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Abstract In the present paper, an inverse result of approximation, i.e. a saturation theorem for the
sampling Kantorovich operators, is derived in the case of uniform approximation for uniformly continuous
and bounded functions on the whole real line. In particular, we prove that the best possible order of
approximation that can be achieved by the above sampling series is the order one, otherwise the function
being approximated turns out to be a constant. The above result is proved by exploiting a suitable
representation formula which relates the sampling Kantorovich series with the well-known generalized
sampling operators introduced by Butzer. At the end, some other applications of such representation
formulas are presented, together with a discussion concerning the kernels of the above operators for which
such an inverse result occurs.
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1. Introduction

The theory of sampling-type operators has been widely studied since 1980s, when, in
order to provide an approximate version of the classical Whittaker–Kotel’nikov–Shannon
sampling theorem (see e.g. [30,31]), Butzer introduced the generalized sampling opera-
tors Gw (see (4) of § 2) and studied their main properties (see e.g. [12,38]). The operators
Gw allow us to reconstruct (in some sense) a given continuous signal f by a sequence
of its sample values, which are of the form f(k/w), k ∈ Z, w > 0. Subsequently, such
operators have been widely studied by many authors (see e.g. [7,15–17,27,32,40,41]).

In 2007, an L1-version of the above operators was introduced, with the definition of
the sampling Kantorovich series Sw (see (3) of § 2; [6]) obtained by replacing the sample
values in Gw with the mean values w

∫ (k+1)/w

k/w
f(u) du, for any locally integrable signal

f . The main advantage of the operators Sw compared with Gw is that a not necessarily
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continuous signal can also be approximated. Multivariate extensions of the above theory
are given in [19,20]. In the latter case, applications to digital images for earthquake
engineering have been studied in [2,13,14]. The operators Gw and Sw are both based
upon suitable kernel functions satisfying certain assumptions.

Recently, the sampling Kantorovich operators have been studied with respect to various
aspects, e.g. the convergence in suitable spaces of function (see e.g. [43]), the order of
approximation (see e.g. [21,22,37]), their behaviour at the discontinuity points of a given
signal (see [26]), and so on. However, the following inverse problem is still open: whether
there exists a positive non-increasing function ϕ(w), w ∈ R

+, with limw→+∞ ϕ(w) =
0, and a class of functions K ⊆ C(R) (the space of uniformly continuous and bounded
functions) such that

(I) ‖Swf − f‖∞ = o(ϕ(w)) as w → +∞, implies f = constant.

The main result shown in the present paper consists of proving (I) with K = C(R)
and ϕ(w) = 1/w, i.e. we prove that the best possible order of approximation that can
be achieved by the sampling Kantorovich operators is ‘one’. The main steps required in
order to prove the above result are the following. First, we prove a representation formula
for the sampling Kantorovich series in terms of the generalized sampling operators of f
and its derivatives until order r, provided that they exist and are all uniformly continuous
and bounded, namely, f belongs to the class C(r)(R), r ∈ N

+. Subsequently, we obtain a
saturation result for the subspace C(2)(R). Finally, we consider functions in C(R), and by
the regularization provided by the convolution with suitable test functions, we are able to
prove a version of the desired result (I) by exploiting the inverse results for C(2)-functions
(see § 3).

The solution of problem (I) can open the way to obtaining a characterization of the satu-
ration (Favard) classes of the approximation process defined by the sampling Kantorovich
operators.

Note that the inverse result just discussed is quite different with respect to what hap-
pens in the case of operators Gw, where, in order to obtain a similar result, we would
require that f ∈ C(r)(R), r ∈ N

+; therefore, our problem cannot be solved using the result
for Gw.

In the conclusion of § 3, we prove a further consequence of the above representa-
tion formula, by showing that under suitable assumptions on the kernels, the sampling
Kantorovich operators map algebraic polynomials into other polynomials with the same
degree. Examples of kernels for which the above results hold are provided in § 4.

2. Preliminaries

We first introduce some notation. In what follows, for any arbitrary finite or infinite
interval I ⊆ R, we denote by C(I) the space of all uniformly continuous and bounded
functions f : I → R, endowed with the supremum norm ‖f‖∞ := supx∈I |f(x)|. Further,
we denote by C(r)(I), r ∈ N

+ the subspace of C(I) for which the derivatives f (s) exist, for
every s ≤ r, s ∈ N

+, and each f (s) ∈ C(I). Moreover, we define by Cc(I) the subspace of
C(I) of functions having compact support, and similarly we can define C

(r)
c (I), r ∈ N

+.
Finally, by C∞

c (I) we denote the space of test functions, i.e. the space of functions with
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compact support which have continuous derivatives of any order, each one belonging to
Cc(I).

For any f : R → R, we can define the discrete moment of order β ∈ N, at point u ∈ R,
by:

mβ(f, u) :=
∑
k∈Z

f(u − k)(u − k)β , (1)

and the discrete absolute moment of order β ≥ 0, by:

Mβ(f) := sup
u∈R

∑
k∈Z

|f(u − k)| · |u − k|β . (2)

Clearly, if the function f belongs to Cc(R), it turns out that both mβ(f, u) and Mβ(f)
are finite for every β ∈ N, with u ∈ R and β ≥ 0.

Now, we are able to recall the definition of the sampling Kantorovich operators,
introduced in [6]:

(Swf)(x) :=
∑
k∈Z

χ(wx − k)
[
w

∫ (k+1)/w

k/w

f(u) du

]
, x ∈ R, (3)

where f : R → R is a locally integrable function, such that the above series is convergent
for every x ∈ R, and χ : R → R is a kernel, i.e. a function which satisfies the following
assumptions:

(χ1) χ belongs to L1(R) and is locally bounded at the origin;

(χ2) the series
∑

k∈Z
χ(u − k) = 1, for every u ∈ R;

(χ3) there exists β > 0 for which Mβ(χ) is finite.

Note that, in general, it is possible to prove that (χ3) implies that Mν(χ) is finite, for
every 0 ≤ ν ≤ β, see e.g. [6,21,22].

For instance, if we assume that f ∈ L∞(R), it turns out that Swf ∈ L∞(R), i.e. Sw

maps L∞(R) to L∞(R), see [6].
Moreover, under the assumptions (χi), i = 1, 2, 3, the family of the sampling Kan-

torovich series Swf converges to f pointwise at x ∈ R, as w → +∞, provided that f is
bounded and continuous at x; the convergence is uniform on R if f belongs to C(R), see
[6] again.

We recall that the sampling Kantorovich operators have been introduced in order to
provide an L1-version of the classical generalized sampling operators, which are defined
by:

(Gwf)(x) :=
∑
k∈Z

χ(wx − k)f
(

k

w

)
, x ∈ R, (4)

with w > 0, and where χ is a kernel satisfying assumptions (χi), i = 1, 2, 3. Both
the operators Sw and Gw are instances of ‘quasi-interpolation’ operators, see e.g.
[29,33,39,44].
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Pointwise and uniform convergence results analogous to those proved for the sampling
Kantorovich series can be proved also for (Gwf)w>0, see e.g. [12]. Now, we recall also
the following high-order convergence result, which will be useful in the present paper.

Theorem 2.1 (Butzer and Stens [12]). Let χ be a kernel that satisfies the following
condition:

mj(χ, u) :=
{

0, j = 1, 2, . . . , r − 1,
1, j = r,

(5)

for every u ∈ R and some r ∈ N
+.

Then, for any f ∈ C(r)(R), it holds that:

‖Gwf − f‖∞ ≤ ‖f (r)‖∞Mr(χ)
r!

w−r,

for every w > 0.
Moreover, the following property occurs:

(Gwpr−1)(x) = pr−1(x), x ∈ R,

for every w > 0, where pr−1(x) denotes any algebraic polynomial of degree r − 1.

Conditions such as (5) are to be found in connection with finite element approximation,
see e.g. [28].

In general, it can be difficult to check whether a given kernel χ satisfies Assumption
(5. For this reason, the following lemma can be useful.

Lemma 2.2 (Butzer and Stens [12]). Let χ be a continuous kernel. Condition (5)
is equivalent to the following:

(χ̂)(j)(2πk) =

⎧⎨⎩1, k = j = 0,
0, k ∈ Z \ {0}, j = 0,
0, k ∈ Z, j = 1, 2, . . . , r − 1,

where χ̂(v) :=
∫

R
χ(u)e−iuv du, v ∈ R, denotes the Fourier transform of χ.

Note, for the sake of completeness, that no high-order approximation theorem for the
sampling Kantorovich operators, analogous to the above, can be proved, see e.g. [3–5].
Moreover, the rate of convergence for the family (Swf)w>0 has also been studied in [21–
23] in C(R), and in the Orlicz spaces Lϕ(R), by considering functions in suitable Lipschitz
classes.

3. Inverse result

In order to prove an inverse result for the sampling Kantorovich series, we need the fol-
lowing representation formula, which allows us to state the relation between the operators
Swf and Gwf when functions belonging to C(r)(R), r ∈ N

+, are considered.
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Theorem 3.1. For any f ∈ C(r)(R), r ∈ N
+, it holds that:

(Swf)(x) =
r−1∑
j=0

w−j

(j + 1)!
(Gwf (j))(x) + Rw

r (x), x ∈ R,

where the remainder of order r is the following absolutely convergent series:

Rw
r (x) :=

1
r!

∑
k∈Z

w

[ ∫ (k+1)/w

k/w

f (r)(θk,w(u)) · (u − k/w)r du

]
χ(wx − k),

where θk,w(u) are measurable functions, such that k/w < θk,w(u) < (k + 1)/w, k ∈ Z, for
every u ∈ [k/w, (k + 1)/w], w > 0.

Proof. By considering the Taylor formula with the Lagrange remainder, applied to f ,
we have:

f(u) =
r−1∑
j=0

f (j)(x)
j!

(u − x)j +
f (r)(θu,x)

r!
(u − x)r,

for x, u ∈ R and θu,x ∈ (x, u). Now, if we set x = k/w, k ∈ Z and w > 0 in the
above formula, for every u ∈ (k/w, (k + 1)/w] it turns out that k/w < θu,k/w =:
θk,w(u) < (k + 1)/w. Then, replacing the above expansion with x = k/w in the integrals
w
∫ (k+1)/w

k/w
f(u) du, we can write the following:

w

∫ (k+1)/w

k/w

f(u) du

= w

∫ (k+1)/w

k/w

[
r−1∑
j=0

f (j)(k/w)
j!

(u − k/w)j +
f (r)(θk,w(u))

r!
(u − k/w)r

]
du

= w
r−1∑
j=0

f (j)(k/w)
j!

∫ (k+1)/w

k/w

(u − k/w)j du +
w

r!

∫ (k+1)/w

k/w

f (r)(θk,w(u))(u − k/w)r du

=
r−1∑
j=0

f (j)(k/w)
(j + 1)!

w−j +
w

r!

∫ (k+1)/w

k/w

f (r)(θk,w(u)) (u − k/w)r du. (6)

Now, by exploiting (6) in the definition of (Swf)(x), x ∈ R, we obtain:

(Swf)(x) =
∑
k∈Z

χ(wx − k)

[
r−1∑
j=0

f (j)(k/w)
(j + 1)!

w−j +
w

r!

∫ (k+1)/w

k/w

f (r)(θk,w(u))(u − k/w)r du

]
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=
r−1∑
j=0

w−j

(j + 1)!

∑
k∈Z

χ(wx − k)f (j)

(
k

w

)

+
1
r!

∑
k∈Z

χ(wx − k)
[
w

∫ (k+1)/w

k/w

f (r)(θk,w(u))(u − k/w)r du

]

=
r−1∑
j=0

w−j

(j + 1)!
(Gwf (j))(x) + Rw

r (x),

for every w > 0, where:

Rw
r (x) :=

1
r!

∑
k∈Z

χ(wx − k)
[
w

∫ (k+1)/w

k/w

f (r)(θk,w(u))(u − k/w)r du

]
.

Note that the series Rw
r (x) is absolutely convergent for every x ∈ R, for every w > 0.

Indeed,

1
r!

∑
k∈Z

|χ(wx − k)|
∣∣∣∣w ∫ (k+1)/w

k/w

f (r)(θk,w(u))(u − k/w)r du

∣∣∣∣
≤ ‖f (r)‖∞

(r + 1)!
w−r

∑
k∈Z

|χ(wx − k)| ≤ ‖f (r)‖∞
(r + 1)!

w−rM0(χ) < +∞. (7)

This completes the proof. �

Remark 3.2. Note that it easily follows from (7) that the remainder Rw
r (x) in the

representation formula of Theorem 3.1 is such that:

Rw
r (x) = O(w−r) as w → +∞,

for every x ∈ R.

Now, we can state the main result of this section.

Theorem 3.3. Let χ be a kernel that satisfies the moment condition (5) for every
u ∈ R, with r = 2. Now, let f ∈ C(R), and suppose in addition that:

‖Sπ
wf − f‖∞ = o(w−1) as w → +∞, (8)

uniformly with respect to every sequence π = (tk)k∈Z ⊂ R, such that limk→±∞ tk = ±∞,
with tk+1 − tk = 1, k ∈ Z, and where:

(Sπ
wf)(x) :=

∑
k∈Z

[
w

∫ tk+1/w

tk/w

f(u) du

]
χ(wx − tk), x ∈ R.

Then, f is constant over R.
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Note that assumption (8), which involves the operators (3) for a general sam-
pling scheme π = (tk)k∈Z ⊆ R, is meaningful and not restrictive, in view of the results
concerning the order of approximation proved in [21], for the series Sπ

w.
Moreover, we also point out that to prove the above theorem it is sufficient that the

assumptions on χ are satisfied for the sequence tk = k, k ∈ Z (as in the form given in
§ 2).

In order to obtain the proof of Theorem 3.3, we first prove the above result for functions
belonging to C(2)(R). We have the following.

Theorem 3.4. Let χ be a kernel that satisfies the moment condition (5) for every
u ∈ R, with r = 2. Now, let f ∈ C(2)(R), and suppose that:

‖Swf − f‖∞ = o(w−1) as w → +∞. (9)

Then, it turns out that f is constant on R.

Proof. Since f belongs to C(2)(R), the representation formula of Theorem 3.1 can be
applied, e.g. until order r = 1, i.e. for every x ∈ R we can write:

(Swf)(x) = (Gwf)(x) + Rw
1 (x),

for every w > 0. Then, assumption (9) can be rewritten as follows:

|(Gwf)(x) + Rw
1 (x) − f(x)| = o(w−1) as w → +∞,

i.e.
lim

w→+∞w[(Gwf)(x) + Rw
1 (x) − f(x)] = 0,

for every x ∈ R. Now, splitting the above limit (since, as we will show below, they exist
and are both finite), we can write:

lim
w→+∞w[(Gwf)(x) − f(x)] + 1

2 lim
w→+∞ 2wRw

1 (x) = 0. (10)

Now, since (5) is satisfied for r = 2, in view of Theorem 2.1 we know that ‖Gwf − f‖ =
O(w−2), as w → +∞. Then it is easy to see that:

lim
w→+∞w[(Gwf)(x) − f(x)] = 0,

and so we can deduce from (10) that:

lim
w→+∞ 2wRw

1 (x) = 0. (11)

Now, we claim that the family (2 wRw
1 )w>0 converges uniformly (then also pointwise) to

f ′ on R. In order to prove the above statement, we proceed by estimating:

|2wRw
1 (x) − f ′(x)| ≤ |2wRw

1 (x) − (Gwf ′)(x)| + |(Gwf ′)(x) − f ′(x)| =: I1 + I2,

w > 0. Let ε > 0 be fixed. Since f ′ is uniformly continuous and bounded, by the well-
known convergence results concerning the generalized sampling series, we immediately
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have that I2 < ε for sufficiently large w > 0, see e.g. [7,12]. Now, we estimate I1. We can
write the following:

I1 ≤
∑
k∈Z

∣∣∣∣2w2

∫ (k+1)/w

k/w

f ′(θk,w(u))(u − k/w) du − f ′(k/w)
∣∣∣∣|χ(wx − k)|.

For any k ∈ Z and sufficiently large w > 0, we have:∣∣∣∣2w2

∫ (k+1)/w

k/w

f ′(θk,w(u))(u − k/w) du − f ′(k/w)
∣∣∣∣

=
∣∣∣∣2w2

∫ (k+1)/w

k/w

f ′(θk,w(u))(u − k/w) du − 2w2f ′(k/w)
∫ (k+1)/w

k/w

(u − k/w) du

∣∣∣∣
≤ 2w2

∫ (k+1)/w

k/w

|f ′(θk,w(u)) − f ′(k/w)| (u − k/w) du, (12)

where k/w < θk,w(u) < (k + 1)/w. Now, since f ′ is uniformly continuous, and θk,w(u) −
k/w ≤ 1/w, we have, for ε > 0, that

|f ′(θk,w(u)) − f ′(k/w)| < ε, (13)

for sufficiently large w > 0. Now, replacing (13) in (12) we finally obtain:∣∣∣∣2w2

∫ (k+1)/w

k/w

f ′(θk,w(u))(u − k/w) du − f ′(k/w)
∣∣∣∣ < ε.

In conclusion, we have:

I1 ≤ ε
∑
k∈Z

|χ(wx − k)| ≤ εM0(χ),

for w > 0 sufficiently large, and thus the above claim is now proved, i.e.

lim
w→+∞ 2wRw

1 (x) = f ′(x) (14)

for every x ∈ R. Then, in view of (11) and (14), we obtain that f ′(x) = 0 for every x ∈ R,
i.e, f is constant on the whole R. �

Now, we are able to provide the proof of Theorem 3.3.

Proof of Theorem 3.3. Let f ∈ C(R) be fixed, such that (8) is satisfied. Moreover,
let Φ ∈ C∞

c (R) be a test function. We denote:

FΦ(x) := (Φ ∗ f)(x) =
∫

R

Φ(x − t)f(t) dt, x ∈ R,

where ‘∗’ is the usual convolution product. Note that FΦ(x) is well defined, since f is
continuous then it belongs to L1

Loc(R), and in view of the regularization properties of ‘∗’,
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it turns out that FΦ belongs, e.g. to C(2)(R). Indeed, it is easy to see that both the first
and the second derivatives of FΦ are uniformly continuous, together with FΦ itself, in
view of the uniform continuity of f . Now, for every fixed x ∈ R, by exploiting condition
(χ2) and the Fubini–Tonelli theorem, we can write the following:

(SwFΦ)(x) − FΦ(x)

=
∑
k∈Z

{
w

∫ (k+1)/w

k/w

[FΦ(u) − FΦ(x)] du

}
χ(wx − k)

=
∑
k∈Z

{
w

∫ (k+1)/w

k/w

[ ∫
R

Φ(u − t)f(t) dt −
∫

R

Φ(x − t)f(t) dt

]
du

}
χ(wx − k)

=
∑
k∈Z

{
w

∫ (k+1)/w

k/w

[ ∫
R

Φ(y)f(x − y) dy −
∫

R

Φ(y)f(u − y) dy

]
du

}
χ(wx − k)

=
∑
k∈Z

{
w

∫ (k+1)/w

k/w

(∫
R

Φ(y)[f(x − y) − f(u − y)] dy

)
du

}
χ(wx − k)

=
∑
k∈Z

∫
R

Φ(y)
{

w

(∫ (k+1)/w

k/w

[f(x − y) − f(u − y)] du

)
χ(wx − k)

}
dy.

Now, if we set:

∑
k∈Z

Φ(y)
{

w

(∫ (k+1)/w

k/w

[f(x − y) − f(u − y)] du

)
χ(wx − k)

}
=:
∑
k∈Z

hk(y),

we have that the above series is absolutely convergent (hence also convergent) for every
y ∈ R, since: ∑

k∈Z

|hk(y)| ≤ 2‖Φ‖∞‖f‖∞M0(χ) < +∞,

and, moreover, for every n ∈ N
+:∣∣∣∣∣

n∑
k=−n

hk(y)

∣∣∣∣∣ ≤ 2‖f‖∞M0(χ)|Φ(y)| =: H(y), y ∈ R,

with H ∈ L1(R). Then, by the Lebesgue dominated convergence theorem, we can write:

(SwFΦ)(x) − FΦ(x)

=
∫

R

Φ(y)

(∑
k∈Z

{
w

∫ (k+1)/w

k/w

[f(x − y) − f(u − y)] du

}
χ(wx − k)

)
dy.
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Now, by setting gy(x) := f(x − y) for every x ∈ R and y ∈ R, and using Hölder’s
inequality, we obtain:

|(SwFΦ)(x) − FΦ(x)| =
∣∣∣∣ ∫

R

Φ(y)[gy(x) − (Swgy)(x)] dy

∣∣∣∣
≤
∫

R

|Φ(y)| |(Swgy)(x) − gy(x)|dy ≤ ‖Φ‖1 ‖Swg(·) − g(·)‖∞, (15)

for every x ∈ R, where:

‖(Swg(·))(x) − g(·)(x)‖∞ = sup
y∈R

|(Swgy)(x) − gy(x)|, (16)

for fixed x and w. Now, using respectively the changes of variables u − y = t and k −
yw =: t

(y,w)
k , k ∈ Z, we obtain:

(Swgy)(x) =
∑
k∈Z

[
w

∫ (k+1)/w

k/w

gy(u) du

]
χ(wx − k)

=
∑
k∈Z

[
w

∫ (k+1)/w

k/w

f(u − y) du

]
χ(wx − k)

=
∑
k∈Z

[
w

∫ ((k+1)/w)−y

(k/w)−y

f(t) dt

]
χ(wx − k)

=
∑
k∈Z

[
w

∫ (k+1−yw)/w

(k−yw)/w

f(t) dt

]
χ(wx − k)

=
∑
k∈Z

[
w

∫ (t
(y,w)
k +1)/w

t
(y,w)
k /w

f(t) dt

]
χ(wx − (t(y,w)

k + yw))

=
∑
k∈Z

[
w

∫ (t
(y,w)
k +1)/w

t
(y,w)
k /w

f(t) dt

]
χ(w(x − y) − t

(y,w)
k ) = (S

πw
y

w f)(x − y),

where πw
y = (t(y,w)

k )k∈Z for every y ∈ R. Now, it is easy to observe that limk→±∞ t
(y,w)
k =

±∞, and:

t
(y,w)
k+1 − t

(y,w)
k = k + 1 − yw − k + yw = 1,

for every k ∈ Z. Hence, (16) becomes:

sup
y∈R

|(Swgy)(x) − gy(x)| = sup
y∈R

|(Sπw
y

w f)(x − y) − f(x − y)|.

In view of the above equality, since all the sequences of the form πw
y , y ∈ R, w > 0, satisfy

the conditions required in assumption (8), and ‖Φ‖1 < +∞, using (15) we finally have:

‖SwFΦ − FΦ‖∞ = o(w−1) as w → +∞,

for every test function Φ ∈ C∞
c (R). We have proved that any FΦ satisfies the assumptions

of Theorem 3.4, and it turns out that FΦ(x) = k for every x ∈ R, for a suitable constant
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k ∈ R. Thus, for every x ∈ R we have:

0 = FΦ(x) − FΦ(0) =
∫

R

Φ(x − t)f(t) dt −
∫

R

Φ(−t)f(t) dt

=
∫

R

Φ(y)f(−y) dy −
∫

R

Φ(y)f(x − y) dy =
∫

R

Φ(y)[f(−y) − f(x − y)] dy,

where the equality: ∫
R

Φ(y)[f(−y) − f(x − y)] dy = 0

holds for every test function Φ ∈ C∞
c (R).

Now, in order to conclude the proof, we suppose by contradiction that f is not constant
on R, i.e. that there exists x0 < y0 such that f(x0) �= f(y0). Now let x̃ ∈ R such that
x̃ + y0 = x0, and let n ∈ N

+ be sufficiently large, such that y0 ∈ In := (−n, n) (then also
−y0 ∈ In). Then, for every Φ ∈ C∞

c (In), we have:∫ n

−n

Φ(y)[f(−y) − f(x̃ − y)] dy =
∫

R

Φ̃(y)[f(−y) − f(x̃ − y)] dy = 0,

where Φ̃ denotes the zero-extension of Φ to the whole R. Since the above equality holds
for every Φ ∈ C∞

c (In), and f is continuous on R, it turns out that (see [10]):

f(−y) − f(x̃ − y) = 0, y ∈ (−n, n).

Now, setting y = −y0 in the above equality, we finally obtain:

f(y0) = f(x̃ + y0) = f(x0),

which is a contradiction. This completes the proof. �

In the conclusion of this section, we prove further nice properties of the sampling
Kantorovich operators, which can be deduced from the representation formula achieved
in Theorem 3.1.

Theorem 3.5. Let χ be a kernel satisfying assumption (5) with r ∈ N
+. Then:

(Swpr−1)(x) =
r−1∑
j=0

w−j

(j + 1)!
p
(j)
r−1(x),

for every w > 0, and for any algebraic polynomials of degree at most r − 1, i.e. Sw maps
algebraic polynomials of degree at most r − 1 into algebraic polynomials of the same
degree.

Proof. The proof follows immediately from the representation formula of Theorem 3.1,
the applications of Theorem 2.1 and, finally, observing that p

(r)
r−1(x) = 0 for every

x ∈ R. �

https://doi.org/10.1017/S0013091518000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091518000342


276 D. Costarelli and G. Vinti

4. The construction of the kernels

In § 2, the definition of a kernel for the sampling Kantorovich operators Sw (and also for
Gw) was provided. Several examples of well-known functions χ which satisfy assumptions
(χ1), (χ2) and (χ3) are given e.g. in [6,11,19,24,25].

For instance, we can choose as kernels the following one-dimensional band-limited
functions:

F (x) :=
1
2

(
sin(πx/2)

πx/2

)2

(Fejér’s kernel),

V (x) :=
3
2π

sin(x/2) sin(3x/2)
3x2/4

(de la Vallée Poussin’s kernel),

χ(x) :=
sin(πx/2) sin(πx)

π2x2/2
,

bα(x) := 2αΓ(α + 1)|x|−(n/2)+αB(n/2)+α(|x|) (Bochner–Riesz kernels),

where α > (n − 1)/2, Bλ is the Bessel function of order λ and Γ is the Euler function,
and, finally,

Jk(x) = ck sinc2k

(
x

2kπα

)
(Jackson-type kernels)

with k ∈ N, α ≥ 1, where the normalization coefficients ck are given by

ck :=
[ ∫

R

sinc2k

(
u

2kπα

)
du

]−1

.

Actually, the above examples of kernels can be used to show the convergence of the
operators Sw and Gw, but they do not satisfy the moment condition (5), which we
showed to be crucial in order to prove the inverse results of § 3.

Hence, here we briefly describe how it is possible to construct examples of kernels
satisfying condition (5). The most convenient instances can be constructed by using the
so-called central B-splines.

First of all, we recall that a function q : I → R is called a (polynomial) spline of order
n ∈ N

+ (degree n − 1) with knots a1 < a2 < · · · < am belonging to I if it coincides with
a polynomial of degree n − 1 on each of the intervals (ai, ai+1), i = 1, 2, . . . ,m − 1 (see
e.g. [1,34,35]).

The central B-splines of order n ∈ N
+ are defined by:

Mn(x) :=
1

(n − 1)!

n∑
i=0

(−1)i

(
n

i

)(
n

2
+ x − i

)n−1

+

, x ∈ R, (17)

where (x)+ := max{x, 0} denotes the ‘positive part’ of x ∈ R, see e.g. [11,42]. They
have knots at the points 0, ±1, ±2, . . . ,±n/2 in the case where n is even, and at ±1/2,
±3/2, . . . ,±n/2 in the case where n is odd, and their support is the compact interval
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Figure 1. On the left: plot of the central B-spline of order 2 (roof-function). On the right: plot
of the kernel χ2 defined in (18).

[−n/2, n/2]. The Fourier transform of Mn (see e.g. [36]) is:

M̂n(v) = sinc(v/2)n, v ∈ R.

The central B-splines Mn satisfy the assumptions (χ1), (χ2) and (χ3), i.e. Mn are kernels,
see e.g. [6]. Now, we have the following classical theorem.

Theorem 4.1 (Butzer and Stens [12]). For r ∈ N
+, r ≥ 2, let ε0 < ε1 < · · · < εr−1

be any given real numbers, and let aμr
, μ = 0, 1, . . . , r − 1, be the unique solutions of the

linear system:
r−1∑
μ=0

aμr
(−iεμ)j =

(
1

M̂r

)(j)

(0),

for every j = 0, 1, . . . , r − 1, where i denotes the imaginary unit. Then:

χr(x) :=
r−1∑
μ=0

aμr
Mr(t − εμ), x ∈ R,

is a polynomial spline of order r, satisfying (5) and having support contained in [ε0 −
r/2, εr−1 + r/2].

For instance, an example of kernel generated as in Theorem 4.1 that satisfies (5) with
r = 2 (see Figure 1) is the following:

χ2(x) = 3M2(x − 2) − 2M2(x − 3), x ∈ R. (18)

By procedures similar to that described in Theorem 4.1, many other instances of kernels
can be easily generated. For more details, and for other examples of kernels, see e.g.
[8,9,11,12,18].

Moreover, for the reconstruction of signals in terms of splines using finite number of
samples from the past, see [12,26].
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5. Conclusions

By using the representation formula proved in Theorem 3.1, we are able to obtain an
inverse result for the sampling Kantorovich operators. In particular, we show that the
best order of approximation that can be achieved for the aliasing error ‖Swf − f‖∞ is
O(w−1), as w → +∞, for f ∈ C(2)(R) (Theorem 3.4). A similar result has been achieved
on the space C(R), as in Theorem 3.3.

Even if the above representation formula links the sampling Kantorovich operators
with the generalized sampling operators of f and its derivatives, the proof of the above
inverse result cannot be directly reconnected to the corresponding one for the general-
ized operators. Indeed, for the operators Swf it is not possible to establish an higher
order of approximation theorem, which was revealed to be crucial for the proof of the
aforementioned inverse result of [12] relative to Gw.
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