, M., Babu, A. R., Saha, D., and Banik, D. (2018). "Betamethasone gel versus intravenous dexamethasone as prophylaxis against postoperative sore throat," Delta Med. Col. J. 6(2), 73–77.
- Lin, X., Wang, Q., Peng, X. L., and Li, H. (2017). "The binding properties of metandienone and human serum albumin by comparing with other five similar compounds," J. Biochem. Mol. Toxicol. 31, e21866.
- Pawley, G. S. (1981). "Unit-cell refinement from powder diffraction scans," J. Appl. Crystallogr. 14(6), 357–361.