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The results presented here examine the quasi-geostrophic dynamics of a point vortex
structure with one upper-layer vortex and two identical bottom-layer vortices in a
two-layer fluid. The problem of three vortices in a barotropic fluid is known to be
integrable. This fundamental result is also valid in a stratified fluid, in particular
a two-layer one. In this case, unlike the barotropic situation, vortices belonging
to the same layer or to different layers interact according to different formulae.
Previously, this occurrence has been poorly investigated. In the present work, the
existence conditions for stable stationary (translational and rotational) collinear two-
layer configurations of three vortices are obtained. Small disturbances of stationary
configurations lead to periodic oscillations of the vortices about their undisturbed
shapes. These oscillations occur along elliptical orbits up to the second order of the
Hamiltonian expansion. Analytical expressions for the parameters of the corresponding
ellipses and for oscillation frequencies are obtained. In the case of finite disturbances,
vortex motion becomes more complicated. In this case we have made a classification
of all possible movements, by analysing phase portraits in trilinear coordinates and by
computing numerically the characteristic trajectories of the absolute and relative vortex
motions.
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1. Introduction
The problem of three vortices in a two-dimensional layer of an ideal homogeneous

incompressible fluid with zero velocity at infinity, originating from the pioneering
dissertation work of Gröbli (1877), is the focus of numerous publications, e.g.
Poincaré (1893), Synge (1949), Novikov (1976), Aref (1979, 1983, 1989), Meleshko

† Email address for correspondence: kvkoshel@poi.dvo.ru
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& Konstantinov (1993), Meleshko & van Heijst (1994), Newton (2001), Boyland,
Stremler & Aref (2003) and Gudimenko (2008), and has been exhaustively studied,
e.g. Tavantzis & Ting (1988), Borisov & Mamaev (2005), Aref (2009, 2010) and
Gudimenko & Zakharenko (2010).

The problem of three vortices is integrable (Meleshko & Konstantinov 1993; Kozlov
1998; Newton 2001; Borisov & Mamaev 2005). However, the four-vortex dynamics is
only integrable in the case of initially symmetric vortex locations. Because of impulse
conservation, this symmetry property is valid at any time (Aref & Pomphrey 1982;
Eckhardt 1988; Eckhardt & Aref 1988; Aref & Stremler 1999; Sokolovskiy & Verron
2000b). Chaotic regimes in the problem of four vortices were found for the first time
almost simultaneously and independently in the works of Novikov & Sedov (1979a,b)
and Aref & Pomphrey (1980). A rigorous proof of the non-integrability of this
problem in the particular case where one of the point vortices has zero intensity, i.e.
is a simple fluid particle, was given by Ziglin (1980). Examples of stable and unstable
motion of fluid particles (advection) in the vicinity of stable equilibrium configurations
of three vortices are shown in an accompanying paper (Koshel, Sokolovskiy & Verron
2013, hereinafter referred to as KSV).

In a two-layer rotating fluid, unlike the barotropic case, vortices belonging to the
same layer and vortices located in different layers interact in different ways. The
simplest way to show this is the example of a pair of point vortices. In a homogeneous
fluid the law v ∼ 1/R, where R is half the distance between the vortices, is valid for
the velocity of a pair, whereas for the two-layer pair, v ∼ [1/R±K1(R)], where K1 is a
modified Bessel function. The positive sign corresponds to the case when both vortices
are located in the same layer, and the negative sign to the case when they are located
in different layers, i.e. a heton (Hogg & Stommel 1985; Sokolovskiy & Verron 2000a;
Gryanik, Sokolovskiy & Verron 2006; Jamaloodeen & Newton 2007). In the second
case, the velocity of a two-layer pair has a non-monotonic character, tending to zero
as R→ 0 and R→∞ and taking a maximum value at R ≈ 1.14Rd, where Rd is the
Rossby deformation radius.

It is obvious that baroclinicity plays a very important role in the problem of three
vortices. For example, in barotropic fluid, the collinear symmetrical tripolar structure
(peripheral vortices are of equal intensity κ > 0 and a central vortex has the intensity
µκ) always rotates around the central vortex in the cyclonic sense when µ > −0.5,
and in the anticyclonic sense when µ <−0.5; if µ=−0.5, we have a static condition
at any distance R of the peripheral vortices from the central one.

Again, as for the vortex pair, the baroclinic tripole is fundamentally different from
the barotropic one. A symmetrical two-layer tripolar structure composed of a central
vortex in the upper layer and two identical peripheral vortices in the bottom layer for
µ < −0.5 has a static state half the distance value R = Rµ, where Rµ is a function
of parameter µ. This vortex structure always rotates in the anticyclonic direction
if R > Rµ (the interlayer interaction is predominant), and it rotates in the cyclonic
direction if R < Rµ (the intralayer interaction between the vortices of the bottom layer
predominates).

In a two-layer fluid, the dynamics of three vortices having an arbitrary initial vortex
position has not been studied even in the particular case discussed above, when one
vortex is in the upper layer and two equal vortices are located in the bottom layer.
This work fills this gap. Here, we give a classification of possible motions of such
vortex systems, and, in particular, we study in detail its stationary states.

The structure of the paper is as follows. In § 2, we state the problem of the
dynamics of point vortices in a two-layer rotating fluid on the f -plane within the
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approximation of a rigid lid at the surface, write integral invariants and describe the
construction of phase portraits in trilinear coordinates. Most of § 3 is taken up with
citing of results on stationary solutions of a three-vortex problem in rotating two-layer
fluid taken from Gryanik et al. (2006) and Sokolovskiy & Verron (2006), that are
necessary for understanding the subsequent material of this article. The new result
here is a generalized diagram of the vortex structure state in the plane of geometric
parameters (figure 5). In § 4, we construct an approximate solution for the relative
trajectories of the vortices, when they deviate slightly from their steady states, using
the method of small perturbations. It is shown that the trajectories up to the second
order have an elliptical shape. In § 5, we study arbitrary motion of the vortices,
give a classification of absolute and relative trajectories, and investigate a frequency
dependence of the relative motion of the vortices. Section 6 summarizes the main
results.

2. Problem formulation
The equations of motion of a point vortex system in a two-layer inviscid fluid

rotating with an angular velocity f /2 (f is the constant Coriolis parameter) under the
quasi-geostrophic approximation and assuming the rigid lid condition at the surface
and a flat bottom have the following non-dimensional form:

ẋαj = −
hj

2π


Aj∑
β=1
β 6=α

κ
β
j

yαj − yβj

(rαβjj )
2

[
1+ h3−j

hj
γ rαβjj K1(γ rαβjj )

]

+
A3−j∑
β=1

κ
β

3−j

h3−j

hj

yαj − yβ3−j

(rαβj(3−j))
2 [1− γ rαβj(3−j)K1(γ rαβj(3−j))]

 , (2.1)

ẏαj =
hj

2π


Aj∑
β=1
β 6=α

κ
β
j

xαj − xβj

(rαβjj )
2

[
1+ h3−j

hj
γ rαβjj K1(γ rαβjj )

]

+
A3−j∑
β=1

κ
β

3−j

h3−j

hj

xαj − xβ3−j

(rαβj(3−j))
2 [1− γ rαβj(3−j)K1(γ rαβj(3−j))]

 . (2.2)

Here rαβij =
√
(xαi − xβj )

2+ (yαi − yβj )
2

is the distance between vortex α with
dimensionless circulation καi within the ith layer and vortex β with dimensionless
circulation κ

β
j within the jth layer (α, β = 1, 2, . . . ,Aj; i, j = 1, 2); h1 and h2 are

the thicknesses of the top and bottom layers, respectively (the layers are numbered
from top to bottom); γ = D/Rd where Rd =√g′h1h2/(h1 + h2)/f is the internal Rossby
radius, D is the horizontal scale used to non-dimensionalize x and y, g′ = g(ρ2−ρ1)/ρ0,
where ρ1, ρ2 are the densities of the top and bottom layers, ρ0 is the mean density,
and g is the acceleration due to gravity; a dot above a variable means a derivative with
respect to time.

The system (2.1)–(2.2), obtained for the first time by Gryanik (1983), inherently
represents identities

ẋj = uj =−ψjy, ẏj = vj = ψjx, (2.3)
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where ψj is a stream function in the jth layer. The easiest way of obtaining the
expressions on the right-hand sides of (2.1)–(2.2) is by examining them as a discrete
limit of the motion of vortex patches of finite size, excluding the self-influence of the
vortex and using known links between Πj (potential vorticity in layers) and the stream
functions:

Πj =∇2ψj + Frj

(
ψ3−j − ψj

)
, Frj = h3−j(h1 + h2)/Rd, j= 1, 2. (2.4)

Hear, Fr1,Fr2 are the Froud numbers.
If the potential vortices in the layers can be represented as

Πj =
Aj∑
α=1

Πα
j (x, y, t), j= 1, 2, (2.5)

where Πα
j are piecewise constant functions nonlinear on the domains Sαj then the path

to the limit is as follows (Gryanik et al. 2006):

lim
Sαj →0

Παj →∞

Πα
j Sαj = καj . (2.6)

The system (2.1)–(2.2) has integral invariants

Q=
2∑

j=1

hj

Aj∑
α=1

καj , Px =
2∑

j=1

hj

Aj∑
α=1

xαj κ
α
j , Py =

2∑
j=1

hj

Aj∑
α=1

yαj κ
α
j , (2.7)

M =
2∑

j=1

hj

Aj∑
α=1

[
(xαj )

2+ (yαj )2
]
καj , (2.8)

representing the total intensity Q, the impulse components Px and Py, and the angular
momentum M.

The system (2.1)–(2.2) can be written in the Hamiltonian form

q̇αj =
∂H

∂pαj
, ṗαj =−

∂H

∂qαj
, α = 1, 2, . . . ,Aj; j= 1, 2, (2.9)

where the canonical variables qαj = xαj and pαj = yαj κ
α
j hj are the generalized coordinates

and the generalized impulses, respectively.
The Hamiltonian, coinciding with the energy of interaction between vortices, has the

form

H =− 1
4π

2∑
j=1

hj


Aj∑

α,β=1
α 6=β

καj κ
β
j

[
ln γ∗r

αβ
jj −

h3−j

hj
K0(γ rαβjj )

]

+
Aj,A3−j∑
α,β=1

h3−j

hj
καj κ

β

3−j[ln γ∗rαβj(3−j) + K0(γ rαβj(3−j))]

 , (2.10)

where γ∗ = D/Rreg and Rreg is a regularizing scale of length equal, for example, to the
Oboukhov–Rossby scale (Gryanik 1983) or to the radius of the sphere in problems of
vortex dynamics on a sphere (Bogomolov 1977, 1985).
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It can be easily shown that invariants M, H and the combination (Px)
2+ (Py)

2 are
pairwise involutive (i.e. the corresponding Poisson brackets are zero), and, according
to the Liouville theorem (Kozlov 1996, 1998), in the case of three vortices in a
two-layer fluid (this is also true for an N-layer fluid with arbitrary N), as well as in a
homogeneous medium (Gröbli 1877; Synge 1949; Aref 1979, 1983, 1989, 2009, 2010;
Kimura 1988; Tavantzis & Ting 1988; Aref et al. 1989; Rott 1989, 1990; Kozlov 1998;
Stremler & Aref 1999; Boyland et al. 2003; Borisov & Mamaev 2005; Blackmore,
Ting & Knio 2007; Gudimenko 2008; Gudimenko & Zakharenko 2010), the problem
always has a regular solution.

Next we assume A1 = 1, A2 = 2 (i.e. we consider a special case of the three-vortex
problem with one vortex in the top layer and two vortices in the bottom layer),
h1 = h2 = 1/2, κ1

2 = κ2
2 = 1, κ1

1 = µ < 0 and D= Rd or γ = 1.
For this case, the equations of motion (2.1)–(2.2) in relative variables have the form:

ṙ12
22 =

µS

π

(r11
12)

2[1− r12
12K1(r12

12)] − (r12
12)

2[1− r11
12K1(r11

12)]
(r11

12)
2
(r12

12)
2 , (2.11)

ṙ12
12 =

S

π

(r11
12)

2[1+ r12
22K1(r12

22)] − (r12
22)

2[1− r11
12K1(r11

12)]
(r11

12)
2
(r12

22)
2 , (2.12)

ṙ11
12 =

S

π

(r12
22)

2[1− r12
12K1(r12

12)] − (r12
12)

2[1+ r12
22K1(r12

22)]
(r12

12)
2
(r12

22)
2 , (2.13)

where the value

S= 1
2 [y1

1(x
2
2 − x1

2)+ y1
2(x

1
1 − x2

2)+ y2
2(x

1
2 − x1

1)] (2.14)

is equal to the area of the oriented triangle constructed on the coordinates of vortices
(x1

1, y1
1), (x

1
2, y1

2), and (x2
2, y2

2), with positive sign when the path from the first to
the third vortex is in the cyclonic direction, and negative sign when this direction
is anticyclonic. From (2.11)–(2.13) it can be seen, in particular, that all collinear
configurations (S = 0) are stationary. However, as shown below, stable collinear states
are only represented by vortex structures satisfying special conditions.

From (2.11)–(2.13) we can readily obtain the identity L̇= 0, where

L= (r12
22)

2+µ
[
(r12

12)
2+ (r11

12)
2
]

(2.15)

is a two-layer analogue of the well-known vortex integral (Lamb 1932), which, as well
as the Hamiltonian, depends only on the distance between vortices. The first integrals
(2.8) become:

Q= 1
2 (2+ µ) , Px = 1

2

(
x1

2 + µx1
1 + x2

2

)
, Py = 1

2

(
y1

2 + µy1
1 + y2

2

)
, (2.16a)

M = 1
2

{(
x1

2

)2 + (y1
2

)2 + µ
[(

x1
1

)2 + (y1
1

)2
]
+ (x2

2

)2 + (y2
2

)2
}
. (2.16b)

From (2.15) and (2.16) we can get

L= 4
[
QM − (Px)

2− (Py)
2
]
. (2.17)

The equality (2.15) allows us to introduce the so-called trilinear coordinates (t1, t2, t3)

(Aref 1979), satisfying at L 6= 0 the evident equality

t1 + t2 + t3 = 3, (2.18)
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(a) (b)
t2 t2

t1 t1

t3

t3

FIGURE 1. Scheme of the trilinear coordinates with specified orientation of axes: (a) L 6= 0
and (b) L= 0.

and defined as

t1 = 3 (r12
22)

2

L
, t2 = 3µ (r12

12)
2

L
, t3 = 3µ (r11

12)
2

L
. (2.19)

These coordinates characterize the distance from lines constructed on the sides of an
equilateral triangle with the height of 3, to any point of the plane (see figure 1a).

When L= 0 (this occurs only in interval −2< µ< 0), we have

t1 + t2 + t3 = 0 (2.20)

and

t1 = 3 (r12
22)

2
, t2 = 3µ (r12

12)
2
, t3 = 3µ (r11

12)
2
. (2.21)

A geometric interpretation of the trilinear coordinates for this case is given in
figure 1(b).

To quantitatively study the dynamic system on the plane of variables (t1, t2, t3) it
is reasonable to identify the ‘physical domain’ (PD), in which the distances between
three arbitrary points (point vortices) satisfy the triangle inequality. In terms of trilinear
coordinates, this inequality becomes

(µt1)
2+ (t2)

2+ (t3)
2 6 2(µt1t2 + µt1t3 + t2t3). (2.22)

Clearly, the points on the boundary of PD (where (2.22) becomes an equality) always
correspond to a continuum of collinear states of the three vortices. From (2.22) it
follows that when µ > 1 or µ < −2 the PD is finite, while when µ ∈ [−2; 1), the PD
is infinite.

Figure 2 gives an example of a phase portrait, i.e. isolines of the Hamiltonian (2.10)
in the trilinear coordinates (t1, t2, t3), for the case µ = −2.5. The ‘non-physical’
domains are shaded. The thick lines are separatrices splitting domains of different
types of relative motion {1}, {2} and {3}. The main properties of these types of motion
are given below (in § 5) along with the appropriate trajectories of vortex motion.
Here, we will only mention that, since all isolines of the phase portraits in figure 2
reach the boundary of the PD twice, each of the three types of motion involves two
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FIGURE 2. Phase portrait in trilinear coordinates (t1, t2, t3) at µ=−2.5. The grey circular
symbols indicate elliptic and hyperbolic singular points.

(a) (b)

FIGURE 3. Scheme of the initial layout of vortices at µ = −2.5: (a) B < R and (b) B > R.
Here and in the figures below, the triangle marks the position of the top-layer vortex and the
circle and the square mark the positions of the bottom-layer vortices; Xc is the position of
the vorticity centre (3.4). The size of each symbol is proportional to the absolute value of
the intensity of the vortex. The arc arrows show the cyclonic or anticyclonic directions of the
vortices.

collinear states. During the evolution of the vortex system, the appropriate point of
the phase plane oscillates between the boundary points, periodically ‘reflecting’ from a
PD boundary. Thus, all possible motions of such a vortex system can be exhaustively
studied, if a collinear state is specified as the initial configuration. In what follows, we
suppose that at the initial moment all three vortices lie on a straight line (without loss
of generality, we can assume it to be the x-axis), so that the top-layer vortex is situated
at the origin of coordinates, as shown in figure 3.
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3. Stationary three-vortex structures
As can be seen from figure 2, circular grey symbols indicate the following singular

points in the phase portrait.

(i) A hyperbolic point of separatrix intersection.
A non-stable configuration of isosceles triangle shape, containing the upper-

layer vortex at the point where lateral sides intersect and the bottom-layer vortices
at the angles at the triangle base, corresponds throughout to this point. Because
of the instability, the vortex structure takes this position only twice during each
period.

(ii) Elliptic points.
(a) The upper point of the PD boundary (R= 0,B 6= 0) in area {3}.

A limit stationary configuration corresponds to this point, when two equal
bottom-layer vortices collapse and rotate around the merging point with
theoretically infinite angular velocity, and the whole construction rotates around
the centre of vorticity with angular velocity ω = (µ+ 2)/4πB2.

(b) The bottom point of the PD boundary (B= R) in area {1}.
The axisymmetric collinear tripolar structure, described in the Introduction

and named a roundabout by Gryanik et al. (2006), corresponds to this point.
Equations (2.1)–(2.2), written in polar coordinates, allow one to easily obtain
an expression for the angular velocity of rotation of the peripheral vortices
belonging to the bottom layer around the central vortex of the upper layer:

ω = 1
4πR2

[
1
2
+ µ(1− RK1(R))+ RK1(2R)

]
. (3.1)

For µ < 0.5 equation (3.1) for ω = 0 always has a solution R = Rµ (see the
Introduction) giving the static state; for R > Rµ, peripheral vortices rotate in
anticyclonic direction initiated by the central vortex (ordinary roundabout), and
for R< Rµ they rotate in the opposite direction (inverse roundabout).

(c) Lateral points of the PD boundary in areas {2}.
Non-trivial non-symmetric collinear three-vortex configurations correspond

to these points of the phase portrait. The distances between them satisfy the
following equation obtained from (2.12)–(2.13):

1
2R
+ 2R(1+ µ)

B(2R− B)
+ K1(2R)

+ (2R+ Bµ)K1(2R− B)− [2R(1+ µ)− Bµ]K1(B)

2(R− B)
= 0. (3.2)

This collinear construction rotates as a solid body with the angular velocity

ω = µ+ 2
4π(2R+ Bµ)

[
B+ 2Rµ

2BR
− µK1(B)+ K1(2R)

]
(3.3)

about a vorticity centre with coordinates

(Xc,Yc)=
(

2(R− B)

µ+ 2
, 0
)
. (3.4)

In Sokolovskiy & Verron (2006), such a configuration was called an
eccentric roundabout. The coordinates of the rotation centre (3.4) satisfy the
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(a) (b) (c)

FIGURE 4. Examples of absolute motion trajectories of stationary configurations: (a) µ =
−2.5 (eccentric roundabout, Xc > 0); (b) µ = −1.5 (eccentric roundabout, Xc < 0); (c) µ =
−2 (triton, Xc =∞). The initial moment corresponds to a collinear configuration of the three
vortices on the x-axis. Crosses on the x-axis are the coordinates for vorticity centres (Xc, 0).
Symbols have the same meaning as in figure 3, the red line corresponds to the trajectory of the
top-layer vortex, while the green and blue lines correspond to the two bottom-layer vortices.

inequalities

Xc > 0 for −2> µ>−∞, B > R or for −1 > µ >−2, R > B, (3.5a)
Xc 6 0 for −1 > µ >−2, B > R or for −2> µ>−∞, R > B; (3.5b)

when µ >−1, (3.2) has no solutions.
At µ = −2 and B 6= R, the angular velocity (3.3) is identically zero, the

vorticity centre Xc goes to infinity, the condition (3.2) becomes

B2 − 2BR+ 4R2

2BR(2R− B)
− K1(B)− K1(2R− B)− K1(2R)= 0, (3.6)

and the motion of the collinear vortex structure becomes translational motion
with constant velocity

V = 1
4π

[
2(R− B)

B(2R− B)
− K1(B)+ K1(2R− B)

]
(3.7)

directed perpendicular to the x-axis. According to the terminology used in
Sokolovskiy & Verron (2002a,b, 2004, 2006), we will refer to such a structure
as a triton.

Figure 4(a,b) gives examples of trajectories of absolute motion of the vortices
comprising an eccentric roundabout when both B and R satisfy (3.2) (clearly, the signs
of Xc satisfy the rules (2.16)), and figure 4(c), where the trajectory of the top-layer
vortex lies on the y-axis, shows the behaviour of a triton under conditions (3.6).
The segments in all cases connect the positions of vortices in the initial and final
(calculated) moments. The time intervals for calculation in figure 4(a,b) are chosen
such that the trajectories do not overlap.

Section 4 of this article is dedicated to the study of weakly disturbed stationary
solutions of eccentric roundabout type.

Figure 5 gives the solution of (3.2) with µ = −2.5 in the form of the curve B(R),
and the dependence of the angular velocity (3.3) and the position of the vorticity
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–4

0

4

0.4 0.8 1.2 1.6 2.0

{1}

FIGURE 5. Plots of functions B(R), 1000ω(R) and Xc(R) for an eccentric roundabout with
µ = −2.5. The sloping dashed lines B = R and B = 2R specify the axis of symmetry of
curve (3.2) and asymptotics of their solutions for R� 1, respectively. The notations {1}, {2}
and {3} for the domains, marked by dark grey, white, and light grey, respectively, have the
same meaning as in figure 2.

centre (3.4) on R. When B = R = R(r)0 = 0.7609 (hereafter, unless the context requires
greater detail, we give only four decimal digits, though the calculations were carried
out with double precision and yield reliable values up to 10−12), the vorticity centre
coincides with the top-layer vortex, and we have an ordinary roundabout, rotating
with angular velocity ω0 = −0.0038. At R = R(r)∗ = 0.9630 and the corresponding
values B(1)∗ = 0.1710 and B(2)∗ = 1.7550, the angular velocity takes its minimal
value ω∗ = −0.0043. Notwithstanding the fact that the solution of (3.2) has two
branches and the coordinates of the vorticity centre (3.4) change their signs with the
replacement of B by R, the angular velocity at µ = −2.5 does not change its sign on
the curve B(R).

Note that the domain of existence of solutions of types {1}, {2} and {3} are given
here in the coordinates (R,B). The part of the domain {3}, bounded by thick lines
within the angle between the straight lines B = 0 and B = 2R, has the following
property: for all R and B belonging to it, the trajectory of the relative motion of
the top-layer vortex always lies within domains bounded by closed trajectories of the
bottom-layer vortex.
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4. Analysis of perturbed motion at small deviations from stationary states
The elliptic type of fixed points corresponding to the solutions considered on phase

portraits (figure 2), suggests that they are stable under small perturbations. In a
coordinate system rotating with an angular velocity given by (3.3) for an eccentric
roundabout all three vortices will remain fixed. In this section, we will determine the
character of perturbed motion of vortices in the vicinity of stationary positions.

The Hamiltonian (2.10) in the system of coordinates rotating with the angular
velocity (3.3) can be written as

H (x1
2, y1

2, x1
1, y1

1, x2
2, y2

2)

=− 1
8π

{
µ

[
F1

(√
(x1

2 − x1
1)

2+ (y1
2 − y1

1)
2
)

+F1

(√
(x2

2 − x1
1)

2+ (y2
2 − y1

1)
2
)]
+ F2

(√
(x2

2 − x1
2)

2+ (y2
2 − y1

2)
2
)

− 8π
ω

4

[
(x1

2)
2+ (y1

2)
2+µ

(
(x1

1)
2+ (y1

1)
2
)
+ (x2

2)
2+ (y2

2)
2
]}

, (4.1)

where

F1(r)= ln(r)+ K0(r), F2(r)= ln(r)− K0(r). (4.2)

Note that the square-bracketed term multiplying ω in (4.1) is the total momentum,
i.e. is constant. Consider small perturbations relative to the stationary configurations,
satisfying (3.2). The coordinates of vortices are represented as

x1
2 =−B+ ε1

2, y1
2 = δ1

2; x1
1 = ε1

1, y1
1 = δ1

1; x2
2 = 2R− B+ ε2

2, y2
2 = δ2

2, (4.3)

where perturbations εαj , δ
α
j � 1 are chosen such that the total momentum (equal to zero

in the coordinate system with origin at the vorticity centre) remains unchanged, i.e. the
perturbed parts of the components of momentum satisfy the conditions

1Px = 1
2(ε

1
2 + µε1

1 + ε2
2)= 0, 1Py = 1

2(δ
1
2 + µδ1

1 + δ2
2)= 0. (4.4)

In this case

1M = 1
2 [(ε1

2)
2+ (δ1

2)
2+µ((ε1

1)
2+ (δ1

1)
2
)+ (ε2

2)
2+ (δ2

2)
2] = C1, (4.5)

and

1L= 4Q1M = {µ[(X1)
2+ (Y1)

2+ (X3)
2+ (Y3)

2] + (X2)
2+ (Y2)

2} = C2, (4.6)

where C1, C2 are constants, and the following notation is introduced for projections of
relative displacements of vortices:

X1 = ε1
1 − ε1

2,Y1 = δ1
1 − δ1

2, X2 = ε2
2 − ε1

2,Y2 = δ2
2 − δ1

2,

X3 = ε2
2 − ε1

1,Y3 = δ2
2 − δ1

1 .

}
(4.7)

Developing the expression for the Hamiltonian (4.1) to the second order in the
coordinates of the relative perturbed motion, we obtain

H (−B+ ε1
2, δ

1
2; ε1

1, δ
1
1; 2R− B+ ε2

2, δ
2
2)=−

1
8π
· · ·

− 1
16π

{[
µF1x1

2x1
2
(B)+ F2x1

2x1
2
(2R)

]
(ε1

2)
2+
[
µF1x2

2x2
2
(2R− B)+ F2x2

2x2
2
(2R)

]
(ε2

2)
2
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+µ
[
F1x1

1x1
1
(B)+ F1x1

1x1
1
(2R− B)

]
(ε1

1)
2+2F2x1

2x2
2
(2R)ε1

2ε
2
2 + 2µF1x1

2x1
1
(B)ε1

2ε
1
1

+ 2µF1x2
2x1

1
(2R− B)ε2

2ε
1
1 +

[
µF1y1

2y1
2
(B)+ F2y1

2y1
2
(2R)

]
(δ1

2)
2+
[
µF1y2

2y2
2
(2R− B)

+F2y2
2y2

2
(2R)

]
(δ2

2)
2+µ

[
F1y1

1y1
1
(B)+ F1y1

1y1
1
(2R− B)

]
(δ1

1)
2+2F2y1

2y2
2
(2R)δ1

2δ
2
2

+ 2µF1y1
2y1

1
(B)δ1

2δ
1
1 + 2µF1y2

2y1
1
(2R− B)δ2

2δ
1
1

}
. (4.8)

The subscripts xαj and yαj denote derivatives with respect to this variables. We neglect
both constant zero-order terms (including the term at ω), and all identically zero terms,
in particular, first-order terms (because of the stationary character of the unperturbed
configuration), and terms with mixed derivatives with respect to xαj and yαj that vanish
at yαj = 0.

It can be readily shown that the derivatives satisfy the following relationships:

Fnz1
1z1

1
(Z)= Fnz2

2z2
2
(Z)= Fnz1

2z1
2
(Z)

=−Fnz1
1z1

2
(Z)=−Fnz1

1z2
2
(Z)=−Fnz1

2z2
2
(Z)

=− 1
Z2
+ K0(Z)+ K1(Z)

Z
≡Φ(Z), (4.9)

where n= 1, 2. Here zαj represents any variable of xαj or yαj and Z represents B, 2R, or
2R− B.

Now, considering (4.7) and (4.9), the quadratic part in the expansion of the
Hamiltonian can be written as a function of the distance between perturbed positions
of the vortices

H2(X1,Y1;X2,Y2;X3,Y3)

= 1
2

{
a
[
(X1)

2+ (Y1)
2
]+ b

[
(X2)

2+ (Y2)
2
]+ c

[
(X3)

2+ (Y3)
2
]}
, (4.10)

where

[a, b, c] = − 1
8π

[µΦ(B),Φ(2R), µΦ(2R− B)] . (4.11)

To reduce this to a dynamic system with one degree of freedom, we apply Poisson
brackets in the form

{f , g} = 2
{
∂f

∂x1
2

∂g

∂y1
2

− ∂f

∂y1
2

∂g

∂x1
2

+ 1
µ

[
∂f

∂x1
1

∂g

∂y1
1

− ∂f

∂y1
1

∂g

∂x1
1

]
+ ∂f

∂x2
2

∂g

∂y2
2

− ∂f

∂y2
2

∂g

∂x2
2

}
(4.12)

to first integrals.
We will take into account the obvious consideration that a configuration of three

vortices is always either a triangle or a segment, i.e. the projections of the distances
between vortices are related by the expressions

X1 = ξX2, X3 = (1− ξ)X2, Y1 = ζY2, Y3 = (1− ζ )Y2. (4.13)

Integrals (2.16) yield the equality

µBX1 + 2RX2 + µ(2R− B)X3 = 0 (4.14)
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for all δαj = 0. However, since, with the condition (3.2) taken into account, we have

{H2, µBX1 + 2RX2 + µ(2R− B)X3} = 0, (4.15)

the equality (4.14) also holds for δαj 6= 0, implying that

ξ = 2R(1+ µ)− µB

2µ(R− B)
. (4.16)

A similar expression for ζ can be derived from the trivial expression for the Poisson
bracket for the quadratic part in the development of the Hamiltonian with an invariant
Y1 − ζY2:

{H2,Y1 − ζY2} = [−ζ (aξ + 2b+ c(1− ξ))+ (aξ + µb− c(1− ξ))] X2 = 0, (4.17)

hence we have

ζ = (1+ µ)aξ + µb− c(1− ξ)
µ (aξ + 2b+ c(1− ξ)) . (4.18)

From expressions (4.16) and (4.18), it follows that ξ and ζ can be considered
constant in the context of development of the Hamiltonian to the second order. Now,
using (4.6), we introduce two variables e1 and e2, which constitute a canonical pair
and allow the action-angle variables to be determined in a natural way:

1L

µ+ 2
= (e1)

2+ (e2)
2, (4.19)

where

(e1)
2 = µ (X1)

2+ (X2)
2+µ (X3)

2

µ+ 2
, (e2)

2 = µ (Y1)
2+ (Y2)

2+µ (Y3)
2

µ+ 2
, (4.20)

and the factor 1/(µ+2) is introduced to make the (4.19) an equality of positive values,
since L 6 0 at µ 6 −2. Now, using (4.13), we express the original variables and the
quadratic part of the Hamiltonian in terms of variables (4.20):(

X1

ξ

)2

=
(

X3

1− ξ
)2

= (X2)
2 = µ+ 2

µξ 2 + 1+ µ (1− ξ)2 (e1)
2, (4.21a)(

Y1

ζ

)2

=
(

Y3

1− ζ
)2

= (Y2)
2 = µ+ 2

µζ 2 + 1+ µ (1− ζ )2 (e2)
2, (4.21b)

and

H2(e1, e2)= µ+ 2
2

[
aξ 2 + b+ c (1− ξ)2
µξ 2 + 1+ µ (1− ξ)2 (e1)

2+ aζ 2 + b+ c (1− ζ )2
µζ 2 + 1+ µ (1− ζ )2 (e2)

2

]
. (4.22)

The dynamic equations in the new variables become

ė1 = {H2, e2} = ω̃e2, (4.23a)
ė2 = {H2, e1} = −ω̃e1, (4.23b)

where

ω̃ = aξζ + b+ c(1− ξ)(1− ζ )√(
µζ 2 + 1+ µ (1− ζ )2) (µξ 2 + 1+ µ (1− ξ)2) . (4.24)
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Now, reducing the system of equations (4.23) to a second-order equation

ë1 =−ω̃2e1, (4.25)

we see that ω̃ is the frequency of the perturbed motion.
Thus, the solution of system (4.23) describes periodic oscillations with a frequency

given by (4.24) along elliptic orbits with the principal semiaxis ratio of

λ= (e1)max

(e2)max
=
√
µξ 2 + 1+ µ (1− ξ)2
µζ 2 + 1+ µ (1− ζ )2 . (4.26)

From (4.21) it follows that in differential relative coordinates, we have three ellipses
with appropriate ratios:

(X1)max

(Y1)max
= ξ
ζ
,

(X2)max

(Y2)max
= 1,

(X3)max

(Y3)max
= 1− ξ

1− ζ . (4.27)

The shape of curves in the coordinates of relative motion xαj and yαj can be obtained
by using (4.7) and (4.21):

ε1
2 =−

µX1 + X2

µ+ 2
, ε2

2 =
−µX1 + (1+ µ)X2

µ+ 2
, ε1

1 =
2X1 − X2

µ+ 2
, (4.28a)

δ1
2 =−

µY1 + Y2

µ+ 2
, δ2

2 =
−µY1 + (1+ µ)Y2

µ+ 2
, δ1

1 =
2Y1 − Y2

µ+ 2
. (4.28b)

So, we obtain that, under the assumed approximation, the perturbed relative motions
of vortices of the eccentric roundabout take place along elliptic orbits with semiaxis
ratios (

ε1
2

)
max(

δ1
2

)
max

= µξ + 1
µζ + 1

,

(
ε2

2

)
max(

δ2
2

)
max

= µ(1− ξ)+ 1
µ(1− ζ )+ 1

,

(
ε1

1

)
max(

δ1
1

)
max

= 2ξ − 1
2ζ − 1

, (4.29)

and with the frequency given by (4.24).
Figure 6 gives the trajectories of relative motion in coordinates εαj (t) and δαj (t) under

the initial conditions

(x1
2, y1

2)= (−B0 + ε1
2, δ

1
2), (x1

1, y1
1)= (ε1

1, δ
1
1), (4.30a)

(x2
2, y2

2)= (2R0 − B0 + ε2
2, δ

2
2), (4.30b)

where B0 and R0 satisfy (3.2), and the lower branch of the curve in figure 5(a) is taken
for all six cases. The values of εαj , δαj are given in the caption to figure 6.

It is obvious that by virtue of (4.28), the perturbation of the stationary position of
at least one vortex induces appropriate deviations of the other two vortices, which is
the idea of this figure. To facilitate the comparison of corresponding ellipses, their
centres in the figure are aligned at (0, 0). As shown in the figure, with the given
external parameters, the trajectory of the vortex

( 1
2

)
(here and below, the notation(

α

i

)
is introduced for the point vortex with coordinates (xαi , yαi )) is nearly circular

and has the maximal amplitude, while other vortices have the following properties:
(ε1

1)max > (δ
1
1)max and (ε2

2)max < (δ
2
2)max . With an increase in the absolute value of the

top-layer-vortex intensity, the oscillation amplitudes of vortices
( 1

1

)
and

( 2
2

)
decrease.

Note the interesting situation shown in figure 6(ci): here (δ1
1)max = (δ2

2)max .
In the case of a triton, from (4.17) and (4.18) we obtain

ξ = ζ = 1
2 , (4.31)
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FIGURE 6. Trajectories of perturbed motions of point vortices in variables εαj (t) and δαj (t)
(the centres of ellipses were transferred to the system origin) with the initial conditions (4.30)
at ε1

2 = −ε2
2 = 2.5 × 10−5, ε1

1 = δ1
1 = δ1

2 = δ2
2 = 0. (i) R0 = 0.87: (ai) µ = −2.1, B0 = 0.2724;

(bi) µ = −2.5, B0 = 0.1221; (ci) µ = −3.5, B0 = 0.0780. (ii) R0 = 1.27: (aii) µ = −2.1,
B0 = 0.5021; (bii) µ = −2.5, B0 = 0.0521; (cii) µ = −3.5, B0 = 0.0271. Symbols in the
initial collinear configuration of vortices characterize the correspondence between trajectories
and vortices as in figure 2.

i.e. all three ellipses are similar; therefore, we can take X2, Y2 as canonical variables
and write the Hamiltonian as

H2(X2,Y2)= 1
2

(a

4
+ b+ c

4

) (
X2

2 + Y2
2
)
, (4.32)

where, in accordance with (4.11),

[a, b, c] = 1
4π

[
Φ(R),−1

2
Φ(2R),Φ(2R− B)

]
. (4.33)

Now, we readily obtain the frequency of the quasi-elliptic motions of the vortices
constituting the perturbed triton:

ω̃(R,B,−2)= a

4
+ b+ c

4
. (4.34)

The same expression can be derived taking the limit of (4.24) for µ→−2, if we take
into account that at the same time ξ, ζ → 1/2.

It is important to note that the frequencies (4.24) and (4.34), generally speaking,
have non-zero limits ω̃e at zero amplitudes (εi

j = δi
j = 0). The dependence of the

limiting frequencies (eigenfrequencies) of a perturbed motion on the size of the
configuration R is illustrated in figure 7. The absolute values of frequencies increase
with increasing R and |µ| for all µ < −1, and the direction of rotation changes
its sign at µ = −2. Clearly, the conditions (3.2) or (3.6) hold on all curves.
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FIGURE 7. The eigenfrequencies of unperturbed motions ω̃e at the specified values of
parameter µ versus the initial size of configuration R. The thick line shows the case of
µ=−2 (triton).

The equality ω̃e(R,B, µ)= 0 will be attained only in degenerate static states at B= Rµ.
In this case, for a roundabout, according to (3.4), we have Xc = Yc = 0.

5. Analysis of perturbed motion at finite deviations from stationary states
It is clear that when deviations from stationary states are finite, the trajectories

of vortices will have a form other than elliptic. Moreover, as was shown in § 2,
the relative motions themselves may belong to different types {1}, {2}, or {3} (see
figures 2 and 8).

Note their main properties.

(a) Type {1} – double capture, when all three vortices are involved in simultaneous
rotational motion. Such motion can be conventionally denoted (Meleshko &
Konstantinov 1993) by the scheme(

1
1

)(
1
2

)(
2
2

)
. (5.1)

(b) Type {2} – simple capture, when one of the bottom-layer vortices joins with the
top-layer vortex, and one of the following formulae is valid:(

1
1

)(
1
2

)
+
(

2
2

)
or

(
1
1

)(
2
2

)
+
(

1
2

)
. (5.2)
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FIGURE 8. Examples of trajectories of absolute (i) and relative (ii) motions at µ = −2.5:
(a) type {1}, (b) type {2}, (c) type {3}. The red lines show the trajectories of the top-layer
vortex

( 1
1

)
, and the green and blue lines show the trajectories of the bottom-layer vortices

( 1
2

)
and

( 2
2

)
, respectively. The symbols are spaced by half period and the segments connecting

them show synchronous (collinear) positions of the vortices. Crosses on the x-axis in (ii) show
the coordinates of vorticity centres (Xc, 0).

(c) Type {3} – the dominating factor is the within-layer interaction between the two
bottom-layer vortices, and the motion of vortices is denoted by the scheme(

1
2

)(
2
2

)
+
(

1
1

)
. (5.3)

It is significant that the relative motions of all three vortices are periodic and their
trajectories are closed curves. Note that for relative motions of the type {1}, the
trajectory of the upper-layer vortex is always located inside the ‘choreography’ (Simó
2001), performed by the bottom-layer vortices, and for motions of the type {3} it is
outside it. This is illustrated by figure 8(a–cii).

Numerical experiments for studying the absolute and relative motion of discrete
vortices were carried out, solving (2.1)–(2.2) by the standard Bulirsch–Stoer method
of fourth-order accuracy with initial conditions corresponding to the collinear
arrangement of the three vortices.

A characteristic feature of relative motions of types {1} and {3} is that the bottom-
layer vortices move periodically along a single trajectory, i.e. in the terms of Simó
(2001), we have complex choreographies, and the ratio of rotation periods of the
top-layer vortex to the bottom-layer vortices is 1/2. As mentioned in the previous
section, the stationary states in the form of an eccentric roundabout belong to the class
of motions {2}, which, in the general case, has the property that the top-layer vortex
has a greater impact on one of the bottom-layer vortices than on the other. These
stationary structures correspond to degenerate cases of equilibrium mutual influence of
all three vortices.

The character of relative motions of vortices is demonstrated in more detail in
figure 9, representing typical configurations of trajectories of all three types at a fixed
value of parameter R (i.e. the distance between the bottom-layer vortices remaining
constant from the initial moment) and variable B for µ = −2.5. Clearly, the relative
trajectories are obtained in a rotating coordinate system when the rotation centre is
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FIGURE 9. The relative trajectories (choreographies – for types {3} and {1}) of perturbed
motions of point vortices with R= 1, µ=−2.5 for the following values of B: (a) B=−5.233
(motion of type {3}), the amplitude of the top-layer vortex is exaggerated in the inset box;
(b) B = −2.233 (motion of type {3}); (c) B = −2.232 (motion of type {2} – perturbed
eccentric roundabout); (d) B = −0.2 (motion of type {2} – perturbed eccentric roundabout),
the amplitude of one bottom-layer vortex is exaggerated in the inset box; (e) B = 0.1452
(motion of type {2} – eccentric roundabout); (f ) B = 0.4 (motion of type {2} – perturbed
eccentric roundabout); (g) B = 0.745 (motion of type {2} – perturbed eccentric roundabout);
(h) B = 0.858 (motion of type {2} – perturbed eccentric roundabout); (i) B = 0.859 (motion
of type {1} – perturbed ordinary roundabout); (j) B = R = 1 (motion of type {1} – ordinary
roundabout). In each panel, the magenta segment corresponds to the initial state. The symbols
have the same meaning as in figure 3.

located at the point (0, 0). Numerical experiments make it possible to follow the
transformations of the vortex structure depending on the distance B between vortices( 1

1

)
and

( 1
2

)
.
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FIGURE 10. Turnover frequency of the perturbed motion ω̃ versus B at: (a) µ=−2.5, R= 1
and (b) µ = −1.5, R = 1.3. The bottom dashed line denotes the turnover frequency of an
ordinary roundabout ω̃ = ωr at B = R (3.1), and the top dashed line refers to the same case
but at µ= 0: ω̃ = ω0. The vertical lines correspond to the value B= B0, and their intersection
points with curves ω̃(B) are determined by the formula (4.24).

Unlike figure 8, where segments marked only collinear positions, in this case we
show triangular configurations formed by vortices with a step of 1/8 period in an
interval of 1/2 period. The insets where trajectories are given in a larger scale
show the character of motion of individual vortices. The initial position everywhere
corresponds to a collinear arrangement of vortices on the horizontal axis. In both cases,
a progressive increase in parameter B, in accordance with figure 5, is accompanied by
pathway {3} → {2} → {1}.

The analysis of these figures allows us to state that the asymptotic theory of
§ 4 has a wider application than that determined by formal criteria: the shape of
vortex trajectories in figures 9(d) and 9(f ) is not far from elliptic, notwithstanding
the fact that the perturbations are not small. Obviously, even greater perturbations of
the stationary structure (figures 9c and 9h) cause qualitative changes in the shape
of trajectories up to self-intersection of curves. Nevertheless, all choreographies for
motions of type {2} can be hereafter referred to as ‘perturbed roundabouts’.

These illustrations are supplemented by figure 10, giving examples of frequency
distributions for perturbed motions of the bottom-layer vortices as functions of
parameter B given the values of R and µ. By the ‘turnover’ frequency, we mean
the value ω̃ = 2π/T , where T is the period of vortex rotation along a closed trajectory.
This variable is more convenient for analysis than the angular velocity, since it is
constant for the given trajectory. It will be shown in KSV (see also Izrailsky, Koshel &
Stepanov 2008; Koshel, Sokolovskiy & Davies 2008) that the analysis of the behaviour
of fluid-particle turnover frequency along their trajectories is of use in studying chaotic
advection in the vicinity of a vortex structure and in classification of possible types of
movements.

Since the cases B < R and B > R are symmetrical, we will use the effect of
the deviation of B from the dispersion value for the former case. With B great in
magnitude, we have the motion of type {3}, where all three vortices move along nearly
circular trajectories: oscillations in the top layer are very small (for this reason, in the
inset, their amplitude is exaggerated), while in the bottom layer, the motion of vortices
along the common trajectory is almost uniform and experiences almost no influence
from the top-layer vortex (see figure 9a). As can be seen from figure 10, the frequency
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of the perturbed motion is close to the turnover frequency of two identical vortices in
the bottom layer and it is defined from (3.1) with µ= 0.

The effect of the top-layer vortex on the dynamics in the bottom layer increases
with decreasing absolute value of B. This results in a decrease in the frequency of
the perturbed motion, a distortion of the shape of the curve along which bottom-layer
vortices are moving, and an increase in the size of the domain it embraces.

Figure 9(b) gives trajectories close to limiting for this type of motion, while
figure 10 gives the corresponding break points of curves ω̃(B), which are, at the same
time, ‘deceleration’ points. In the phase portraits in figure 2, the initial conditions
for this case correspond to the points of the phase domain boundary that belong to
class {3} and lie near the separatrix, while the break point itself corresponds to the
hyperbolic self-intersection point of the separatrix. This singular point corresponds
to a configuration in the form of an immobile (in the rotating coordinate system)
isosceles triangle; this configuration cannot form because of instability, though it ‘tries’
to form through the deceleration of vortices (see the beginning of § 3). In figure 10,
the perturbed-motion frequency has local minima at these critical points.

The subsequent increase in the values of the governing parameter B by as little as
10−3 transfers the system into class {2} (figure 9c), where the top-layer vortex captures
the nearest partner from the bottom layer, resulting in a qualitative change in the
relative-motion topology. A characteristic feature of this type of motion is that each
vortex has its individual trajectory. With an increase in parameter B, the amplitude
characteristics of trajectories of all vortices change non-monotonically: first, they drop
to zero values (the eccentric roundabout in figure 9e), and then they increase again.

However, an important distinction can be seen during a further increase in parameter
B: the trajectory of the top-layer vortex, while still remaining a smooth curve, partially
moves beyond the trajectory of its bottom-layer partner, after which a break appears in
its configuration (this break can be clearly seen in figure 9g), serving as a nucleus for
the formation of a doubly connected figure-eight structure.

During a further increase in B, the newly formed right-hand loop of the figure-eight,
after reaching some limiting size, starts decreasing and disappears, thus making the
curve simply connected again. In this process, the trajectories of bottom-layer vortices
first are tangent and next merge, leading us to motions of type {1} (figure 9i), where
the top-layer vortex permanently lies within the common trajectory of bottom-layer
vortices. This takes place when the curve ω̃(B) crosses the axis ω̃ = 0 in figure 10(a).

When B= R, we have an ordinary symmetric roundabout with a static central vortex.
Clearly, in figure 10(a), this situation corresponds to central extreme points.

Note that with B great in magnitude, the vorticity centre (3.4) is far from the three-
vortex structure; with increasing R, the centre approaches this structure, penetrating
into the segment connecting the bottom-layer vortices, and, finally, coincides with the
top-layer vortex at B= R.

We have shown that with deviation from stationary configurations, the perturbed
motion becomes periodic, and, in the case of an eccentric roundabout, there are two
different frequencies – those of relative motion and rotation of the vortex structure as a
whole.

It can be supposed that in this case there is no coordinate system in which the
motion is steady. Thus, to describe the motion of fluid particles in a non-steady
velocity field induced by a three-vortex system, we have a dynamical system with one
and a half degrees of freedom. In this case, the motion of particles can become chaotic
(Koshel & Prants 2006; Zaslavsky 2007; Koshel et al. 2008). An example of such
behaviour will be given in KSV.
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6. Summary and concluding remarks
Some issues of the dynamics of steady and quasi-steady three-vortex structures have

been considered in the context of a two-layer, quasi-geostrophic model. A particular
case of a three-vortex system was considered with two vortices having equal intensities
and belonging to the bottom layer and the third vortex belonging to the top layer and
having an arbitrary intensity of the opposite sign.

A large class of steady states with three vortices forming a collinear configuration
referred to as an eccentric roundabout and rotating with a constant angular velocity
about the vorticity centre was identified for such structures. Equation (3.1) is a
necessary and sufficient condition for stationarity of such vortex structures; this is
a particular dispersion relation linking the intensity of the upper-layer vortex with the
distance between the vortices. A graphic solution of this equation may be constructed
in a plane of parameters (B,R) for any µ : −2 > µ > −∞ and −1 > µ > −2. The
example of the curve B(R) when µ=−2.5 is given in figure 5.

In the particular case of zero total intensity (µ = −2.0), when the vorticity centre
is at infinity, the motion of the collinear structure of three vortices is uniform and
rectilinear. Such a construction is referred to as a triton. Note that the relative
trajectories as well as the frequency dependences for the triton qualitatively have
the same form as for the roundabout (figures 9 and 10).

It is shown that at small perturbations of the stationarity conditions, the vortices
oscillate, moving along quasi-elliptic trajectories about their stationary positions.
Section 4 demonstrates the relative vortex motions representing oscillations around
the equilibrium positions along the quasi-elliptic trajectories in the vicinity of these
stable stationary states. So, we can consider these base states to occupy a finite volume
of the phase space.

The analysis of phase portraits, constructed in trilinear coordinates, has shown that
only three qualitatively different types of motion for the case of finite perturbations are
possible, depending on the degree of reciprocal influence of vortices belonging to the
upper and lower layers. A classification of possible motions of such vortex structures
and numerical calculations is given for the case of any finite perturbation.

Ryzhov & Koshel (2010) have shown that a regular area, whose outer boundary can
be interpreted as the boundary of a finite-core vortex patch, is always formed around
a point vortex. This result gives us reason to state that the results obtained here in the
model of discrete vortices may be applied to finite-size vortices, and so may be used
when interpreting characteristics of vortex interactions in the ocean and atmosphere.
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