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We present a simple and rigorous mathematical model and efficient numerical algorithm for

the three-dimensional thermal stress analysis of composite structures used in high-temperature

catalytic combustors. Numerical experiments are carried out for three types of cell geometries.

A homogenization algorithm is implemented, and asymptotic formulae are derived for the

effective elastic moduli of the periodic structures.

1 Introduction

Catalytic combustion is a primary combustion process where the combustor, say in a

conventional gas turbine, is replaced by catalytic section(s) [1]. In this paper, we present

a mathematical model developed for the thermal stress analysis in a catalytic combustor

monolith. This is a honeycomb type of structure, consisting of a large number of parallel

channels in which the gas flows. The walls of the channels are coated with a catalyst

that enables flameless combustion reactions of lean fuel-air mixtures to be initiated and

sustained, at lower temperatures (500–1200 ◦C) than would otherwise be possible in a

conventional combustor. The diameter of the channels is of the order of 1 mm and the

wall thickness is about 0.1 mm.

As the combustion reactions occur in, or in proximity to, the catalyst-coated walls in

the monolith, then at any fixed position the temperature of the wall is greater than that

of the gas. In the direction of gas flow down the channel, both gas and wall temperature

continue to increase until all of the reactants have been consumed. A detailed description

of these processes is available elsewhere [2]. In an ideal situation, it would be desirable

to maintain a uniform temperature, chemical composition and velocity profile at the inlet

and across the face of the catalytic monolith, so that the reactions subsequently proceed

in each channel in a similar manner. In practice this is difficult to achieve. This then has

the effect of causing differences in temperature to exist between neighbouring channels,

which when combined with temperature gradients in the direction of gas flow may lead

to unacceptable thermal stresses and fracture of the monolith. As new materials with

high coefficients of thermal expansion have been developed for high temperature catalytic

combustion regions, this problem has become more serious [3].
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Figure 1. Cross-sections of junctions between the cells.

Extensive studies of elastic and thermal properties of two-dimensional catalytic com-

bustor monoliths have also been discussed [3–6]. Various two-dimensional finite element

codes have been successfully used to generate the data for this analysis. We remark that

the use of two-dimensional codes is good only under the assumption that the physical

properties such as temperature and pressure, as well as elastic properties of the materials

are constant along each channel. This is not the case when the combustion along the

channel is taken into consideration, where a full three-dimensional model is required.

We present analytical and numerical results for the three-dimensional modelling of

thermal stresses in catalytic combustor monoliths, where the size of an elementary cell

is considerably smaller than the length of the channel. This motivates us to extend

the asymptotic analysis for elastic ‘thin’ structures [7] to formulations of uncoupled

thermoelasticity.

https://doi.org/10.1017/S0956792599003654 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599003654


Thermal stress analysis and homogenization 187

Although catalytic monoliths may involve a great variety of prismatic geometries, we

will only study structures whose cells have square, triangular or hexagonal cross-sections.

Specifically, we apply our asymptotic analysis to finite cylinders with three types of cross

sections shown in Fig. 1. In Fig. 1, the cross-shaped region corresponds to the square

cell geometry of the honeycomb, the Y-shaped region corresponds to the hexagonal cell

geometry, and the remaining third case corresponds to the case of a triangular cell.

Further, we present the results of homogenization of structures whose elementary cells

are shown in Fig. 16. The asymptotic algorithm used in this work enables us to evaluate

accurately the effective moduli of the honeycomb structures. In particular, it is important

for the cases when the effective shear moduli are small and the direct application of the

finite element method does not provide sufficient accuracy.

2 Governing equations

In this section, we describe the basic model. It is essential that combustion in the catalytic

combustor monolith occurs at a relatively low temperature compared to the standard

combustor without a catalyst. For this case, the equations of linear elasticity provide an

appropriate model that gives a good agreement with experiment. We refer to the work [4]

produced at Rolls Royce IMGT, where a linear two-dimensional finite element analysis was

presented as a simple numerical model matching nicely with the results of experiments. In

our work we consider fully three-dimensional field and develop an asymptotic approach

which proves to be more efficient than the finite element method. The equations come from

the theory of linear uncoupled thermoelasticity. For detailed description and classification

of problems of thermoelasticity we refer to Nowacki [8]. We consider only those cases

where the materials of which catalytic monoliths are made are isotropic and homogeneous.

Suppose that at some temperature T0, the elastic body is undeformed (with no external

forces present). Due to the action of external forces (i.e. body force and surface tractions),

the action of internal heat sources and the heat flux through the surface, the elastic

solid undergoes a deformation which is accompanied by nonzero displacements and a

temperature increment θ = T − T0. Assuming that the elastic strain and the relative

change of temperature θ/T0 are small we reduce the governing equations to a system

of linear equations of equilibrium and the heat conduction equation. We shall study a

steady state problem, and a reasonable approximation for the solution will be obtained

as a result of analysis of equations of uncoupled thermo-elasticity.

The equations of equilibrium are

3∑
j=1

∂

∂xj
σij + fi = 0, i = 1, 2, 3, (1)

where σij are components of the stress tensor, ui are components of the vector of

displacement u and fi are components of the body force density f .

The constitutive relations of thermoelasticity give the expressions of the components of

the stress tensor in terms of strain components and temperature θ. They are assumed to be

σij = 2µεij +

(
λ

3∑
k=1

εkk − γθ
)
δij , (2)
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Figure 2. A finite cylinder corresponding to the junction region in the monolith structure.

where

εij =
1

2

(
∂

∂xj
ui +

∂

∂xi
uj

)
, (3)

δij = 1, if i = j; δij = 0, if i� j.

In (2), λ and µ are the elastic moduli and

γ = (3λ+ 2µ) α,

with α being the coefficient of linear thermal expansion.

When the model problem is static and the body forces and sources of heat vanish, the

system of equations of uncoupled thermoelasticity has the form

µ∇2u + (λ+ µ)∇∇ · u = γ∇θ, (4)

∇2θ = 0. (5)

We assume Dirichlet boundary conditions for the temperature and mixed Dirichlet–

Neumann conditions for components of the displacement vector, as follows. Let

Πε = {x; 0 < x3 < l, ε−1(x1, x2) ∈ G ⊂ R2}
represent the junction area in the monolith structure, where ε is a small positive non-

dimensional parameter, and G is a bounded domain with Lipschitz boundary. Let Γ

denote the lateral surface of Πε, and let S1, S2 be the end regions (as indicated in Fig. 2).

The temperature is assumed to be given on the boundary of Πε:

θ|Γ = Θ(x1/ε, x2/ε, x3), (6)

θ|Si = Θ(i), i = 1, 2. (7)

The boundary conditions for the elastic displacement field are specified as follows:

u|S2
= 0, (8)

σ(3)(u)|S1
= 0, (9)

σ(n)|Γ = ε2P(x, n), (10)

where n is the outward normal to Γ .
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The boundary conditions (8), (9) mean that the end region S1 is free of tractions and

the end region S2 is fixed; the boundary condition (10) specifies pressure on the lateral

surface Γ (the pressure is allowed to change within the combustor monolith).

For problems of uncoupled thermoelasticity we deal first with the boundary value

problem for the Laplace equation (5) and calculate the temperature. We then analyse the

boundary value problem for the Navier system (4) and find the displacement and stress

field. In the following section we describe an efficient and accurate asymptotic procedure;

we remark that it does not require large computer resources and, therefore, has obvious

advantages in comparison with numerical technique based on, say, three-dimensional

finite element algorithms.

3 Asymptotic analysis

In this section, we introduce and discuss the asymptotic algorithm developed for analysis

of boundary value problems in thin cylindrical domains with cross-sections associated

with junctions. The asymptotic analysis used is an extension of the results [9].

3.1 Three-dimensional distribution of temperature

We briefly describe the asymptotic procedure to solve the Laplace equation (5) with the

boundary conditions (6), (7). Let us first introduce the notation

ζ = (ζ1, ζ2) = ε−1(x1, x2), z = x3. (11)

We shall use an asymptotic series of the form

θ ∼
∞∑
k=0

ε2k θk(ζ1, ζ2, z). (12)

It follows that θ0 satisfies the two-dimensional Dirichlet problem

∇2
ζ θ0 = 0, ζ ∈ S; θ0|∂S = Θ(ζ1, ζ2, z), (13)

where S is the scaled cross-section, and θk, k > 1, satisfies

∇2
ζ θk +

∂2 θk−1

∂z2
= 0, ζ ∈ S; θk|∂S = 0.

We notice that θ0(ζ1, ζ2, z) does not necessarily satisfy the boundary conditions (7) on

S1 and S2, if z = 0, l, respectively. This problem is resolved by adding boundary layers.

We construct the boundary layer τ(1)
0 (X) near S1 by defining

X = (X1,X2,X3); Xi = xi/ε, i = 1, 2, 3, (14)

and

Π (1) = {X; (X1, X2) ∈ G, 0 6 X3 < ∞}, (semi-infinite cylinder),

Γ (1) = {X; X ∈ ∂Π1, X3 > 0}, (lateral surface),

Γ (2) = {X; X ∈ ∂Π1, X3 = 0}, (bottom region).
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In order for θ0 + τ
(1)
0 to satisfy the Laplace equation and the boundary condition, τ(1)

0 (X)

needs to satisfy the following three-dimensional Dirichlet problem

∇2
X τ

(1)
0 = 0, X ∈ Π (1) (15)

τ
(1)
0 |Γ (1) = 0, τ

(1)
0 |Γ (2) = Θ(1) −Θ(X1, X2, 0). (16)

To provide matching between the outer and inner expansions of the total field in a

neighbourhood of the end region, we seek a solution of (15), (16) with finite energy; such

a solution exists (see Maz’ya et al. [10]) and it decays exponentially at infinity.

A similar argument applies to the construction of the boundary layer τ(2)
0 (Y) near S2,

where

Y = (Y1, Y2, Y3); Y1 = x1/ε, Y2 = x2/ε, Y3 =
x3 − l
ε

, (17)

and it also follows that the contribution to the interior from the boundary layer is

exponentially small.

3.2 Polynomial solutions of the homogeneous boundary value problem

The numerical algorithm will use polynomial (in the longitudinal variable) solutions of

a homogeneous model problem for the Navier system in an infinite cylinder; we refer

to Arutyunyan et al. [11] and Shkalikov & Shkred [12]. We are looking for non-trivial

solutions of the following homogeneous boundary value problem

µ∇2 U(ζ, z) + (λ+ µ)∇∇ ·U(ζ, z) = 0, (ζ, z) ∈ Π, (18)

σn(U; (ζ, z)) := σ(U, (ζ, z)) n = 0, (ζ, z) ∈ ∂Π, (19)

where Π = {(ζ, z) : z ∈ (−∞, ∞), ζ = (ζ1, ζ2) ∈ G ⊂ R2}, and G is a bounded domain

with Lipschitz boundary. For the sake of convenience, it is also assumed that the principal

inertia axes of G coincide with the coordinate axes, i.e.∫
G

ζ1 dζ1 dζ2 = 0,

∫
G

ζ2 dζ1 dζ2 = 0,

∫
G

ζ1 ζ2 dζ1 dζ2 = 0.

It is shown (see Arutyunyan et al. [11] and the Appendix) that any solution U can be

represented as a linear combination of 12 vector functions:

L∑
j=0

zj

j!
φ(k,L−j)(ζ1, ζ2), (20)

for k = 1, 2, L = 0, 1, 2, 3; or for k = 2, 3, L = 0, 1,

where the functions φ(k,L−j)(ζ1, ζ2) are given in Appendix A.1.

3.3 Asymptotic approximation. The Navier operator

This section deals with the asymptotic procedure for a mixed boundary value problem for

the Navier operator in the thin cylinder Πε.

The boundary value problem (4), (8), (9), (10) can be represented in the matrix form,
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using (11)

L(∂ζ1
, ∂ζ2

, ∂z) u = −ε2 F, inΠε, (21)

T(∂ζ1
, ∂ζ2

, n) u = ε3 P, onΓ , (22)

u|z=l = 0, (23)

σ(3)(u)|z=0 = 0, (24)

where −F is the right-hand side of (4),

L = L0(∂ζ1
, ∂ζ2

) + εL1(∂ζ1
, ∂ζ2

)
d

dz
+ ε2 L2

d2

dz2
, (25)

T = T0(∂ζ1
, ∂ζ2

, n) + εT1(n)
d

dz
, (26)

L0 =

 (2µ+ λ) ∂2
ζ1

+ µ∂2
ζ2

(µ+ λ) ∂ζ1
∂ζ2

0

(µ+ λ) ∂ζ1
∂ζ2

(2µ+ λ) ∂2
ζ2

+ µ∂2
ζ1

0

0 0 µ(∂2
ζ1

+ ∂2
ζ1

)

 ,

L1 = (λ+ µ)

 0 0 ∂ζ1

0 0 ∂ζ2

∂ζ1
∂ζ2

0

 ; L2 =

 µ 0 0

0 µ 0

0 0 (2µ+ λ)

 ,

T0 = n1

 (2µ+ λ) ∂ζ1
λ∂ζ2

0

µ∂ζ2
µ∂ζ1

0

0 0 µ∂ζ1

+ n2

 µ∂ζ2
µ∂ζ1

0

λ∂ζ1
(2µ+ λ) ∂ζ2

0

0 0 µ∂ζ2

 ,

T1 =

 0 0 λn1

0 0 λn2

µn1 µn2 0

 .

It was proved [7] that the displacement field u in Πε can be approximated by the

asymptotic series

u(x, ε) ∼
∞∑
k=0

εk{Ψ(k)(ζ1, ζ2, z, ε) + V(1,k)(X1, X2, X3, ε) + V(2,k)(Y1, Y2, Y3, ε)}, (27)

where Ψ(k) represents the displacement outside the neighbourhoods of the end regions,

V(i,k)are the boundary layers which provide the validity of the boundary conditions (23),

(24) at the end regions, where we have used the notations (14), (17). As in the thermal

problem, the boundary layer fields are specified in a semi-infinite cylinder, and they decay

exponentially at infinity. To illustrate the algorithm, we construct the leading ansatz of

the asymptotic series (27).

Theorem [7] The vector-valued function

Ψ(0)(ζ, z, ε) =

2∑
k=1

3∑
j=0

εj
∂j

∂zj
vk(z)φ

k,j(ζ) + ε2
4∑
k=3

1∑
j=0

εj
∂j

∂zj
vk(z)φ

k,j(ζ) + ε4 U(ζ, z), (28)
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satisfies the equation

µ∇2 Ψ(0)(x) + (λ+ µ)∇∇ ·Ψ(0)(x) = −ε2 F(ζ, z)− ε3 F(0)(ζ, z)− ε4 F(1)(ζ, z), x ∈ Πε, (29)

and the traction boundary condition

σn(Ψ(0), x) := σ(Ψ(0), x) n = ε3 P(ζ, z) + ε4 P(0)(ζ, z), (ζ, z) ∈ ∂Ω × [0, l], (30)

where vk, F(0), F(1), P(0) are bounded.

The functions used above are specified as follows:

(1) The vector-valued functions

F(ζ, z) ∈ C∞((L2(Ω))3, [0, l]) and P(ζ, z) ∈ C∞((L2(∂Ω))3; [0, l])

are given.

(2) vk(·) are the solutions of the following ordinary differential equations:

d4

dz4
vk(z) =

1

Dk

(∫
Ω

Fk(ζ, z) dζ +

∫
∂Ω

Pk(ζ, z) ds

)
, k = 1, 2, (31)

d2

dz2
v3(z) = − 1

D3

(∫
Ω

F3(ζ, z) dζ +

∫
∂Ω

P3(ζ, z) ds

)
, (32)

d2

dz2
v4(z) = − 1

D4

(∫
Ω

(ζ1F2(ζ, z)− ζ2 F1(ζ, z)) dζ +

∫
∂Ω

(ζ1P2(ζ, z)− ζ2 P1(ζ, z)) ds

)
,

(33)

where

Dk = µ
2µ+ 3λ

λ+ µ

∫
Ω

ζ2
k dζ, k = 1, 2,

D3 = µ
2µ+ 3λ

λ+ µ
|Ω|,

D4 = µ

∫
Ω

||∇ϕ− ζ2 e(1) + ζ1 e(2)||2 dζ.
We need to prescribe the boundary conditions in order to pose the boundary

value problem for those four ordinary differential equations in (31)–(33). In our

applications, we set in (23) and (24) that the left end of the cylinder is traction

free, and that the right end is clamped. It has been shown [7] that the boundary

layer terms V(1,k) and V(2,k) in (27) decay exponentially at infinity if and only if

the following conditions are satisfied (consistently with the well-known St. Venant

principle adopted in engineering models of elastic bars).

Zero Displacement (including Zero Rotation Angles) at z = l:

vk(l) = 0,
dvk

dz
(l) = 0, k = 1, 2; vk(l) = 0, k = 3, 4. (34)

Traction and Moment Free Surface at z = 0:

d2 vk

dz2
(0) = 0,

d3 vk

dz3
(0) = 0, k = 1, 2,

dvk

dz
(0) = 0, k = 3, 4. (35)
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The boundary value problems for the vector functions V(1,k), V(2,k) are presented in

Appendix A.2 for k = 0.

(3) For each fixed z ∈ [0, l], the vector function U satisfies the two-dimensional boundary

value problem

−L0U = F(ζ, z) + L1

(
d4 v1

dz4
φ(1,3) +

d4 v2

dz4
φ(2,3) +

d2 v3

dz2
φ(3,1) +

d2 v4

dz2
φ(4,1)

)
+L2

(
d4 v1

dz4
φ(1,2) +

d4 v2

dz4
φ(2,2) +

d2 v3

dz2
φ(3,0) +

d2 v4

dz2
φ(4,0)

)
, ζ ∈ Ω, (36)

T0 U = P(ζ, z)− T1

(
d4 v1

dz4
φ(1,3) +

d4 v2

dz4
φ(2,3) +

d2 v3

dz2
φ(3,1) +

d2 v4

dz2
φ(4,1)

)
, ζ ∈ ∂Ω.

(37)

(4) The vector-valued functions

F(0)(ζ, z) ∈ C∞((L2(Ω))3; [0, l]), F(1)(ζ, z) ∈ C∞((L2(Ω))3; [0, l])

and

P(0)(ζ, z) ∈ C∞((L2(∂Ω))3; [0, l])

are chosen in a such a way that

F(0) =

2∑
k=1

{
d5 vk(z)

dz5
L2 ϕ

(k,3) +
d3 vk+2(z)

dz3
L2 ϕ

(k+2,1)

}
+ L1 U,

F(1) = L2 U, P(0) = T1(n) U.

3.4 Two-dimensional boundary value problem for the field U

To carry out the numerical experiments, we would like to make the following comments

and simplifications which are essential to our application.

We note that the problem (36), (37) can be decomposed into a two-dimensional Neu-

mann boundary value problem for the Navier operator coupled with a two-dimensional

problem for the Poisson equation with the Neumann boundary condition, i.e.(
(2µ+ λ) ∂2

ζ1
+ µ∂2

ζ2
(µ+ λ) ∂ζ1

∂ζ2

(µ+ λ) ∂ζ1
(2µ+ λ) ∂2

ζ2
+ µ∂2

ζ1

)(
U1

U2

)
=

(−f1

−f2

)
, ζ ∈ Ω, (38)

n1

(
(2µ+ λ) ∂ζ1

λ∂ζ2

µ∂ζ2
µ∂ζ1

)(
U1

U2

)
+ n2

(
µ∂ζ2

µ∂ζ1

λ∂ζ1
(2µ+ λ) ∂ζ2

)(
U1

U2

)
=

(
p1

p2

)
, ζ ∈ ∂Ω,

(39)

and

(∂2
ζ1

+ ∂2
ζ1

)U3 = −f3/µ, ζ ∈ Ω, (40)

(n1 ∂ζ1
+ n2, ∂ζ1

)U3 = p3/µ, ζ ∈ ∂Ω, (41)

where Ui are the components of U, fi, pi are the components of the right-hand side of

(36) and (37), respectively.

The above equations are solvable, since the required orthogonality conditions for the
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right-hand sides are satisfied. In other words, we have∫
Ω

fi dζ −
∫
∂Ω

pi ds = 0, i = 1, 2, 3,

∫
Ω

(ζ1 f2 − ζ2 f1) dζ −
∫
∂Ω

(ζ1 p2 − ζ2 p1) ds = 0,

which are indeed consistent with (31), (32) and (33).

It follows from (4) that

−ε2 F(ζ, z) = γ∇x θ = γ

(
ε−1∇ζ + e(3) d

dz

)
θ. (42)

Consider the traction boundary conditions. Since we consider the thermal stress, we must

use the formula (2) for the stress tensor. Therefore, we have

3∑
j=1

σTij nj = σni − (γθ) ni, (43)

where

σni :=

3∑
j=1

{
2µεij + λ

3∑
k=1

εkk δi,j

}
nj

is exactly the boundary traction in terms of the classical elasticity, or ε3 P = σn. In our

numerical experiments, we assume that the boundary pressure p, a scalar function, is given

and we shall regard the thermal boundary traction σTi,j nj = −pni. Hence,

ε3 P = σn = −pn + γθn.

Introduce the normalization

p = ε3 p̄, θ = ε3 θ̄.

Substituting F and P into (31)–(33) and using the Divergence Theorem, we obtain that

d4

dz4
vk(z) = − 1

Dk

∫
∂Ω

p̄nk(ζ, z) ds, k = 1, 2, (44)

d2

dz2
v3(z) =

γ

D3

∫
Ω

d

dz
θ̄ dζ, (45)

d2

dz2
v4(z) =

1

D4

∫
∂Ω

(ζ1 p̄n2(ζ, z)− ζ2 p̄n1(ζ, z)) ds, (46)

where we have used n3 = 0.

4 Numerical implementation

In this section, we shall describe the numerical algorithm.

Step 1. The three auxiliary Neumann boundary value problems (A 6)–(A 8) for the

Laplace equation are solved numerically by the NAG Laplace Solver D03EAF, so that

we have the numerical solutions for the torsion and bending potentials ϕ, χ1, χ2.
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Step 2. In our numerical experiment, we assume that at the left entry point, i.e. at

z = 0, the temperature varies between 1000 and 1200 ◦C, while at z = l, the right outflow

point, the temperature is identically 1200 ◦C. The boundary values of the temperature at

z = 0 are specified as follows:

Fig. 1(a):

θ =


1200 ◦C on intervals 2–6

1000 ◦C on intervals 8–12

linear approximation on intervals 1, 7

Fig. 1(b):

θ =


1200 ◦C on intervals 8, 9

1000 ◦C on intervals 2–6

linear approximation on intervals 1, 7

Fig. 1(c):

θ =


1200 ◦C on intervals 8, 9, 17, 18

1000 ◦C on intervals 2–6, 11–15

linear approximation on intervals 1, 7, 10, 16

The results of experiments [4] show that, to leading-order approximation, we can

assume that the temperature on the lateral surface Γ of the channel depends linearly

upon z. at each grid point z = zk , On each cross-section z = zk , we need to solve only

a two-dimensional Dirichlet boundary value problem for the Laplace equation for the

temperature θ by the same NAG Solver (see § 3.1).

Step 3. After Steps 1–2, we are able to calculate the set of functions{φ(k,j)} (see (A 5)),

and the discretized temperature gradients. Then, both the right-hand sides of (36) and

(37) are known at each grid point. We use the COSMOS/M program and the NAG

Laplace Solver D03EAF to deal with the two-dimensional Navier system (38), (39) and

the Poisson equation (40), (41).

Step 4. Given the boundary pressure, we can solve those four ordinary equations

(44)–(46). To solve (45), the discretized temperature gradient in z is calculated with the

use of data from Step 2.

With the above four steps, we are able to calculate the whole displacement vector

Ψ(0) (see (28)), which then leads to the evaluation of the stress components. We use the

following values of the elastic moduli:

Young’s Modulus = 3.0× 1010 (Pa),

Poisson’s ratio = 0.25,

Coefficient of linear thermal expansion = 1.0× 10−6(K−1).

We set l = 0.2. We use a uniform mesh on the plane ζ, with the mesh size being 0.003. A

uniform grid in z is also used, with the grid size being 0.004.

We present the results of two numerical tests.

(1) First, we demonstrate that the above asymptotic algorithm enables one to take into
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Figure 3. The cross-section (a); z = 0.3l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. First numerical

test.

account not only the longitudinal tension-compression (along the z-axis) but also

bending. We set ε = 0.1 and assume that at z = 0 the pressure in the channels with

the higher temperature (1200◦C) is equal to 1.001 × 106 Pa, whereas in the other

channels (at z = 0) the pressure is assumed to be 106 Pa. At z = l the pressure

in all channels is equal to 1.025× 106 Pa, and the z-dependence of pressure in the

channels is assumed to be linear.

(2) In the second numerical test we assume that in each cross-section the pressure is

the same in all channels, but it varies linearly along the z-axis. At the left end

(z = 0) we set the pressure to be 106 Pa, and at the left end (z = l) it is equal to

1.025× 106 Pa. The small parameter ε is set to be 0.01.

We emphasize that the numerical simulation is three-dimensional. To illustrate this we

give the results for two separate cross sections at z = 0.3l and z = 0.7l. The contour

line pictures and the 3D surface pictures for the largest principal eigenvalue of the stress

tensor and the von Mises stress

σvonMises := ( 1
6
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2])1/2

with σi being the principal components of the stress tensor, are presented.

Figures 3–8 illustrate the results of the first numerical experiment (that involves bending)

and include the data for the greatest principal stress and the von Mises stress for all three

types of junctions shown in Fig. 1.
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Figure 4. The cross-section (a); z = 0.7l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. First numerical

test.

In Figs 9–14, we illustrate the results for the second numerical test where we emphasize

the contribution of the temperature gradient in the stress state.

The results of numerical computations show that the pressure and temperature differ-

ence may cause the stress concentration within the junction areas; in particular, the 2D

pictures exhibit the stress concentration near the corners. It is explicit that the singular

behaviour of stress is associated with solutions ϕ, χ1, χ2 of the auxiliary 2D problems

(A6)–(A8) formulated on the scaled cross-section of the 3D junction; the surface plots

show the behaviour of the total stress field produced by the full ansatz of the asymptotic

expansion (35). One can see that the 3D model exhibits ‘bending’ of the junction area

(Figs 3–6) caused by the pressure difference. In Figs 7–14, the pressure was self-balanced,

and and the bending mode is not observed.

It is known (see Williams [13]) that, in general, the solutions of problems of linear

elasticity may have singular stress components near the angular points of the boundary;

the greatest order of singularity corresponds to the case (c) of Fig. 1, then we have the

cross-section of Fig. 1(a), and the smallest exponent of singularity corresponds to the

geometry in Fig. 1(b). In the next section, we also show that the effective shear moduli

are small for the cell-structures corresponding to the cross-sections given in Fig. 1(a) and

Fig. 1(b). The above suggests that when cracking occurs, it will affect, first, the structures

corresponding to the geometry of Fig. 1(c); however if the crack occurs in a structure

corresponding to the geometries of Fig. 1(a) and Fig. 1(b), one should expect to have a

shear failure of the lattice in a large neighbourhood of the defect.
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Figure 5. The cross-section (b); z = 0.3l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. First numerical

test.

5 Honeycomb structure under remote loading

In this section we present the homogenization procedure for thin-wall structures. The

asymptotic approach gives us the expansion of the model displacement fields and, as a

result, the asymptotic approximation of the effective moduli. It will be shown that the

leading term of this expansion agrees with the known ‘engineering approach’ [14, 15].

However, we derive the ‘junction boundary conditions’ in a rigorous way, and obtain high

order corrections for the effective elastic moduli. That enables us to evaluate the shear

moduli of the thin-walled composites, unavailable in the general engineering literature.

5.1 Formal asymptotic approach

Consider a periodic structure, in other words the structure which can be obtained by a

shift of an elementary cell S in two non-parallel directions. In 2D the elementary cell

could be a parallelogram, square, rectangle or hexagon. One can reduce the problem

formulated for the whole composite to the problem for a single cell only.

Let Ξ (ε) be a domain defined as a union of thin regions Π (n)
ε = {(x(n)

1 , x
(n)
2 ) : 0 < x

(n)
1 < L,

|x(n)
2 | < ε/2}, 0 < ε � 1, n = 1, . . . , N (where x(n)

1 , x
(n)
2 are the local coordinates shown

in Fig. 16) and junction area O(ε); Ξ (ε) covers the whole elementary cell of the periodic

structure excluding voids.

The junction region is specified in such a way, that O ⊂ [−Cε, Cε]× [−Dε, Dε], where
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Figure 6. The cross-section (b); z = 0.7l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. First numerical

test.

C and D are some constants. The junction region characterized the area where the bridges

join each other (O ⊂ ∪n,k(Π (n) ∩Π (k))).

The boundary of the thin-wall structure inside the elementary cell S is split into two

parts. First, ∂Ξ (ε)
1 is defined as the lateral part of the boundary ∂Ξ (ε), ∂Ξ (ε) ∩ ∂S = ∅. The

remaining part is ∂Ξ (ε)
2 = ∂Ξ (ε)\∂Ξ (ε)

1 associated with the border of the periodic cell.

The elasticity problem in Ξ (ε) can be formulated in the following form. On the lateral

boundary of the bridges and junction, we impose free traction boundary conditions and

on the edges of the bridges the displacement conditions are specified1:

µ∆U(x) + (λ+ µ)∇∇ ·U(x) = 0, x ∈ Ξ (ε),

σ(n)(U, x) = 0, x ∈ ∂Ξ (ε)
1 ,

U(x) = U∗(x), x ∈ ∂Ξ (ε)
2 , (47)

where U∗(x) is the trace of the test field.

As we shall see, in the limit case, when the thickness of the bridges tends to zero (or

has the order O(ε), where ε is a small parameter), the solution of the system (47) can

be represented as a linear combination of solutions of model problems corresponding

to each bridge plus and the solution of a model problem in the junction region. By the

1 The values of these displacements are defined by the compound problem, including the nearby

periodic cells.
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Figure 7. The cross-section (c); z = 0.3l. 3D graph of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. First numerical

test.

Figure 8. The cross-section (c); z = 0.7l. 3D graph of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. First numerical

test.
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Figure 9. The cross-section (a); z = 0.3l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. Second numerical

test.

asymptotic technique the displacement field for each thin bridge Π (n) can be represented

as a series (see Bakhvalov & Panasenko [16] and Appendix A.4 for detailed analysis):

U(n)(x) ∼
∞∑
i=0

εi

[
2∑
k=0

εkU(n)
i,k +

4∑
k=0

εkV(n)
i,k

]
, x ∈ Π (n). (48)

If the lateral surface of the bridge is free of traction (which is true for a honeycomb with

voids) the leading term of this expansion has the following vector polynomial form (it is

assumed that each thin bridge has a constant thickness):

U(n) ∼U(n)
0,0 +V(n)

0,0, U(n)
0,0 =

(
u

(n)
0

0

)
=

(
A(n) x(n) + B(n)

0

)
,

V(n)
0,0 =

(
0

v
(n)
0

)
=

(
0

C (n)(x(n))3 + D(n)(x(n))2 + E(n) x(n) + F (n)

)
, (49)

where x(n) is the local coordinate along the bridge and the coefficients A(n), B(n), C (n), D(n),

E(n), F (n) are defined from the boundary conditions on the edges of the bridges and the

‘junction boundary condition’.

Our intention is to derive the ‘junction boundary condition’ from the analysis of the

boundary layer near the junction point.

The smooth cut-off function is defined for each thin region and it is equal to 0 in the
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Figure 10. The cross-section (a); z = 0.7l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. Second numerical

test.

junction area and 1 in the thin bridge (far away from the junction point):

χ(X(n)) = 1, for X(n) > 1 and χ(X(n)) = 0, for X(n) < 1/2.

Here X(n) = x(n)/ε are the ‘fast’ local variables.

Under such notation the solution u(x) of the equilibrium equation (47) can be repre-

sented in the form:

U(x) =

N∑
n=1

χ(X(n)) U(n)(x(n)) +W(X), (50)

where U(n)(x) is the asymptotic expansion of the solution in the thin bridge (48), χ(X(n))

is a cut-off function,W(X) is the boundary layer solution (it decays exponentially), which

admits the asymptotic representation

W(X) =

∞∑
i=0

εiW(i)(X). (51)

In the formulae above the ‘fast’ global variables X are introduced like X = x/ε.

Substituting (50) in the governing equations and collecting the coefficients near like

powers of ε we obtain the set of boundary value problems in the scaled region Ξ (ε).
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Figure 11. The cross-section (b); z = 0.3l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. Second numerical

test.

Figure 12. The cross-section (b); z = 0.7l. 3D graphs of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. Second numerical

test.
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Figure 13. The cross-section (c); z = 0.3l. 3D graph of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. Second numerical

test.

Figure 14. The cross-section (c); z = 0.7l. 3D graph of the von Mises stress (top-left) and the

greatest principal eigenvalue (top-right). 2D COSMOS/M contours of the the von Mises stress

(bottom-left) and the greatest principal eigenvalue (bottom-right) for the field U. Second numerical

test.
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Figure 15. Deformation of the junction region in the honeycomb structure.

5.1.1 First boundary layer

The first boundary layer compensates for the discrepancy left by the leading term of

the asymptotic expansion in ∪Nn=1Π
(n)
ε . As a result, the first boundary layer problem is

the inhomogeneous problem, where body forces and surface traction are the functions

of u(n)
0 , v

(n)
0 only. The condition of exponential decay of the boundary layer at infinity is

imposed:

L(W(0), X) +F0(X) = 0, X ∈ Ξ,
σ(n)(W(0), X) +P0(X) = 0, X ∈ ∂Ξ1,

W(0) → 0, ‖x‖ → ∞, (52)

where the body forces and surface tractions are specified as

F0(X) =

N∑
m=1

χ′′(X(m)
1 )

(
(2µ+ λ) u(m)

0 (0)

µv
(m)
0 (0)

)
, P0(X) =

N∑
m=1

χ′(X(m)
1 )

(
µv

(m)
0 (0)

λu
(m)
0 (0)

)
, (53)

and Ξ and ∂Ξ1 are the domain Ξ (ε) and its boundary enlarged in ε−2 times.

The vector-valued functions (53) satisfy the orthogonality conditions∫
Ξ

F(0) dX−
∫
∂Ξ

P(0) ds = 0, (54)

∫
Ξ

X×F(0) dX−
∫
∂Ξ

X×P(0) ds = 0. (55)

We can reduce this boundary layer problem to the problem in a finite domain. It

corresponds to the fact that the body forces and the surface tractions located in the

region of enlarged thin bridges (where χ′(X(n)) and χ′′(X(n)) are not equal to 0). Thus, the

junction area is described by the homogeneous Navier system with zero traction on the

lateral surface. In the region Ξ\O the solution of the problem (52) admits the following

expansion:

W(0) =


(
u

(n)
0 (0)

v
(n)
0 (0)

)
(1− χ(X(n)

1 )), X(n) ∈ Ξ \ O
W(0,1), X ∈ O

(56)

where X(n) are the local coordinates associated with the bridge, and the fieldW(0,1) satisfies
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the following problem in O (enlarged junction region, see Fig. 15):

L(W(0,1), X) = 0, X ∈ O,
σ(n)(W(0,1), X) = 0, X ∈ ∂Ξ1\Γ (i), (57)

Γ (1) : W(0,1) =

(
u

(1)
0 (0)

v
(1)
0 (0)

)
Γ (2) : W(0,1) =

(−v(2)
0 (0)

u
(2)
0 (0)

)
,

Γ (3) : W(0,1) =

(−u(3)
0 (0)

−v(3)
0 (0)

)
Γ (4) : W(0,1) =

(
v

(4)
0 (0)

−u(4)
0 (0)

)
,

where Γ (i) are parts of the boundary shown in Fig. 15.

Now our intention is to find the solution of this system and satisfy the continuity of dis-

placement and traction on Γ (1), Γ (2), Γ (3), Γ (4). Such conditions arise from the matching

with the solution in thin bridges (56). Note that solution (56) produces zero tractions on the

boundary Γ (n). It follows from the fact that χ′(X(n)
1 ) = 0 when X(n) ∈ Γ (n). Therefore, on all

parts of the boundary O we have zero traction, and the solution must be represented as the

vector with constant components (it corresponds to the rigid translation of the region O).

We can find such kind of solution (with ‘constant’ displacement field inside O) if and

only if the following conditions hold:

u
(1)
0 (0) = −v(2)

0 (0) = −u(3)
0 (0) = v

(4)
0 (0),

v
(1)
0 (0) = u

(2)
0 (0) = −v(3)

0 (0) = −u(4)
0 (0). (58)

Under such conditions (58) the fieldW(0,1) has zero energy and the continuity of tractions

on Γ (n) is satisfied.

5.1.2 Second boundary layer

Applying a similar procedure for the construction of the boundary layer for the next

asymptotic term of (51), we obtain the following boundary value problem for the field

W(1):
L(W(1), X) +F(1)(X) = 0, X ∈ Ξ,
σ(n)(W(1), X) +P(1)(X) = 0, X ∈ ∂Ξ,

W(1) → 0, ‖x‖ → ∞, (59)

where

F(1)(X) =

N∑
m=1

χ′′(X(m)
1 )


(2µ+ λ) (X(m)

1 ∂x u
(m)
0 (0)−X(m)

2 ∂x v
(m)
0 (0) + u

(m)
1 (0))

µ

(
− λX

(m)
2

λ+ 2µ
∂x u

(m)
0 (0) +X

(m)
1 ∂x v

(m)
0 (0) + v

(m)
1 (0)

) 

+χ′(X(m)
1 )


{

2(2µ+ λ)− λ(λ+ µ)

λ+ 2µ

}
∂x u

(m)
0 (0)

(µ+ λ) ∂x v
(m)
0 (0)


 ,

P(1)(X) =

N∑
m=1

χ′(X(m)
1 )

 µ

(
− λX

(m)
2

λ+ 2µ
∂x u

(m)
0 (0) +X

(m)
1 ∂x v

(m)
0 (0) + v

(m)
1 (0)

)
λ(X(m)

1 ∂x u
(m)
0 (0)−X(m)

2 ∂x v
(m)
0 (0) + u

(m)
1 (0))

 .
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This problem admits a solution which decays at infinity, provided the following orthogo-

nality conditions for (59) hold:∫
Ξ

F(j)
1 dX−

∫
∂Ξ

P(j)
1 ds = 0, j = 1, 2, (60)

∫
Ξ

X1F(1)
2 −X2F(1)

1 dX−
∫
∂Ξ

X1P(1)
2 −X2P(1)

1 ds = 0. (61)

The conditions (60) can be represented in the following simplified form:

∂x u
(1)(0)− ∂x u(3)(0) = 0, ∂x u

(2)(0)− ∂x u(4)(0) = 0, (62)

The condition (61) is satisfied identically.

Following the procedure employed for the first boundary layer we reduce our problem

in an infinite domain to the problem in a finite domain. We use the following properties

of the system (59): inside the region O it is homogeneous, and effects of the action of the

cut-off function can be transformed into Dirichlet boundary conditions imposed on Γ (n).

As before, the field W(1) is sought in the form

W(1) =



 X
(n)
1 ∂x u

(n)
0 (0) + u

(n)
1 (0)−X(n)

2 ∂x v
(n)
0 (0)

− λX
(n)
2

λ+ 2µ
∂x u

(n)
0 (0) + v

(n)
1 (0) +X

(n)
1 ∂x v

(n)
0 (0)

(1− χ(X(n)
1 )), X(n) ∈ Ξ\O

W(1,1), X ∈ O

(63)

where W(1,1)(X) satisfies the following system:

L(W(1,1), X) = 0, X ∈ O,
σ(n)(W(1,1), X) = 0, X ∈ ∂Ξ1\ Γ (i). (64)

Boundary conditions on Γ (i) are as follows:

Γ (1) : W(1,1) =

 X1 ∂x u
(1)
0 (0) + u

(1)
1 (0)

− λX2

λ+ 2µ
∂u(1)

0 (0) + v
(1)
1 (0)

+

(
−X2 ∂x v

(1)
0 (0)

X1 ∂x v
(1)
0 (0)

)
,

Γ (2) : W(1,1) =

− λX1

λ+ 2µ
∂u(2)

0 (0)− v(2)
1 (0)

X2 ∂x u
(2)
0 (0) + u

(2)
1 (0)

+

(
−X2 ∂x v

(2)
0 (0)

X1 ∂x v
(2)
0 (0)

)
,

Γ (3) : W(1,1) =

 X1 ∂x u
(3)
0 (0)− u(3)

1 (0)

− λX2

λ+ 2µ
∂u(3)

0 (0)− v(3)
1 (0)

+

(
−X2 ∂x v

(3)
0 (0)

X1 ∂x v
(3)
0 (0)

)
,

Γ (4) : W(1,1) =

− λX1

λ+ 2µ
∂u(4)

0 (0) + v
(4)
1 (0)

X2 ∂x u
(4)
0 (0)− u(4)

1 (0)

+

(
−X2 ∂x v

(4)
0 (0)

X1 ∂x v
(4)
0 (0),

)
where X1, X2 are the global ‘fast’ coordinates associated with the junction region.

https://doi.org/10.1017/S0956792599003654 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792599003654


208 S. T. Kolaczkowski et al.

The traction on the boundary Γ (n) can be evaluated as

σ(n)(W(1); X(n)) =

 4µ(λ+ µ)

λ+ 2µ
∂x u

(n)
0 (0)

0

 .

The energy accumulated in the junction region is given by

∆EO = −
∫
∂Ξ∪Γ (n)

σ(n)(W(1,1); X(n))W(1,1)(X(n)) ds

=

N∑
n=1

4µ(λ+ µ)

λ+ 2µ
∂x u

(n)
0 (0)

[
X

(n)
1 ∂x u

(n)
0 (0) + u

(n)
1 (0)

]
,

where X(n)
1 is on the boundary Γ (n); the terms ∂x v

(n)
0 (0) are not present in the expression

for the energy integral.

‘Rotation’ conditions for the transversal displacement are imposed in the form

∂x v
(1)
0 (0) = ∂x v

(2)
0 (0) = ∂x v

(3)
0 (0) = ∂x v

(4)
0 (0). (65)

The condition (65) has a simple physical meaning. It corresponds to the fact that the

junction behaves like a rigid solid when we restrict ourselves to the leading term of the

displacement field. This property holds for a junction of any shape including three-beam

and six-beam junctions.

If we consider next junction layer problems we get additional restrictions for the

coefficients A,B, C, D, E, F (as the solvability conditions of corresponding equations).

Namely, from the third junction layer:

4∑
m=1

∂2
x v

(m)
0 (0) = 0, (66)

and from the fourth junction layer:

∂3
x v

(1)(0)− ∂3
x v

(3)(0) = 0, ∂3
x v

(2)(0)− ∂3
x v

(4)(0) = 0. (67)

Due to the solvability conditions (62), (66), (67) and continuity conditions (58), (65)

the set of coefficients A,B, C, D, E, F is uniquely defined, and the leading term of the

asymptotic approximations of the displacement field is obtained in closed form.

5.2 The leading order approximation for the effective moduli

It is known that the effective elastic moduli can be calculated as the energy of some

special fields in the unit periodic cell (see Bakhvalov & Panasonko [16] and Appendix

A.3 for details):

Hmk =
1

mes2S
∫
Ξ

σ(U(m); x) : ε(U(k); x) dx, (68)

where σ and ε are stress and strain tensors, S is the elementary cell of the periodic

structure (see Fig. 19). The model fields U(n), U(k) describe the displacements in the

elementary cell when the whole composite is loaded by the test fields. Namely, ε11 = 1 for

n = 1; ε22 = 1 for n = 2; ε12 = 1 for n = 3 (all other components of the strain tensor are

supposed to be zero).
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Figure 16. Three types of thin-walled structures.

The problem of evaluation of the effective moduli for honeycomb structures has been

treated by Torquato et al. [15]. The authors used the approach based on the Hashin–

Strikhman estimates for the effective characteristics of the composite structures. Such kind

of treatment yields the approximations for the bulk and Young’s moduli.

Our method of calculation is based on the asymptotic approach, and the estimates of

the elastic energy give the total effective moduli matrix and allow one to take into account

the high order terms. Also this approach works for composites where the thickness of

‘thin bridges’ is non-constant.

Now we can evaluate the energy of a single bridge assuming that the leading term of the

asymptotic expansion (49) is known. In comparison with the case of the total asymptotic

expansion, there is an additional simplification: the lateral surface of the bridge is free of

tractions. It means that the first ansatz of the asymptotic expansion (see Appendix A.4

for full expansion) has the following form:

U(n) =

 u0(x1)

− λ

λ+ 2µ
x2 ∂x u0(x1)

 ,

V(n) =

−x2 ∂x v0(x1) +
4µ+ 3λ

6(λ+ 2µ)
x3

2 ∂
3
xxx v0(x1) + ε2

µ+ λ

2(λ+ 2µ)
x2 ∂

3
xxx v0(x1)

v0(x1) +
λ

λ+ 2µ

x2
2

2
∂2
xx v0(x1)

 , (69)

where x1, x2 are the coordinates associated with the thin bridge.

The equations for the leading term components reduce to

∂2
xx u0(x1) = 0, ∂4

xxxx v0(x1) = 0,

with the Dirichlet boundary conditions prescribed on the edges.

One can calculate the components of the strain tensor associated with the above-
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Table 1. For the honeycomb composites with constant thickness bridges the following

relations hold.

Type of honeycomb N Area S Area fraction f Parameters for S = 1

Trianglea 6 S = 2
√

3L2 f =
√

3εL−1 L = 1√
2

4√
27

f =
3
√

2ε

4√
3

Squarea 4 S = 4L2 f = εL−1 L = 1
2

f = ε
2

Hexagonal 3 S = 3
2

√
3L2 f = 2√

3
εL−1 L =

√
2

4√
27

f =
√

6ε

4√
3

a L is half the actual bridge length.

mentioned fields:

ε11 = ∂x u0(x1)− x2 ∂
2
xx v0(x1),

ε22 = − λ

λ+ 2µ
∂x u0(x1) +

λ

λ+ 2µ
x2 ∂

2
xx v0(x1),

ε12 =
4µ+ 3λ

2(λ+ 2µ)
x2

2 ∂
3
xxx v0(x1) +

λ

2(λ+ 2µ)
x2

2 ∂
3
xxx v0(x1)− ε2 λ+ µ

2(λ+ 2µ)
∂3
xxx v0(x1).

Now we substitute the leading term of the solution (69) in the formula for the energy

∆E0 =

∫ L

0

dx

∫ ε/2

−ε/2
σ(U(m); x) : ε(U(k); x) dy

=
4µ(λ+ µ)

λ+ 2µ

∫ L

0

{
A(m)A(k) ε+ 1

3
(3C (m) x+ D(m)) (3C (k) x+ D(k)) ε3

}
dx+ O(ε5), (70)

where the quantities A(k), C (k) and D(k) are the same as in (49).

The energy of the elementary cell can be evaluated as the sum of energies of thin bridges.

The junction area degenerates to the junction point, when the thickness of bridges tends

to zero. The effective elastic moduli are specified as follows:2

Hmk =
1

mes2S
N∑
n=1

∆E(n)
0 =

4µ(λ+ µ)

mes2S(λ+ 2µ)

N∑
n=1

×
∫ L

0

{
A(m)
n A(k)

n ε+ 1
3
(3C (m)

n x+ D(m)
n ) (3C (k)

n x+ D(k)
n ) ε3

}
dx+ O(ε5) (71)

where N is the number of bridges connected at the junction point (N = 3, 4, 6), the index

n corresponds to the number of the bridge, indices m, k correspond to the type of loading,

L is the length of the bridge, mes2S is the area of the elementary cell, and ε is the

normalized thickness of the bridge.

Asymptotic formulae for effective elastic moduli of thin-bridges composites under the

assumption of constant thickness of the bridges (f is the area fraction) are derived in the

following form:

2 The junction gives the effect for next (high order) terms of the approximation of the effective

moduli, which is not considered in this section. At the same time we note that the second term

of the asymptotic expansion of the effective moduli has the order O(ε2) and can be evaluated by

solving the problem (64).
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Triangular honeycomb:

H ' 4µ(λ+ µ)

2µ+ λ


3
8
f 1

8
f 0

1
8
f 3

8
f 0

0 0 1
4
f

 (72)

Square honeycomb:

H ' 4µ(λ+ µ)

2µ+ λ


1
2
f 0 0

0 1
2
f 0

0 0 1
8
f3

 (73)

Hexagonal honeycomb:

H ' 4µ(λ+ µ)

2µ+ λ


1
4
f + 3

8
f3 1

4
f − 3

8
f3 0

1
4
f − 3

8
f3 1

4
f + 3

8
f3 0

0 0 3
4
f3

 . (74)

Note, that the shear modulus (H33) has a different order in comparison with other

effective moduli in the case of square and hexagonal honeycombs. It corresponds to the

fact that these honeycombs have small resistance to the shear loading. Shear loading

produces bending of bridges only.

Next, we evaluate the Young’s modulus in the z-direction, the direction perpendicular

to the cross-section of the honeycomb. Indeed, the calculations based on (68) give the

following simple expression (one can compare this expression with the calculations of

Young’s modulus [17])

Ez = Ef =
µ(3λ+ 2µ)

µ+ λ
f. (75)

The calculation of the effective thermal expansion coefficients is based on the formula

Υmk =
1

mes2S
∫
Ξ

γ(x)∇T (n) · ∇T (k) dx, (76)

where γ(x) is the thermal expansion coefficient and T (n), n = 1, 2 are the temperature fields

corresponding to the test fields x1 and x2 imposed on the composite structure.

The asymptotic procedure for the Laplace equation is even simpler than one presented

earlier for the Lamé system, and the leading term of the temperature field inside each

bridge can be obtained as the solution of the equation

∂2
xx T

(n) = 0, 0 < x < L,

and hence

T (n) = A(n) x+ B(n).

The appropriate Dirichlet data are specified at the end of the interval.

Then the thermal expansion matrix can be obtained as the sum of the Dirichlet integrals

calculated for each bridge, multiplied by the thermal expansion coefficient of the bridge

material:

Υmk =
γ

mes2S
N∑
n=1

∫ L

0

A(m)
n A(k)

n ε dx+ O(ε2). (77)
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For composite structures considered above the volume fraction of the material f is

small and all bridges have a constant thickness ε. Finally, we derive that for all three types

of composite structures the effective matrix of thermal expansion coefficients has the form

Υ ' γ
( 1

2
f 0

0 1
2
f

)
. (78)

6 Conclusion

In this paper, we have presented an efficient semi-analytic approach for description of

the stress state in thermo-elastic thin-walled composite structures encountered in catalytic

combustor monoliths. The results include a numerical method based on the accurate

asymptotic algorithm, and a set of 3D numerical tests carried out for analysis of the stress

concentration at the junctions of the honeycomb structure. An accurate homogenization

procedure was employed together with the asymptotic method to evaluate the effective

elastic and thermal moduli of the composite structures.

The advantage of the asymptotic technique used in this work is that it enables one

to solve the problem for the cases when the standard numerical techniques (like direct

application of FEM) do not provide satisfactory accuracy. In addition, the homogenization

analysis includes accurate asymptotic formulae even for the cases when the effective shear

modulus of the monolith is small.

Further extension of this work is in analysis of thermal cracks propagating in a

homogenized material with non-uniform distribution of temperature.
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Appendix A.1 Definition of the functions φ(k,j)

In this section we present the description of solutions of spectral problem associated

with the Neumann boundary value problem for the Lamé system in an infinite cylinder

Π = {(y1, y2) ∈ G, y3 ∈ R}, we adopt the notations

L(∂/∂y1, ∂/∂y2, ∂/∂y3), T(∂/∂y1, ∂/∂y2, ∂/∂y3, n)

for the matrix differential operators of the Navier system and traction boundary conditions

L(ξ1, ξ2, ξ3)

=

 (2µ+ λ)ξ2
1 + µ(ξ2

2 + ξ2
3) (µ+ λ)ξ1ξ2 (µ+ λ)ξ1ξ3

(µ+ λ)ξ1ξ2 (2µ+ λ)ξ2
2 + µ(ξ2

1 + ξ2
3) (µ+ λ)ξ2ξ3

(µ+ λ)ξ3ξ1 (µ+ λ)ξ3ξ2 (2µ+ λ)ξ2
3 + µ(ξ2

1 + ξ2
2)

 ,

T(ξ1, ξ2, ξ3) = n1

 (2µ+ λ)ξ1 + λξ2 λξ2 λξ3

µξ2 µξ1 0

µξ3 0 µξ1

+ n2

 µξ2 µξ1 0

λξ1 (2µ+ λ)ξ2 + λξ1 λξ3

0 µξ3 µξ2

 ;

where n = (n1, n2, 0) is the unit outward normal on the cylinder surface.
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We seek the solution of

L

(
∂

∂y

)
Φ(0) = 0 inΠ, T

(
∂

∂y
, n

)
Φ(0) = 0 on ∂Π

in the form

Φ(0) = eΛy3φ(0)(y1, y2),

where Λ and φ(0) are the eigenvalue and the eigenvector corresponding to the following

spectral problem

L

(
∂

∂y′
, Λ

)
φ(0)(y′) = 0 inG,

T

(
∂

∂y′
, Λ, n

)
φ(0)(y′) = 0 on ∂G,

where y′ = (y1, y2).

In this work we are interested in the case when Λ = 0. We define the generalized

eigenvectors φ(k), k > 0, to φ(0) and Λ = 0 in the following way:

L

(
∂

∂y′
, 0

)
φ(k)(y′) +

∂L

∂Λ

(
∂

∂y′
, 0

)
φ(k−1)(y′) +

1

2

∂2L

∂Λ2

(
∂

∂y′
, 0

)
φ(k−2)(y′) = 0 inG, (A 1)

T

(
∂

∂y′
, 0, n

)
φ(k)(y′) +

∂T

∂Λ

(
∂

∂y′
, 0, n

)
φ(k−1)(y′) = 0 on ∂G, (A 2)

where we assume that all quantities with negative indices are zero. Furthermore, we notice

in the sense of notations (25), (26) that

L0

(
∂

∂y′

)
= L

(
∂

∂y′
, 0

)
, L1

(
∂

∂y′

)
=
∂L

∂Λ

(
∂

∂y′
, 0

)
, L2

(
∂

∂y′

)
=

1

2

∂2L

∂Λ2

(
∂

∂y′
, 0

)
,

T0

(
∂

∂y′
, n

)
= T

(
∂

∂y′
, 0, n

)
, T1(n) =

∂T

∂Λ

(
∂

∂y′
, 0, n

)
.

The 2D boundary value problem (A 1), (A 2) posed on the cross-section G is solvable if

and only if the following orthogonality conditions are satisfied:∫
G

[
∂L

∂Λ

(
∂

∂y′
, 0

)
φ(k−1)(y′) +

1

2

∂2 L

∂Λ2

(
∂

∂y′
, 0

)
φ(k−2)(y′)

]
· R(j) dy′

−
∫
∂G

[
∂T

∂Λ

(
∂

∂y′
, 0, n

)
φ(k−1)(y′)

]
· R(j) ds = 0, j = 1, 2, 3,

where R(j) are no-trivial solutions of the homogeneous Neumann boundary value problem

for the Navier operator in G (i.e. the rigid-body translations and rotations),

R(j) = e(j), R(3) = e(3) × y′, j = 1, 2. (A 3)

Finally, we construct a set

{φ(0), φ(1), . . . , φ(N)}, (A 4)

whose elements are the eigenvector and the generalized eigenvectors of (A 1). We note

that the problem (A 1) formulated for φ(N+1) is not solvable, which means that we can

not proceed further in (A 1), (A 2). Often, the set (A 4) is called the Jordan’s chain [10],
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and the number N + 1 is said to be the length of Jordan’s chain. There are four Jordan’s

chains

φ(k,0), φ(k,1), φ(k,2), φ(k,3), k = 1, 2,

φ(k,0), φ(k,1), k = 3, 4.

Two Jordan’s chains of the length 4 correspond to a bending of the cylinder about the

Oy1 or Oy2 axis, and the remaining chains of the length 2 correspond to a longitudinal

tension-compression (in the y3 direction) and rotation (about the Oy3 axis). The explicit

formulae for φ(k,j) are

φ(1,0) = e(1), φ(2,0) = e(2), φ(3,0) = e(3), φ(4,0) = −y2 e(1) + y1 e(2),

φ(1,1) = −y1 e(2), φ(2,1) = −y2 e(3),

φ(3,1) = − λ

2(µ+ λ)
(y1 e(1) + y2 e(2)), φ(4,1) = ϕ(y1, y2) e(3),

φ(1,2) =
λ

4(µ+ λ)
{(y2

1 − y2
2 − k1 y2) e(1) + (2y1 y2 + k1 y1) e(2)},

φ(2,2) =
λ

4(µ+ λ)
{(2y1 y2 − k2 y2) e(1) + (y2

2 − y2
1 + k2 y1) e(2)},

φ(1,3) = e(3)

{
4µ+ 3λ

12(µ+ λ)
y3

1 +
λ

4(µ+ λ)
y1 y

2
2 − χ1 + k1

λ

4(µ+ λ)
ϕ(y1, y2)

}
,

φ(2,3) = e(3)

{
4µ+ 3λ

12(µ+ λ)
y3

2 +
λ

4(µ+ λ)
y2

1 y2 − χ2 + k2
λ

4(µ+ λ)
ϕ(y1, y2)

}
; (A 5)

here e(k) are the unit basis vectors, k1 and k2 are constants, and ϕ, χi are the solutions of

the following 2D Neumann problems,3 respectively:

∇2ϕ = 0, (y1, y2) ∈ G; ∂n ϕ = y2 n1 − y1 n2, (y1, y2) ∈ ∂G, (A 6)

∇2χ1 = 0, (y1, y2) ∈ G; ∂n χ1 = y2
1 n1 +

λ

λ+ µ
y1 y2 n2, (y1, y2) ∈ ∂G, (A 7)

∇2χ2 = 0, (y1, y2) ∈ G; ∂n χ2 = y2
2 n2 +

λ

λ+ µ
y1 y2 n1, (y1, y2) ∈ ∂G, (A 8)

where the vector n = (n1, n2) is the outward unit normal of ∂G.

The right-hand sides of boundary value problems (A 6), (A 7) and (A 8) are self-balanced,

i.e. ∫
∂G

∂n ϕ ds = 0,

∫
∂G

∂n χj ds = 0, j = 1, 2,

and hence the solvability conditions are satisfied. To provide uniqueness we also impose

the normalization conditions∫
G

ϕ dy1 dy2 = 0,

∫
G

χj dy1 dy2 = 0, j = 1, 2.

3 The functions ϕ and χi are known as torsion and bending potentials [18].
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We also note that two constants k1, k2 are chosen in such a way that

kj λ

4(µ+ λ)

∫
G

( y2
1 + y2

2 − ||ϕ||2 ) dY1 dY2

=

∫
G

( y1 ∂y2
χj − y2 ∂y1

χj + (−1)j+1 λ

µ+ λ
yj y1 y2) dy1 dy2, (A 9)

in order to satisfy certain biorthogonal conditions [7].

The coefficients k1, k2 in (A 5) are chosen in accordance with (A 9). Their purpose is

to provide two uncoupled differential equations (31) for v1, v2. We remark that in the

case when (A 9) does not hold, we have to deal with a system of two coupled differential

equations with respect to v1 and v2.

Appendix A.2 Boundary layer fields

In this section we formulate the boundary value problems for the fields V(1,0)(X), V(2,0)(Y)

(independent of ε) from the expansion (27).

The above fields compensate for the discrepancy produced by the expansion (28) in the

boundary conditions (23), (24) at the ends of the thin cylindrical domain.

The field V(1,0)(X) is the solution of the following Neumann boundary value problem

for the Navier operator

L

(
∂

∂X

)
V(1,0)(X) = 0, (X1, X2) ∈ G, X3 > 0, (A 10)

σ(n)

(
∂

∂X

)
V(1,0)(X) = −P(X1, X2), (X1, X2) ∈ G, X3 = 0, (A 11)

σ(n)

(
∂

∂X

)
V(1,0)(X) = 0, (X1, X2) ∈ G, X3 > 0, (A 12)

where P is the leading order approximation of the trace of the vector-function Ψ(0) on

the surface X3 = 0.

The solution of the problem (A 10)–(A 12), which decays exponentially at infinity, exists

only if only [7] ∫
G

P · R(j) dX1 dX2 = 0, j = 1, 2, 3, (A 13)

where R(j) denote the rigid body translations and the rotation about the OX3 axis (see

(A 3)). The conditions (A 13) are equivalent to (35).

The field V(2,0)(Y) satisfies the mixed Dirichlet–Neumann boundary value problem for

the Navier operator

L

(
∂

∂Y

)
V(2,0)(Y) = 0, (Y1, Y2) ∈ G, Y3 < 0, (A 14)

σ(n)

(
∂

∂Y

)
V(2,0)(Y) = 0, (Y1, Y2) ∈ G, Y3 < 0, (A 15)

V(2,0)(Y) = −Q(Y1, Y2), (Y1, Y2) ∈ G, Y3 = 0, (A 16)
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where Q represents the leading order approximation of the discrepance produced by Ψ(0)

in the boundary condition (23).

The conditions for the exponential decay of V(2,0) have the form (34) (for more details

see [7]). We remark that in our simple example the formula (34) yields Q ≡ 0 and

V(2,0) ≡ 0.

Appendix A.3 Homogenisation of the linear elasticity equations

For the sake of reader’s convenience, we give a brief description of the homogenization

procedure for the Navier system (the general theory is given by Bakhvalov & Panasenko

[16]).

Lxx(u) := µ∆u + (λ+ µ)∇∇ · u = 0, x ∈ Ω. (A 17)

The displacement vector u depends on the ‘slow’ variables x and the ‘fast’ variables

ξ = x/ε. Fast coordinates are associated with the periodic structure (containing inclusions,

cavities, etc.) characterized by the small parameter ε. The differential operator of the 2D

Navier system can be rewritten in the matrix form:

Ltx := D ∂
∂t
H(ξ)Dt

∂
∂x
, (A 18)

where

D ∂
∂x

=


∂

∂x1
0

1√
2

∂

∂x2

0
∂

∂x2

1√
2

∂

∂x1

 H =

 2µ+ λ λ 0

λ 2µ+ λ 0

0 0 2µ

 .

We are looking for a solution of the Navier system Lxx u(x, ξ) = 0 in the following

asymptotic form:

u(x, ξ) = u(0)(x) + εu(1)(x, ξ) + ε2 u(2)(x, ξ) + O(ε3). (A 19)

The coefficients in (A 19) solve the recurrent system of equations:

Lξξ u(0)(x) = 0, (A 20)

Lξξ u(1)(x, ξ) = −Lξx u(0)(x)−Lxξ u(0)(x), (A 21)

Lξξ u(2)(x, ξ) = −Lξx u(1)(x, ξ)−Lxξ u(1)(x, ξ)−Lxx u(0)(x). (A 22)

The first equation (A 20) is the identity. Note, that Lxξ u(0)(x) = 0 as well. The right

hand side of the equation (A 21) can be simplified as

Lξx u(0)(x) = D ∂
∂ξ
H(ξ)Dt

∂
∂x

u(0) = D ∂
∂ξ
H(ξ)

(
∂u0

∂x1
,

∂v0

∂x2
,

1√
2

(
∂u0

∂x2
+
∂v0

∂x1

))
=

3∑
n=1

Cn(x)D ∂
∂ξ
H(ξ)Dt

∂
∂ξ

V(n) =

3∑
n=1

Cn(x)Lξξ V(n). (A 23)
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Here we use the following notations:

u(0) =

(
u0

v0

)
, C1(x) =

∂u0

∂x1
, C2(x) =

∂v0

∂x2
, C3(x) =

1√
2

(
∂u0

∂x2
+
∂v0

∂x1

)
,

V(1) =

(
ξ1

0

)
, V(2) =

(
0

ξ2

)
, V(3) =

1√
2

(
ξ2

ξ1

)
, Dt

∂
∂ξ

V(n) =

 δ1n

δ2n

δ3n

 .

It is easy to see that

u(1)(x, ξ) =

3∑
n=1

W(n)(ξ)Cn(x), (A 24)

where the fields W(n) satisfy the following system:

Lξξ(W
(n)(ξ) + V(n)(ξ)) = 0, x ∈ R2. (A 25)

It has a solution if and only if the following solvability conditions hold:

〈ξ × Lξξ u(i)〉 = 0 and 〈Lξξ u(i)〉 = 0, (A 26)

where 〈·〉 denotes the average over an elementary cell of the periodic structure. We

apply the condition (A 26) to each elementary cell separately and obtain the periodicity

boundary conditions for the functions W(n). In the case of the square periodical cell [1×1]

the ‘periodical boundary conditions’ can be formulated as

W(n)(0, ξ2) = W(n)(1, ξ2), σ(W(n); 0, ξ2) = σ(W(n); 1, ξ2), (A 27)

W(n)(ξ1, 0) = W(n)(ξ1, 1), σ(W(n); ξ1, 0) = σ(W(n); ξ1, 1). (A 28)

Now consider the third equation (A 22). Employing the following useful notations

W =

(
W(1)

1 W(2)
1 W(3)

1

W(1)
2 W(2)

2 W(3)
2

)
, V =

(
V(1)

1 V(2)
1 V(3)

1

V(1)
2 V(2)

2 V(3)
2

)
, C = (C1 C2 C3 )t ,

we write the right-hand side of the equation (A 22) as

D ∂
∂ξ
H(ξ)Dt

∂
∂x

W(ξ) C(x) +D ∂
∂x
H(ξ)Dt

∂
∂ξ

W(ξ) C(x) +D ∂
∂ξ
H(ξ) C(x)

= D ∂
∂ξ
H(ξ) Wt(ξ)D ∂

∂x
Dt

∂
∂x

u(0)(x) +D ∂
∂x

(
H(ξ)Dt

∂
∂ξ
{W(ξ) + V(ξ)}

)
Dt

∂
∂x

u(0)(x). (A 29)

Now apply the solvability conditions (A 26). The first term in (A 29) vanishes due to the

periodicity boundary conditions imposed on the function W(n). The second one gives the

homogenized elasticity equation

D ∂
∂x
ĤDt

∂
∂x

u(0)(x) = 0, x ∈ Ω, (A 30)

and the expression for the matrix of effective elastic moduli

Ĥ =

∫
[1×1]

H(ξ)Dt
∂
∂ξ
{W(ξ) + V(ξ)} dx. (A 31)

It is verified by direct calculations that

H(x)Dt
∂
∂ξ
{W(ξ) + V(ξ)} =

 σ11

σ22√
2 σ12

 = σ, Dt
∂
∂ξ
{W(ξ) + V(ξ)} =

 ε11

ε22√
2 ε12

 = ε
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and the final relation (A 31) can be rewritten in the following form:

Ĥ =

∫
[1×1]

[H(ξ)Dt
∂
∂ξ
{W(ξ) + V(ξ)}]tDt

∂
∂ξ
{W(ξ) + V(ξ)} dx

=

∫
[1×1]

σt(W(ξ) + V(ξ)) ε(W(ξ) + V(ξ)) dx (A 32)

Appendix A.4 Asymptotic expansion of the solution in the thin bridge

In this section we analyse the solution of linear isotropic elasticity in thin region. Such

kind of problem was firstly solved by Mouchan & Mouchan [19] and here we rewrite the

general procedure as this solution is important for analysis honeycomb structures (see

§ 5). The mathematical formulation of the problem can be formulated as

Lxx(u; x) := D ∂
∂x
H(ξ)D t

∂
∂x

(U) = 0, x ∈ Ω,

σ(n)(U; x) =

(
p

(1)
±

ε2 p
(2)
±

)
, x ∈ ∂Ω(1); U = a±, x ∈ ∂Ω(2), (A 33)

where

D ∂
∂x

=


∂

∂x1
0

1√
2

∂

∂x2

0
∂

∂x2

1√
2

∂

∂x1

 H =

 2µ+ λ λ 0

λ 2µ+ λ 0

0 0 2µ


and Ω = {(x, εt) : −1 < x < 1,− 1

2
< t < 1

2
}, ∂Ω(1) = {t = ± 1

2
}, ∂Ω(2) = {x = ±1}.

Due to the presence of the small parameter ε, which is the thickness of the thin bridge

we can rewrite the Navier system in the stretched coordinates x, t and define the recursive

identities for the displacement vector:

∂2
tt U

(n)
1 = −λ+ µ

µ
∂2 U

(n−1)
2 − λ+ 2µ

µ
∂2
xx U

(n−2)
1 , |t| < 1/2,

∂t U
(n)
1 = −∂x U(n−1)

2 , |t| = ±1/2,

∂2
tt U

(n)
2 = − λ+ µ

λ+ 2µ
∂2 U

(n−1)
1 − µ

λ+ 2µ
∂2
xx U

(n−2)
2 , |t| < 1/2,

∂t U
(n)
2 = − λ

λ+ 2µ
∂x U

(n−1)
1 , |t| = ±1/2. (A 34)

Now we apply the formulae (A 34) and check the solvability conditions on each step.

These procedure gives us the full asymptotic expansion of the solution (A 33). It admits

the following form:

u =

∞∑
i=0

εi

[
2∑
n=0

εnU(n)
i +

4∑
n=0

εnV(n)
i

]
. (A 35)

It is possible to see that this solution includes two set of Jordan chains. One corresponds

to the leading term with longitudinal components of the displacement, and another has

the transversal displacement in the leading term. The first Jordan chain has the following
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form:

U(0) =

(
u0

0

)
, U(1) =

 0

− λ

λ+ 2µ
t ∂x u0

 , U(2) =

 λ

λ+ 2µ

t2

2
∂2
x u0 +U

0

 ,

where U is the solution of the following boundary value problem:

∂2
t U = −4(λ+ µ)

λ+ 2µ
∂2
x u0, |t| < 1/2,

∂tU =
1

µ
p

(1)
± , t = ±1/2. (A 36)

The solvability condition of the system (A 36) gives us the equation for the leading term

of the longitudinal displacement:

−4(λ+ µ)

λ+ 2µ
∂2
x u0 = p

(1)
+ − p(1)

− .

For the case of free-traction lateral surfaces, the leading term of the longitudinal displace-

ment is the linear polynomial function.

The second Jordan chain describing the leading transversal displacement has the fol-

lowing form:

V(0) =

(
0

v0

)
, V(1) =

(−t ∂x v0

0

)
, V(2) =

 0

λ

λ+ 2µ

t2

2
∂2
x v0

 ,

V(3) =

( [
4µ+ 3λ

6(λ+ 2µ)
t3 − λ+ µ

2(λ+ 2µ)
t

]
∂3
x v0

)
,

0

0

V(4) =

( [
− 3λ+ 2µ

24(λ+ 2µ)
t4 +

(λ+ µ)(3λ+ µ)

12(λ+ 2µ)2
t2
]
∂4
x v0 +V

)
,

where V satisfies the equations:

∂2
t V =

µ(λ+ µ)

3(λ+ 2µ)2
∂4
x v0,

∂tV =
1

λ+ 2µ
p

(2)
± . (A 37)

From the solvability condition, we derive the equation for the leading term of the

transversal displacement:

µ(λ+ µ)

3(λ+ 2µ)
∂4
x v0 = ε(p(2)

+ − p(2)
− ).

Note that in the case of free-traction lateral surfaces, the transversal displacement is

specified by the cubic polynomial.
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