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Abstract This work is motivated by the question of whether there are spaces X for which the Farber–
Grant symmetric topological complexity TCS(X) differs from the Basabe–González–Rudyak–Tamaki
symmetric topological complexity TCΣ(X). For a projective space RPm, it is known that TCS(RPm)
captures, with a few potential exceptional cases, the Euclidean embedding dimension of RPm. We now
show that, for all m ≥ 1, TCΣ(RPm) is characterized as the smallest positive integer n for which there
is a symmetric Z2-biequivariant map Sm × Sm → Sn with a ‘monoidal’ behaviour on the diagonal. This
result thus lies at the core of the efforts in the 1970s to characterize the embedding dimension of real
projective spaces in terms of the existence of symmetric axial maps. Together with Nakaoka’s description
of the cohomology ring of symmetric squares, this allows us to compute both TC numbers in the case of
RP2e

for e ≥ 1. In particular, this leaves the torus S1 × S1 as the only closed surface whose symmetric
(symmetrized) TCS (TCΣ) invariant is currently unknown.

Keywords: topological complexity; symmetric motion planning; axial maps with further structure;
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1. Introduction

Farber’s topological complexity of a space X, TC(X), can be defined as the sectional
category* of the double evaluation map e0,1 : P(X) → X × X, i.e. the fibration which
sends a path γ : [0, 1] → X into the ordered pair e0,1(γ) = (γ(0), γ(1)). This concept,
originally motivated by the motion planning problem in robotics [11], has been found to
have interesting connections with classical problems in differential topology and homotopy
theory. This paper develops on one such connection.

A number of variants of Farber’s TC concept have been proposed as models of the
motion planning problem in the presence of symmetries. One such line of investigation was
initiated by Farber and Grant in [12], who considered the pullback (restricted) fibration

* We follow the standard normalization convention for the sectional category: a fibration with a global
section has zero sectional category.
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ε0,1 : Pop(X) → X × X − ΔX of e0,1 under the inclusion X × X − ΔX ↪→ X × X, where
ΔX = {(x, x) : x ∈ X} is the diagonal. Both X × X and P(X) come equipped with a
natural switching involution τ , namely τ(x1, x2) = (x2, x1) and (τ · γ)(t) = γ(1 − t). The
restricted involutions on X × X − ΔX and on the space of open paths Pop(X) are fix-
point free, and ε0,1 becomes a τ -fibration.

Definition 1.1. The symmetric topological complexity of a space X, TCS(X), is one
more than the τ -equivariant sectional category of ε0,1 : Pop(X) → X × X − ΔX .

Thus, in the TCS-view, one considers motion planners, i.e. local sections for ε0,1, for
which the movement from an initial point A to a final point B (with A �= B) is the time-
reversed motion from B to A. ‘One more than’ in Definition 1.1 can be thought of as
taking into account (a neighbourhood of) the diagonal when describing actual symmetric
motion planners on X.

The fact that TCS(X) is not a homotopy invariant of X is one of the motivations for
introducing in [2] the following variant of Farber and Grant’s TCS .

Definition 1.2. The symmetrized topological complexity of a space X, TCΣ(X), is
the smallest positive integer n for which X × X can be covered by n + 1 open sets U , each
of which is closed under the switching involution τ on X × X, and admits a continuous τ -
equivariant section U → P(X) of the (τ -equivariant) double evaluation map e0,1 : P(X) →
X × X.

As noted in [16, Example 2.6], e0,1 is a τ -fibration, so TCΣ(X) can equivalently be
defined as secatτ (e0,1), the τ -equivariant sectional category of e0,1 : P(X) → X × X.

Much of the interest in TCΣ(X) comes from the fact that it is a homotopy invariant
of X [2, Proposition 4.7]. Further, TCΣ(X) differs from TCS(X) by at most a unit. In
fact, the inequalities

TCS(X) − 1 ≤ TCΣ(X) ≤ TCS(X) (1.1)

hold for any reasonable space X (see [2, Proposition 4.2]).
The equality TCΣ(X) = TCS(X) is known to hold for a number of spaces: spheres (see

[2, Example 4.5] for even dimensional spheres and [16] for odd dimensional spheres), sim-
ply connected closed symplectic manifolds (as follows from [12, proof of Proposition 10]
and [13, Theorem 1]; see [15, Theorem 6.1] for the case of complex projective spaces) and
all closed surfaces with the potential exceptional case of the torus S1 × S1 (see Remark 4.2
below). Surprisingly, except for homotopically uninteresting situations [2, Example 4.4],
no example of a space X with TCΣ(X) �= TCS(X) is known. This paper explores the
differences between the two invariants in the case of a real projective space RPm – one
of the central benchmarks in homotopy theory.

Remark 1.3. For later reference, we note here that the possibility of numerically
distinguishing TCS(RPm) from TCΣ(RPm) turns out to be amazingly subtle, complicated
and closely related to a challenge with roots in Hopf’s work [17]: a (hoped-for) charac-
terization of the Euclidean embedding dimension of real projective spaces in terms of
symmetric axial maps. Such a question was intensively studied in the 1970s, and it has
still not been successfully answered.
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A convenient way to approach the task set forward in Remark 1.3 is to start with a
non-symmetric version of the problem.

For a real projective space RPm which is not parallelizable, i.e. with m �∈ {1, 3, 7},
the invariant TC(RPm) is known to agree with the number Imm(RPm) defined as the
minimal dimension of Euclidean spaces where RPm admits an immersion. In unrestricted
terms, TC(RPm) agrees with the smallest positive integer n for which there is an axial
map a : RPm × RPm → RPn, i.e. a map whose restriction to either of the axes is essential.
Passing to universal covers, the above fact can be rephrased by saying that TC(RPm)
is the smallest positive integer n for which there is a map b : Sm × Sm → Sn which
is Z2-biequivariant,* i.e. which satisfies b(−x, y) = −b(x, y) = b(x,−y) for all x, y ∈ Sm

(see [1,13]).
The TC-Imm-axial phenomenon just described has a symmetric counterpart, sum-

marized in (1.2) and (1.3) below. Let Emb(RPm) stand for the smallest dimension of
Euclidean spaces where RPm admits an embedding. Let sb(m) stand for the smallest
positive integer n for which there exists a symmetric axial map RPm × RPm → RPn,
i.e. an axial map which is Z2-equivariant with respect to the switching-axes involution
τ on RPm × RPm and the trivial involution on RPn. Equivalently, sb(m) denotes the
smallest positive integer n for which there exists a Z2-biequivariant b : Sm × Sm → Sn

which is symmetric, i.e. so that b(x, y) = b(y, x) for all x, y ∈ Sm.

Remark 1.4. At the level of projective spaces, the difference sb(m) − m can be
thought of as giving a measure of the failure of RPm to be a (strictly) commutative
H-space. We work with Z2-biequivariant maps, rather than with their axial-map coun-
terparts, as the characterization of TCΣ(RPm) (in Theorem 1.6 below) is naturally given
in terms of a slight specialization of the former maps.

It is known that TCS(RPm) ≤ Emb(RPm) for any m, and in fact

TCS(RPm) = Emb(RPm), (1.2)

except possibly for m ∈ {6, 7, 11, 12, 14, 15} (see [7,14,15]). In addition, the main result
in [4] asserts that Emb(RPm) agrees, up to 1, with sb(m). Explicitly,

Emb(RPm) − 1 ≤ sb(m) ≤ Emb(RPm) (1.3)

where the first inequality is asserted only if the ‘metastable range’ condition 2 sb(m) > 3m
holds (e.g. for m > 15).

To the best of our knowledge, the gap in (1.3) has not been solved in either direction
for general m. In fact, despite the fact that Emb(RPm) has been studied extensively, no
explicit projective space RPm with m > 1 and

sb(m) < Emb(RPm) (1.4)

seems to have been singled out in the literature (although the slightly related Example 2
in [3, p. 415] should be noted). The problem can be approached via TCΣ(RPm), which sits
in a subtle way in between the two terms in (1.4). In fact, our main results (Theorems 1.6

* The term ‘bi-skew’ has been used in the literature as an alternative for ‘Z2-biequivariant’.
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and 1.7 below) are motivated by comparing (1.1)–(1.3). Specifically, we show that the
two middle terms in the inequalities

TCS(RPm) − 1 ≤ TCΣ(RPm) ≤ TCS(RPm),

TCS(RPm) − 1 ≤ sb(m) ≤ TCS(RPm)

(the second chain of inequalities holding, say, for m > 15) can be characterized geomet-
rically in almost the same way. In order to make precise the last assertion we need the
following definition.

Definition 1.5. sb(m) stands for the smallest positive integer n for which there is
a symmetric Z2-biequivariant map b : Sm × Sm → Sn with the property that the image
under b of the diagonal ΔSm = {(x, x) : x ∈ Sm} ⊂ Sm × Sm does not intersect some
n-dimensional subspace of R

n+1.

Of course, after a suitable rotation of Sn, we can assume that the first Euclidean
coordinate b0 : Sm × Sm → R of the map b = (b0, b1, . . . , bn) in Definition 1.5 satisfies
b0(x, x) > 0 for all x ∈ Sm.

Theorem 1.6. For m ≥ 1,

sb(m) ≤ sb(m) = TCΣ(RPm) ≤ TCS(RPm) ≤ Emb(RPm).

Before specializing the above result, we highlight three interesting points in connection
with the content and scope of Theorem 1.6.

Start by recalling that the relations in (1.2) and (1.3) are asserted for slightly restricted
values of m. More explicitly, the inequality Emb(RPm) − 1 ≤ sb(m) is currently known
to hold for all values of m, except possibly m ∈ {5, 6, 7, 9, 11, 12, 15}. Actually, if attention
is restricted to the TCS–sb relationship, then the inequality TCS(RPm) − 2 ≤ sb(m) is
currently known to hold for all values of m, except possibly m = 12. Yet, the charac-
terization TCΣ(RPm) = sb(m) in Theorem 1.6 holds without restrictions on m. Loosely
speaking, Theorem 1.6 implies that the TCΣ-analogue of (1.4) can be ruled out effectively
by strengthening slightly the definition of symmetric Z2-biequivariant maps.

Additionally, we have noted that the equality TCS(Rm) = Emb(Rm) and the inequality
Emb(RPm) − 1 ≤ sb(m) both hold for virtually all values of m. In those cases, at most
one of the first two inequalities in the conclusion of Theorem 1.6 could fail to be an
equality. The subtle (and interesting) point is the possibility that the potential failing
inequality (if it really existed) could depend on m.

Last, the characterization TCΣ(RPm) = sb(m) in Theorem 1.6 can be thought of as the
first step in the hoped-for characterization of the embedding dimension of real projective
spaces in terms of symmetric axial maps (Remark 1.3). What remains open, of course, is
a discussion of the potential difference (if any) between TCΣ(RPm) and TCS(RPm), as
well as between sb(m) and sb(m).

We also prove the following.

Theorem 1.7. All three inequalities in the conclusion of Theorem 1.6 are sharp,
provided that m = 2e with e ≥ 1: Emb(RP2e

) = TCS(RP2e

) = TCΣ(RP2e

) = sb(2e) =
sb(2e) = 2e+1.
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Theorem 1.7 should be compared with the fact that TC(RP2e

) = Imm(RP2e

) =
2e+1 − 1, for e ≥ 1.

Remark 1.8. The case e = 0 in Theorem 1.7 is indeed exceptional in that, while
sb(1) = 1 is obvious (owing to the multiplication of complex numbers of norm 1), the
equality TCΣ(S1) = 2 is asserted in [6,16] after subtle considerations. In the final section
of this paper, we offer a streamlined proof of the equality TCΣ(S1) = 2.

It is tempting to think of the agreement between TCΣ and its monoidal version
(asserted in [16, Theorem 5.2]) as indirect evidence for the possibility that sb(m) = sb(m).
However, this would have to be done with care in view of Remark 1.8.

We do not expect the equality TCS = TCΣ in Theorem 1.7 to be generic; we believe
that the equality TCS(X) = TCΣ(X) would have to fail even for reasonably well-behaved
spaces X. In other words, it is hard to think that considering a neighbourhood of the
diagonal on its own would have to lead to the most efficient way to symmetrically motion
plan. It would be interesting if the equality TCS = TCΣ actually failed for some RPm,
as then the inequality Emb(RPm) �= sb(m) would be forced (as would be the equality
sb(m) = sb(m), at least if m ≥ 16).

2. TCS, TCΣ and equivariant partitions of unity

Although the inequality sb(m) ≤ TCΣ(RPm) in Theorem 1.6 follows easily from the
asserted characterization sb(m) = TCΣ(RPm), it is convenient to start with the following.

Proof of the inequality sb(m) ≤ TCΣ(RPm) in Theorem 1.6. Let U0, . . . , Un

be a covering of RPm × RPm (say n = TCΣ(RPm)) by open sets, each of which:

• is closed under the swapping involution τ((L1, L2)) = (L2, L1) of RPm × RPm; and

• admits a τ -equivariant section si : Ui → P(RPm) for the double evaluation map
e0,1 : P(RPm) → RPm × RPm. (Recall from the introduction that τ acts on the path
space P(RPm) by τ(γ)(t) = γ(1 − t).)

Take a τ -equivariant partition of unity {hi} subordinate to the cover {Ui}i, i.e. a family
of continuous functions hi : RPm × RPm → [0, 1], 0 ≤ i ≤ n, satisfying:

(i) hi(L1, L2) = hi(L2, L1), for L1, L2 ∈ RPm;

(ii) supp(hi) ⊆ Ui;

(iii) max{hi(L1, L2) : 0 ≤ i ≤ n} = 1 for each (L1, L2) ∈ RPm × RPm.

(We will make use of Schwarz’s cone model for the joining of spaces, which explains our
use of the form (2) for the alternative condition

∑
i hi = 1 in the definition of a partition

of a unit.) For the existence of such a partition, see, for instance, [16, Lemma 3.2], [20,
p. 321] or, more generally, [21, Theorem 5.2.5].

Recall the factorization P(RPm)
f−→ Sm ×Z2 Sm π−→ RPm × RPm of e0,1, where

• the middle space is the Borel construction Sm × Sm /(x, y) ∼ (−x,−y) ;
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• f(γ) is the class of the pair (γ̃(0), γ̃(1)), where γ̃ is a lifting of γ : [0, 1] → RPm through
the usual double covering Sm → RPm;

• π([(x1, x2)]) = (Lx1 , Lx2), where Lxi
is the line determined by xi.

The maps σi := f ◦ si are τ -equivariant local sections of π, where τ acts on Sm ×Z2 Sm

by τ · ([(x, y)]) = [(y, x)]. Since π is a Z2-principal fibration, where the generator g of Z2

acts on Sm ×Z2 Sm via the formula

g · [(x, y)] = [(−x, y)] = [(x,−y)], (2.1)

σi yields a trivialization of the restriction of π to Ui, i.e. a Z2-equivariant homeomorphism
λi : π−1(Ui) → Z2 × Ui characterized by the condition

λi(x) = (gε, π(x)) where ε ∈ {0, 1} and x = gε · σi(π(x)). (2.2)

Note that Z2 × Ui inherits a τ -involution via λi; in fact, since the action (2.1) commutes
with that of τ , we see that this inherited τ -involution on Z2 × Ui takes the form

τ · (gε, (L1, L2)) = (gε, τ · (L1, L2)) = (gε, (L2, L1)). (2.3)

Let CZ2 stand for the cone Z2 × [0, 1]/(g, 0) ∼ (g2, 0) – an interval [0, 1] in disguise.
As observed by Schwarz [22, p. 87], the composition of λi with the map μi : Z2 × Ui →
CZ2 given by μi(gε, u) = [(gε, hi(u))] extends to a (continuous) map Λi : Sm ×Z2 Sm →
CZ2 which is Z2-equivariant (g acts ‘horizontally’ on the cone: g · [(gε, t)] = [(g1+ε, t)]).
Further, in the present situation,

(iv) Λi is τ -invariant, i.e. Λi([x, y]) = Λi([y, x]) for x, y ∈ Sm, in view of (i) and (2.3).

Of course, Schwarz’s goal is to obtain that, in view of (iii), the product
∏

i Λi yields a Z2-
equivariant map Λ: Sm ×Z2 Sm → (Z2)

∗(n+1) = Sn, which is τ -invariant in view of (iv).
Consequently, the composition of the canonical projection Sm × Sm → Sm ×Z2 Sm with
Λ yields a symmetric Z2-biequivariant map, completing the proof of Theorem 1.6. �

The proof above can be used to show the strengthened inequality sb(m) ≤ TCΣ(RPm)
in Theorem 1.6.

Proof of the inequality sb(m) ≤ TCΣ(RPm) in Theorem 1.6. In view of [16,
Theorem 5.2], we can start with an open covering U0, . . . , Un of RPm × RPm (say n =
TCΣ(RPm)) so that each Ui:

• contains the diagonal ΔRPm ;

• is closed under the swapping involution τ((L1, L2)) = (L2, L1) of RPm × RPm; and

• admits a τ -equivariant section si : Ui → P(RPm) for the double evaluation map
e0,1 : P(RPm) → RPm × RPm such that, for all L ∈ RPm, si(L,L) is the constant
path at L.
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We then proceed as in the previous proof, to find that σi(L,L) = [(x, x)] whenever x ∈
L, so that λi([(x, x)]) = (g0, (L,L)) for all x ∈ Sm. This immediately implies that the
resulting symmetric Z2-biequivariant map

Sm × Sm → Sm ×Z2 Sm Λ−→ Sn = (Z2)∗(n+1) ⊂
n∏

i=0

CZ2

sends the diagonal ΔSm into the simplex generated by the various neutral elements g0 of
each factor CZ2. �

Proof of the inequality sb(m) ≤ TCS(RPm) in Theorem 1.6. Let n = TCs

(RPm) and pick a covering U1, . . . , Un of RPm × RPm − ΔRPm by open sets which are
closed under the switching-axes involution τ , each with a τ -equivariant section si : Ui →
P(RPm) for the double evaluation map e0,1. As noted in the proof of [12, Corollary 9], we
can also pick an open neighbourhood U0 of ΔRPm in RPm × RPm, which is closed under
the action of τ , together with a τ -equivariant section s0 : U0 → P(RPm) of e0,1 with the
property that, for each line L ∈ P(RPm), s0(L,L) is the constant path at L. Then we are
in the situation at the start of the proof of the inequality sb(m) ≤ TCΣ(RPm), so we apply
the same constructions (using the same notation), except that this time we can assume the
additional property that the τ -equivariant partition of unity satisfies h0(L,L) = 1 for all
L ∈ RPm. In such a setting, it follows that Λ0([x, x]) = (g0, 1) and Λi([x, x]) = (g0, 0) =
(g, 0) for all x ∈ Sm and all i > 0. Therefore, the resulting Λ: Sm ×Z2 Sm → Sn is now
constant on points of the form [x, x], and the corresponding symmetric Z2-biequivariant
map Sm × Sm → Sn is constant on the diagonal ΔSm . �

The proof of Theorem 1.6 will be complete once we show (in the next section) the
inequality TCΣ(RPm) ≤ sb(m). (In view of (1.1), the proof we have just given for the
inequality sb(m) ≤ TCS(RPm) can be waived; we included the additional idea in support
of Remark 3.1 below.)

3. Symmetrized motion rules

Definition 1.5 allows us to apply, word for word, the proof of [13, Proposition 6.3] in
order to complete the proof of Theorem 1.6. This short section includes the easy details
for completeness.

Proof of the inequality TCΣ(RPm) ≤ sb(m) in Theorem 1.6. Let n = sb(m)
and pick a symmetric Z2-biequivariant map b = (b0, . . . , bn) : Sm × Sm → Sn such that

b0(x, x) > 0 for all x ∈ Sm. (3.1)

For 0 ≤ i ≤ n, set V ′
i = Vi − ΔRPm , where Vi is the image under the projection π : Sm ×

Sm → RPm × RPm of the set Ui = {(x, y) ∈ Sm × Sm : bi(x, y) �= 0}. All sets Ui, Vi

and V ′
i are open, and are closed under the action of the corresponding switching-

axes involutions τ . Furthermore, τ -equivariant (continuous) sections si : V ′
i → P(RPm)

for the double evaluation map e0,1 : P(RPm) → RPm × RPm are defined as follows.
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For (L1, L2) ∈ V ′
i there are four pairs (±x1,±x2) ∈ Ui ∩ π−1(L1, L2). Only two of these,

say (x1, x2) and (−x1,−x2), have positive images under bi. We then set si(L1, L2) to
be the path in P(RPm) corresponding to the rotation from L1 to L2, through the plane
these lines generate, so that x1 rotates toward x2 through an angle less than 180◦. As
illustrated below, the resulting path si(L1, L2) does not depend on whether (x1, x2) or
(−x1,−x2) is used.

Because of (3.1), s0 extends to a continuous τ -equivariant section of e0,1 on V0, so that
s0(L,L) is the constant path (with constant value L). The proof is complete since V0, V1,
. . . , Vn cover RPm × RPm. �

In view of (1.3), Theorem 1.6 implies that instances with

TCΣ(RPm) < TCS(RPm) (3.2)

could only happen when optimal embeddings of RPm are not realizable by symmetric axial
maps – a possibility that, to the best of our knowledge, cannot be currently overruled
for m > 1. Furthermore, the equalities TCΣ(RPm) = sb(m) = sb(m) would be forced
whenever (3.2) holds (here we are implicitly assuming that m lies in the range where the
first inequality in (1.3) holds).

Remark 3.1. A close look at the techniques in this and the previous section reveals
that, for any m ≥ 1, TCΣ(RPm) agrees with the smallest positive integer n for which there
is a symmetric Z2-biequivariant map Sm × Sm → Sn which is constant on the diagonal.
The latter fact is the right symmetrization of the corresponding property for TC(RPm),
although the proof in the non-symmetric case reduces to the simpler homotopy fact that
an axial map RPm × RPm → RPn, being nullhomotopic on the diagonal, is homotopic to
a (necessarily axial) map RPm × RPm → RPn which is in fact constant on the diagonal.

4. Symmetric squares and TCΣ

Recall that the symmetric square of a space X, SP2(X), is the orbit space of X × X by the
switching involution τ described at the beginning of the introduction. Let ρ : X × X →
SP2(X) denote the canonical projection. We think of X as being embedded diagonally
both in X × X and (via ρ) in SP2(X).
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Here is a useful observation when trying to estimate from below the number sb(m).
Any symmetric axial map α : RPm × RPm → RPn factors in the form

RPm × RPm ρ−→ SP2(RPm) α̃−→ RPn. (4.1)

Let x = xi stand for the one-dimensional generator of the mod 2 cohomology ring of
RPi, and set ω := α̃∗(x) ∈ H1(SP2(RPm); Z2), which is a non-zero element since the
relation α∗(x) = x ⊗ 1 + 1 ⊗ x is well known. If some algebraic topology property (such
as height or action of the Steenrod algebra) of the class x ∈ H1(RPn; Z2) should fail to
be compatible with the corresponding property for its α̃∗-image ω, we would infer that
sb(m) > n, as no such α could exist.

In this section we use the above idea to show the inequality sb(m) ≥ 2m for m = 2e

with e ≥ 1. This, Theorem 1.6 and the well-known fact that Emb(RP2e

) = 2e+1 yield
Theorem 1.7.

It is worth isolating the particularly amenable situation for m = 2.

Example 4.1. A nice geometric fact shown by Massey in [18, Lemma 1] is that
SP2(RP2) is homeomorphic to RP4, with the diagonal inclusion RP2 ↪→ SP2(RP2) = RP4

being nullhomotopic. In particular, the generator x ∈ H1(SP2(RP2); Z2) = Z2 satisfies
x4 �= 0, forbidding the existence of a map α̃ (with m = 2 and n = 3) as in (4.1), as
x ∈ H∗(RP3; Z2) = Z2 has x4 = 0. We thus get sb(2) ≥ 4, the case m = 2 in Theorem 1.7.

Remark 4.2. Don Davis has observed that the assertions

(i) TC(X) ≤ TCΣ(X) ≤ TCS(X);

(ii) all closed surfaces Γ have TCS(Γ) ≤ 4 [12, Proposition 10];

(iii) except for S2, S1 × S1 and RP2, all closed surfaces Γ have TC(Γ) = 4
(see [5,8–10]);

imply that both inequalities in (i) above are in fact equalities for all closed surfaces
Γ, except perhaps for Γ ∈ {S2, S1 × S1, RP2}. The corresponding equality TCΣ(RP2) =
TCS(RP2) is now accounted for by Example 4.1. As noted in the introduction of this
paper, the equality TCS(S2) = TCΣ(S2) is also known. (See Example 4.7 below for a
discussion of what is currently known in the case of the torus.)

The topology of symmetric squares SP2(RPm) for m > 2 is much more subtle than that
for m = 2. In order to deal with the general form of Theorem 1.7, we shall make use of the
description in [19] of the mod 2 cohomology ring of SP2(X). We give a short description of
Nakaoka’s results after stating the main goal in this section, Proposition 4.3, and observe
that it yields Theorem 1.7. The proof of Proposition 4.3 will then be given.

Proposition 4.3. Let m ≥ 2 with 2e ≤ m < 2e+1. Then H1(SP2(RPm); Z2) = Z2, and

the generator φ1 of this group satisfies φ2e+1

1 �= 0 = φ2e+1+1
1 .

Since Emb(RP2e

) = 2e+1 is well known, it is clear that Proposition 4.3 is all that is
needed to have the argument in Example 4.1 prove the general case of Theorem 1.7.
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Here is a brief summary of Nakaoka’s description of the mod 2 cohomology ring of
SP2(X) for a finite zero-connected polyhedron X [19]. Throughout the rest of the paper,
cochain complexes and cohomology are taken with coefficients mod 2.

The identity and the involution τ induce maps at the cochain level C∗(X × X,X),
and we let σ : C∗(X × X,X) → C∗(X × X,X) stand for the corresponding difference
morphism. Note that the kernel and the image of σ agree; we let σC∗(X × X,X) stand
for the resulting cochain subcomplex, writing σH∗(X × X,X) for its cohomology. The
so-called Smith–Richardson short exact sequence

0 → σC∗(X × X,X) → C∗(X × X,X) → σC∗(X × X,X) → 0

yields a connecting morphism

∂ : σH∗(X × X,X) → σH∗+1(X × X,X).

Since the canonical projection (X × X,X) → (SP2(X),X) identifies the cochain com-
plexes C∗(SP2(X),X) and σC∗(X × X,X), we get a morphism

ν : H∗(SP2(X),X) → H∗+1(SP2(X),X)

corresponding to ∂. Then, morphisms Es : H∗(X) → H∗+s(SP2(X),X) are defined for
s ≥ 1 as the composition

Es = (H∗(X) δ−→ H∗+1(SP2(X),X) νs−1

−→ H∗+s(SP2(X),X)),

where δ is the usual connecting map associated with the pair (SP2(X),X). On the
other hand, note that the transfer map C∗(X × X) → C∗(SP2(X)) lands in the rela-
tive cochain subcomplex C∗(SP2(X),X), thus defining a morphism φ : H∗(X × X) →
H∗(SP2(X),X). Last, by restricting under the inclusion of pairs (X, ∅) ↪→ (SP2(X),X),
we get corresponding maps H∗(X) → H∗+s(SP2(X)) and H∗(X × X) → H∗(SP2(X)),
which will also be denoted by Es and φ, respectively (the context will clarify which map
we refer to).

The results we need from Nakaoka’s work [19] are packed in the following omnibus
result.

Theorem 4.4. Fix a homogeneous basis {b0, b1, . . . , bm} of H∗(X). Let R stand for
either ∅ or X, and set

� =

{
1 if R = X,

2 if R = ∅.

A basis for H∗(SP2(X), R) consists of 1, the elements Es(bi) with � ≤ s ≤ deg(bi), and the
elements φ(bi ⊗ bj) with i < j. The ring structure is determined by the two relations:

(a) φ(bi ⊗ bj) · φ(bu ⊗ bv) = φ((bi · bu) ⊗ (bj · bv)) + φ((bi · bv) ⊗ (bj · bu));

(b) Es(bi) · φ(bu ⊗ bv) = Es(bi) · Et(bj) = 0.

The right-hand side in (a) can be expanded in terms of basis elements using the
relations:
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(c) φ(bj ⊗ bi) = φ(bi ⊗ bj);

(d) φ(bi ⊗ bi) =
∑deg(bi)

s=
 Es(Sqdeg(bi)−s bi).

The action of the Steenrod algebra is determined by the relations:

(e) Sqk φ(bi ⊗ bj) = φ Sqk(bi ⊗ bj) +
∑k

s=
 Es(Sqk−s(bi · bj));

(f) Sqk Es(bi) =
∑k

j=0

(
s−1
k−j

)
Ek+s−j(Sqj bi), for � ≤ s ≤ deg(bi);

(g) Edeg(bi)+k(bi) =
∑deg(bi)+k−1

s=max(k,
) Es(Sqdeg(bi)+k−s bi), for k ≥ 1.

Of course, Theorem 4.4 is most useful when we actually know the structure of H∗(X)
as an algebra over the mod 2 Steenrod algebra A∗; we then get a full description of
H∗(SP2(X)) as an A∗-algebra.

Example 4.5. A basis for the mod 2 cohomology of the torus T = S1 × S1 consists
of the elements 1, x, y and xy (with trivial action of the Steenrod algebra), where x and
y are one-dimensional classes. Then a basis for the mod 2 cohomology of SP2(T ) is given
by 1, φ(1 ⊗ x), φ(1 ⊗ y), φ(1 ⊗ xy), φ(x ⊗ y), φ(x ⊗ xy), φ(y ⊗ xy) and E2(xy). Further,
by straightforward calculation we can check that the only non-vanishing products are:

φ(1 ⊗ x)φ(1 ⊗ y) = φ(1 ⊗ xy) + φ(x ⊗ y);

φ(1 ⊗ xy)2 = φ(x ⊗ y)2 = φ(xy ⊗ xy) = E2(xy);

φ(1 ⊗ x)φ(1 ⊗ y)φ(x ⊗ y) = φ(xy ⊗ xy) = E2(xy);

φ(1 ⊗ x)φ(1 ⊗ y)φ(1 ⊗ xy) = φ(xy ⊗ xy) = E2(xy).

Proof of Proposition 4.3. We use Theorem 4.4 with the basis {1, x, x2, . . . , xm}
of H∗(RPm) and R = ∅ (so � = 2). Recall that Sqs xi =

(
i
s

)
xi+s. Then the only basis

element of degree 1 in H∗(SP2(X)) is φ1 = φ(1 ⊗ x), which by direct calculation has

φ2
1 =φ(1 ⊗ x2) + φ(x ⊗ x) = φ(1 ⊗ x2),

φ4
1 =φ(1 ⊗ x4) + φ(x2 ⊗ x2) = φ(1 ⊗ x4) + E2(x2).

Assuming φ2i

1 = φ(1 ⊗ x2i

) + E2i−1(x2i−1
), we get

φ2i+1

1 = (φ(1 ⊗ x2i

) + E2i−1(x2i−1
))2 = φ(1 ⊗ x2i+1

) + φ(x2i ⊗ x2i

),

which by standard properties of mod 2 binomial coefficients (and, of course, Theorem 4.4)
implies

φ2i+1

1 = φ(1 ⊗ x2e+1
) + E2i(x2i

).

The conclusion of Proposition 4.3 follows from the i = e case of the last equality. �
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We close this section by observing that the arguments in this section suggest that a
systematic analysis of the (rich but not yet fully explored) algebraic topology properties
of the symmetric square SP2(RPm) could have implications for (and lead to a better
understanding of) TCΣ(RPm) and sb(m). For instance, motivated by [16, Theorem 4.6],
we observe below that TCΣ(X) is bounded from below by the cup length of H∗(SP2(X))
(see Proposition 4.6 and Example 4.7). The latter fact can be used (with X = S1, see
Corollary 4.8 below) to re-prove, in a streamlined way, the equality TCΣ(S1) = 2 (first
noted in [6,16]).

We realized the following result after reading [16, Theorem 4.6].

Proposition 4.6. TCΣ(X) is bounded from below by the sectional category of the
diagonal inclusion X ↪→ SP2(X).

Proof. Consider the diagram

X
� � ��
��

����
��

��
��

�
P(X) ��

e0,1

��

P(X)/τ ��

e′
0,1

��

X
��

����
��

��
��

�

X × X �� SP2(X)

where both slanted maps are diagonal inclusions, e′0,1 is induced by e0,1, X is embedded
in P(X) as the subspace of constant paths, and the right-most horizontal arrow sends
the equivalence class of a path γ to γ(1/2). The diagram is strictly commutative, except
for the right-hand side triangle, which commutes only up to homotopy (by contraction
of paths toward their middle point). Note that TCΣ(X) = secatτ (e0,1) ≥ secat(e′0,1), the
latter of which agrees with secat(X ↪→ SP2(X)), in view of the diagram. �

Example 4.7. For a finite polyhedron X, the diagonal inclusion X ↪→ SP2(X) induces
the trivial map in mod 2 positive-dimensional cohomology (see [19, Theorems 11.2
and 11.4]). The usual nilker lower bound for secat(X ↪→ SP2(X)) then shows that
TCΣ(X) is bounded from below by the mod 2 cup length of SP2(X). In particular, Exam-
ple 4.5 implies 3 ≤ TCΣ(S1 × S1). On the other hand, TCΣ(S1 × S1) ≤ TCS(S1 × S1) ≤
4, in view of [12, Proposition 10]. Note that the sharp estimate for both TCΣ(S1 × S1)
and TCS(S1 × S1) is decidable by (primary) obstruction-theoretic methods (in the equiv-
ariant setting, for TCΣ). It would be well worth taking a look at the actual computations
needed, as this might lead to an example with TCΣ �= TCS .

Corollary 4.8. TCΣ(S1) = 2.

Proof. Recall TCΣ(S1) ≤ TCS(S1) = 2. If TCΣ(S1) ≤ 1, the product inequality for
TCΣ (Lemma 4.9) would yield TCΣ(S1 × S1) ≤ 2, which is impossible in view of
Example 4.7. �

The proof of [10, Theorem 11] can be used, word for word (using τ -equivariant
partitions of units), to prove the following auxiliary lemma.
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Lemma 4.9. For paracompact spaces X and Y , TCΣ(X × Y ) ≤ TCΣ(X) + TCΣ(Y ).
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7. C. Doḿınguez, J. González and P. Landweber, The integral cohomology of config-
uration spaces of pairs of points in real projective spaces, Forum Math. 25(6) (2013),
1217–1248.

8. A. Dranishnikov, On topological complexity of non-orientable surfaces, Topol. Applic.
(special issue dedicated to Kodama) 232 (2017), 61–69.

9. A. Dranishnikov, The topological complexity and the homotopy cofiber of the diagonal
map for non-orientable surfaces, Proc. Amer. Math. Soc. 144(11) (2016), 4999–5014.

10. M. Farber, Topological complexity of motion planning, Discr. Comput. Geom. 29(2)
(2003), 211–221.

11. M. Farber, Instabilities of robot motion, Topol. Appl. 140(2–3) (2004), 245–266.

12. M. Farber and M. Grant, Symmetric motion planning, in Topology and robotics
(ed. M. Farber, R. Ghrist, M. Burger and D. Koditschek), Contemporary Mathematics,
Volume 438, pp. 85–104 (American Mathematical Society, Providence, RI, 2007).

13. M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: motion planning
in projective spaces, Int. Math. Res. Not. 34 (2003), 1853–1870.
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