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We demonstrate a novel shear-induced mechanism for growth of concentration
fluctuations in a bacterial suspension. Using a linear stability analysis, a homogeneous
bacterial suspension, subject to a simple shear flow, is shown to be susceptible to
exponentially growing layering perturbations in the shear rate and bacterial concentration.
A semi-analytical expression for the growth rate of concentration perturbations is first
obtained using the method of multiple scales, in the limit where the time scales
characterizing the positional and orientation degrees of freedom are well separated.
Next, the eigenspectrum obtained numerically from a full linear stability analysis is
used to validate and extend the multiple scales result, and draw a contrast with the
known orientation-shear instability. Finally, fully nonlinear simulations, but restricted to
one-dimensional variations of the relevant fields (velocity, concentration and swimmer
orientation distribution) show that the initial instability leads to gradient-banded velocity
profiles, with a local depletion of bacteria at the interface between the homogeneous shear
bands. Our results demonstrate that long-ranged hydrodynamic interactions serve as an
alternate explanation for recent observations of shear bands in bacterial suspensions.
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1. Introduction

Long-ranged hydrodynamic interactions in dilute bacterial suspensions drive growing
orientation fluctuations, in turn leading to collective motion on length scales much larger
than a single bacterium (Koch & Subramanian 2011; Wensink et al. 2012; Marchetti
et al. 2013; Clement et al. 2016). While large-scale coherent motion in unsheared
bacterial suspensions observed in simulations (Saintillan & Shelley 2007; Underhill,
Hernandez-Ortiz & Graham 2008; Krishnamurthy & Subramanian 2015; Stenhammar
et al. 2017), and in many experiments (Wu & Libchaber 2000; Dombrowski et al. 2004;
Dunkel et al. 2013; Gachelin et al. 2014), is regarded as well understood theoretically,
much less is known about the dynamics of sheared bacterial suspensions (Clement et al.
2016). Several recent experiments have observed counter-intuitive behaviour of bacterial
suspensions under an external shear, including regimes of apparent superfluidity (López
et al. 2015; Guo et al. 2018). Here, we demonstrate a novel concentration-shear coupled
mechanism for growth of fluctuations in bacterial suspensions, eventually leading to
banded steady states. The proposed mechanism is shown to lead to shear bands, with
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concentration inhomogeneities, in the dilute regime itself; in sharp contrast to both
passive complex fluids (Cates & Fielding 2006; Olmsted 2008; Divoux et al. 2016),
and active fluids studied earlier, (Cates et al. 2008; Loisy, Eggers & Liverpool 2018)
where shear banding is observed/predicted only in the semi-dilute and concentrated
regimes.

We first discuss the physical mechanism underlying the proposed instability (illustrated
through a schematic in figure 1). In the rest of the paper, the instability is demonstrated
through a linear stability analysis, followed by the results of nonlinear simulations. Both
the analysis and simulations pertain to a bacterial suspension subjected (on average) to
a simple shear flow, and are restricted to perturbations that only vary along the gradient
direction of the ambient shear. The bacteria are modelled as slender particles that swim
along their axis, while being rotated and aligned by the background shear. The latter leads
to a spatially homogeneous sheared suspension with an anisotropic orientation distribution
(figure 1a). In the dilute regime, the contribution of the anisotropically oriented bacteria to
the suspension viscosity is proportional to the local concentration. The flow perturbation
created by the tail-actuated swimming mechanism of the oriented bacteria (termed
‘pushers’) reinforces the fluid flow along the extensional axis of the imposed shear.
Hence, the suspension viscosity is reduced below that of the solvent (Hatwalne et al.
2004; Sokolov & Aranson 2009; Saintillan 2010; Gachelin et al. 2013; López et al. 2015;
Bechtel & Khair 2017; Nambiar, Nott & Subramanian 2017; Saintillan 2018; Nambiar et al.
2019b). This is in sharp contrast to suspensions with passive microstructural elements
which always resist the imposed shear, leading to an enhanced viscosity (Batchelor 1970).
Now, imagine a spontaneous gradient-aligned perturbation that leads to a lower (higher)
effective suspension viscosity in regions of higher (lower) concentration (figure 1b). The
restriction to perturbations varying only along the gradient direction, and the assumed
inertialess limit, implies that the shear stress is independent of the gradient coordinate (z).
This invariance of the shear stress implies that the higher (lower) concentration layers
are subject to a higher (lower) shear rate (figure 1d). In the higher shear rate regions,
the bacteria are more aligned with the flow and, therefore, have a lower probability of
migrating in the gradient direction. In turn, this implies a net drift of bacteria into the
higher shear rate (higher concentration) regions. The diffusive motion of bacteria drives an
opposing stabilizing flux. The drift overcoming the opposing diffusive flux thus provides
a mechanism for exponential growth of gradient-aligned (layering) concentration-shear
fluctuations from the homogeneous state (figure 1c). Front-actuated swimmers (‘pullers’)
such as algae, and passive rigid rods, increase the suspension viscosity in the dilute regime,
leading to a stabilizing drift, and thence, to decaying fluctuations.

Migration of bacteria towards higher-shear rate regions, in inhomogeneous shear flows,
leading to so-called shear trapping, has been examined before (Rusconi, Guasto & Stocker
2014; Barry et al. 2015; Bearon & Hazel 2015; Ezhilan & Saintillan 2015; Sokolov &
Aranson 2016; Vennamneni, Nambiar & Subramanian 2020). However, all of these studies
have focused on the kinematic point of view where changes in the bacterial concentration
and orientation distribution do not couple back to the flow. The mechanism outlined
above illustrates, for the first time, how the back-coupling via the bacterial stress leads to
exponentially growing concentration and shear rate fluctuations. Eventually, the growing
fluctuations lead to a banded steady state, with homogeneous high-shear bands, containing
a marginally higher concentration of bacteria relative to the original base-state, and that
are separated by an interface depleted of bacteria.

Gradient banding in sheared active fluids has been so far studied using
phenomenological continuum equations which allow for a bulk nematic or polar order. In
allowing for such an order, these formulations implicitly assume the orientation degrees of
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FIGURE 1. Schematic illustrating the physical mechanism of the concentration-banding
instability; where μs is the suspension viscosity, and FV and FD represent the destabilizing and
stabilizing fluxes due to drift and diffusion, respectively. (a) Homogeneously sheared base-state;
(b) spontaneous perturbation in the concentration; (c) net accumulation in the high shear region
and (d) induced shear rate perturbation.

freedom to evolve on a slow time scale (Cates et al. 2008; Giomi, Liverpool & Marchetti
2010; Fielding, Marenduzzo & Cates 2011; Marchetti et al. 2013; Loisy et al. 2018). Even
in cases where concentration (position) degrees of freedom are incorporated, both the
orientation and concentration modes are assumed to evolve on comparably slow time
scales (see for instance Giomi, Marchetti & Liverpool 2008). In contrast, in the context of
explaining shear-induced migration of bacteria and algae in dilute suspensions (Rusconi
et al. 2014; Barry et al. 2015), it has been shown that the concentration degrees of
freedom do evolve on a slower time scale, while the orientation degrees of freedom evolve
much faster, and may then be treated in a quasi-steady approximation (Bearon & Hazel
2015; Vennamneni et al. 2020). Thus, the phenomenological active fluids approach is
not expected to describe shear-induced migration in dilute swimmer suspensions. To the
extent that the concentration-shear coupling mechanism described above (figure 1) relies
crucially on the shear-induced migration from a lower to a higher concentration layer, the
banding instability also lies outside the purview of the aforementioned phenomenological
approach. Indeed, earlier results in the literature only report the shear-modified orientation
instability leading to collective motion (or bacterial turbulence), already seen in unsheared
active fluids (Cates et al. 2008; Marchetti et al. 2013; Loisy et al. 2018). In the specific
context of sheared bacterial suspensions, an earlier effort only examined vorticity-aligned
perturbations, and therefore did not find the novel concentration-shear instability analysed
here (Pahlavan & Saintillan 2011). To the best of our knowledge therefore, this is the
first demonstration of a shear-induced mechanism for enhanced fluctuations, leading to
gradient banding in an active fluid.
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The paper is organized as follows. Section 2 describes the system of equations
governing the bacterial suspension. The approach used here is based on the
Stokes–Smoluchowski framework, and accordingly, § 2.1 briefly discusses the relative
merits of the Landau–deGennes (consisting of the phenomenological active-fluid
equations mentioned above) and Stokes–Smoluchowski approaches that have most often
been used to examine the dynamics of active fluids, including bacterial suspensions.
Section 3 outlines the linear stability analyses (§§ 3.1 and 3.2) and the nonlinear
simulations (§ 3.3). In § 3.1, a multiple scale analysis is used to obtain a semi-analytical
expression for the growth rate of concentration perturbations in the limit where the
time scales for orientation and spatial degrees of freedom are well separated. Next,
in § 3.2, a full linear stability analysis numerically obtains the growth rate of coupled
concentration–orientation perturbations, without any restriction on the underlying time
scales. Section 3.3 examines the one-dimensional gradient-banded steady states seen in the
nonlinear simulations. In § 3.4, we compare our results with a recent experiment studying
the rheology of dilute bacterial suspensions (Martinez et al. 2020). Finally, in § 4, we
present the conclusions, while discussing the future scope of this work.

2. Theoretical model

At the microscale, a bacterium swims with a speed Ub, and the swimming direction
( p) decorrelates via both rotary diffusion (with diffusivity Dr) and tumbling (at a mean
rate τ−1). Using τ and the length (H) and velocity scale (U∞) of the imposed flow as the
time, length and velocity scales, respectively, the non-dimensional kinetic equation for the
bacterium phase-space probability density, Ω(x, p, t) in the dilute limit is given by

∂Ω

∂t
+ (εp + Peu) · ∇xΩ − τDr∇2

pΩ + Pe∇p · (ṗΩ) +
[
Ω − 1

4π

∫
dp′Ω(p′)

]
= 0,

(2.1)
where ε = Ubτ/H is the ratio of the bacterium run length to the imposed length
scale, Pe = U∞τ/H denotes the relative importance of the shear-induced and intrinsic
reorientation time scales and τDr gives the relative importance of tumbling and rotary
diffusion. In (2.1), u is the convecting suspension velocity field. Approximating the
bacteria as slender force-dipoles, the rotation due to shear flow is given by the Jeffery
relation, ṗ = E · p + ω · p − p(E : pp), where E and ω are the strain rate and vorticity
tensors, respectively, associated with the local linear flow (Jeffery 1922). As discussed in
the introduction, this rotation due to the flow, coupled with swimming, leads to a migration
of the bacteria towards the high shear rate regions.

Equation (2.1) is coupled to the inertialess momentum and continuity equations which
govern the suspension flow (u), and are given by:

∇ · Σ − ∇P = 0 =⇒ Pe∇2u = −∇ · ΣB + ∇P, (2.2)

∇ · u = 0, (2.3)

where P is the suspension pressure and Σ the suspension stress; Σ is a sum of the solvent
and active stresses, Σ = ΣB + Pe(∇u + ∇uT), where the stress is scaled by μτ−1 with μ

being the solvent viscosity. The active stress, ΣB, is the coarse-grained stress exerted by the
particle-phase (bacteria) (Batchelor 1970). We approximate ΣB by its active contribution
alone which, in a continuum framework, is given in terms of the bacterium force-dipole
density as −A ∫ dpΩ(p)(pp − I/3). The non-dimensional parameter A = Cn0L2Ubτ is
the activity number; here, L is the bacterium length, n0 the number density and C the
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non-dimensional strength of the intrinsic bacterium force-dipole, with C > 0 for ‘pushers’
(Koch & Subramanian 2011). The active stress is known to reduce the suspension viscosity
(Saintillan 2018), an effect that is crucial to the banding instability analysed here. As
will be seen in § 3, the parameters A and Pe delineate the region of instability. In the
general case, ΣB has an additional passive stress contribution arising from the bacterium
inextensibility. For moderate Pe, the regime of interest in this work, the passive stress only
acts as an enhanced viscosity. Since this effect has been examined before (Subramanian
& Koch 2009), here, we neglect it in order to focus on the active stress and concentration
coupling.

2.1. The Landau–deGennes and the Stokes–Smoluchowski frameworks
Having summarized the theoretical framework above, it is worth drawing a distinction
between the two classes of theoretical models that have been used in the literature to
analyse active fluids, bacterial suspensions in particular. The first class of models is based
on the phenomenological active-fluid formalism which originated in passive liquid crystal
hydrodynamics (De Gennes & Prost 1993). In the original passive version, the equations
of motion for the order parameter (nematic or polar orientational order, for instance) were
derived based on postulating a free energy functional with the constituent terms postulated
based on symmetry arguments. The resulting free energy allows for the onset of bulk
orientational order above a threshold volume fraction (under quiescent conditions). This
approach has been modified for active fluids with the addition of so-called prohibited
terms to the stress and order parameter evolution equations. While the latter addition
only serves to renormalize the aforementioned threshold for transition to orientational
order, the additional term in the stress leads to a fundamentally new dynamics (Simha
& Ramaswamy 2002; Hatwalne et al. 2004; Marchetti et al. 2013). These equations have
since been solved under different circumstances (Cates et al. 2008; Giomi et al. 2008,
2010; Fielding et al. 2011; Loisy et al. 2018). The approach has been very successful
in explaining a host of novel phenomena across a range of systems all of which come
under the general umbrella of active matter (Sanchez et al. 2012; Marchetti et al. 2013;
Doostmohammadi et al. 2018); for bacterial suspensions in particular, the results are quite
representative at high volume fractions (Wensink et al. 2012; Li et al. 2019).

In contrast, the second approach, the one adopted in the present manuscript, is suited
to dilute suspensions of run-and-tumble and rotary diffusing swimmers (bacteria being
a specific example), and thereby, is complementary to the above approach based on the
liquid crystal phenomenology. This approach may be termed the Stokes–Smoluchowski
framework since, as seen above, the kinetic equation for the bacterial probability density
resembles the Smoluchowski equation for Brownian particles (except that the original
diffusional relaxation is now complemented by an additional run-and-tumble-driven
relaxation). The Smoluchowski equation is coupled to the Stokes equations via the
bacterial stress. While restricted in its applicability (to the dilute regime), the model
can be derived from first principles, wherein interactions between the bacteria are only
retained at a mean-field level (Saintillan & Shelley 2008a,b; Subramanian & Koch 2009;
Koch & Subramanian 2011; Stenhammar et al. 2017). As a result the model contains
no phenomenological approximations and all the parameters involved can be directly
measured in experiments. As already mentioned above, the model has been shown to
accurately predict concentration inhomogeneities, resulting from shear-induced migration,
in channel flows (Bearon & Hazel 2015; Vennamneni et al. 2020).

While the active-fluid formalism has been applied with considerable success to dense
active suspensions, its inapplicability in the dilute regime may be seen from the Frank
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elastic terms, in the free energy functional, that drive a diffusive relaxation of the order
parameter. Such diffusive relaxation may arise from short-range repulsive (excluded
volume) interactions between closely spaced bacteria at high volume fractions; there
is, however, no notion of such an ‘elastic network’ formed by bacteria in the dilute
regime. Moreover, the diffusive relaxation becomes arbitrarily weak at sufficiently long
wavelengths, and as a result, the threshold for the onset of collective motion in a
quiescent bacterial suspension, when analysed using the active-fluid formalism, becomes
system-size dependent; the threshold scaling as the inverse square of the system size,
implying that a bacterial suspension in a large enough domain is always unstable (Simha &
Ramaswamy 2002; Marchetti et al. 2013). In contrast, the Stokes–Smoluchowski approach
leads to a threshold volume fraction that is only a function of the bacterium swimming
parameters; in fact, the threshold may be stated in terms of the activity number defined
above, and is given by A∗ = 5(1 + 6τDr) (Subramanian & Koch 2009). This threshold
has been validated in a recent experiment (Martinez et al. 2020), which also discuss
the inappropriateness of the aforementioned system-size-dependent threshold. A detailed
comparison between the observations of Martinez et al. (2020) and results obtained in
this paper is carried out in § 3.4. Note that a relaxation driven by Frank elasticity would
require redefining the activity number with τ being replaced by L2

sys/Dt, Lsys here being the
system size and Dt the diffusivity proportional to the Frank elastic constant. The resulting
threshold volume fraction may then be written in the form (n0L3) ∼ DtL/(UL2

sys), leading
to the inverse-square system-size scaling mentioned above.

To summarize then, the Stokes–Smoluchowski framework used here is appropriate
for the dilute bacterial suspensions under consideration; higher volume fractions would
necessarily require the phenomenological approach based on the active-fluid formalism
above. Use of this latter formalism in the dilute regime can lead to incorrect results since
the phenomenological constants involved do not have a direct microscopic interpretation
in the dilute limit. To reiterate, in this paper we use the Stokes–Smoluchowski framework
which is more appropriate for the aforementioned experiments where novel behaviour is
seen at volume fractions as low as 0.75 % (see § 3.4). It should be noted that the kinetic
equation (2.1), that lies at the heart of this framework, does not therefore include either
direct hydrodynamic or steric interactions between the swimming bacteria. While recent
efforts have analysed pairwise hydrodynamic interactions in the Stokes–Smoluchowski
framework, this lies beyond the scope of the current effort (Stenhammar et al. 2017;
Nambiar, Garg & Subramanian 2019a).

3. Results and discussion

The homogeneous base-state is given by u0 = z1x and an anisotropic orientation
distribution Ω0(p), which needs to be solved for numerically; the numerical method is
described in appendix A. Knowing Ω0(p) allows for the calculation of the stress–shear
rate curves for the homogeneous state. Figures 2(a) and 2(b) show the variation of the
suspension shear stress (Σ0) and the suspension viscosity (μs0) with Pe, respectively. For
A < A∗, the suspension shear stress in the base-state (Σ0) is a monotonically increasing
function of the shear rate although the effective viscosity is lower than the solvent
viscosity; A∗ ≈ 35 marks the threshold for the instability in an unsheared suspension
owing to the viscosity vanishing at Pe = 0 (Subramanian & Koch 2009). For A > A∗, Σ0
is a non-monotonic function of Pe and the suspension has a zero viscosity at Pe ≡ Pecr(A);
Pecr being an increasing function of A, with Pecr(A∗) = 0. We examine the stability
of this homogeneous state to gradient-aligned perturbations in the velocity field (u1)
and orientation distribution (Ω1). Since gradient-aligned perturbations are the long-time
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FIGURE 2. A sheared bacterial suspension with τDr = 1. (a) The variation of the homogeneous
base-state stress with Pe. (b) The variation of suspension viscosity with Pe. (c) The growth rate
of layering perturbations, predicted by the multiple scale analysis, versus Pe. (d) The unstable
interval of Pe values, corresponding to the concentration-shear instability, in the A–Pe plane. The
Pe values marking the endpoints of the unstable interval are Pecr (corresponding to an infinite
growth rate) and Pemax (corresponding to a zero growth rate); the Pecr and Pemax values are also
marked in (a).

limit for almost any initial wavevector in simple shear flow, the assumption of gradient
alignment is not restrictive.

In what follows, we examine the linear stability of gradient-aligned concentration
perturbations alone in § 3.1 via a multiple scale analysis, the linear stability of all
gradient-aligned perturbations in § 3.2 and finally, the fully nonlinear evolution of such
perturbations in § 3.3. The bacterial suspension is assumed to be unbounded in extent in
all of the above. Confinement of swimmer suspensions is known to lead to concentration
inhomogeneities via wall accumulation of swimming bacteria through both kinematic and
hydrodynamic mechanisms (Berke et al. 2008; Drescher et al. 2011; Elgeti & Gompper
2016). However, in order to focus on concentration inhomogeneities arising from banding
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in the bulk, we neglect wall effects in the analysis, and impose periodic boundary
conditions in the gradient direction in both the stability analysis and the simulations.

3.1. Concentration dynamics (CD)
In the limit ε = Ubτ/H → 0, concentration fluctuations (n1 = ∫

Ω1 dp) evolve on a
slower, diffusive, time scale (t2 ∼ O(H2/(τU2

b))) compared to orientation fluctuations
(t1 ∼ O(τ )). Using a multiple time scale formalism, Ω1 may, in this limit, be expanded
as

Ω1 = Ω10(p, t1)n1(z, t2) + εΩ11(p, t1) + ε2Ω12(p, t1). (3.1)

The orientation degrees of freedom evolve quasi-statically on the time scales of interest
(t2/t1 ∼ O(1/ε2) � 1), and a reduced equation governing n1 can be derived as (see
appendix B.1; Subramanian & Brady 2004; Kasyap & Koch 2014; Vennamneni et al. 2020)

∂n1

∂t2
= ∂

∂z

(
−V1 + D0

∂n1

∂z

)
. (3.2)

The concentration perturbations (n1) are thus governed by a drift-diffusion equation.
The combination of swimming and orientation decorrelation results in the swimmers
undergoing a diffusive motion for long times, with an effective diffusivity D0, in (3.2).
In the absence of flow, the effective diffusivity can be analytically obtained as D0 =
1/(3(1 + 2τDr)) (see, for instance, Krishnamurthy & Subramanian 2015). In the presence
of flow, the effective diffusivity also depends on the Péclet number and needs to be
calculated numerically; the procedure is outlined in appendix B.1. The differential rotation
due to the inhomogeneous perturbed shear flow leads to the additional drift term, V1, in
(3.2). As shown in appendix B.1, the drift term is proportional to the perturbation shear
rate gradient and given by,

V1 = 2
√

π

3
e1,0

∂γ̇1

∂z
, (3.3)

where e1,0 is representative of the magnitude of the drift. e1,0 is a function of τDr and Pe
and is obtained numerically (see appendix B.1). We find that e1,0 > 0 and thus the drift is
directed from low to high shear rate regions. As explained in the introduction, the sign of
the drift is rationalized by noting that swimmers in the high shear rate regions are more
aligned with the flow and hence have a lesser probability of migrating in the gradient
direction when compared to swimmers in the low shear rate regions. Hence, the drift
drives a destabilizing flux from regions of low to high shear rate (figure 1). The diffusive
contribution (D0 > 0) (the second term in (3.2)), on the other hand, drives an opposing
flux that is stabilizing.

The perturbation shear rate (γ̇1) in (3.3) is obtained from the momentum equation as

(Peμs0)
∂γ̇1

∂z
= ∂n1

∂z
|ΣB

0 |, (3.4)

where μs0 is the suspension viscosity and ΣB
0 the active shear stress in the homogeneous

state; the respective expressions are given in appendix B.1. Assuming normal modes
of the form [n1, γ̇1] = [ñ1, ˜̇γ1] cos(zkz) exp(σ t2), we obtain the following semi-analytical
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expression for the eigenvalue governing the evolution of concentration perturbations

σ = k2
z

(
2
√

π

3
e1,0

|ΣB
0 |

Peμs0
− D0

)
. (3.5)

When the first term in (3.5), denoting the destabilizing drift, exceeds the diffusivity, σ >
0, and the homogeneous state becomes unstable (figure 2c). For Pe → Pecr, the suspension
viscosity (μs0) vanishes and the destabilizing drift diverges in (3.5), making the suspension
infinitely susceptible to growing concentration fluctuations (figure 2c). The lower (Pecr)
and upper (Pemax ) Péclet thresholds for the concentration-shear instability as a function
of A are shown in figure 2(d), with the range of (dimensionless) unstable shear rates
(Pecr, Pemax) increasing with increasing A.

3.2. Coupled concentration and orientation dynamics (CCOD)
The divergence of the growth rate for Pe → Pe+

cr, seen in figure 2(c), is an artefact of
the multiple scale analysis. As Pe approaches Pecr, the time scale (defined as the inverse
of the growth rate) characterizing the concentration perturbations decreases, until for Pe
sufficiently close to Pecr, the growth rate σ ∼ τ−1, or alternatively, the wavenumber in
the gradient direction, kz ∼ (Ubτ)−1, and the assumed separation of scales between the
concentration and orientation fluctuations is no longer present. The predictions of the
multiple scale analysis are thus invalidated for Pe sufficiently close to Pecr. In order
to analyse the behaviour of perturbations across Pe = Pecr, we therefore carry out a
linear stability analysis without the assumption of a time scale separation. The complete
eigenspectrum, corresponding to any small-amplitude perturbation aligned along the
gradient direction, is obtained numerically by expanding the relevant fields in spherical
harmonics. The details of the numerical method are given in appendix B.2.

Figure 3 (inset) shows good agreement between the two approaches (the multiple scale
and the full linear stability analyses) for Pe > Pecr. Importantly, the full analysis continues
to predict a finite growth rate of O(1/τ) for Pe → Pecr. The multiple scale analysis also
does not predict a finite length scale for the fastest growing mode since σ ∝ k2

z (see
(3.5)), so that the shortest-wavelength modes are predicted to grow at the fastest rates.
In contrast, the full stability analysis, with the orientation dynamics included, predicts
the fastest growing wavenumber to be O(1/(Ubτ)) such that the relaxation times of the
concentration and orientation (and thence, stress) fluctuations become comparable, both
being O(τ ) (see figure 4a). For kz > O(1/(Ubτ)), the diffusive rate of accumulation
of bacteria (k−2

z /(τU2
b)) would exceed the stress relaxation time (τ ), and hence, such

perturbations decay.
The full analysis also predicts the orientation-shear instability, which has earlier been

interpreted as a negative-viscosity instability responsible for the onset of collective
motion (bacterial turbulence) in a quiescent bacterial suspension. The orientation-shear
instability has been studied earlier in the absence of an imposed shear (Pe = 0). It is
a long-wavelength instability, with kz = 0 being the most unstable mode, and having a
finite growth rate. The longest-wavelength perturbations may be regarded as homogeneous
shearing flows, on the scale of the bacterium swimming motion, and the response
to this homogeneous shear may then be interpreted in terms of the aforementioned
negative viscosity (see discussion in § 3.1 of Subramanian & Koch 2009). Importantly, the
unstable eigenfunction is spatially homogeneous, implying that concentration fluctuations
are absent at the onset of the orientation-shear instability (Underhill et al. 2008;
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FIGURE 3. Comparison of growth rates versus Pe obtained from the concentration dynamics
(§ 3.1) and coupled concentration–orientation dynamics (§ 3.2) analyses. The magnified inset
emphasizes the agreement between the two approaches for Pe > Pecr.
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FIGURE 4. Variation in the (a) growth rate and (b) the amplitude of concentration fluctuations
(ñ1) as a function of the wavenumber for different Pe with τDr = 1, A = 48.5 (Pecr ≈ 2.29 and
Pemax ≈ 3.1). Here, the growth rate (σ ) and the wavenumber (kz) are non-dimensionalized using
the bacterium tumble time τ and run length Ubτ , respectively.

Subramanian & Koch 2009). These features are in contrast with the concentration-shear
instability described here.

In light of the aforementioned discussion, one thus needs to distinguish between the
orientation-shear and concentration-shear instability mechanisms which operate in distinct
parameter regimes. The instability onset, regardless of the mechanism, coincides with
the stress becoming a non-monotonic function of the shear rate – this corresponds to
the curves for A > A∗ in figure 2(a). For A > A∗, figure 3 shows that orientation
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fluctuations drive an instability on the negative-viscosity portion of the stress–shear
rate curve corresponding to Pe < Pecr, with this orientation-shear instability arising due
to a negative apparent viscosity, as mentioned above, and being the equivalent of the
mechanical shear-banding instability known from earlier investigations of passive complex
fluids (Cates & Fielding 2006); the novel concentration-shear instability exists only on the
positive-viscosity branch of the stress–shear curve corresponding to Pecr < Pe < Pemax .

The two instabilities are most easily be differentiated by focusing on the behaviour of the
spatially homogeneous (kz = 0) mode since it corresponds to pure orientation fluctuations
without associated concentration fluctuations. For the orientation-shear instability at Pe =
0 the most unstable eigenfunction is known to be spatially homogeneous (with kz = 0)
from earlier work (Underhill et al. 2008; Subramanian & Koch 2009). Figure 4(a) shows
that the kz = 0 mode remains the fastest growing perturbation in the presence of a weak
shear (‘weak’ here corresponding to the interval Pe < Pecr), and hence the growth may
be regarded as being due to a mechanism analogous to the original orientation-shear
instability. As argued in Subramanian & Koch (2009), the growth arises because bacteria
orient, in response to a long-wavelength perturbation, so that the resulting bacterium flow
fields reinforce the original perturbation; as stated above, this reinforcing mechanism
may be interpreted in terms of a negative viscosity. In stark contrast, figure 4(a) shows
that for Pe > Pecr, the kz = 0 mode is stable and the most unstable eigenfunction now
has a spatially modulated structure (a finite kz) corresponding to a layering perturbation.
Thus, in the interval Pecr < Pe < Pemax , the mechanism underlying the growth involves
the concentration-shear coupling discussed earlier. For Pe in the neighbourhood of Pecr,
there is no sharp distinction between the two instability mechanisms.

Further insight into the distinction between the two instability mechanisms may be
obtained from the behaviour of the long-wavelength number density perturbations (ñ1)
shown in figure 4(b). In an unsheared suspension, the unstable eigenfunction does not
have number density perturbations for any kz (the curve in figure 4(b) for Pe = 0)
in agreement with earlier predictions (Underhill et al. 2008; Subramanian & Koch
2009). Figure 4(b) shows that weak shear only leads to weak long-wavelength number
density perturbations (ñ1 → 0 as kz → 0) for Pe < Pecr. However, the behaviour of these
number density perturbations is significantly altered for Pe > Pecr. For Pe > Pecr, there
are strong, long-wavelength concentration fluctuations as predicted by the mechanism
outlined earlier. This is seen in figure 4(b) where the amplitude of these fluctuations ñ1
now approaches a finite value even as kz → 0 (with ñ1 = 0 for kz = 0 being a singular
limit). Along with the results of the multiple scale analysis in § 3.1, this clearly shows that
it is the concentration-shear coupling mechanism that leads to an instability for Pe > Pecr.

3.3. Nonlinear simulations
To examine the steady state resulting from the linear instability discussed above, we
numerically integrate (2.1) and (2.3) in time. The nonlinear simulations are carried out
in two dimensions, so the orientation vector is restricted to the unit circle, and may be
characterized by a single azimuthal angle. A standard spectral formulation is used for the
simulations and the details are given in appendix C. The simulation results are validated
by comparing against the linear stability analysis during the initial phase of exponential
growth (see appendix C). The imposed non-dimensional shear rate (Pe) is taken to be the
control parameter.

Figure 5(a–c) shows the evolution of the velocity, shear rate and concentration fields
over time for Pe = 0.75 and A = 62.83 with τDr = 0.0025. For this choice of parameters,
Pecr ≈ 0.67 and Pemax ≈ 0.975, so that the chosen Pe lies in the concentration-shear
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FIGURE 5. The time evolution of (a) the velocity (u), (b) shear rate (γ̇ ) and (c) concentration (n)
fields towards the gradient banded steady state for Pe = 0.75. The simulations have a box size 10
times the run length Ubτ with τDr = 0.0025 and A = 62.83; for these parameters, Pecr ≈ 0.67
and Pemax ≈ 0.975. The shear rates γ̇ 	 and −γ̇ 	 are also marked as dashed lines in (b).

instability regime. The chosen initial condition is given in appendix C. The velocity field
evolves from the initial near-homogeneous shear to a banded steady state, with equal
and opposite shear rates in two (unequal) bands, for long times. From figure 5(b), the
shear rates selected in the bands are seen to be γ̇ 	 ≈ 1.69 and −γ̇ 	. The associated
concentration field shows that the two shear bands are homogeneous at steady state, with a
localized depletion of bacteria only at the interface between the bands (see figure 5c), this
depletion being consistent with earlier findings of high-shear trapping in inhomogeneous
shearing flows (Rusconi et al. 2014; Bearon & Hazel 2015; Vennamneni et al. 2020).
Note that, despite the appearance, there are only two bands (and one shear interface) at
steady state, and not three, since the profiles may be shifted by an arbitrary amount in
the gradient direction on account of the periodic boundary conditions. Figure 6 shows
the time evolution of the associated suspension stress for different Pe, including the case
Pe = 0.75 examined in figure 5. For all cases, the suspension stress asymptotes to zero
for long times. Figure 7(a–c) shows the steady-state velocity, shear rate and concentration
fields for varying Pe. Thus, for all Pe examined, a gradient-banded state results for long
times; two bands with differing shear rates coexist at the same (zero) shear stress. The
selected shear rate in the bands is seen to be independent of Pe. In light of figure 6, the
only criterion controlling the shear rate selected at steady state is that of the shear stress
being zero. As a result, the only consequence of varying the imposed shear rate is to alter
the relative widths of the two shear bands in a manner so as to accommodate the imposed
shear. For Pe = 0 alone, the two bands have equal thicknesses, each occupying half the
simulation domain.
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FIGURE 6. The time evolution of the suspension shear stress (Σ) for various Pe. The
simulations have a box size 10 times the run length Ubτ with τDr = 0.0025 and A = 62.83;
for these parameters, Pecr ≈ 0.67 and Pemax ≈ 0.975.
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FIGURE 7. (a) The velocity (u), (b) the shear rate (γ̇ ) and (c) the concentration (n) profiles
in the nonlinear banded state. The simulations have a box size 10 times the run length Ubτ
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(d) Maxwell construction showing selected the shear rate (γ̇ 	 ≈ 1.69), with zero stress, selected
in the banded state. The shear rates γ̇ 	 and −γ̇ 	 are also marked as dashed lines in (b).

Further, the steady-state banded profiles do no show any major difference across Pecr(≈
0.67 in figure 7) even though concentration fluctuations are crucial for the instability, and
therefore, the start-up kinetics for Pe > Pecr. We thus see that both the orientation-shear
and concentration-shear instabilities, unexpectedly, lead to a similar nonlinear gradient
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banded state. This insensitivity of the selected stress to concentration coupling is in
contrast to shear banding in passive complex fluids, where this coupling leads to an
increase in the selected stress with the shear rate (Fielding & Olmsted 2003; Cates &
Fielding 2006).

Having characterized the nature of the inhomogeneous (gradient-banded) steady state,
we now show that a geometric construction based on the homogeneous stress–shear
rate curve can be used to predict the selected stress and shear rates in this banded
state. Figure 7(d) shows the homogeneous stress–shear curve from figure 2(a) together
with its (symmetric) extension to negative shear rates. If we assume a homogeneous
concentration profile in the banded state, then knowing the magnitude (zero) of the shear
stress from figure 6, we can find the corresponding selected shear rates from figure 7(d).
The selected shear rates are seen to be γ̇ 	 and −γ̇ 	. Figure 7(d) thus suggests a banded
state with equal and opposite shear rates γ̇ 	 which supports a zero bulk stress with a
homogeneous concentration. Rather remarkably, the shear rate and stress in the banded
state closely follow the geometric construction, even though the concentration profile
is not completely homogeneous. This construction is seen to be the equivalent of the
Maxwell construction used in equilibrium thermodynamics, with the shear rate playing
the role of the specific volume in the familiar one-component system. However, unlike
equilibrium thermodynamics, the geometric construction cannot be used to predict the
shear stress in the banded state (Cates & Fielding 2006; Dhont & Briels 2008; Olmsted
2008).

The equal and oppositely sheared zones in the banded state imply that the shear rate
goes through zero at the interface, driving a local depletion of bacteria (Vennamneni
et al. 2020) as seen in figure 7(c). The Maxwell construction in figure 7(d) is relevant
for an infinitely large system in the gradient direction; however, figure 7(c) shows that
the bands in a finite system have a marginally higher concentration of bacteria than the
original homogeneous state state due to interfacial depletion. Thus, the selected shear rate
slightly differs from γ̇ 	, the value suggested by the Maxwell construction in figure 7(d).
This in turn implies that the stress selected is finite, but (very) small in magnitude. The
width of the interface between the shear bands is of the order of the bacterium run
length (Ubτ), which can be seen from (2.1) to be the length scale governing the spatial
decay of stress. With increasing box size, the extent of the interfacial depletion reduces,
and the shear rate selected approaches γ̇ 	 predicted by the Maxwell construction (not
shown).

An analogous result for the selected stress was obtained earlier for extensile active
nematics for nematic–nematic banding and no concentration variation (Cates et al.
2008; Fielding et al. 2011). In this approach, the shear rate is exactly the prediction of
the Maxwell construction, since there is no concentration variable (Cates et al. 2008).
As discussed in § 2.1, the active–nematic formalism, however, has phenomenological
constants that do not have a direct microscopic interpretation, and as pointed our earlier, is
not expected to work for dilute bacterial suspensions that are far from an isotropic–nematic
transition. This is evident from Giomi et al. (2010) and Loisy et al. (2018) reporting
similar stress–shear rate curves and yet very different velocity profiles from those in Cates
et al. (2008) and Fielding et al. (2011). In contrast, our approach solves the underlying
kinetic equation directly and rigorously demonstrates the selection of a banded state even
in the dilute regime. Crucially, our results demonstrate that long-range hydrodynamic
interactions offer an alternate explanation for experimental observations of a banded state
in dilute bacterial suspensions (Martinez et al. 2020). A more detailed comparison with
recent experimental results follows.
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3.4. Comparison with Martinez et al. (2020)
Martinez et al. (2020) have recently studied the rheology of bacterial suspensions
by measuring both the viscosity and the velocity profile of a sheared suspension of
Escherichia coli using a Couette and cone-plate rheometer, respectively. This dual
measurement allows the authors, for the first time, to ascertain the role of collective motion
on the measured rheology. The authors examine a range of (small) volume fractions both
in the absence and presence of collective motion. At volume fractions less than 0.75 %,
with an imposed shear rate of 0.04 s−1 (corresponding to the linear response regime
with Pe = γ̇ τ  1), they observe that the zero-shear viscosity decreases with increasing
volume fraction. The authors verified the absence of collective motion at these volume
fractions based on the velocity profile in the cone-plate rheometer being a simple shear.
This decrease in the viscosity, in the absence of collective motion, has been explained
based on both the Stokes–Smoluchowski (Bechtel & Khair 2017; Nambiar et al. 2017)
and Landau–deGennes (Hatwalne et al. 2004; Cates et al. 2008) frameworks, with the
viscosity reduction being dependent on the system size in the latter case. To compare
the two predictions, the authors carried out viscosity measurements for different gap
sizes in the Couette rheometer. They did not observe any system size dependence, and
therefore conclude that the Stokes–Smoluchowski framework is appropriate for explaining
the experimental results at the low volume fractions under consideration.

Furthermore, Martinez et al. (2020) are also the first to report the existence of an
intrinsic threshold volume fraction for the onset of collective motion. There have been
earlier reports of a threshold volume fraction for the onset of collective motion in
bacterial suspensions conforming to a thin-film geometry (Sokolov et al. 2007; Sokolov
& Aranson 2012). However, the thickness of the film was not varied systematically in
these experiments, and thus there was no way of inferring system-size dependence. In
contrast, Martinez et al. (2020) systematically vary the gap size of the Couette rheometer to
establish that the threshold volume fraction is indeed independent of the confining system
size. As seen in § 2.1, the existence of a system-size independent threshold is one of the
central predictions of the Stokes–Smoluchowski framework, and it is therefore of interest
to compare the experimental and theoretical thresholds (Subramanian & Koch 2009).
Martinez et al. (2020) report the onset of collective motion for volume fractions greater
than 0.75 %, the threshold being valid both in the absence of an external flow as well as
at a low shear rate of 0.04 s−1 (used for the aforementioned viscosity measurements). The
volume fraction (0.75 %) in the experiments was calculated using the cell body volume
and corresponds to a hydrodynamic volume fraction (n0L3) of around 5.25 by assuming
an estimate for the bacterium length (L) of 10 μm (Linek et al. 2016). Recall from § 2 that
the theoretical model predicts the onset in terms of the non-dimensional activity number,
A = Cn0L2Ubτ . The hydrodynamic volume fraction (n0L3) is the relevant parameter
for slender particles, and the threshold hydrodynamic volume fraction is then given as
(n0L3)c = (A∗/C)(L/Ubτ). For the E. coli strain used by the authors, the parameters
have been estimated as L = 10 μm, Ub = 10 μm s−1, τ = 1 s and τDr = 0 (Linek
et al. 2016); τDr = 0 is consistent with Martinez et al. (2020) restricting themselves to
the pure run-and-tumble case. Using A∗ ∼ 5 for the low Pe numbers accessed in the
experiment, we thus get n0L3 = 5/C, where C is the strength of the dipole constant. The
dipole constant has not been experimentally determined, but is expected to be O(1) for
typical swimmers, since it is defined by requiring the dimensional force dipole to be
μUL2. Thus, for O(1) values of C, the experimental and theoretical thresholds are indeed
in agreement. It should be noted that work on passive fibre suspensions has shown that
the dilute Stokes–Smoluchowski framework is applicable up to hydrodynamic volume
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fractions of around 10 (see for instance chapter 10 in Larson (2013) and Mackaplow &
Shaqfeh (1998)), and hence the observed threshold lies within the validity of the dilute
theory.

Martinez et al. (2020) also show that the suspension viscosity becomes nearly zero
and approximately invariant with the volume fraction for volume fractions greater than
0.75% (see figure 4a in Martinez et al. 2020). Further the velocity profile is no longer
simple shear flow. Instead, shear banding is observed such that bands with multiple shear
rates are observed at the same shear stress (see figure 4b–g in Martinez et al. 2020).
Recall from § 3.3 that upon the onset of the orientation-shear instability the theoretical
model also predicts shear bands (see figure 7a) and a zero viscosity independent of
the volume fraction. Thus, we see that the experimental and simulation results are in
qualitative agreement even with the simplifying assumption of only gradient direction
variations made in the simulations. Guo et al. (2018) have also reported shear banding in
bacterial suspensions at moderate volume fractions recently. However, these experiments
were conducted in a highly confined setting with a gap width of 60 μm, and swimmer
interactions with boundaries are expected to play a dominant role. Note that, in the
experiments of Martinez et al. (2020) above, the threshold was found to approach the
prediction of the unbounded-domain theory only for gap sizes larger than 200 μm. Since
we ignore the effects of confinement, our results cannot be directly applied to Guo et al.
(2018), and can at best serve as a qualitative explanation.

To summarize, we see that the Stokes–Smoluchowski framework used in this paper
accurately predicts the threshold for the onset of collective motion observed in recent
experiments. The same framework also qualitatively predicts the viscosity and the
velocity profiles observed beyond the threshold. Recent work has already shown that this
framework accurately describes the rheological properties of bacterial suspensions in the
absence of collective motion (Bechtel & Khair 2017; Saintillan 2018; Nambiar et al. 2019b;
Martinez et al. 2020). Complementing these efforts, our work thus establishes that the
Stokes–Smoluchowski framework is appropriate for the examination of the rheological
properties of dilute bacterial suspensions across the collective motion threshold.

4. Concluding remarks

We have demonstrated a novel concentration-shear instability mechanism in dilute
bacterial suspensions. The proposed instability is reminiscent of the Helfand–Federickson
mechanism that explains shear-enhanced concentration fluctuations in concentrated
polymer solutions near an equilibrium critical point (Helfand & Fredrickson 1989; Wu,
Pine & Dixon 1991; Dixon, Pine & Wu 1992; Larson 1992; Milner 1993; Onuki 2002;
Fielding & Olmsted 2003; Cromer et al. 2013; Cromer, Fredrickson & Leal 2014).
However, dilute bacterial suspensions are far from any critical point and the dynamics
of the enhanced concentration fluctuations is crucially reliant on the novel rheological
response arising from bacterial activity. We hope that the theoretical results reported here
would motivate light scattering experiments examining the dynamics of concentration
fluctuations in bacterial suspensions. Similar experiments in polymer solutions have shed
considerable light on the nature of the shear-enhanced concentration fluctuations (Wu et al.
1991; Dixon et al. 1992).

The concentration-shear instability mechanism need not be restricted to a rheological
scenario. Observations of collective motion driven by concentration fluctuations near the
contact line of an evaporating drop were reported in Kasyap, Koch & Wu (2014), and
in pressure-driven pipe flow in Secchi et al. (2016). The generalization of our results to
an inhomogeneous shear flow would lead to additional insight into these observations.
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Although for the imposed linear flow considered here, the concentration fluctuations have
been found to vanish in the bulk at steady state, one nevertheless expects them to play a
key role in a general non-stationary scenario. Even at steady state, the localized depletion
in bacterial concentration at the interface between the homogeneous shear bands, and the
resulting localization in the stress, is expected to render the banded-state susceptible to
secondary interfacial instabilities (Fielding 2005; Miles et al. 2019).

Finally, the unique ability of shear to enhance concentration fluctuations in active
suspensions need not be limited to pushers. The recent identification (Barry et al. 2015),
and subsequent explanation (Vennamneni et al. 2020) of a low-shear trapping regime,
implies that an imposed shear may also be capable of enhancing concentration fluctuations
in suspensions of pullers (algae with contractile force dipoles, for instance). The role
of concentration fluctuations is expected to be substantial in this case owing to the
phenomenon of centreline collapse that has been predicted to occur above a critical
swimmer aspect ratio (Vennamneni et al. 2020).

Acknowledgements

L.N.R. would like to thank Science and Engineering Research Board, India (Grant
No. PDF/2017/002050) and Jawaharlal Nehru Centre for Advanced Scientific Research,
Bangalore for the financial support.

Declaration of interests

The authors report no conflict of interest.

Appendix A. The base-state

The bacterium orientation, in the chosen spherical coordinate system, is depicted in
figure 8. In the base-state, whose stability we examine in the paper, the bacteria are
homogeneously distributed in the gradient direction and have an anisotropic orientation
distribution due to rotation by the imposed shear flow. The resulting homogeneous active
stress does not induce any fluid flow, and thus the flow field remains identical to the
imposed shear, u0 = z1x . The momentum and continuity equations (2.3) are, thus, trivially
satisfied. From (2.1), the equation governing the orientation distribution (Ω0) is

Pe∇p · (ṗ
′
Ω0) +

[
Ω0 −

∫
dp

′ 1
4π

Ω0(p
′
)

]
− Drτ∇2

pΩ0 = 0. (A 1)

A.1. Numerical solution of the base-state probability density
Here we describe the numerical scheme for solving (A 1) for the base-state probability
density (Ω0), and hence, the base-state stress Σ0 (Nambiar et al. 2017, 2019b; Vennamneni
et al. 2020). Considering ∇p · (ṗ

′
Ω0), the first term in (A 1), substituting ṗ′ , and after

simplification, one may write

∇p · (ṗ′
Ω0(p)) = cos2 θ cos φ

∂Ω0

∂θ
− cot θ sin φ

∂Ω0

∂φ
− 3Ω0 sin θ cos θ cos φ

= i cos2 θLy(Ω0) − i sin θ cos θ sin φLz(Ω0) − 3 sin θ cos θ cos φΩ0,

(A 2)
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FIGURE 8. Schematic showing the (a) coordinate system for a bacterium with orientation p
(b) a bacterial suspension subjected to simple shear flow.

where the operators

Ly = −i cos φ
∂

∂θ
+ i cot θ sin φ

∂

∂φ
, (A 3)

Lz = −i
∂

∂φ
. (A 4)

Now, rewriting (A 2) with the coefficients of partial derivatives written in terms of
spherical harmonics

∇p · (ṗ′
Ω0(p)) =

(
2
3

√
4π

5
Y0

2 + 1
3

√
4πY0

0

)
iLy(Ω0) +

√
2π

15

(
Y−1

2 + Y1
2

)LZ(Ω0)

− 3

√
2π

15

(
Y−1

2 − Y1
2

)
Ω0. (A 5)

Further, expanding the orientation probability density as

Ω0(p) =
∞∑

l=0

l∑
m=−l

al,mYm
l (p) (A 6)

with al,m being the unknown series coefficients, and substituting in the above equation
leads to

∇p · (ṗ′
Ω0(p)) =

∞∑
l=0

l∑
m=−l

al,m

[(
2
3

√
4π

5
Y0

2 + 1
3

√
4πY0

0

)
iLy | Ym

l >

+
√

2π

15

(
Y−1

2 + Y1
2

)LZ | Ym
l > −3

√
2π

15

(
Y−1

2 − Y1
2

)
Ym

l

]
, (A 7)

where Li | Ym
l >= Li(Ym

l ).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

66
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.664
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Using (A 6), (A 7) and the following results from Messiah (1962) and Arfken & Weber
(1999)

iLy | Ym
l >= 1

2

[√
l(l + 1) − m(m + 1)Ym+1

l −
√

l(l + 1) − m(m − 1)Ym−1
l

]
, (A 8)

Lz | Ym
l >= mYm

l (A 9)

in (A 1), we have

∞∑
l=0

l∑
m=−l

al,m

{[
Ym

l −
∫

dp
′ 1
4π

Ym
l (p

′
)

]
− Drτ∇2

p Ym
l + Pe

[√
2π

15

(
Y−1

2 + Y1
2

)
mYm

l

+
(

1
3

√
4π

5
Y0

2 + 1
6

√
4πY0

0

)[√
l(l + 1) − m(m + 1)Ym+1

l

−
√

l(l + 1) − m(m − 1)Ym−1
l

]
− 3

√
2π

15

(
Y−1

2 − Y1
2

)
Ym

l

]}
= 0. (A 10)

Imposing the normalization condition on the base-state probability density∫
Ω0(p) dp = 1, (A 11)

and substituting (A 6) in the above equation, one would get

a0,0 = 1/
√

4π. (A 12)

Multiplying (A 10) with a conjugate spherical harmonic Ys∗
r (p), using the orthogonality

of the spherical harmonics on the unit sphere, and considering a0,0 from (A 12), gives the
following system of linear equations for the al,m values:

∞∑
l=1

l∑
m=−l

al,m

{
[1 + Drτ l(l + 1)] δlrδms + Pe

[
m

√
2π

15

(〈r, s|Y−1
2 |l, m〉 + 〈r, s|Y1

2 |l, m〉)

+
√

l(l + 1) − m(m + 1)

(
1
3

√
4π

5
〈r, s|Y0

2 |l, m + 1〉 +
√

4π

6
〈r, s|Y0

0 |l, m + 1〉
)

−
√

l(l + 1) − m(m − 1)

(
1
3

√
4π

5
〈r, s|Y0

2 |l, m − 1〉 +
√

4π

6
〈r, s|Y0

0 |l, m − 1〉
)

−3

√
2π

15

(〈r, s|Y−1
2 |l, m〉 − 〈r, s|Y1

2 |l, m〉)
]}

= Pe

√
3
10

(〈r, s|Y−1
2 |0, 0〉 − 〈r, s|Y1

2 |0, 0〉) , (A 13)

which may now be solved for the al,m values with (l, m) /=(0, 0).
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In the above equation

〈a, b|Ym
l |p, q >〉 =

∫
dpYb∗

a (p)Ym
l (p)Yq

p (p)

= (−1)b

√
(2a + 1)(2l + 1)(2p + 1)

4π

(
a l p
0 0 0

)(
a l p

−b m q

)
,

(A 14)

where the Wigner-3j symbols,
(

l1 l2 l3
m1 m2 m3

)
will be evaluated by using the Racah formula

(Messiah 1962; Doi & Edwards 1978; Arfken & Weber 1999). We truncate the infinite
system of equations in (A 13) at l = Lmax , and then solve the resulting finite system
numerically. The convergence of the results is checked with respect to the number of
harmonics retained throughout the work. As expected, at larger Pe, a greater number
of harmonics are required for convergence. For the results presented in the main paper,
Lmax = 10 was found to be sufficient.

A.2. Base-state shear stress
From (2.3), then one may write the shear stress in the base-state as

Σ0 = Pe
∂u0

∂z
− A

∫
dpΩ0(p)p1p3, (A 15)

where the first term is the solvent viscous stress and the second term is the active stress
due to the bacteria. Using u0(z) = z and the Ω0(p) expansion (from (A 6)) in the above
equation, and employing the orthogonality of spherical harmonics, we get

Σ0 = Pe − A
√

2π

15

(
a2,−1 − a2,1

) = Pe + ΣB
0 . (A 16)

Here, ΣB
0 is the active stress in the homogeneous state. The base-state being homogeneous,

the divergence of this stress is trivially zero.
The threshold activity number for the quiescent instability of bacterial suspension

A∗ = (Cn0L2Ubτ)= (30τDr/F(r))(1 + 1/(6τDr))/(1 − (15G(r))/CF(r))(DrL/Ub)(1 +
1/(6τDr)) with F(r) ≈ 1 for a slender bacterium and G(r) ≈ 0 since we are neglecting
the passive component of the stress (Subramanian & Koch 2009). The base-state stress
variation against shear rate for different A, including the threshold activity number
(bacterium with τDr = 1, A∗ ≈ 35) is shown in figure 2(a). The slope of ΣB

0 versus Pe
curve in figure 2(a) gives the suspension viscosity (μs0). From figure 2(a) we can thus see
that the suspension viscosity goes to zero Pecr as discussed in the main text.

Appendix B. Linear stability analysis

Since we are interested in studying gradient banding, spatial variation is retained only
in the gradient direction (see figure 8). The resulting non-dimensional equations are

∂Ω

∂t
+ εp · ∇xΩ − Drτ∇2

pΩ + Peγ̇∇p · (ṗ′
Ω) +

[
Ω −

∫
dp

′′ 1
4π

Ω(p
′′
)

]
= 0, (B 1)

and

Pe
∂2u
∂z2

= A ∂

∂z

∫
dpΩ(z, p)p1p3. (B 2)
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Banding instability of a sheared bacterial suspension 904 A7-21

In (B 1), ṗ
′ = ṗ/γ̇ = E

′ · p + ω
′ · p − p(E

′
: pp) with γ̇ = ∂u/∂z, E

′ = 1
2(δi1δj3 + δi3δj1),

ω
′ = 1

2(δi1δj3 − δi3δj1) and δij is the Kronecker delta. We consider a small perturbation,
with an amplitude A  1, of the homogeneously sheared base-state

u(z, t) = u0(z) + Au1(z, t) + · · · . (B 3)

Correspondingly, the bacterial probability density is expressed as

Ω(p, z, t) = Ω0(p) + AΩ1(z, p, t) + · · · . (B 4)

Substituting (B 3), (B 4) into (B 1) and (B 2), one has the following equations at O(A):

∂Ω1

∂t
+ εp · ∇xΩ1 − Drτ∇2

pΩ1 + Pe∇p · (ṗ
′
Ω1) + Peγ̇1∇p · (ṗ

′
Ω0)

+
[
Ω1 −

∫
dp

′ 1
4π

Ω1(p
′
)

]
= 0 (B 5)

and

Pe
∂2u1

∂z2
= A ∂

∂z

∫
dpΩ1(z, p)p1p3. (B 6)

Here, γ̇1 = ∂u1/∂z is the perturbation simple shear flow (the topology of the local
perturbation flow remains identical to the base-sate, on account of the assumption of
gradient aligned perturbations); (B 5) and (B 6) describe the dynamics at linear order in
the perturbation amplitude.

B.1. Concentration dynamics (CD) – derivation of semi-analytical expression for the
growth rate using multiple scale analysis

In the limit ε  1, on account of the separation of time scales between the orientation
and spatial degrees of freedom, one may use a multiple scale analysis to analyse the linear
stability of the sheared homogeneous state. Accordingly, the time derivative is expanded
as

∂

∂t
= ∂

∂t1
+ ε2 ∂

∂t2
. (B 7)

Expanding the probability density as

Ω1 = Ω10 + εΩ11 + ε2Ω12 + · · · , (B 8)

and substituting this expansion in (B 5), with the neglect of short time scale of O(τ )

characterizing the orientation dynamics (as represented by ∂/∂t1), one obtains

O(1) : Pe∇p · (Ω10ṗ
′
) +

[
Ω10 −

∫
dp

′ 1
4π

Ω10(p
′
)

]
− τDr∇2

pΩ10 = −Peγ̇1∇p · (Ω0ṗ
′
),

(B 9)

O(ε) : Pe∇p · (Ω11ṗ
′
) +

[
Ω11 −

∫
dp

′ 1
4π

Ω11(p
′
)

]
− τDr∇2

pΩ11 = −p · ∇xΩ10,

(B 10)
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O(ε2) : Pe∇p · (Ω12ṗ
′
) +

[
Ω12 −

∫
dp

′ 1
4π

Ω12(p
′
)

]
− τDr∇2

pΩ12

= −∂Ω10

∂t2
− p · ∇xΩ11. (B 11)

Equations (B 9)–(B 11) are complemented by the following normalization conditions:∫
dpΩ10 = n1(z, t2), (B 12)∫

dpΩ11 =
∫

dpΩ12 = 0. (B 13)

On account of linearity, we postulate the following form for Ω10 to solve (B 9):

Ω10 = Ω1
10γ̇1(z, t2) + Ω2

10n1(z, t2), (B 14)

where Ω1
10 is the particular solution that integrates to zero over orientation space, while

Ω2
10 is the homogeneous solution that conforms to the aforementioned normalization

constraint. Through the active stress in the equations of motion, the perturbation in the
probability density function (Ω1) drives the perturbation shear rate (γ̇1). In the following,
we derive a reduced relation between them.

Substituting (B 14) in (B 9), (B 12), and equating the γ̇1 and n1 terms, one obtains,[
Ω1

10 −
∫

dp
′ 1
4π

Ω1
10(p

′
)

]
− τDr∇2

pΩ
1
10 + Pe∇p · (Ω1

10ṗ
′
) = −Pe∇p · (Ω0ṗ

′
), (B 15)

[
Ω2

10 −
∫

dp
′ 1
4π

Ω2
10(p

′
)

]
− τDr∇2

pΩ
2
10 + Pe∇p · (Ω2

10ṗ
′
) = 0, (B 16)

with the respective integral constraints being,∫
dpΩ1

10 = 0, (B 17)

and ∫
dpΩ2

10 = 1. (B 18)

The unknown component probability densities Ω1
10 and Ω2

10 in (B 15)–(B 18) are again be
determined from an expansion in spherical harmonics. Thus writing

Ω1
10 =

∞∑
l=0

m=l∑
m=−l

cl,mYm
l , (B 19)

Ω2
10 =

∞∑
l=0

m=l∑
m=−l

dl,mYm
l , (B 20)

the unknown coefficients cl,m and dl,m in the resulting equations are obtained by employing
the numerical scheme similar to the one mentioned in appendix A while evaluating Ω0(p).
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Substituting Ω10 from (B 14) in the right-hand side of (B 10), we have[
Ω11 −

∫
dp

′ 1
4π

Ω11(p
′
)

]
− τDr∇2

pΩ11 + Pe∇p · (Ω11ṗ
′
) = −p · ∇xΩ10

= − cos θ

∞∑
l′=0

l
′∑

m′=−l′

[
cl′ ,m′

∂γ̇1

∂z
+ dl′ ,m′

∂n1

∂z

]
Ym

′

l′ (p). (B 21)

Again, on account of linearity, one may write

Ω11 = Ω1
11

∂γ̇1

∂z
+ Ω2

11
∂n1

∂z
, (B 22)

and substituting in (B 13), (B 21), and equating the coefficients of ∂γ̇1/∂z and ∂n1/∂z, we
get [

Ω1
11 −

∫
dp

′ 1
4π

Ω1
11(p

′
)

]
− τDr∇2

pΩ
1
11 + Pe∇p · (Ω1

11ṗ
′
)

= − cos θ

∞∑
l′ =0

l
′∑

m′=−l′
cl′ ,m′ Ym

′

l′ , (B 23)

[
Ω2

11 −
∫

dp
′ 1
4π

Ω2
11(p

′
)

]
− τDr∇2

pΩ
2
11 + Pe∇p · (Ω2

11ṗ
′
)

= − cos θ

∞∑
l′ =0

l
′∑

m′=−l′
dl′ ,m′ Ym

′

l′ , (B 24)

with trivial normalization constraints given by∫
Ω1

11 dp =
∫

Ω2
11 dp = 0. (B 25)

The probability densities Ω1
11, Ω2

11 can again be expanded as Ω1
11 = ∑∞

l=0

∑m=l
m=−l el,mYm

l ,
Ω2

11 = ∑∞
l=0

∑m=l
m=−l fl,mYm

l . Substitution in (B 23)–(B 25) allows one to solve for the
unknown coefficients el,m, fl,m obtained by employing the numerical scheme above.

Using (B 17), (B 18) and (B 22) in (B 11) and integrating over the orientation degrees
of freedom, one obtains the following drift-diffusivity equation (Nitsche & Hinch 1997;
Subramanian & Brady 2004; Kasyap & Koch 2012, 2014) at O(A):

∂n1

∂t2
= ∂

∂z

(
−V1(z).1 + D0

∂n1

∂z

)
(B 26)

in position space alone. Here, V1 = 2
√

π/3e1,0(∂γ̇1/∂z) is the destabilizing drift that
multiplies the base-state number density (1 in non-dimensional terms) and D0 =
−2

√
π/3f1,0 is the stabilizing diffusivity. (B 26) is given as (3.2) in § 3.1.

The variation in the perturbation shear rate is driven by the probability density
variation, and hence the perturbation stress, through the equations of motion.
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Substituting Ω1 = Ω10 + εΩ11 + ε2Ω12 + · · · , using (B 14) and (B 20) in (B 6) and
equating the leading-order terms on both sides,

Pe
∂2u1(z, t2)

∂z2
= A ∂

∂z

∫
dp

[ ∞∑
l=0

l∑
m=−l

(
γ̇1(z, t2)cl,m + n1(z, t2)dl,m

)
Ym

l (p)

]

×
√

2π

15
(Y−1

2 (p) − Y1
2 (p)), (B 27)

⇒ ∂γ̇1(z, t2)

∂z

[
Pe − A

√
2π

15

(
c2,−1 − c2,1

)] = A
√

2π

15

(
d2,−1 − d2,1

) ∂n1(z, t2)

∂z
. (B 28)

Using the normal mode forms n1(z, t2) = ñ1 cos(zkz) exp(σ t2), γ̇1(z, t2) = ˜̇γ1 cos(zkz)
exp(σ t2) in the above equation, and from (A 1), (B 16), (A 16), we get

˜̇γ1 = ñ1

√
2π

15
A(d2,−1 − d2,1)[

Pe −
√

2π

15
A(c2,−1 − c2,1)

] = ñ1
|ΣB

0 |[
Pe −

√
2π

15
A(c2,−1 − c2,1)

] . (B 29)

Substituting γ̇1 and n1 in (B 26), using (B 29), one would get the growth rate expression as

σ = k2
z

(
2
√

π

3
e1,0

|ΣB
0 |

Peμs0
− D0

)
, (B 30)

where, μs0 = 1 − (A/Pe)
√

2π/15(c2,−1 − c2,1) is the viscosity of the homogeneously
sheared state. The expression for growth rate, give by (B 30), appears as (3.5) in § 3.1.

B.2. Coupled concentration–orientation dynamics (CCOD) – numerical solution
for the growth rate

In this section we describe the numerical formulation for the full linear stability analysis
without any assumption with regard to a time scale separation. As before, introducing a
layering perturbation, and an amplitude A  1, to the base-state simple shear, of the form

u(z, t) = u0(z) + Au1(z, t) + · · · , (B 31)

with the corresponding perturbations to the probability density and shear rate being

Ω = Ω0(p) + AΩ1(p, z, t) + · · · , (B 32)

γ̇ (z, t) = ∂u
∂z

= γ̇0 + Aγ̇1(z, t) + · · · , (B 33)

substituting (B 32) and (B 33) in (2.1) and collecting terms at successive orders, one
obtains

O(1) : γ̇0∇p(ṗ
′
Ω0) − Dr∇2

pΩ0 + 1
τ

[
Ω0 −

∫
dp

′ 1
4π

Ω0(p
′
)

]
= 0, (B 34)
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O(A) :
∂Ω1

∂t
+ Ubp · ∇xΩ1 − Dr∇2

pΩ1 + γ̇0∇p(ṗ
′
Ω1) + γ̇1∇p(ṗ

′
Ω0)

+ 1
τ

[
Ω1 −

∫
dp

′ 1
4π

Ω1(p
′
)

]
= 0. (B 35)

Using τ , Ubτ (as opposed to H in the multiple scale analysis earlier), Ub are the scales for
time, length, velocity, (B 34) and (B 35) in dimensionless form are given by,

O(1) : Pe∇p(ṗ
′
Ω0) − τDr∇2

pΩ0 +
[
Ω0 −

∫
dp

′ 1
4π

Ω0(p
′
)

]
= 0, (B 36)

O(A) :
∂Ω1

∂t
+ p · ∇xΩ1 − τDr∇2

pΩ1 + Pe∇p(ṗ
′
Ω1) + γ̇1∇p(ṗ

′
Ω0)

+
[
Ω1 −

∫
dp

′ 1
4π

Ω1(p
′
)

]
= 0, (B 37)

where Pe = γ̇0τ . Assuming the usual normal mode form

Ω1(z, p, t) = Ω̃1(kz, p) exp(izkz + σ t) (B 38)

and
u1(z, t) = ũ1(kz) exp(izkz + σ t) (B 39)

and substituting in (B 37), one obtains

Ω̃1σ + (ikz cos θ)Ω̃1 + Pe∇p · (ṗ
′
Ω̃1) + ikzũ1∇p · (ṗ

′
Ω̃0) − τDr∇2

pΩ̃1

+
[
Ω̃1 −

∫
dp

′ 1
4π

Ω̃1(p
′
)

]
= 0. (B 40)

Substituting (B 31), (B 32) in (2.3), the momentum equation, at O(A), takes the form,

∂2u1

∂z2
= A ∂

∂z

∫
dpΩ1(z, p)p1p3. (B 41)

Using, (B 38) and (B 39) in the above equation, one has the following relation coupling
the perturbation shear to the probability density:

ũ1 = − iA
kz

∫
dpΩ̃1(kz, p)p1p3. (B 42)

Using ũ1 from (B 42) in (B 40), one obtains

Pe∇p · (ṗ
′
Ω̃1) + (ikz cos θ)Ω̃1 + A

(∫
dpΩ̃1(kz, p)p1p3

)
∇p · (ṗ

′
Ω0)

− τDr∇2
pΩ̃1 +

[
Ω̃1 −

∫
dp

′ 1
4π

Ω̃1(p
′
)

]
= −Ω̃1σ. (B 43)

The unknown Ω0 in the above equation is obtained numerically, as already explained, in
terms of a spherical harmonic series (see appendix A). Substituting the known from for
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Ω0 and expanding Ω̃1 as

Ω̃1 =
N∑

l=0

l∑
m=−l

bl,mYm
l (p) (B 44)

in terms of spherical harmonics, and following the numerical procedure in appendix A.1,
we solve the resulting eigenvalue problem.

The method yields the entire eigenspectrum, but we focus on the unstable eigenvalue
which gives the growth rate. The variation in the leading growth rate value of coupled
concentration–orientation dynamics (real(σ )) and the growth rate of concentration
dynamics against Pe has been compared in figure 3 in the main text.

B.3. Number density perturbations
The normalization condition of the bacterial probability density ((B 8), (B 12) and (B 13))
gives ∫

dpΩ1 = n1. (B 45)

Substituting Ω1 from (B 38) and using n1 = ñ1 exp(izkz + σ t) in the above equation, one
obtains ∫

dpΩ̃1 = ñ1. (B 46)

Now substituting Ω̃1 expansion from (B 44) in the above equation and after
simplification, we obtain the number density perturbation amplitude ñ1 = √

4πb0,0. The
leading growth rate value (real(σ )), and the corresponding number density perturbation
against wavenumber for different Pe have been plotted in figure 4.

Appendix C. Nonlinear simulations

For the nonlinear simulations, the bacterial orientations are assumed to be confined to
the shear-gradient plane, so in contrast to that shown in figure 8, p in the simulations is
taken as cos θ1x + sin θ1z. The Stokes equations are used to express the shear rate variation
along the gradient direction in terms of Ω , so that the kinetic equation takes the form of a
nonlinear integro-differential equation for Ω . Then, the orientation and spatial dependence
of the unknown variable, Ω , is expanded in a Fourier series as follows:

Ω =
Np∑

m=−Np

Nk∑
k=−Nk

ak
m exp (ikz + imθ). (C 1)

A standard Galerkin projection gives a set of coupled ordinary differential equations for
the ak

m values, which are integrated in time using a second-order Runge–Kutta scheme
(Boyd 2001; Canuto et al. 2012). Convergence is checked with respect to both Np and
Nk and it is found that 17 orientation harmonics and 301 spatial harmonics are sufficient
for convergence for all the results presented in the paper. The steady state can consist of
multiple bands depending on the particular initial condition, as is known from earlier work
on passive complex fluids (Fielding & Olmsted 2003). Thus, a suitable initial condition is
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FIGURE 9. Comparison of the time evolution of a1
−2 obtained independently from the

nonlinear simulation and linear stability approaches.

chosen for which the minimum number of bands are present in the steady state. For the
results shown in § 3.3, the following initial condition was chosen, for every k, for m > 0

ak
m(0) = 0.0000001 + 0.0000001i, (C 2)

for m < 0
ak

m(0) = 0.0000001 − 0.0000001i, (C 3)

and ak
0(0) = 0.0000001.

In order to verify the simulation results, we carried out a linear stability analysis where
the orientation vector is also restricted to the flow-gradient plane. The linear stability
analysis predicts for each term ak

m,

ak
m(t) = ak

m(0) eσ t, (C 4)

where σ is the eigenvalue to be numerically obtained. Figure 9 shows that the results
obtained using the two different methods are in agreement.
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