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We present a modelling study of locomotion over a layer of viscoplastic fluid
motivated by the self-propulsion of marine and terrestrial gastropods. Our model
comprises a layer of viscoplastic mucus lying beneath a fluid-filled foot that is
laced internally by muscular fibres under tension and overlain by the main body
of the locomotor, which is assumed to be rigid. The mucus is described using
lubrication theory and the Bingham constitutive law, and the foot using a continuum
approximation for the action of the muscle fibres. The model is first used to study the
retrograde strategy of locomotion employed by marine gastropods, wherein the muscle
fibres create a backwards-travelling wave of predominantly normal displacements
along the surface of the foot. Once such a retrograde forcing pattern is switched
on, the system is shown to converge towards a steady state of locomotion in a frame
moving with the wave. The steady speed of locomotion decreases with the yield
stress, until it vanishes altogether above a critical yield stress. Despite the absence of
locomotion above this threshold, waves still propagate along the foot, peristaltically
pumping mucus in the direction of the wave. The model is next used to study
the prograde strategy employed by terrestrial gastropods, wherein the muscle fibres
create a forwards-travelling wave of predominantly tangential displacements of the foot
surface. In this case, a finite yield stress is shown to be necessary for locomotion, with
the speed of locomotion initially increasing with the yield stress. Beyond a critical
yield stress, localized rigid plugs form across the depth of the mucus layer, adhering
parts of the foot to the base. These stop any transport of mucus, but foot motions
elsewhere still drive locomotion. As the yield stress is increased further, the rigid plugs
widen horizontally, increasing the viscous drag and eventually reducing the speed of
locomotion, which is therefore maximized for an intermediate value of the yield stress.

Key words: biological fluid dynamics, lubrication theory, non-Newtonian flows

1. Introduction
Snails and slugs propel themselves forwards by sending waves of muscular

contractions along the base of their foot, which overlays a layer of mucus. This
unique form of locomotion allows snails and slugs to traverse almost any obstacle
without damage. In particular, the mucus is thought to facilitate their ability to climb

† Email address for correspondence: ssp23@cam.ac.uk
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steeply inclined surfaces. It has been suggested that the mechanism underlying this
ability is associated with the non-Newtonian rheology of the mucus, which is known
to have an appreciable yield stress, or minimum stress required to generate fluid-like
flow (Denny 1980; Ewoldt et al. 2007).

In this paper, we develop a continuum model to explore locomotion over a
layer of viscoplastic fluid, investigating two particular locomotion strategies. More
specifically, marine snails often adopt a retrograde strategy wherein the foot muscles
apply a predominantly normal force in the form of a backwards-travelling wave. The
mechanics underlying this strategy are central to many other forms of bio-locomotion
and are similar to those that underlie the operation of a peristaltic pump (e.g. Shapiro,
Jaffrin & Weinberg 1969). By contrast, terrestrial snails typically adopt a prograde
strategy whereby the foot muscles apply a predominantly tangential force in the form
of a forwards-travelling wave (e.g. Jones 1973; Denny 1981). Our analysis focuses on
understanding how the yield stress influences the speed of locomotion in both of these
strategies.

Studies of retrograde locomotion strategies in general began with the seminal
work of Taylor (1951) who determined the locomotive action of a planar sheet that
undulates with normal displacements while immersed in an infinite body of Newtonian
fluid. Closer to the geometry of a gastropod is the configuration studied by Katz
(1974), who generalized that of Taylor (1951) to allow for a rigid wall lying parallel
to the locomotive sheet. This study included a lubrication theory for displacements of
the sheet comparable with the distance between the oscillating sheet and the rigid wall.
Recently, this theory has been extended by Balmforth, Coombs & Pachman (2010) to
allow for a non-Newtonian intervening fluid and to incorporate the elastic dynamics of
the deforming sheet.

The only detailed model of prograde locomotion over a fluid film of which we
are aware is that proposed by Chan, Balmforth & Hosoi (2005). These authors
kinematically imposed a wave of tangential displacements of the surface of the foot
and studied the resulting flow in an underlying layer of viscoplastic fluid. They found
that the speed of locomotion is proportional to the mean tangential displacement
generated by the wave. However, their model omits any consideration of the detailed
balance of forces that act to generate locomotion. In particular, by specifying the foot
displacement, their model automatically assumes that locomotion occurs and cannot
address its dynamical activation.

In the current article, we build on these earlier studies by formulating a fully
dynamic model for the foot and mucus layer of a gastropod. Motivated by studies
of gastropod anatomy (e.g. Jones 1973; Denny 1981), our formulation models the
foot muscles as strings under tension that can contract to exert both normal and
tangential forces at the base of the foot. Following Chan et al. (2005) and Balmforth
et al. (2010), we model the viscoplastic mucus using a Bingham constitutive law
and lubrication theory. We subsequently formulate two singular asymptotic limits of
our general model, which we use to study separately the dynamics of retrograde and
prograde locomotion.

In our analysis of retrograde locomotion, we extend the study of Balmforth et al.
(2010) by addressing the dynamical activation and behaviour of the locomotor as it
evolves from a state of rest. Having determined the conditions for convergence towards
steady locomotion, we proceed to explore the dependence of the steady locomotion
velocity on the yield stress, the elastic properties of the foot and the amplitude of the
muscular forcing. We focus in particular on confirming the hypothesis proposed by
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Locomotion over a viscoplastic film 3
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FIGURE 1. Schematic illustration of our model showing (a) the geometry of the foot, mucus
and muscle fibres in the foot cavity, and (b) a specific pair of muscle fibres anchored between
the body and a point on the foot surface. In (b), the fibre pair is shown in its neutral state (thin)
and its perturbed state (thick). The vertical scale has been exaggerated.

Balmforth et al. (2010) that a yield stress is generally detrimental to the retrograde
locomotion strategy, slowing and even halting locomotion entirely.

Our study of prograde locomotion extends that of Chan et al. (2005) by formulating
the model in terms of the muscular and elastic forces of the foot. This dynamic
formulation shows how the resultant of the forwards forces exerted by the muscle
fibres necessarily vanishes, as otherwise there is an unphysical acceleration of the main
body of the locomotor relative to the foot. A notable implication is that prograde
locomotion is impossible with Newtonian mucus. However, significant locomotion
can be activated by combining a yield-stress mucus rheology with muscular forcing
patterns that have certain spatial structure.

We begin in § 2 by developing our general thin-film model that describes the elastic
mechanics of the foot and the viscoplastic fluid mechanics of the mucus layer. In
§§ 3 and 4, we use a combination of numerical and asymptotic approaches to explore
retrograde and prograde strategies. In § 5, we compare the two locomotion strategies
and discuss why gastropods in marine and terrestrial environments might adopt certain
strategies.

2. Theoretical model
The structure of gastropod anatomy has been highlighted from studies of flash-

frozen specimens (Jones 1973; Denny 1981). As shown schematically in figure 1(a),
this structure constitutes a flexible foot of characteristic thickness 10−3 m that sits
atop a layer of mucus of much smaller characteristic thickness 10−5 m . These studies
indicate that the main body of the gastropod, which lies above the foot, is essentially
rigid. We proceed to develop a continuum model of this three-tier system.

2.1. The foot
The foot is a pressurized, fluid-filled cavity containing contractible pairs of muscular
fibres anchored between the lower surface of the foot and the body in two
inclined directions (Jones 1973; Denny 1981). Locomotion is generated by sequential
contractions of these muscular fibres, which can exert both normal and tangential
resultant forces upon the lower surface of the foot, depending on whether the fibres
in each pair are contracted individually or in unison. Images of the underside of a
snail undergoing locomotion show that the contractions take the form of travelling
waves with characteristic wavelength 2πL ≈ 0.01 m and wave speed c ≈ 0.001 m s−1
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4 S. S. Pegler and N. J. Balmforth

(Lai et al. 2010). On this basis, we consider only periodic sections of the system of
length 2πL, treating each period of the locomotive forcing wave as an identical unit.
Neglecting also the edge effects at the sides, front and back of the foot, we consider a
two-dimensional cross-section along the length of the system.

Let y= 0 and y= Y(x, t) denote the heights of the rigid horizontal surface under the
mucus layer and the lower surface of the foot, respectively, and let ∆ − δ(x, t) denote
the thickness of the foot, where ∆ is its unperturbed thickness and δ� ∆ is a small
vertical displacement (figure 1b). If H is the unperturbed thickness of the mucus layer,
then

δ = Y − H. (2.1)

Under the assumption that the mucus and the fluid inside the foot cavity are
incompressible, conservation of mass demands that

〈Y〉 = H and 〈δ〉 = 0 where 〈. . .〉 ≡ 1
2πL

∫ 2πL

0
(. . .) dx (2.2)

denotes the mean over one period of the wave. The vertical position of the main body
must therefore remain fixed and translate purely horizontally with velocity U(t).

We model the muscular fibres inside the foot as strings under tension, and prescribe
contractive forces to these fibres to drive the locomotive waves. Consider a point on
the lower surface of the foot at position x. We assume that the ends of the two fibres
attached to this point are each separated by an unstretched horizontal distance a, and
that the inclinations and horizontal displacements of the fibres are small (∆� a and
Ξ � a, respectively). The leftward and rightward fibres then have the leading-order
extensions

[(a±Ξ)2 + (∆− δ)2]1/2 − (a2 +∆2)
1/2 ≈±Ξ, (2.3)

respectively. If the tensions generated by the fibres are in proportion to their extension
(2.3), then the forces in the leftward and rightward fibres are given to leading-order by

F± = T0 ∓ΛΞ + T±, (2.4)

where T0 is the unperturbed tension in each fibre, Λ is an elastic modulus and T±
denote the muscular contractive forces that are exerted to drive the locomotive waves.
Assuming that the fibres are distributed densely, we treat F± as continuous functions
of position and time. The resultant of the forces (2.4) can be resolved into the
leading-order horizontal and vertical components,[

F+ − F−,
∆− δ

a
(F+ + F−)

]
≈
[
−2ΛΞ + T+ − T−,

2T0

a
(∆− δ)+ ∆

a
(T+ + T−)

]
,

(2.5)

where we have assumed that T+ + T− = O(δT0/∆)� T0, which is the scale of the
applied tension required to generate a vertical foot displacement of order δ.

The fibre force in (2.5) must be balanced by the stresses exerted on the lower
surface of the foot by the fluid inside the foot cavity and the mucus. When both of
these layers are shallow, the vertical stresses are dominated by the pressures of the
foot cavity and mucus, denoted pC and p respectively. A balance between the vertical
forces on the surface of the foot then demands that

2T0

a
(∆− δ)+ ∆

a
(T+ + T−)= pC − p (on y= Y). (2.6)
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Locomotion over a viscoplastic film 5

In view of our assumption that the foot is much thicker than the mucus layer (∆� Y),
we treat the cavity pressure pC as constant compared with the mucus pressure p. For
similar reasons, we neglect the viscous traction exerted by the fluid in the foot cavity
on the lower surface of the foot. The balance of horizontal forces at the surface of the
foot is then given to leading order by

2ΛΞ − T+ + T− =−τ − ∂Y

∂x
(p− pC) (on y= Y), (2.7)

where τ is the viscous shear stress exerted by the mucus.
In the absence of any fibre inertia, the net reaction to the force in (2.7) pulls back

on the main body of the locomotor, leading to the equation of motion

M U̇ =−〈τ + Yx(p− pC)〉 (on y= Y), (2.8)

where M is the mass of the main body per unit area, and we have used a dot to
denote d/dt and an x subscript to denote ∂/∂x, a short-hand notation that we extend to
the other partial derivatives below.

2.2. The mucus layer
We model the mucus as a thin layer of viscoplastic fluid with negligible inertia
(cf. Chan et al. 2005; Ewoldt et al. 2007; Balmforth et al. 2010). On applying
the lubrication approximation, the equations of continuity and force balance take the
leading-order forms

∂u

∂x
+ ∂v
∂y
= 0,

∂p

∂x
= ∂τ
∂y
,

∂p

∂y
= 0, (2.9a,b,c)

respectively, where u and v are the horizontal and vertical components of the velocity.
We use the Bingham model to describe the yield-stress rheology of the mucus (Bird,

Dai & Yarusso 1983). To leading-order, the constitutive relation simplifies to
τ =µ∂u

∂y
+ τY sgn

(
∂u

∂y

)
, |τ |> τY, (2.10a)

0= ∂u

∂y
, |τ |< τY, (2.10b)

where µ is the dynamic viscosity and τY is the yield stress. Relation (2.10a) applies
to fully yielded sections of the fluid, while (2.10b) applies to plug-like sections that
have no vertical shear to leading-order. Note that (2.10b) need not imply that the
fluid forms a truly rigid plug: the full yield condition involves all the components
of the stress tensor and, in regions where (2.10b) applies, extensional stresses can
become comparable with shear stresses and cause the fluid to yield weakly (Balmforth
& Craster 1999). The resulting flow is not a true plug and is more correctly referred
to as a pseudo-plug. A key difference between the two is that τ is determined in
pseudo-plugs, whereas it is formally indeterminate over true plugs, as in classical
plasticity theory (Prager & Hodge 1951).

Equation (2.9c) implies that p= p(x, t) only. Integrating (2.9b), we obtain

τ(x, y, t)= τB + y
∂p

∂x
= τS − (Y − y)

∂p

∂x
(2.11)

where τB ≡ τ(x, 0, t) and τS ≡ τ(x,Y, t) denote the shear stress at the base and
foot surface, respectively. The no-slip condition imposed at the surface of the foot
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6 S. S. Pegler and N. J. Balmforth

determines the vertical and horizontal kinematic surface conditions

v(x,Y, t)= ∂Y

∂t
+ uS

∂Y

∂x
, u(x,Y, t)= uS = U + ∂Ξ

∂t
+ uS

∂Ξ

∂x
. (2.12a,b)

Combining (2.12a) with the depth integration of (2.9a), we obtain

∂Y

∂t
+ ∂q

∂x
= 0 where q≡

∫ Y

0
u dz (2.13)

is the volumetric flux per unit width of the flow.

2.3. Dimensionless model system
We non-dimensionalize the system above by defining

(x̂, Ξ̂ )≡ 1
L
(x, Ξ), (ŷ, Ŷ)≡ 1

H
(y,Y), t̂ ≡ ct

L
, (û, Û, ûS)≡ 1

c
(u,U, uS), (2.14)

q̂= 1
cH

q, p̂≡ H2

µcL
(p− pC), (τ̂ , τ̂S, τ̂B)≡ H

µc
(τ, τS, τB). (2.15)

On dropping hats, (2.11) and (2.10) become

τ = τB + ypx = τS − (Y − y)px,

{
τ = uy + B sgn(uy), |τ | > B,

uy = 0, |τ | < B,
(2.16a,b)

where B≡ τYH/µc is the Bingham number. Equations (2.13) and (2.12b) remain as

Yt + qx = 0, Ξt = uS(1−Ξx)− U, (2.17a,b)

and the force-balance equations (2.6) and (2.7) become

p− p0 + ARfR = DR(Y − 1), τS + pYx = APfP − DPΞ, (2.18a,b)

where p0 ≡ 2∆T0/a. Finally, the equation of motion (2.8) becomes

MU̇ = F ≡−〈τS + pYx〉 = −DP〈Ξ〉. (2.19)

The system above depends on the dimensionless parameters

M ≡ cHM

µL
, DR ≡ 2H3T0

µcLa
, DP ≡ 2HLΛ

µc
, (2.20a,b,c)

which are a dimensionless mass per unit area and dimensionless normal and tangential
stiffnesses, respectively. Further,

ARfR(x, t)≡ H2∆

µcLa
(T+ + T−), APfP(x, t)≡ H

µc
(T+ − T−), (2.21a,b)

appearing in (2.18a,b), represent scaled normal and tangential forcings, each with
dimensionless amplitudes AR and AP, and spatial patterns fR(x, t) and fP(x, t). Equations
(2.21a,b) do not uniquely specify these amplitudes and forcing patterns; we remove
this ambiguity later by prescribing the forcing patterns fR and fP at the beginnings
of §§ 3 and 4, respectively. Our use of P and R subscripts above stems from the
significance of the associated quantities in the prograde and retrograde locomotion
strategies, as we detail in § 2.5 below.

The quantity F appearing in (2.19) represents the net horizontal force on the foot
exerted by the fibres. If the tangential muscular forcing has non-zero mean 〈fP〉 6= 0,
then the locomotor will be driven to accelerate or decelerate relative to the mucus until
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Locomotion over a viscoplastic film 7

a uniform horizontal displacement Ξ0 ≡ (AP/DP)〈fP〉 is established, which balances
the net tension and the net applied muscular force. These net forces can be absorbed
into the system variables by redefining the horizontal displacement and the pattern of
muscular forcing as Ξ − Ξ0 and fP − 〈fP〉, respectively. Likewise, any mean normal
force 〈fR〉 can be removed by suitably redefining the constant p0 in (2.18a). In other
words, we can set 〈fR〉 = 〈fP〉 = 0 without any loss of generality.

Equations (2.16)–(2.21) are the basic ingredients of a model allowing for both
normal and tangential displacements of the surface of the foot, driven by two different
types of forcings. The main approximations exploited in arriving at these relations
are that the mucus layer and the surface of the foot are both shallower than the
wavelength of the locomotive waves, that the mucus layer is much thinner than the
cavity of the foot and that inertial effects are negligible in both. As a result, we arrive
at a lubrication problem inside the mucus layer, with geometrical nonlinearities arising
from the kinematic conditions (2.17a,b) and rheological nonlinearity in the Bingham
constitutive law (2.16), coupled to linearly elastic forces in the cavity of the foot.

Estimates of the dimensionless parameters can be made as follows. Typical
wavelengths and wave speeds for both terrestrial and marine gastropods are
2πL ≈ 0.01 m and c ≈ 0.001 m s−1. For the mucus of two species of terrestrial slug,
Denny & Gosline (1980) and Ewoldt et al. (2007) propose that µ ≈ 10–20 Pa s and
τY ≈ 100–200 Pa. Similar values are quoted in the literature for the mucus of marine
gastropods (e.g. Holmes, Cherril & Davis 2002). Hence, given mucus thicknesses
of H ≈ 10−5 and 10−4 m that are characteristic of marine and terrestrial gastropods,
respectively (Denny 1981; Lai et al. 2010; Holmes et al. 2002), we estimate that B can
range over the orders of 0.1–1. For a typical mass per unit area M of a few grams
per square centimetre, we estimate the dimensionless mass parameter (2.20a) to be of
order M ≈ 10−5. Similar estimates for both B and M follow for the robotic snail of
Chan et al. (2005). The stiffness and amplitude parameters contained in (2.20b,c) and
(2.21a,b) are more difficult to estimate and are likely to depend significantly on the
specific locomotion strategy employed. In § 2.5, we instead use the characteristics of
each locomotion strategy to suggest appropriate asymptotic limits of these parameters.

2.4. Flow configurations
The state of the system is described by Y(x, t), Ξ(x, t) and U(t). The pressure
p(x, t) and surface stresses, τB(x, t) and τS(x, t), constitute subsidiary variables that
are related to these state variables through the force balances (2.18a,b). Given Y ,
Ξ and U at a given instant, the velocity field u(x, y, t) can be constructed from an
integration of (2.16) subject to the no-slip condition u(x, 0, t) = 0 and the surface-
stress condition τ(x,Y, t) = τS. As is typical of viscoplastic lubrication problems in
general (e.g. Hewitt & Balmforth 2012), this construction is complicated by switches
in the constitutive law (2.16b), corresponding to the appearance of rigid plugs or
pseudo-plugs, or simply plugs for short. Having constructed u, we can use (2.17a,b)
and (2.19) to determine the evolution of Y(x, t), Ξ(x, t) and U(t).

By inverting (2.16b), we can express the rate of shear in terms of the shear stress by

uy =
{
τ − B sgn(τ ), |τ |> B,
0, |τ |< B.

(2.22)

Combining (2.22) with (2.16a), we determine that u has a parabolic vertical profile in
fully yielded sections of the flow. Conversely, u is independent of y in the unyielded
plugs. The switches in (2.22) occur at τ = ±B. Given that τ varies linearly from τB
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8 S. S. Pegler and N. J. Balmforth

FIGURE 2. Illustration of the velocity profiles of the five flow configurations (2.24). The plug
of each profile is indicated by a shaded bar. We have depicted the case px < 0; for px > 0, the
curvature of the profiles has the opposite sign.

to τS according to (2.16a), at most two such switches can occur at any given location
of x. We denote the yield surfaces at which these two changes occur by Y±(x, t),
where Y− < Y+. We allow Y± to lie outside the domain of the mucus, corresponding to
situations where a plug intersects one of the boundaries. By setting τ =±B in (2.16a),
we obtain

Y± = 1
px
(−τB ± Bσ) where σ ≡ sgn(px). (2.23)

Depending on whether Y± lie inside or outside the mucus layer, there are five possible
flow configurations:

A : 0< Y− < Y+ < Y the profile contains a central plug;
B : Y− < 0 and 0< Y+ < Y a plug is attached to the lower surface;
C : Y± < 0 or Y± > Y fluid is yielded across the depth of the layer;
D : 0< Y− < Y and Y+ > Y a plug is attached to the surface of the foot;
E : Y− < 0 and Y+ > Y a plug spans the depth of the layer,

(2.24)

each of which is illustrated in figure 2 for px < 0. Formulae for u, τS and q in terms
of px and Y for each configuration are given in appendix A.These formulae follow on
integration of (2.16) subject to the no-slip conditions at the upper and lower surfaces,
given the particular arrangement of yield surfaces associated with each configuration
(2.24) (cf. Balmforth et al. 2010; Hewitt & Balmforth 2012).

2.5. Retrograde and prograde locomotion
Retrograde locomotion is characterized by predominantly normal displacements of
the surface of the foot. We configure our general system to model this strategy by
assuming that the foot is horizontally stiff, DR� DP. In accordance with (2.18b), the
surface of the foot then undergoes negligible tangential deformations independently of
the forces exerted on it by the mucus layer, so Ξ � 1. In turn, (2.17b) then implies
that the horizontal velocity of the lower surface of the foot simply equals that of the
main body, so uS ≡ U. This simplified retrograde model can be characterized by the
three equations

∂p

∂x
+ AR

∂fR

∂x
= DR

∂Y

∂x
, uS ≡ U,

∂Y

∂t
+ ∂q

∂x
= 0, (2.25a,b,c)

where the first follows from differentiation of (2.18a) with respect to x.
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Locomotion over a viscoplastic film 9

By contrast, prograde locomotion is characterized by predominantly tangential
displacements of the surface of the foot. We configure our general system to model
this strategy by assuming that the foot is vertically stiff, DR � DP. As indicated
by (2.18a), the surface of the foot then undergoes negligible normal deformations
independently of the forces exerted on it by the mucus layer, so Y ≈ 1. To
further simplify our analysis of the prograde strategy, we adopt a small-amplitude
approximation AP � 1, under which the nonlinear term in the kinematic surface
condition (2.16b) can be neglected. This neglect can be justified by noting that the
displacement and velocity of the surface of the foot each scale with the forcing
amplitude AP and hence ΞxuS ∼ A2

P � uS ∼ AP. Such an approximation can be
expected to be relevant for gastropod locomotion, where the contractions of the surface
of the foot are an order of magnitude smaller than the wavelength of the forcing wave
(Lai et al. 2010). In summary, our simplified prograde model is characterized by the
three equations

τS = APfP − DPΞ, Y ≡ 1,
∂Ξ

∂t
= uS − U. (2.26a,b,c)

3. Retrograde locomotion
We proceed to analyse the simplified retrograde problem described in § 2.5 above

with the model forcing pattern fR = sin(x + t), corresponding to a sinusoidal wave that
travels at unit dimensionless speed in the negative x-direction. To simplify our analysis,
we introduce the new spatial coordinate ξ ≡ x + t, equivalent to a shift of the system
into the frame of the wave. Equations (2.25a,c) then become

pξ = DYξ − A cos ξ, Yt + Yξ + qξ = 0, (3.1a,b)

respectively, where we have dropped the R subscript from fR, DR and AR.

3.1. The initial-value problem
With Ξ negligible, the state of the system is described by the two remaining state
variables Y(ξ, t) and U(t). We begin by solving the system defined by (2.16a,b), (2.19)
and (3.1a,b) numerically as an initial-value problem initialized from a state of rest and
uniform thickness, U(0) = 0 and Y(ξ, 0) = 1. To accomplish this, we discretize ξ on
a fixed uniform grid and use centred differences to approximate the spatial derivatives.
At each time step, we first evaluate pξ using (3.1a) and then calculate the flow
configuration, flux q and surface stress τS using the formulae in appendix A. We then
use (3.1b) and (2.19) to compute Yt and U̇, employing quadrature to evaluate period
averages, and advancing the system in time using the MATLAB integrator ode15s.

A complication arises in solving the initial-value problem at the initial instant and at
any subsequent instants at which the locomotor is brought to rest, U = 0. Specifically,
such instants admit the possibility that a rigid plug spans the depth of the mucus
layer, causing the force on the right-hand side of (2.19) to become indeterminate. We
postpone a detailed discussion of this issue until § 3.2, and first provide an overview of
our solutions to build a useful foundation on which to base that discussion.

Figure 3 shows sample solutions for the evolution of U(t) and Y(ξ, t) in the case
A = D = 1 for a selection of B. Figure 4 displays the effect of varying the stiffness
D with A = 1 and M = 0.1. In each case, the forcing wave begins by generating a
perturbation to the surface profile Y that is subsequently overridden and left behind
by the wave. As the wave cycles through the periodic domain, the solution oscillates
with the period of the forcing wave 2π. As indicated by figure 4, these oscillations are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.224


10 S. S. Pegler and N. J. Balmforth

Y

t

t
0

0.01

0.02

0.03

10 20 30 40 0

10

20

30

40

0.95 1.00 1.05 1.10

5 0 5

(a) (b)

FIGURE 3. Solutions to the initial-value problem for retrograde locomotion. (a) The
evolution of the locomotion velocity U(t) in the case with A = D = 1 and M = 0.1, for
Bingham numbers B = 0, 0.05, 0.1 and 0.15 (all thin). The thick, dashed curve shows a
solution with M = 0.001 and B = 0. (b) The surface profile Y(ξ, t) as a density on the
(ξ, t)-plane, where ξ ≡ x − t, for the two solutions in (a) with B = 0.1 (left) and B = 0.15
(right).

1
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t

U

0.1

FIGURE 4. Evolution of the locomotion velocity U(t) in the case with A= 1,B= 0 and
M = 0.1 for stiffnesses of D= 0, 0.1 and 1.

damped if D> 0, at a rate which increases with D, and the solutions converge towards
states that are steady in the frame of the wave. Cases with D = 0 exhibit perpetual
oscillations that undergo large-time modulations in amplitude, but never decay. The
solutions with M = 0.001 and M = 0.1 are barely distinguishable in figure 3(a),
reflecting the existence of a well-defined limit M→ 0 in which the inertia of the body
vanishes and the position of the locomotor responds instantaneously to the viscous
tractions exerted by the mucus layer. Note that the oscillations are therefore not inertial
and are instead associated with the propagation of the forcing wave.

The steady-state distributions of the surface stresses τB and τS, pressure gradient pξ
and yield surfaces Y± in the case B= 0.1 are shown in figure 5(a). These distributions
are representative of states in which the locomotor is moving forwards (U > 0). The
solution contains a pattern of flow configurations (2.24) in the sequence A-D-C-B-A-
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FIGURE 5. Steady-state yield surfaces Y±, surface stresses, τB and τS, and pressure gradient
pξ , for (a) the locomotive state with B = 0.1 and (b) the stationary state with B = 0.15. The
plugs and stress bands in which the plugs form (|τ |< B) have been shaded.

B-C-D-A proceeding from ξ = 0 to 2π. The thin C regions that connect the B and D
regions are essentially indistinguishable in figure 5(a). The composite B-C-D regions
surround the two locations where pξ , τB and τS change sign.

3.2. Activation and arrest of locomotion
As noted above, one must exercise caution in solving the initial-value problem if,
at some time, U = 0. At this juncture, E regions may form within the mucus layer,
causing the shear stress τ to become indeterminate. The resultant force F in (2.19)
cannot then be evaluated. In this situation, the locomotor can remain pinned in place
for an extended period of time, with (2.19) discarded and replaced by the pinning
condition U̇ = U = 0. The flow configurations of the pinned states follow the pattern
A-E-A-E-A, as illustrated in figure 5(b).

Whenever U = 0, the key question to address is whether the drag exerted by the
rigid plugs in the E regions is sufficient to pin the locomotor, or whether the driving
force exerted by the foot breaks those rigid plugs and activates locomotion. This
question can be answered by examining the state given by the current surface profile
Y together with the limiting locomotion speed U→ 0+, corresponding to that which
would be realized if locomotion were to resume. For this hypothetical state, the E
regions are replaced by composite B-C-D regions and the stresses become determinate.
In particular, the surface stress τ ∗S can be constructed in this state and used to evaluate
an activation force, F∗ ≡ −〈τ ∗S + pYξ 〉. If F∗ > 0 then (2.19) predicts that U̇ > 0 and
hence the U→ 0+ state is consistent with a successful activation of locomotion. On
the other hand, if F∗ < 0, then (2.19) predicts that U̇ < 0, implying that the locomotor
cannot accelerate away from rest and instead remains pinned.

In all the non-Newtonian examples of the initial-value problems presented in
figure 3, the locomotor is pinned briefly at the commencement of each computation,
with U(0) = 0 and F∗(0) < 0 applying in the initial state. For the example
with B= 0.1, shown in more detail in figure 6(a), F∗(t) remains negative until t ≈ 1.2,
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FIGURE 6. Evolution of the activation force F∗(t) (thick), as defined in § 3.2, and the
locomotion velocity U(t) (thin), for (a) B = 0.1 and (b) B = 0.15. The lower panels show
magnifications of the pinning events wherein U = 0 and F∗ < 0.

whereat the plugs break and locomotion is activated. A second, brief interval of
pinning occurs around t ≈ 6.3, but thereafter U remains positive and locomotion
continues unimpeded. By t ≈ 40, the locomotion speed is close to its steady-state
value and F = F∗→ 0, consistent with a large-time balance of horizontal forces. For
B = 0.15, shown in figure 6(b), the evolutions of U and F∗ are qualitatively similar
to the case B = 0.1 until t ≈ 6. After this time, however, the locomotion becomes
punctuated by further intervals of pinning. The last such interval, which commences at
t ≈ 11, persists indefinitely, with F∗ converging towards a negative value at large times.
Despite the absence of locomotion during this final interval, the surface of the foot
converges towards a shape that is steady in the frame of the wave, as illustrated by
figure 3(b), corresponding to a pattern of displacements that continue to propagate in
the frame of the laboratory. By comparing the two density plots of figure 3(b), we see
that the evolution of Y is essentially identical to that of the locomotive case B = 0.1
and is therefore largely insensitive to the horizontal translation of the surface of the
foot.

3.3. Steady locomotive states
The large-time steady states can be constructed more directly by considering the steady
forms of (3.1a,b) which, after integration of the first of these, imply

Y + q= 1+ Q, 〈τS + pYξ 〉 = 0, (3.2a,b)

where Q = 〈q〉 is the net flux of mucus. These equations, in conjunction with 〈Y〉 = 1,
define an eigenvalue problem for Y(ξ) in which Q and U play the role of eigenvalues.
We solve this problem numerically using a Newton–Raphson iteration scheme in
which the spatial derivatives and integrals are approximated in the manner described in
our solution to the initial-value problem in § 3.1.
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FIGURE 7. Steady-state locomotion velocity U and flux Q plotted against Bingham number
B for A = D = 1. The thinner curve shows the flux Q∗ that would result if U = 0 were
imposed for B< Bc, as discussed in § 3.4. The dashed curve represents the hypothetical force
F∗ that would result if locomotion were activated, as discussed in § 3.2.

0

0.2

0.4

0.6

0.5 1.0 1.5 2.0 2.5 3.0

A

20

5
10

FIGURE 8. Critical Bingham number Bc(A,D) above which locomotion is arrested as a
function of amplitude A for stiffnesses of D = 0, 5, 10 and 20. The small-A, small-D
analytical approximation for Bc determined from (3.3) is shown as a dashed curve.

Figure 7 shows the steady locomotion speed U as a function of the yield stress B
for A = D = 1. As suggested by our solutions to the initial-value problem shown in
figure 3(a), U decreases monotonically with B from the Newtonian case B= 0, before
vanishing at a critical value Bc(A,D). Figure 8 illustrates how Bc increases with both A
and D, indicating a weak dependence on D.

For B > Bc, we solve for the stationary states with U = 0 by modifying our
eigenvalue solver. Specifically, we abandon the shear-stress constraint (3.2b) and
the eigenvalue U and instead impose the pinning condition U = 0. We confirm
the consistency of these stationary states by evaluating the activation force F∗ and
verifying that it is negative for B> Bc, as illustrated by the dashed curve in figure 7.

We explore the onset of steady locomotion as B is reduced from Bc in more
detail by considering the asymptotic limit of small amplitude A and stiffness D. By
performing a perturbation analysis in this limit (see appendix B), we determine the
approximation

U

[
1− 2B

πA
log
(

BU

A2

)]
∼ 1

48
A2 − 2B2

πA
(A� 1,D→ 0), (3.3)
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FIGURE 9. Scaled locomotion speeds U/A2 plotted against the scaled Bingham number
B/A3/2 for D= 0 and A= 10−1, 10−2 and 10−3 (all thin). The small-amplitude, small-stiffness
approximation (3.3) in the case A= 10−3 is shown as a thick curve.

where B 6 Bc(A, 0) = (πA3/96
)1/2

. In the Newtonian case (B = 0), (3.3) implies that
U ∼ A2/48, which is consistent with the small-amplitude results of Katz (1974).
For B > 0, the second term on the right-hand side of (3.3) provides a first-order
correction to the Newtonian result. Specifically, the correction originates from the yield
stress in the weakly yielded B and D regions that surround the two locations where
pξ changes sign. Locomotion is thus most strongly constrained by the yield stress
in the near-rigid plugs that are close to spanning the depth of the mucus layer. The
logarithmic term in (3.3) originates from the global contribution of the yield stress
in the strongly yielded A regions that occupy the majority of the mucus layer. The
prediction for U implied by (3.3) is compared with numerical solutions in figure 9.

3.4. Generation of flux
As shown in figure 7, both the stationary and locomotive states generate a flux Q < 0
in the direction opposite to that of locomotion. The magnitude of Q is seen to increase
with B from a finite value at B = 0 towards a maximum near Bc. Notably, despite the
existence of static fluid in the E regions for B > Bc, the yielded flow in the A regions
is still able to deliver a net flux. This is possible because the yield surfaces Y± change
position as the forcing wave propagates, so fluid crosses the borders of the E regions.

In the stationary states (B > Bc), the system becomes equivalent to a kind of
peristaltic pump (e.g. Shapiro et al. 1969). Indeed, if we artificially impose U = 0
and ignore (3.2b), then we recover a two-dimensional model of peristaltic pumping
that is related to the axisymmetric problems of Vajravelu, Sreenadh & Babu (2005)
and Takagi (2009). The continuation of the flux Q for B < Bc with U = 0 imposed
is shown as a thin curve in figure 7, where it is seen to continue increasing as B
is reduced, obtaining a maximum in the Newtonian case. By contrast, the flux Q of
the locomotive states soon begins to decrease as B reduces below Bc. This occurs
because the translation of the upper surface opposes the peristalsis. For gastropods,
the generation of a backward flux is wasteful because it demands an enhancement of
mucus production.

There is yet a further threshold Bs(A) above which the net transport of flux Q
vanishes entirely. Beyond this threshold, the forces exerted by the foot are insufficient
to yield the fluid anywhere. This occurs critically when the yield surfaces Y± first
lie entirely outside the mucus layer, so maxξ (Y−) = 0. Combining this criterion

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

22
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.224


Locomotion over a viscoplastic film 15

 
–0.6

–0.4

–0.2

0

0.2

0.4

0.6

2 4 6 8 10 12 14 16 18 200 22

A

U

Q

FIGURE 10. Locomotion speed U plotted against amplitude A for B = 0, 2 and 5 and
stiffnesses D = 0 (thick), D = 1 (mid-weight) and D = 5 (thin). The small-amplitude result
(3.3) is shown as a dashed curve in the case B = 0. The lower part of the plot shows the net
flux Q for the same values of B and D = 0 (thick) and 1 (mid-weight). The flux Q vanishes
and is not plotted for B< Bs, where Bs is given by (3.4). For the cases with D= 0, the critical
amplitude A∗ at which a shock first forms is indicated by a star.

with (2.23), we deduce that 2Bs =maxξ |pξ | and hence

Bs = 1
2 A, (3.4)

where we have used (3.1a) to substitute for pξ and noted that Y ≡ 1 in the static state.
Unlike Bc, (3.4) is independent of D, which follows from the fact that the gradient in
elastic force is identically zero when the foot is in its neutral state.

3.5. Effects of forcing amplitude and stiffness
Figure 10 shows the locomotion speed U and net flux Q as functions of the forcing
amplitude A for a selection of Bingham numbers B = 0, 2 and 5, and stiffnesses
D= 0, 1 and 5. In the Newtonian case (B= 0) with D= 1, U increases approximately
quadratically with A at small forcing amplitudes in accord with (3.3), which is plotted
as a dashed curve. However, this trend does not continue for A & 2. Instead, U reaches
a maximum at A ≈ 8 and then proceeds to decrease. The eventual reduction of U is
due to the enhancement of the viscous drag in the thinnest part of the mucus layer,
which becomes increasingly constricted at large A as the foot is pressed closer to the
base (Balmforth et al. 2010).

A comparison between the Newtonian (B = 0) cases of D = 1 and D = 5 in
figure 10 shows that an increase in D leads to a reduction in U at sufficiently
small amplitudes A . 6. This reflects the fact that the elastic force resists the
vertical deformations that drive locomotion. However, given a sufficiently large forcing
amplitude A & 6, increasing D leads to a larger locomotion velocity U. This occurs
because the resistance to deformation provided by the elastic force eventually opposes
the localized constriction of the mucus layer that provides the dominant resistance to
locomotion at large A.

For large stiffnesses (D � 1), it is clear from (3.1a) that a correspondingly
large amplitude A ∼ D is needed for any significant locomotion to be generated.
If A ∼ D� 1, then the leading-order balance in (3.1a) is between the elastic and
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FIGURE 11. Steady-state surface profiles Y for B = 0 and A = D = 2, 20, and 200,
illustrating the convergence towards the large-amplitude, large-stiffness asymptote (3.5)
(thick).
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FIGURE 12. Steady-state thickness profiles Y in the small-stiffness case D = 0.01 with
B = 0.3 for A = 2, 2.2, 2.4, 2.6, 2.8 and 3. The case with the critical amplitude A∗(B) =
A∗(0.3)≈ 2.6 at which a shock forms in the case D= 0 is shown as a thick curve.

muscular terms on the right-hand side, implying that the forcing in this limit directly
dictates the displacement of the foot according to

Y ∼ 1+ (A/D)f (A∼ D� 1). (3.5)

The convergence of Y towards the asymptote (3.5) is illustrated in figure 11, where we
have plotted Y for increasing values of A = D in the case B = 0. Note that if A > D,
then (3.5) predicts that Y intersects the lower boundary in the thinnest region of the
mucus layer, so (3.5) cannot apply in these regions. Instead, pξ remains significant in
(3.1c) and its intervention prevents the intersection of the surfaces, as is seen to occur
near ξ = 3π/2 in figure 11.

With a perfectly flexible foot (D = 0), U is essentially the same as the case D = 1
for A . 2, as indicated by the plots of figure 10. However, as A increases towards a
critical value, given by A∗(B) = A∗(0) ≈ 2.2 in the Newtonian case, the surface profile
Y develops a discontinuous gradient at the location of greatest forcing ξ = π, and
no smooth solutions exist at larger forcing amplitudes. The thick curves representing
D= 0 in figure 10 have correspondingly been terminated at A∗. Given a finite stiffness
D > 0, however, the surface maintains a smooth profile as A increases beyond A∗,
but develops a steep shock, as illustrated for B = 0.3 in figure 12. Here, we have
set D = 0.01 and plotted Y(ξ) for several values of A that straddle the critical
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FIGURE 13. Prograde forcing pattern (4.2) for γ = 0, 4 and 40.

amplitude A∗(0.3) ≈ 2.6. The sudden loss of symmetry about ξ = π as A increases
beyond A∗ is a notable feature. As illustrated by the stars in figure 10, A∗(B) increases
with B, with the approximate relationship A∗ ≈ 2(B + 1). For B & 0.9, the critical
amplitudes A∗ occur within the branch of stationary states, so there are no smooth
locomotive states in these cases if D= 0.

4. Prograde locomotion
The simplified model of prograde locomotion problem described in § 2.5 allows for

tangential displacements of the foot surface but precludes any vertical deformations.
With this simplified model, it is possible to rescale Ξ,U, u, p and τ by AP, such as to
eliminate AP from the problem and introduce a rescaled Bingham number B′ ≡ B/AP.
Equivalently, we set AP = 1 and use B to denote B′ throughout this section. We also
drop the P subscript from DP and fP.

With Y ≡ 1, the state of the system is described by Ξ and U only. On transforming
the coordinate system into the frame of the wave (ξ, t), where ξ ≡ x − t, equations
(2.17a), (2.26a,c) and (2.19) give

q= Q(t), τS = f − DΞ, Ξt = uS − U +Ξξ , MU̇ =−〈τS〉 = D〈Ξ〉,
(4.1a,b,c,d)

respectively. Notably, (4.1a) implies that the flux q is spatially uniform at all times.
For the purpose of illustration, we consider the model forcing pattern

f (ξ)= g− 〈g〉
[〈g2〉 − 〈g〉2]1/2

where g≡ e−γ cos ξ (4.2)

and γ > 0 is a forcing parameter. The pattern (4.2) satisfies the property 〈f 〉 = 0 and
has been normalized so that 〈f 2〉 = 1. As shown in figure 13, the limiting case γ → 0
corresponds to a sinusoidal forcing pattern f = −√2 cos ξ . For γ > 0, the forwards-
forced region is of smaller horizontal extent than the backwards-forced region, but
attains a greater magnitude.

4.1. The Newtonian problem
In the Newtonian case (B= 0), the lubrication equation (A 5) simplifies to

τS = uS + 1
2 pξ and hence 〈τS〉 = 〈uS〉. (4.3a,b)

Taking the period averages of (4.1b,c,d), we obtain

〈τS〉 = −DX, 〈uS〉 = U + Ẋ, MU̇ = DX, (4.4a,b,c)
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respectively, where X(t) ≡ 〈Ξ〉 is the net horizontal displacement of the lower surface
of the foot. By combining (4.3b) and (4.4a,b,c), we determine the evolution equation

M(Ü + DU̇)+ DU = 0, (4.5)

which shows that U evolves as a damped linear oscillator. With the initial condition
Ξ(ξ, 0) = U(0) = 0, corresponding to an initially unperturbed state, (4.5) implies
that U = 0 for all time, so the locomotor remains stationary. Even if the system
were initialized in some other fashion, (4.5) still implies that U → 0 as t→∞.
Steady locomotion with this prograde strategy is therefore impossible with Newtonian
mucus. This result contradicts Katz’s (1974) analysis of the low-amplitude biharmonic
problem, which demonstrates that prograde locomotion is feasible with Newtonian
fluid (see also Tuck 1968). The discrepancy arises because of our linearization of
the horizontal kinematic condition in (2.12b) performed in § 2.5. Though appropriate
for gastropods, this approximation rules out a weak form of locomotion analogous to
steady streaming or Stokes drift.

Note that the frequency of the oscillations [(MD)−1 − 1/4]1/2 implied by (4.5) is set
by M and D, revealing them to be inertio-elastic and overdamped for DM > 4. The
transient dynamics are therefore different from the retrograde case considered in § 3.1,
where the oscillations of the initial-value problem were found to be associated with the
propagation of the forcing wave.

4.2. The viscoplastic initial-value problem
For viscoplastic cases (B > 0), we again consider the evolution of the system from an
unperturbed initial state with Ξ(ξ, 0) = U(0) = 0. We solve the initial-value problem
described by (2.16a,b) and (4.1a,b,c,d) numerically by, once again, discretizing ξ

on a fixed, uniform grid and employing centred differences to approximate spatial
derivatives. At the beginning of each time step, pξ and Q are unknown and must
be determined such that (4.1a) is satisfied at each grid point, with u constructed
using the formulae in appendix A, together with the continuity condition, 〈pξ 〉 = 0. To
accomplish this, we use a Newton–Raphson scheme in which pξ and Q are iterated
from their values in the previous time step. Having obtained pξ and u, we use (4.1c,d)
to integrate Ξ and U forwards in time.

As in the retrograde problem, there is a complication in solving the initial-value
problem whenever E regions appear in the mucus layer. The main consequence here is
that pξ becomes indeterminate over these regions and the constraint 〈pξ 〉 = 0 ceases to
be applicable. Instead, (4.1a) and the stagnancy of the flow in the E regions together
imply that q = Q = 0. This no-flux condition can be used to solve for pξ outside
the rigid plugs, thereby providing uS and the means to evolve Ξ using (4.1b). Over
the rigid plugs themselves, the displacement of the foot surface is frozen in time, so
Ξt = 0.

Sample numerical solutions to the initial-value problem with γ = 4 and B = 0.6
are shown in figure 14. Figure 14(a) shows computations with the two different
dimensionless masses per unit area of M = 0.1 and 1, for fixed D = 1. Figure 14(b)
shows cases with stiffnesses of D= 0.1, 1 and 3, for fixed M = 1. As in the retrograde
problem, the switch-on of the muscular forcing at t = 0 generates a disturbance in
Y that decomposes into a component that is carried along in the wave frame and
a component that propagates with a different speed. As illustrated in figure 14(c),
this component decays as it recirculates through the domain. The system eventually
converges towards a state that is steady in the frame of the wave.
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FIGURE 14. Locomotion speed U(t) against time for γ = 4 and B = 0.6 in initial-value
computations with (a) D = 1, M = 1 (thick) and M = 0.1 (thin), and (b) M = 1 and D = 0.1
(thin), 1 (dashed) and 3 (thick). (c) The tangential foot displacement Ξ as a density on
the (ξ, t)-plane in the case with M = D = 1. In (a), the dashed line shows the result of
a computation with M = D = 1 in which the forcing is switched on more gradually by
multiplying the forcing pattern f by the time-dependent function tanh2(t/10).

The most notable characteristic of the non-Newtonian solutions to the initial-value
problem compared with the Newtonian solutions is that the large-time steady-state
values of U are non-zero. The yield stress therefore generates locomotion. One can
understand this result by noting that the yield stress acts to impede flow within the
mucus layer, thereby restricting the surface velocity uS at each x-location. Therefore, if
f (ξ) contains a backwards-forced region that is longer but weaker than the forwards-
forced region, such as that provided by (4.2) with γ > 0, then the yield stress will
block flow preferentially in the backwards direction. The resulting asymmetry implies
that U = 〈uS〉 > 0, so locomotion is activated in the forwards direction, despite the
vanishing of the net driving force, 〈τS〉 = 0. Indeed, if γ is sufficiently large then it is
possible for the yield stress to stop backwards motions of the foot surface entirely, so
uS > 0; an example of such a state is shown later in figure 15(d).

Figure 14(b) illustrates how the stiffness D controls the convergence of the system
towards the steady state in a manner that is similar to the retrograde problem. Unlike
that problem, however, the frequency of the oscillations is dependent on D and
M, which identifies them as inertio-elastic. As indicated in our discussion of the
Newtonian problem in § 4.1, the frequency of the oscillations diverge in the limit
M→ 0, which, in view of our small estimate of M ≈ 10−5 given in § 2.3, should be
applicable to the biological setting. However, gastropods do not display any significant
oscillation as they initiate locomotion, indicating a possible limitation of our idealized
model. The addition of some other physical effect may be needed in order to prevent
the unphysical divergence of the oscillation frequency in the limit M→ 0 and to
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FIGURE 15. Steady-state solutions for prograde locomotion for γ = 4 and D = 0. (a) The
locomotion speed U and flux Q as a function of B. The dotted curves show asymptotic
approximations for B� 1 and B→ Bs ≈ 2.5, given by (4.8) and (4.14), respectively. The
force F∗, defined in (4.10), indicating when flux is generated is shown as a dashed curve,
and the vertical lines mark the critical values, Bc,Bs and Ba. (b–d) The yield surfaces Y±
for B = 0.3, 0.6 and 0.9, respectively, the locations of which are shown by stars in (a). The
distributions of uS, pξ , τB and τS are also plotted in (b,c).

explain the prediction of transient oscillations for parameter settings relevant to
gastropods. One possibility is that the viscous traction in the foot cavity, which we
have neglected, may intervene to prevent any rapid oscillation of the cavity. Another
possibility, identified in the Newtonian case in § 4.1 above, is that the evolution is
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overdamped. However, this seems unlikely if M ≈ 10−5. A further possibility, which
appears more plausible, is that the oscillations in our computations are an artefact of
our imposition of an instantaneous switch-on of the forcing wave at t = 0, leading
to an abrupt start to the system that is physically unrealistic. By computing solutions
to the initial-value problem with a forcing whose amplitude is gradually ramped up
over a time longer than the period of oscillation, we have verified that the oscillatory
transients are suppressed. An example of such a computation, obtained by multiplying
fP by a time-dependent function tanh2(t/10), is shown as a dashed line in figure 14(a).

4.3. Steady locomotive states
We can compute the steady states more directly by considering the steady forms of
(4.1c,d), namely,

Ξξ = U − uS, 〈τS〉 = −D〈Ξ〉 = 0. (4.6a,b)

In cases where the steady state contains no E regions, pξ is determinate over the
full domain and (4.1a,b), (4.6a,b) and 〈pξ 〉 = 0 constitute an algebraic problem for
pξ , Ξ , Q and U. We solve this problem using a similar discretization of ξ and
Newton–Raphson scheme to that described in § 4.2, but including (4.6a,b) as objective
functions and Ξ as an iteration variable. To compute the solution in flux-less cases, we
impose Q= 0 in place of the constraint 〈pξ 〉 = 0.

Figure 15 displays steady-state solutions for γ = 4 and D = 0. Note that, although
we do not expect the system to converge towards a large-time steady state if D = 0,
these solutions are typical of small but finite stiffness. As shown by figure 15(a), the
steady-state locomotion speed U increases with B from zero in the Newtonian case
up to a maximum Uopt(γ,D) ≡ maxB(U) ≈ 0.049 at B = Bopt ≈ 0.47. Thereafter, U
decreases and eventually vanishes at the critical value B = Bs ≈ 2.5, corresponding to
the cessation of all fluid motion. Thus, although the yield stress is responsible for
activating locomotion by suppressing backward motion, its impedance of forward fluid
motion ultimately stops locomotion.

The corresponding flux Q, also shown in figure 15(a), initially decreases from zero
as B is increased from the Newtonian case, implying the activation of a backwards
transport of mucus. Before the fastest locomotion speeds are achieved, however, the
magnitude of the flux reaches a maximum and then decreases back to zero, vanishing
beyond a critical value Bc ≈ 0.43.

Figure 15(b–d) shows the yield surfaces Y± for three different Bingham numbers
B = 0.3, 0.6, and 0.9. The corresponding distributions of the surface velocity uS,
pressure gradient pξ , and surface stresses τB and τS, are also shown for the first
two cases. In the flux-generating case B = 0.3 < Bc, the flow configurations follow
the pattern A-B-C-D-A-D-C-B-A. As the yield stress increases beyond Bc, however,
the flux becomes blocked once the B-C-D regions fuse into E regions. As shown
in figure 15(c) for the case B = 0.6 > Bc, the flow configurations then follow
the sequence A-E-A-E-A. At yet larger yield stresses B > Ba ≈ 0.65, the flow
configuration changes a third time due to the disappearance of the backwards-forced
A region. Only the forwards-forced A region then remains, as illustrated by the case
B= 0.9> Ba shown in figure 15(d).

4.4. Activation of locomotion
We explore the activation of locomotion in more detail by analysing the near-
Newtonian limit B� 1. In this limit, the flow pattern is dominated by A regions
that are separated by narrow combinations of B-C-D regions, each surrounding the two
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locations where pξ changes sign. Over the A regions, the formulae for the flow profiles
(A 2) and (A 1), with (2.23) used to eliminate Y±, can be simplified in the limit B� 1,
to give

Q∼ τS

2
− pξ

3
+
(

1
2
− τ

2
S

p2
ξ

)
Bσ, uS ∼ τS − pξ

2
+
(

1− 2τS

pξ

)
Bσ, (4.7a,b)

where σ ≡ sgn(pξ ), and we have omitted terms of O(B2). In view of the steady-state
condition 〈τS〉 = 0, the spatial averages of (4.7a,b) imply that U and Q are each O(B).
In turn, it then follows from (4.7a) that pξ = 3τS/2 + O(B). Using this expression to
evaluate pξ in the first-order terms in (4.7a,b) and then taking the period averages of
these equations, we deduce that

Q∼ 1
18 B〈σ 〉 + O(B2), U ∼− 1

3 B〈σ 〉 + O(B2), (4.8a,b)

where σ ∼ sgn(τS) represents the direction in which the yield stress opposes motion at
each location of ξ .

Finally, we determine τS by substituting the leading-order approximation uS ∼
−Ξξ ∼ τS/4, obtained by combining (4.6a) and (4.7), into the ξ -derivative of (4.1b) to
obtain

τ ′S − 1
4 DτS = f ′, (4.9)

where we have used primes to denote d/dξ , which can be reduced to quadrature.
For D = 0, this final step is unnecessary because (4.1b) implies directly that τS = f ,
so 〈σ 〉 = 〈f 〉. For our illustrative forcing patterns (4.2), we therefore have 〈σ 〉 < 0 if
γ > 0, implying that the yield stress suppresses more flow over the wider, backwards-
forced regions than the narrower, forwards-forced regions. Also, 〈σ 〉 increases with γ ,
indicating that larger values of γ are more favourable for generating locomotion in the
limit B� 1. The asymptotes (4.8a,b) are shown as dotted curves in figure 15(a).

4.5. Blockage of flux

For B > Bc, the flux q vanishes because of the appearance of rigid plugs that span
the depth of the mucus layer. The threshold Bc(γ,D) can be conveniently computed
by considering the force balance on steady states with the no-flux condition q = 0
imposed. As indicated by a comparison between the cases with B = 0.3 < Bc ≈ 0.34
and B = 0.6 > Bc in figures 15(b,c), the breaking of the rigid plugs as B is decreased
from Bc corresponds to the replacement of the E regions by D regions. The net force
associated with breaking the rigid plugs, F∗ = −〈τS〉 = −〈τB〉, can be split into two
parts, F∗ = FA + FD, which represent the contributions to F∗ from the A and D regions
in the limit B→ B−c . Denoting 1D(ξ) as the characteristic function that equals unity
over the D regions and zero elsewhere, and noting that the D regions form when
τS =−B, we can write

F∗ = FA + FD =−〈τS(1− 1D)〉 − 〈τB1D〉 = −〈τB(1− 1D)〉 + B〈1D〉. (4.10)

Figure 15(a) includes a plot of F∗ against B for the flux-less solutions (B > Bc) in the
case with D= 0 and γ = 4. For B> Bc, F∗ is negative, implying a consistent flux-less
state. At B = Bc, F∗ vanishes, corresponding to the breakup of the rigid regions and
the generation of flux for B < Bc. Figure 16 displays computations of Bc(γ,D), which
we determined by locating the zero of F∗ as B is varied over the flux-less solutions.
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FIGURE 16. Critical Bingham number above which flux generation is arrested Bc(γ,D)
plotted as a function of γ for stiffnesses of D = 0, 2, 4, 6, 8 and 10. In the case D = 0,
the flux-less and flux-generating regions of parameter space are indicated, and the critical
Bingham number Ba(γ,D) at which all backwards motions of the foot surface are first
arrested by the yield stress is shown as a dashed curve.

4.6. Arrest of locomotion

The arrest of locomotion at B = Bs(γ ) occurs when the remaining forwards-forced A
region vanishes. In the limit B→ Bs, fluid motion takes place only in the vicinity of
maximum forcing ξ = π, where the surface stress τS only slightly exceeds the yield
stress, and (Y−, 1− Y+)� 1. Guided by (2.23), we set

τS = B+T , τB ∼−B+T , pξ ∼ 2B+T (B→ Bs), (4.11a,b,c)

where T (ξ)� B. Substituting (4.11a,b,c) into (A 1), we find that the leading-order
surface velocity in the A regions simplifies to

uS ∼−T 2/4B (B→ Bs). (4.12)

By substituting (4.12) into (4.6a), we deduce that Ξ = O(T 2), which, provided that D
is order unity, implies that the elastic force in (4.1b) is negligible to leading-order, so
τS ∼ f . Combining this with (4.11a) and expanding f about ξ = π, we obtain

T ∼ f (π)− k(ξ − π)2 − B (|ξ − π|< ζ), (4.13)

where ζ ≡ [(f (π)− B)/k]1/2 is the half-width of the A region and k ≡ f ′′(π)/2.
Given that ζ = 0 when B = Bs, we find that Bs = f (π). Hence, fluid motion is

arrested once the maximum of the forcing falls below the yield stress. The critical
value Bs(γ ) is an increasing function of γ , reflecting the fact that forcing patterns with
a stronger forwards-forced region generate locomotion more readily at larger yield
stresses.

Finally, we determine the leading-order locomotion speed as B→ Bs by substituting
(4.12) into the period-averaged form of (4.6b) to give

U = 〈uS〉 ∼ 1
8πBs

∫ ζ

−ζ
(Bs − B)2 dξ ∼ (Bs − B)5/2

4πBsk1/2
(B→ Bs), (4.14)

which we plot as a dotted curve in figure 15(a) and later in figure 18(a).
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FIGURE 17. Locomotion speed U with D = 0 shown (a) as a function of Bingham number
B for γ = 0.4, 2, 10 and 50, and (b) as a density over the (B, γ )-plane. In (b), the optimal
Bingham number B = Bopt(γ, 0), which maximizes U for a given forcing parameter γ , is
shown as a solid curve and the global maximum over all B and γ is indicated by a dot.
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FIGURE 18. (a) Locomotion speed U as a function of Bingham number B for γ = 4 and
D = 0, 1, 5, 10 and 20. The asymptotic approximation for U close to the arrest of fluid
motion (4.14) is shown as a dotted curve. (b) The maximum speed over all Bingham numbers,
Uopt(γ,D) ≡ maxB U, as a function of γ for stiffnesses of D = 0, 2 and 5. The dots show the
global maxima.

4.7. Optimization of locomotion

In both the asymptotic limits B � 1 and B→ Bs, we found that locomotion is
enhanced for larger values of γ . To determine whether this conclusion holds for
intermediate values of B, we compute U as a function of B for various values of γ
in the case D = 0. As shown in figure 17(a), increasing γ from zero initially has
the effect of increasing U for all values of B. This trend continues until γ ≈ 14,
where Uopt(γ, 0) = maxB(U) ≈ 0.06 is optimized over all γ at a Bingham number of
B = Bopt ≈ 0.34. Although Uopt decreases with γ for γ & 14, U still increases with γ
for sufficiency small and large B, in accord with (4.8b) and (4.14). Thus, the advantage
of increasing γ is limited for intermediate values of B. The maximization of U in the
parameter space (B, γ ) is illustrated further by the density plot of figure 17(b).
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As indicated by figure 18(a), increasing the stiffness D decreases U for all values
of B, suggesting that the perfectly flexible case D = 0 is optimal for locomotion. This
reflects the fact that the elastic force invariably resists tangential deformations of the
surface of the foot. Nevertheless, the foot of a gastropod cannot be perfectly flexible
and, as we indicated in § 4.2, the locomotor does not converge towards a steady
state if D = 0. In order to optimize locomotion, gastropods may use the smallest D
permissible subject to the material constraints of its anatomy.

Figures 17(a) and 18(a) illustrate that the maximum speed over all yield stresses
Uopt depends on both the forcing parameter γ and the stiffness D. The plots of
Uopt(γ,D) against γ for three different values of D in figure 18(b) demonstrate
that this optimal speed becomes relatively insensitive to γ once that parameter is
sufficiently large (γ & 10). The global maxima of these curves, U∗opt(D) = maxB,γ (U),
or maximum speed over all yield stresses and forcing parameters, are indicated by
dots. With the typical values of γ close to these maxima, the forwards-forced regions
of the forcing patterns span about one fifth of the spatial domain. This is comparable
to or slightly greater than the documented area of locomotive waves of terrestrial slugs
and snails (Denny 1981; Lai et al. 2010). However, a substantial fraction of the foot
of these gastropods is actually bordered by a rim that does not participate actively in
locomotion.

In summary, our model predicts a maximum locomotion speed of U ≈ 0.06 attained
at the smallest possible stiffness D, a Bingham number of B ≈ 0.34 and a forcing
parameter of γ ≈ 14. In terms of dimensional variables, this maximum speed translates
to U = 0.06 APH/µ, where AP ≡ (T+ − T−)/fP is the dimensional amplitude of the
imposed forcing in (2.7). Notably, this maximum is independent of the wave speed c.
Assuming that gastropods maximize their speed, and using the characteristic values of
U, H and µ given in § 2, we estimate that AP ≈ 2× 104 Pa. This estimate is one order
of magnitude larger than the direct stress measurements quoted by Denny (1981) and
Lai et al. (2010). It seems unlikely, however, that such creatures are built for speed.

It is plausible that gastropods instead favour the optimization of mucus preservation.
If this is the case, then the optimal parameter settings predicted by our model are
simply those leading to a flux-less state with B > Bc(γ,D), the outlines of which are
illustrated in figure 16. Even if B < Bc, the net flux is always small compared with
the speed of locomotion, with the ratio Q/U obtaining its maximum value of 1/6 in
the Newtonian case, as indicated by figure 15(a) and equations (4.8a,b). Therefore, the
prograde strategy is essentially optimized for the preservation of mucus across the full
range of the parameter space.

5. Conclusions

Our goal in this article was to formulate a general model describing the mechanics
of locomotion over a layer of viscoplastic fluid, and to compare the retrograde and
prograde locomotion strategies employed by marine and terrestrial gastropods. Our
solutions to the initial-value problem show that the locomotor undergoes an oscillatory
convergence towards a steady state. In the retrograde case, the frequency of the
oscillations equals that of the forcing wave, while in the prograde case it is inertio-
elastic. In either case, the oscillatory transients are partly the result of a relatively
sudden switch-on of the forcing in our computations. If the forcing waves are turned
on more gradually, there are no transient oscillations, which is more in line with the
gait of real biological organisms.
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With the retrograde strategy, the yield stress always hinders locomotion, ultimately
preventing it entirely beyond a critical Bingham number. That threshold corresponds to
the formation of rigid plugs that span the depth of the mucus layer. The rigid plugs
form underneath the most weakly forced sections of the foot. When this occurs, fluid
is still yielded under the more strongly forced regions, resulting in peristaltic pumping
of fluid in the direction of the waves.

With our prograde strategy, locomotion is impossible with Newtonian mucus.
However, given a forcing pattern with forwards-forced regions that are narrower but
stronger than the backwards-forced regions, the yield stress restricts more fluid motion
in the backwards-forced regions, leading to a net forwards motion of the foot surface
and hence locomotion. Beyond a critical yield stress, rigid plugs form across the depth
of the mucus layer, blocking any flux of mucus in the direction opposite to that of
locomotion; above a second threshold, the yield stress prevents backward motions of
the foot altogether. By this stage, the yield stress impedes fluid flow only within the
forwards-forced regions, and so locomotion speeds decline with any further increase
of the yield stress. Locomotion is therefore maximized at an intermediate value of the
Bingham number. Optimizing over all the parameters of the model, we find that the
locomotion speed is greatest when the forwards-forced regions of the forcing pattern
span about one fifth of a wavelength, and when the tangential stiffness of the foot is
smallest.

Two key aspects of the locomotion of gastropods are the need to adhere to the
substrate and to preserve mucus (Denny 1980). These requirements are problematic for
the retrograde locomotion strategy: there are no rigid plugs in the locomotive states
to assist with adhesion and the retrograde waves pump a significant flux of mucus
in the direction opposite to that of locomotion. In employing the retrograde strategy,
it is possible that marine snails exploit the ambient Newtonian water to supplement
mucus production. They also have a reduced need for adhesion because of buoyancy.
By contrast, the requirements to adhere and preserve mucus are ideally suited to
the prograde strategy employed by terrestrial gastropods. In this strategy, there is
no conflict between adherence and locomotion, and the presence of rigid plugs also
prevents any wasteful backwards flux of mucus.

Denny (1981) suggested that the primary reason for the slug Ariolimax columbianus
to adopt the prograde strategy originated from the difficulty of the foot muscles in
overcoming lubrication pressures in the mucus layer and lifting the foot vertically.
However, Jones (1973) suggested that significant vertical displacements do occur
during the locomotion of Agriolimax reticulatus, and the recent study of Lai et al.
(2010) provided clear evidence for these in other gastropods. This issue could be
further explored using the general model we formulated in § 2, which allows for
vertical displacements of the foot surface during prograde locomotion. Lai et al. (2010)
also demonstrated that systematic variations occur within the envelope of the prograde
wave train as one proceeds from the tail to the head of the gastropod, and detect fluid
recirculations through the lateral rim of the foot, both of which could be investigated
using the three-dimensional generalization of our model.

Finally, gastropod mucus undoubtedly has a more complicated rheology than that
described by the Bingham model, including significant viscoelasticity and relaxation
(Denny 1980; Ewoldt et al. 2007). Relaxation times of order one second are reported
in the literature for snail mucus (see Ewoldt et al. 2007). The intrinsic time scale
of our theoretical model 2πL/c is of order ten seconds given typical wave speeds of
millimetres per second and wavelengths of order one centimetre. Hence, even though a
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time-dependent rheology may play a role, a first approximation based on the Bingham
model seems justified.
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Appendix A. Flow configurations
Denoting σ ≡ sgn(pξ ), the velocity u, flux q and basal stress τB associated with the

five possible flow configurations (2.24) are given by
A : 0< Y− < Y+ < Y (|τB|> B, |τS|> B, τBτS < 0),

u=


uP + 1

2 pξ (y− Y+)
2, Y+ < y< Y,

uP, Y− < y< Y+,
uP + 1

2 pξ (y− Y−)
2, 0< y< Y−,

uP ≡− 1
2 pξY

2
−, (A 1)

q= 1
6 pξ [(Y − Y+)

3 + Y3
− − 3Y2

−Y], τB = uSpξ
Ypξ − 2Bσ

− 1
2 Ypξ . (A 2)

B : Y− < 0< Y+ < Y (|τB|< B, |τS|> B),

u=
{

1
2 pξ (y− Y+)

2, Y+ < y< Y,

0, 0< y< Y+,
(A 3)

q= 1
6 pξ (Y − Y+)

3, τB = σ [B+ (2uSpξ )
1/2] − Ypξ . (A 4)

C : Y± < 0 or Y < Y± (|τB|> B, |τS|> B, τBτS > 0),

u= 1
2 pξy(y− Y)+ yuS

Y
, q= 1

2 uSY − 1
12 pξY

3, τB = uS

Y
− 1

2 Ypξ + Bσ. (A 5)

D : 0< Y− < Y < Y+ (|τB|> B, |τS|< B),

u=
{

uS, Y− < y< Y,
uS + 1

2 pξ (y− Y−)
2, 0< y< Y−,

(A 6)

q=− 1
6 pξY

2
−(3Y − Y−), τB =−σ [B+ (−2uSpξ )

1/2]. (A 7)

E : Y− < 0 and Y < Y+ (|τB|< B, |τS|< B), u= uS = q= 0, τB undetermined.

Appendix B. Low-amplitude retrograde locomotion
We develop an approximation for the steady locomotion speed U in the simplified

retrograde problem under the assumption that A and D are small. Neglecting the
elastic force in (3.1b), we obtain the pressure gradient pξ =−A cos ξ . Let

A≡ ε2, B≡ ε3B3, (U,Q)= ε4(U4,Q4)+ · · ·, Y = 1+ ε2Y2 + ε3Y3 + · · ·,
(B 1)

where ε� 1. In this small-amplitude limit, the flow is dominated by A regions, which
are separated by two composite D-C-B regions surrounding the two locations ξ = π/2
and 3π/2 where pξ changes sign. By combining (B 1) and (A 2), we can determine that

Y2 =− 1
12 cos ξ, Y3 = 1

4 B3σ. (B 2)
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In the A regions, (A 2) provides the basal shear stress

τB ∼ 1
2ε

2Y cos ξ + ε4U4

( | cos ξ |
| cos ξ | − 2εB3

)
(A). (B 3)

Noting that the edges of the A regions and the D-C-B regions occur where |τB| = B
and |τS| = B, we use (B 3) to determine that the latter occupy |ξ − π/2| < εζ and
|ξ − 3π/2| < εζ , respectively, where ζ ∼ 2B3 + 2(εU4B3)

1/2. The C regions that lie
between the B and D regions have widths of O(ε2) and hence are too narrow
to contribute significantly to the force on the foot. Using (A 4) and (A 7), we can
determine that the basal shear stresses in the B and D regions are given to leading-
order by

τB ∼


ε3B3 (D : 1

2π− εζ < ξ < 1
2π),

ε3B3 − ε2(ξ − 1
2π) (B : 1

2π< ξ <
1
2π+ εζ ),

ε3B3 + ε2(ξ − 3
2π) (B : 3

2π− εζ < ξ < 3
2π),

ε3B3 (D : 3
2π< ξ <

3
2π+ εζ ).

(B 4)

Finally, substitution of (B 3) and (B 4) into the stress constraint (3.2b) gives

U4

[
1− 2
π
εB3 log(ε3B3U4)

]
∼ 1

48
− 2
π

B2
3, (B 5)

where the logarithmic term on the left-hand side originates from the integral of the last
term on the right-hand side of (B 3). Recasting (B 5) in terms of the variables used in
§ 3, we obtain (3.3). Note that the logarithmic dependence of U4 on ε implied by (B 5)
indicates that our construction cannot be viewed as a formal asymptotic expansion.
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