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Abstract. We show that for a large class of piecewise expanding maps T , the bounded
p-variation observables u0 that admit an infinite sequence of bounded p-variation
observables ui satisfying

ui = ui+1 ◦ T − ui+1

are constant. The method of the proof consists of finding a suitable Hilbert basis for
L2(hm), where hm is the unique absolutely continuous invariant probability of T . On this
basis, the action of the Perron–Frobenius and the Koopman operator on L2(hm) can be
easily understood. This result generalizes earlier results by Bamón, Kiwi, Rivera-Letelier
and Urzúa for the case T (x)= `x mod 1, ` ∈ N\{0, 1} and Lipschitzian observables u0.

1. Introduction
Let T : I → I be a dynamical system. Consider the cohomological operator defined by

L(ψ)= ψ ◦ T − ψ.

Given an observable, that is, a function u0 : I → R, one can ask if there exists a solution
u1 to the Livsic cohomologous equation

L(u1)= u0.

This equation was intensively studied after its introduction in the seminal work of Livsic.
These studies mainly concern the existence and regularity of the solution u1.

Let µ be an invariant probability measure of T . We say that a function u : I → R in
L1(µ) is cohomologous to zero if there is a function w : I → R in L1(µ) such that

u = L(w).

An observable u0 is infinitely cohomologous to zero if there exists a sequence of functions
un ∈ L1(µ), n ∈ N, such that Lnun = u0, for all n ∈ N.

Bamón et al [4] consider the expanding maps defined by

T`(x)= `x mod 1,

where `≥ 2 is an integer. The Lebesgue measure on [0, 1] is invariant by T`. They show
that every non-constant Lipschitzian function u : I → R is not infinitely cohomologous
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to zero. In this work, we generalize this result to a much larger class of observables and
piecewise expanding maps.

In [4], the study of this problem is motivated by the following observation. Let
λ ∈ (−1, 1), u0 : I → R be a Lipschitz function and define

A : I × R→ I × R

by
Aλ,u0(x, y)= (T`(x), λy + u0(x)).

In [4], they note that:
(i) if L(u1)= u0, then Aλ,u1 ◦ H = H ◦ Aλ,u0 , where H is the homeomorphism

H(x, y)=

(
x,

y + u1(x)

1− λ

)
; and

(ii) it turns out that the analysis of topological structure of the attractor of Aλ,u is easier
if u is not cohomologous to zero.

So, if u0 is not infinitely cohomologous to zero, by (i), we can reduce the analysis of the
topological dynamics of Aλ,u0 to the analysis of Aλ,un , where Ln(un)= u0 and un is not
cohomologous to zero. Using our results, a similar analysis of attractors could potentially
be achieved to far more general skew-products.

1.1. Statement of results. Let I be an interval. We say that T : I → I is a piecewise
monotonic map if there exists a partition by intervals {I1, . . . , Im} of I such that for each
i ≤ m, the map T is continuous and strictly monotonic in Ii . A piecewise monotonic
map is onto if, furthermore, T (Ii )= I for every i . A piecewise monotonic map is called
expanding if T is differentiable on each Ii and

inf
i

inf
x∈Ii
|T ′(x)|> 1.

In this work, we will consider mainly maps T : I → I satisfying the following conditions.
(D1) T is piecewise monotonic, Lipschitz on each interval of the partition Ii , i ≤ m. In

particular, T ′ is defined almost everywhere and is an essentially bounded function.
We also assume

ess inf
m
|T ′|> 0. (1)

Here ess infm denotes the essential infimum with respect to the Lebesgue measure
m.

(D2) We have T (I )= I and, moreover, for every interval H ⊂ I , there is a finite collection
of pairwise disjoint open subintervals H1, . . . , Hk ⊂ H and n such that T n is a
homeomorphism on Hi and

int I ⊂
⋃

i

T n(Hi ).

(D3) T has a horseshoe, that is, there are three open intervals J1, J2 ⊂ J ⊂ I , with
J1 ∩ J2 = ∅, such that T is a homeomorphism on each Ji and T (Ji )= J , i = 1, 2.
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(D4) T has an invariant probability µ that is absolutely continuous with respect to the
Lebesgue measure m, so

µ(A)=
∫

A
h dm

for some h ∈ L1(m). We will denote µ= hm, where h ∈ L1(m) and m is the
Lebesgue measure on I . Moreover, µ is exact and there exist a, b such that

0< a ≤ h(x)≤ b <∞ (2)

for hm-almost every x and the support of µ is I .
Our main result is the following theorem.

THEOREM 1. Let T be a transformation satisfying (D1)–(D4) and let u0 : I → R be an
observable with bounded p-variation. Then either u0 is constant in I up to a countable
set or there exist M ≥ 0 and bounded p-variation functions ui : I → R, with i ≤ M, which
are unique (in L1(hm) and BVp,I ) up to an addition by a constant, such that:
• we have

Li ui = u0,

in I up to a countable set, for every i ≤ M; and
• for every function ρ with bounded p-variation and every c ∈ R, we have Lρ 6=

uM + c in a non-empty open set in I .

With somewhat distinct, but related, assumptions on T and u0, which are satisfied in
many interesting situations, we can improve this result in such a way that Lρ 6= uM + c
for every ρ ∈ L1(hm). Avila [2] contributed in this area by improving the results in the
original version of this work, and we are grateful to him for allowing us to include them
here. Avila’s contribution is the following.

THEOREM 2. [2] Let u0 ∈ L1(hm) be such that∫
u0h dm = 0

and such that for every v ∈ L∞(hm), there exist C > 0 and λ ∈ [0, 1) such that∣∣∣∣∫ u0 · v ◦ T i
· h dm

∣∣∣∣≤ Cλi .

Then either u0 is constant hm-almost everywhere or there exist a unique M ≥ 0 and
functions ui : I → R, with i ≤ M, ui ∈ L1(hm), which are unique in L1(hm), up to an
addition by a constant, such that:
• we have

Li ui = u0 in L1(hm)

for every i ≤ M; and
• for every function ρ ∈ L1(hm) and every c ∈ R, we have Lρ 6= uM + c on L1(hm).

Let (B, | · |B) be a Banach space of real-valued, Lebesgue-measurable functions defined
on I such that:
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(D5) (i) T is a piecewise expanding map satisfying (D1) and (D4);
(ii) there exist C such that

| f |L1(hm) ≤ C | f |B

for every f ∈ B;
(iii) the Perron–Frobenius operator 8T of T is a bounded operator on B and

there exists h ∈ B, h > 0, with
∫

h dm = 1, λ ∈ [0, 1) and a linear operator
9 : B→ B such that

8T ( f )=
∫

f dm · h +9( f ),

with
|9n( f )|B ≤ Cλn

| f |B,

for every f ∈ B and n ∈ N. Moreover, 9(h)= 0;
(iv) 1/h ∈ B;
(v) the multiplication

( f, g)→ f · g

is a bounded bilinear transformation on B; and
(vi) the set B is dense in L1(hm).

THEOREM 3. Let T be a transformation satisfying (D1) and (D4) and suppose that the
Banach space of functions B and T satisfy (D5). Let u0 ∈ B be an observable. Then
either u0 is constant hm-almost everywhere or there exist a unique M ≥ 0 and functions
ui : I → R, with i ≤ M, ui ∈ L1(hm), which are unique in L1(hm), up to an addition by
a constant, such that:
• we have

Li ui = u0 in L1(hm)

for every i ≤ M; and
• for every function ρ ∈ L1(hm) and every c ∈ R, we have Lρ 6= uM + c on L1(hm).
Moreover, ui belongs to B, for i ≤ M.

Remark 1.1. In the first version of this work, Theorem 3 had additional assumptions. For
instance, we assumed that B was contained in the space of functions with p-bounded
variation. This is no longer necessary because of Avila’s contribution (Theorem 2).

Remark 1.2. The finiteness result for the family of cohomological operators

Lλ(v)= v ◦ T − λv,

with λ ∈ (0, 1], T (x)= `x mod 1, for integers `≥ 2 and Lipschitz observables,
obtained in [4, Main Lemma, page 225], can also be generalized for maps described
in Remarks 1.3, 1.4 and 1.5, replacing Lipschitz observables by bounded variation
observables. The methods for achieving this generalization are quite similar to those in [4],
so we will not give a full proof here. It is necessary to use Theorem 3, and to replace in
their argument the usual Fourier basis by the basis obtained in §3, and the compactness of
closed balls centered at zero of the space of Lipschitz functions as subsets of the space of
continuous functions by Helly’s theorem, that is, the compactness of closed balls centered
at zero of the space of bounded variation functions as subsets of L1(hm).
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Remark 1.3. There are plenty of examples of transformations T : I → I satisfying (D1)–
(D4). Let T be a piecewise monotonic, expanding map C2 on each Ii . Consider the m × m
matrix AT = (ai j ) defined by ai j = 1 if

T (int Ii )⊂ int I j ,

and ai j = 0 otherwise. Here the closure and interior are taken with respect to the topology
of [0, 1]. Suppose that Ak

T > 0 for some k. Then T satisfies (D1), (D2) and (D4), and some
iteration of T satisfies (D1)–(D4). If we add the assumption that T has a horseshoe, then
T fulfills (D1)–(D4). The space of bounded variation functions BV (I ) and T satisfy (D5).

Remark 1.4. A class of examples satisfying (D1)–(D4) is β-transformations T (x)= βx
mod 1, with β ≥ 2, β ∈ R, I = [0, 1]. The space of bounded variation functions BV (I )
and T satisfy (D5).

Remark 1.5. Let T : [−1, 1] → [−1, 1] be a continuous map with T (−1)= T (1)=−1,
C2 on the intervals [−1, 0] and [0, 1], with T ′ > 0 in [−1, 0] and T ′ < 0 in [0, 1] and
T (−x)= T (x) for every x ∈ [−1, 1]. Define

θ = inf
x
|T ′(x)|.

If θ > 1, then there exists a unique fixed point p ∈ [0, 1]. Define J = [−p, p]. If θ >
√

2,
then T 2 has a horseshoe in J and satisfies (D1)–(D4) with I = [T 2(0), T (0)]. The space
of bounded variation functions BV (I ) and T satisfies (D5).

Remark 1.6. Let T : I → I be a piecewise expanding and onto map, C1+α0 in each Ii ,
α0 ∈ (0, 1). Then T satisfies (D1)–(D4). The space of Hölder continuous functions Cα(I ),
for α ≤ α0, and T satisfy (D5).

Remark 1.7. Let T : I → I be a piecewise expanding map, linear in each Ii . Suppose that
T has a horseshoe and satisfies the conditions on the matrix AT as in Remark 1.3. One
can prove, using Wong’s results [10], that T satisfies (D1)–(D4). The space of bounded
p-variation functions BVp(I ), with p ≥ 1, and T satisfy (D5).

Remark 1.8. The mixing assumptions on the invariant measure µ are necessary, as is
shown by the following example. Consider a piecewise C2 expanding map T : I → I ,
unimodal (continuous and only one turning point), and with a cycle of intervals, that is,
there are open intervals J j ⊂ I , j < p pairwise disjoint, such that f (J j )⊂ J j+1 mod p

and f (∂ J j )⊂ ∂ J j+1 mod p. Then T has an absolutely continuous invariant probability µ
and its support is contained in

⋃
j J j . Let δ ∈ C\{1} be a p-root of unity, δ p

= 1. Define
ui : I → C, i ≥ 0, as

ui (x)=
δ j

(δ − 1)i
,

for x ∈ J j . Define ui arbitrarily elsewhere. It is easy to see that ui = ui+1 ◦ T − ui+1 on
L1(hm). To obtain real-valued functions, we can consider the real and imaginary parts
of ui .
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1.2. Topological results. Replacing Lipschitzian by bounded p-variation observables
has the advantage of allowing us to obtain results similar to Theorems 1 and 3 for maps
which are just topologically conjugate with maps satisfying the assumptions of those
theorems.

We will say that two functions f, g : W → R are equal except in a countable set, f = g
on W (e.c.s.), if {x ∈W : f (x) 6= g(x)} is countable.

THEOREM 4. Let H : I → I be a homeomorphism, let T be a piecewise monotonic map
and T̃ satisfy (D1)–(D4). Suppose that

H ◦ T̃ = T ◦ H

in I (e.c.s.). Let u0 : H(I )→ R be an observable with bounded p-variation. Then either
u0 is constant in H(I ) (e.c.s.) or there exist a unique M ≥ 0 and bounded p-variation
functions ui : H(I )→ R, with i ≤ M, which are unique up to an addition by a constant
(e.c.s.), such that:
• we have

Li ui = u0,

on H(I ) (e.c.s.) for every i ≤ M; and
• for every function ρ with bounded p-variation and every c ∈ R, we have Lρ 6=

uM + c in a non-empty open subset in H(I ).

THEOREM 5. Let H : I → I be a homeomorphism, let T be a piecewise monotonic map
and T̃ satisfy (D1)–(D4). Suppose that

H ◦ T̃ = T ◦ H

in I (e.c.s.). Suppose that the space of functions with bounded p0-variation BVp0,I and
T̃ satisfy (D5). Let u0 : H(I )→ R be an observable with bounded p0-variation. Then
either u0 is constant in H(I ) (e.c.s.) or there exist a unique M ≥ 0 and continuous
(e.c.s.) bounded Borelian functions ui : H(I )→ R, with i ≤ M, which are unique up to
an addition by a constant (e.c.s.), such that:
• we have

Li ui = u0,

on H(I ) (e.c.s.) for every i ≤ M; and
• we have Lρ 6= uM + c:

(A) in an uncountable subset of H(I ), if ρ is a Borel-measurable, bounded
function and c ∈ R; and

(B) in a non-empty open subset of H(I ), if ρ is a Borel-measurable, bounded
function which is continuous in H(I ) (e.c.s.) and c ∈ R.

Moreover, ui has bounded p0-variation, i ≤ M.

Remark 1.9. Let T : [0, 2] → [0, 2] be piecewise monotonic, C1 in [0, 1] and [1, 2],
T [0, 1] = T [1, 2] = [0, 2], with T (0)= 0, T ′ ≥ λ > 1 in [1, 2] and T ′(x) > 1 in x ∈
(0, 1), and T ′(0)= 1. Then T is conjugate with T̃ (x)= 2 · x mod 1, so T satisfies the
assumptions of Theorems 4 and 5, considering p0 = 1 in Theorem 5.
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Remark 1.10. Let T : [−1, 1] → [−1, 1], T (−1)= T (1)=−1, C3 in [−1, 1], T ′(0)= 0,
T ′ > 0 on [−1, 0), T ′ < 0 on (0, 1]. If T has a negative Schwarzian derivative and is
non-renormalizable, then T is conjugate to a tent map T̃β : [−1, 1] → [−1, 1], defined
as T̃ (x)=−β|x | + β − 1, with β = exp(htop(T )). Here htop(T ) denotes the topological
entropy of T . If htop(T )≥ ln(2)/2, then T 2

: I → I , with I = [T 2(0), T (0)], satisfies the
assumptions of Theorems 4 and 5, considering p0 = 1 in Theorem 5.

1.3. Continuous observables infinitely cohomologous to zero. Avila put forward a nice
argument showing the existence of continuous and non-constant observables that are
infinitely cohomologous to zero. He kindly agreed to the inclusion of this result here.

THEOREM 6. [2] Let T : S1
→ S1 be a C1 expanding map on a circle. Then there exists a

non-constant continuous observable u that is infinitely cohomologous to zero.

2. Preliminaries
In this section, we present some notations and definitions.

Definition 2.1. Given a function f : I → C and p ≥ 1, we define the p-variation of f by

vp,I ( f )= sup
( n∑

i=1

|g(ai )− g(ai−1)|
p
)1/p

,

where the supremum is taken over all finite sequences a0 < a1 < · · ·< an , ai ∈ I .
We say that f has bounded p-variation if

vp,I ( f ) <∞.

Since the Perron–Frobenius operator is not properly defined at points which are images
of points where DT is not defined, to define the Perron–Frobenius operator acting in
the space of p-bounded variation functions it is convenient to identify functions u and
v defined on I so that u = v up to a countable subset of I . We write u ∼ v. The set of
equivalence classes [ f ] with respect to the relation ∼ such that

vp,I ([ f ])= inf
f∼g

vp,I (g) <∞

will be called the space of the functions on I with bounded p-variation and denoted BVp,I .
The function f → vp,I ([ f ]) is a pseudo-norm on BVp,I . We can define a norm by

|[ f ]|BVp,I = inf
g∼ f

(sup |g| + vp,I (g)).

(BVp,I , | · |BVp,I ) is a Banach space. As usual, from now on we will omit the brackets [·]
in the notation of equivalence classes.

Note that 1/p-Hölder continuous functions have bounded p-variation. When p = 1, we
say that the function has bounded variation.

Remark 2.2. One of the greatest advantages of dealing with p-bounded variation
observables, as opposed to either Hölder or Lipschitzian ones, for instance, is that
the pseudo-norm vp,I is invariant by homeomorphisms, that is, if h : J → I is a
homeomorphism and f : I → R is an observable, then

vp,I ( f )= vp,J ( f ◦ h).
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Definition 2.3. Given a piecewise monotonic, expanding map T , satisfying (D1), define
the Perron–Frobenius operator associated to T by

8T f (x)=
∑
j∈J

f (σ j (x))
1

|T ′(σ j x)|
1T (I j )(x),

where σ j : T (I j )→ I j stands for the inverse branch of T restricted to I j and 1J denotes
the characteristic function of the set J .

The main properties of 8T are (see [3, 5], for instance):
(i) 8T is a continuous linear operator on L1(hm);
(ii)

∫ 1
0 8T f · g dm =

∫ 1
0 f · g ◦ T dm, where f ∈ L1(m) and g ∈ L∞(m); and

(iii) 8T f = f if and only if the measure µ= f m is invariant by T .

3. A special basis of L2(hm)
In this section, we assume that T satisfies (D1) and (D4). Consider the Hilbert space
L2(hm) with the inner product

〈u, w〉hm =

∫
uwh dm.

〈u, w〉hm is well defined, even for u ∈ Lk(hm) and w ∈ Lb(hm), with k, b ∈ [1,∞) ∪
{+∞} satisfying

1
k
+

1
b
= 1.

Since the measure hm is T -invariant, we have

〈u ◦ T, w ◦ T 〉hm = 〈u, w〉hm .

In this section, we will construct a special Hilbert basis for L2(hm). Consider the bounded
linear operator P : Lk(hm)→ Lk(hm), k ≥ 1, defined by

P(u)=
8(uh)

h
.

From equation (2), the operator P is well defined. Indeed,∑
j∈J

h(σ j (x))

h(x)

1
|T ′(σ j x)|

1T (I j )(x)= 1

for every x , and zk is convex, so we have∫
|Pu|kh dm ≤

∫ (∑
j∈J

h(σ j (x))

h(x)

1
|T ′(σ j x)|

|u|(σ j (x))1T (I j )(x)

)k

h(x) dm

≤

∫ ∑
j∈J

h(σ j (x))

h(x)

1
|T ′(σ j x)|

|u|k(σ j (x))1T (I j )(x)h(x) dm

=

∫
P(|u|k)h dm

≤

∫
8(|u|k) dm =

∫
|u|k dm ≤

1
a

∫
|u|kh dm.
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Note that for k = 1, we have∫
|Pu|h dm ≤

∫
8(|u|h) dm =

∫
|u|h dm,

so ‖P‖L1(hm) ≤ 1.
Let B = {ϕi }i∈N be an orthonormal basis for

Ker(P)= {u ∈ L2(hm) such that P(u)= 0}.

Define
W = {ϕi ◦ T j

: ϕi ∈ B and j ∈ N} ∪ {1I }.

Recall that 1A denotes the indicator function of a set A. The main result of this section is
the following proposition.

PROPOSITION 3.1. Suppose that T satisfies (D1) and (D4). Then W is a Hilbert basis for
L2(hm). Indeed, we can choose B such that W ⊂ L∞(hm).

Remark 3.2. A very interesting example of this theorem is given by the function
T : [0, 1] → [0, 1], defined by T (x)= `x mod 1, with ` ∈ N\{0, 1}. In this case, the
Ruelle–Perron–Frobenius operator is just

(8Tψ)(x)=
1
`

`−1∑
i=0

ψ

(
x + i

`

)
.

The Lebesgue measure m is an invariant probability, so P =8T . Moreover,

B = {sin(2πnx), cos(2πnx) : ` does not divide n}

is a basis for Ker P . Note that

sin(2πnT j (x))= sin(2πn` j x) and cos(2πnT j (x))= cos(2πn` j x),

so the corresponding set W is just the classical Fourier basis of L2([0, 1]).

By property (ii) of the Perron–Frobenius operator, it is easy to see that the Koopman
operator U : Lk(hm)→ Lk(hm), k ≥ 1, defined by

U (w)= w ◦ T,

is the adjoint operator of P , that is,

〈P(u), w〉hm = 〈u,U (w)〉hm (3)

for every u ∈ Lk(hm) and w ∈ Lb(hm). Note that U preserves Lk(hm) because hm is
invariant. Moreover,

P ◦U ( f )= f

for every f ∈ L1(hm).

LEMMA 3.3. W is an orthonormal set.
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Proof. Indeed,

|1I |L2(hm) = 1,

|ϕi ◦ T j
|
2
L2(hm) = |ϕi |

2
L2(hm) = 1.

Furthermore, if
(i1, j1) 6= (i2, j2),

then either j1 = j2, so we have

〈ϕi1 ◦ T j1 , ϕi2 ◦ T j2〉hm = 〈ϕi1 , ϕi2〉hm = 0,

or, without loss of generality, we can assume j1 < j2 and

〈ϕi1 ◦ T j1 , ϕi2 ◦ T j2〉hm = 〈ϕi1 , ϕi2 ◦ T j2− j1〉hm = 〈P
j2− j1(ϕi1), ϕi2〉hm = 0,

and

〈ϕi1 ◦ T j1 , 1I 〉hm =

∫
ϕi ◦ T j h dm =

∫
ϕi h dm =

∫
P(ϕi )h dm = 0. 2

LEMMA 3.4. There exists a countable set of functions 3⊂ L∞(hm) ∩ Ker(P) with the
following property. Let w ∈ Lk(hm), with k ≥ 1. If for all ϕ ∈3 we have∫

wϕh dm = 0,

then there exists β ∈ Lk(hm) such that

w = β ◦ T

hm-almost everywhere. Moreover, Ker(P)⊥ =U (L2(hm)).

Proof. We claim that for the existence of β ∈ Lk(hm) such that w = β ◦ T , it is necessary
and sufficient that for hm-almost every y ∈ I we have

]{w(x) : h(x) 6= 0 and T (x)= y} = 1. (4)

Indeed, if equation (4) holds, then for every y satisfying (4), choosing x such that T (x)= y
and h(x) 6= 0, we can define

β(y)= w(x).

If y does not satisfy (4), define β(y)= 0. Of course, w = β ◦ T hm-almost everywhere
and, since hm is an invariant measure of T , β belongs to Lk(hm).

On the other hand, suppose that there exists β ∈ Lk(hm) such that w = β ◦ T . Then

K = {x : w(x)= β(T (x))}

has full hm-measure. Since the support of hm is I and I ⊂ I m T , it follows that for
hm-almost every y, we have ]Ay ≥ 1, where

Ay = {w(x) : h(x) 6= 0 and T (x)= y}.
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Suppose there is �, with hm(�) > 0, such that ]Ay ≥ 2 for every y ∈�. Note that (D1)
implies that f and its inverse branches are absolutely continuous functions, so it is easy to
see that there are X1 X2 such that m(X1), m(X2) > 0, T (X i )=� and for each y ∈� and
i = 1, 2 there exists only one xi ∈ X i such that T (xi )= y. Furthermore, w(x1) 6= w(x2),
h(xi ) 6= 0. The absolute continuity of T and its inverses branches implies that

�̃= T (X1 ∩ K ) ∩ T (X2 ∩ K )⊂�

has positive measure. Let y ∈ �̃ and xi be as above. Then w(xi )= β(T (xi ))= β(y),
which contradicts w(x1) 6= w(x2). This concludes the proof of the claim.

Let Ci be the set of points x0 ∈ I such that the function

Fi (a)=
∫ a

0
w ◦ σi (T x) · 1T (Ii )(T (x)) · h(x) dm(x) (5)

has the derivative w ◦ σi (T (x0))1T (Ii )(T (x0))h(x0) at a = x0. The function in the above
integral belongs to L1(m), so by the Lebesgue differentiation theorem, the set

C =
⋂

i

Ci

∖⋃
i

∂ Ii

has full Lebesgue measure in I . Since T is piecewise Lipschitz, we obtain

m(T (I\C))= 0.

Suppose that equation (4) does not hold for hm-almost every y ∈ I . Then it is not true that
equation (4) holds for hm-almost every y ∈ I\T (I\C). Since hm-almost every point has
at least one preimage x with h(x) 6= 0, we conclude that there exist y0 ∈ I\T (I\C) and
two inverse branches of T , denoted by σ1 and σ2, such that y0 belongs to the interior of
T (I1) ∩ T (I2) and, furthermore,

w ◦ σ1(y0) 6= w ◦ σ2(y0), h(σ1(y0)) 6= 0, h(σ2(y0)) 6= 0.

We can assume
w ◦ σ1(y0) > w ◦ σ2(y0),

so

w ◦ σ1 ◦ T ◦ σ2(y0)1T (I1) ◦ T ◦ σ2(y0)h ◦ σ2(y0)

> w ◦ σ2 ◦ T ◦ σ2(y0)1T (I2) ◦ T ◦ σ2(y0)h ◦ σ2(y0). (6)

Since σ2(y0) ∈ C , the derivatives of the functions F1 and F2 at a = σ2(y0) are
respectively the left- and right-hand sides of equation (6), so there exists ε > 0 such that
for every closed non-degenerate interval Ĩ2 satisfying

σ2(y0) ∈ Ĩ2 ⊂ (σ2(y0)− ε, σ2(y0)+ ε) ∩ I2, (7)

we have∫
Ĩ2

w ◦ σ1(T x)1T (I1) ◦ T (x) · h(x) dm(x) >
∫

Ĩ2

w ◦ σ2(T x)1T (I2) ◦ T (x) · h(x) dm(x).
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Choose an interval Ĩ2 satisfying equation (7) and small enough such that T ( Ĩ2)⊂ T (I1).
We can assume, without loss of generality, that ∂ Ĩ2 ⊂Q. Then∫

Ĩ2

w ◦ σ1(T x) · h(x) dm(x) >
∫

Ĩ2

w ◦ σ2(T x) · h(x) dm(x).

Let Ĩ1 := σ1(T ( Ĩ2))⊂ I1. Define ϕ as

ϕ(x)=


−
|T ′(x)|

|T ′(σ2(T x))|
·

h(σ2(T x))

h(x)
if x ∈ Ĩ1,

1 if x ∈ Ĩ2,

0 otherwise.

(8)

Note that ϕ ∈ L∞(hm) and 8(ϕh)= 0.
Hence∫

wϕh dm =
∫

Ĩ1

wϕh dm +
∫

Ĩ2

wϕh dm

=

∫
Ĩ1

w ·

(
−

|T ′|

|T ′ ◦ σ2 ◦ T |

h ◦ σ2 ◦ T

h

)
h dm +

∫
Ĩ2

wh dm.

Since σ2 ◦ T : Ĩ1→ Ĩ2 is Lipschitzian and monotonically increasing, we can change the
variables to get

−

∫
Ĩ1

w
|T ′|

|T ′ ◦ σ2 ◦ T |

h ◦ σ2 ◦ T

h
h dm +

∫
Ĩ2

wh dm

=−

∫
Ĩ2

w ◦ σ1 ◦ T · h dm +
∫

Ĩ2

w ◦ σ2 ◦ T · h dm

<−

∫
Ĩ2

w ◦ σ2 ◦ T · h dm +
∫

Ĩ2

w ◦ σ2 ◦ T · h dm = 0.

Therefore ∫
wϕh dm 6= 0.

Let 3 be the set of functions ϕ of the form in equation (8), with:
• the intervals Ĩ j ⊂ Ii j , j = 1, 2, and σ2 : T (Ii2)→ Ii2 the inverse of T : Ii2 → T (Ii2);

• T ( Ĩ2)= T ( Ĩ1); and
• ∂ Ĩ2 ⊂Q.

Then it is easy to see that 3 is countable and 3⊂ L∞(hm) ∩ KerP and, by the
argument above, 3 has the desired property.

In particular, for k = 2, we obtain Ker(P)⊥ ⊂U (L2(hm)). The inclusion
U (L2(hm))⊂ Ker(P)⊥ follows from equation (3). 2

PROPOSITION 3.5. Let 3 be as in Lemma 3.4. Let u : I → R be a non-constant function
in L1(hm). Then there exist ϕ ∈3 and an integer p ≥ 0 such that∫

u · ϕ ◦ T j
· h dm = 0 for all 0≤ j < p

and ∫
uϕ ◦ T p

· h dm 6= 0.
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Proof. Suppose that, for all ϕ ∈3 and for all k ≥ 0,∫
uϕ ◦ T k

· h dm = 0. (9)

We claim that for every n, there exists βn ∈ L1(hm) such that

u = βn ◦ T n . (10)

Indeed, choosing k = 0 in equation (9), we obtain that for all ϕ ∈3,∫
uϕh dm = 0.

By Lemma 3.4, there exists β1 ∈ L1(hm) such that

u = β1 ◦ T .

Suppose, by induction, that u = βn ◦ T n , with βn ∈ L1(hm). By equation (9), when k = n,
for all ϕ ∈3, we have∫

βnϕh dm =
∫
βn ◦ T n

· ϕ ◦ T n
· h dm =

∫
uϕ ◦ T n

· h dm = 0.

By Lemma 3.4, there exists βn+1 ∈ L1(hm) such that

βn = βn+1 ◦ T .

Hence one has u = βn+1 ◦ T n+1.

Since the measure hm is an exact measure, we can conclude that u is a constant function.
So, u = 0. 2

COROLLARY 3.6. Let u : I → R be a non-constant function in L2(hm). Then there exist
ϕi ∈ B and an integer p ≥ 0 such that

〈u, ϕi ◦ T j
〉hm = 0 for all 0≤ j < p

and

〈u, ϕi ◦ T p
〉hm 6= 0.

Proof. Suppose that for every ϕi ∈ B and every j ∈ N,

〈u, ϕi ◦ T j
〉hm = 0.

Since B is a base for Ker(P) and U j
: L2(hm)→ L2(hm) is an isometry, it follows that∫
ϕ ◦ T j

· u · h dm = 0

for every ϕ ∈ Ker(P) and j ∈ N. This contradicts Proposition 3.5. 2
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Proof of Proposition 3.1. It follows from Lemma 3.3 and Corollary 3.6 that W is a basis
of L2(hm). To construct a basis Ŵ ⊂ L∞(hm), consider an enumeration of the set
3= {ψi } defined in Lemma 3.4. Apply the Gram–Schmidt process in the sequence ψi

to obtain a sequence ψ̃i of pairwise orthogonal functions. Discarding the null functions
and normalizing the remaining functions, we obtain an orthonormal set of functions B̂.
From Lemma 3.4,

span(B̂)= span(3)= Ker P,

so B̂ is a basis of Ker P , and

Ŵ = {φ ◦ T j
: φ ∈ B̂, j ∈ N} ∪ {1I }

is a basis of L2(hm). 2

COROLLARY 3.7. Let u : I → R be a non-constant function in L1(hm). Let B̂ be as in
the proof of Proposition 3.1. Then there exist ϕi ∈ B̂ and an integer p ≥ 0 such that

〈u, ϕi ◦ T j
〉hm = 0 for all 0≤ j < p

and
〈u, ϕi ◦ T p

〉hm 6= 0.

Proof. Suppose that for every ϕ ∈ B̂ and every j ∈ N,

〈u, ϕ ◦ T j
〉hm = 0. (11)

Let3 be as in Lemma 3.4. Since B̂ was obtained by applying the Gram–Schmidt process to
3, it follows that equation (11) holds for every ϕ ∈3. This contradicts Proposition 3.5. 2

From now on, we assume W ⊂ L∞(hm). Let u ∈ L1(hm) and consider the Fourier
coefficients of u with respect to the basis W :

ci, j (u)= 〈u,U j (ϕi )〉hm =

∫
u · ϕi ◦ T j

· h dm.

PROPOSITION 3.8. The functionals ci, j have the following properties.
(1) ci, j is linear on L1(hm).
(2) ci, j (U (u))= ci, j−1(u) for j ≥ 1.
(3) ci,0(U (u))= 0.
(4) ci, j (P(u))= ci, j+1(u).

Proof. We have:
(1) the proof is straightforward;
(2) ci, j (u ◦ T )= 〈u ◦ T, ϕi ◦ T j

〉hm = 〈u, ϕi ◦ T j−1
〉hm = ci, j−1(u);

(3) ci,0(u ◦ T )= 〈U (u), ϕi 〉hm = 〈u, P(ϕi )〉hm = 〈u, 0〉hm = 0; and
(4) ci, j (Pu)= 〈P(u),U j (ϕi )〉hm = 〈u,U j+1(ϕi )〉hm = ci, j+1(u). 2

PROPOSITION 3.9. For every u ∈ L1(hm) and ϕi ∈ B̂, we have

lim
j

ci, j = 0.
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Proof. Since hm is exact, it is mixing, so

lim
j

ci, j = lim
j

∫
u · ϕi ◦ T j

· h dm = 0. 2

Remark 3.10. Baladi drew our attention to the method used by Pollicott [7] to build
eigenvectors of transfer operators for eigenvalues inside the essential spectral radius in
certain function spaces. In our setting, the method is the following. Pick ϕ ∈ Ker(P) and
|λ|< 1. Then

v =

∞∑
j=0

λ jϕ ◦ T j

is a λ-eigenvector of P in L2(hm). Using Propositions 3.1 and 3.8, one can easily show
that all λ-eigenvalues of P in L2(hm), for every |λ|< 1, can be built in this way.

4. Proof of Theorem 1
In this section, we will study the linear operator

Lu = u ◦ T − u

acting on functions with bounded p-variation u : I → R.
First, we will present some properties and then, at the end of this section, we will prove

the theorems announced in the introduction. The following results are well known.

LEMMA 4.1. Let L be the linear operator defined above acting on L1(hm). Then:
(1) if f ∈ Im(L), then

∫
f h dm = 0; and

(2) Ker(L)= { f ∈ L1(hm) : f is constant hm-almost everywhere}.

COROLLARY 4.2. Let u ∈ L1(hm) and suppose that there exist functions v, w ∈ L1(hm)
such that

Lnv = u = Lnw.

Then v = w + c on L1(hm) for some c ∈ R. Moreover, if v, w have bounded p-variation
then v = w + c on I (e.c.s.).

Proof. Define vi = Ln−iv, wi = Ln−iw. We will prove by induction on i that vi = wi , if
i < n and vn = wn + c, for some c ∈ R. Indeed, for i = 0, we have w0 = v0 = u. Suppose
that vi = wi , i < n. Then

L(vi+1 − wi+1)= vi − wi = 0,

so vi+1 − wi+1 is hm-almost everywhere constant. If i + 1= n, we are done. If i + 1< n,
then Lvi+2 = vi+1 and Lwi+2 = wi+1, so∫

vi+1h dm =
∫
wi+1h dm = 0,

which implies c = 0. Now assume that u, v and w have bounded p-variation. Since
the support of hm is I and v = w + c hm-almost everywhere, we have v = w + c on a
set 3⊂ I such that for every non-empty open subset O of I , we have that O ∩3 is
a dense and uncountable subset of O . Since v and w have just a countable number of
discontinuities in I , it follows that v = w + c in I (e.c.s.). 2
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LEMMA 4.3. Let J be an open interval as in (D3) and u ∈ BVp,I . Then

vp,J (Lu)≥ vp,J (u)

for every n ∈ N.

Proof. Let J1, J2 ⊂ J be as in (D3). Since T is a homeomorphism on J1 and J2, by
Remark 2.2,

vp,J (u ◦ T )≥ vp,J1(u ◦ T )+ vp,J2(u ◦ T )= 2vp,J (u),

so
vp,J (u ◦ T − u)≥ vp,J (u ◦ T )− vp,J (u)≥ vp,J (u). 2

LEMMA 4.4. There exists C with the following property. Let un : I → R, n ≤ M + 1 be
observables with bounded p-variation, p ≥ 1, such that for every n ≤ M,

un = Lun+1.

Then
|un|L∞(hm) ≤ vp,I (un)≤ Cvp,I (u0)

for every n ≤ M.

Proof. Let J ⊂ I be one interval as in (D3). By Lemma 4.3,

vp,J (un)≤ vp,J (u0) (12)

for every n ≥ 0. By (D2), there is a finite collection of pairwise disjoint open intervals
H1, . . . , Hk ⊂ J and j such that T j is a homeomorphism on each Hi and

int I ⊂
k⋃

i=1

T j (Hi ). (13)

We claim that for every `≤ j and n,

vp,T `(Hi )
(un)≤ 2`vp,J (u0). (14)

We will prove this by induction on `. Of course, since Hi ⊂ J , equation (12) implies that
for every i = 1, . . . , k,

vp,Hi (un)≤ vp,J (u0), (15)

so equation (14) holds for `= 0. Suppose, by induction, that equation (14) holds for ` < j
and every n. Since T is a homeomorphism on T `(Hi ) and un−1 = un ◦ T − un , we have

vp,T `+1(Hi )
(un) = vp,T `(Hi )

(un ◦ T )≤ vp,T `(Hi )
(un)+ vp,T `(Hi )

(un−1)

≤ 2`+1vp,J (u0).

By equation (13),

vp,I (un)= vp,int I (un)≤

k∑
i=1

vp,T j (Hi )
(un)≤ k2 jvp,J (u0)≤ k2 jvp,I (u0).
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Note that since un = un+1 ◦ T − un+1, it follows that∫
unh dm = 0.

Suppose that
ess sup

hm
un = |un|L∞(hm).

Then

0 =
∫

unh dm ≥ ess inf un = (ess inf un − ess sup un)+ ess sup un

≥ −vp,I (un)+ |un|L∞(hm),

so |un|L∞(hm) ≤ vp,I (un). We can obtain the same conclusion for the case

−ess infhm un = |un|L∞(hm),

replacing un by −un in the argument above. 2

Proof of Theorem 1. Define by induction the (either finite or infinite) sequence un : I → R
of functions in the following way: u0 is given. If un is defined and there exists a function
v : I → R with bounded p-variation such that Lv = un in L1(hm), then define

un+1 = v −

∫
vh dm.

Otherwise, the sequence ends with un . Note that

Lnun = u0.

Define
M0 = sup{n ∈ N : un is defined} ∈ N ∪ {∞}.

We will show that M0 <∞. Let M ∈ N, M ≤ M0. Recall the basis W defined in §3. By
Corollary 3.6, if u0 is not constant almost everywhere there exist i and q ≥ 0 such that

ci, j (u0)=

∫
u0ϕi ◦ T j

· h dm = 0 for all 0≤ j < q

and

ci,q(u0)=

∫
u0ϕi ◦ T q

· h dm 6= 0.

By Lemma 4.4, we have that |un|L2(hm) ≤ |un|L∞(hm) ≤ Cvp,I (u0), so since

|ϕi ◦ T i
|L2(hm) = 1,

we obtain

|ci,k(un)| =

∣∣∣∣∫ un · ϕi ◦ T k
· h dm

∣∣∣∣≤ Cvp,I (u0).

Using Proposition 3.8, we can now use an argument quite similar to [4]. Observe that

ci,l(un−1)= ci,l(un ◦ T − un)= ci,l(un ◦ T )− ci,l(un)= ci,l−1(un)− ci,l(un)

for l ≥ 1.
For l = 0,

ci,0(un−1)= ci,0(un ◦ T − un)= ci,0(un ◦ T )− ci,0(un)=−ci,0(un)

for 0< n ≤ M .

https://doi.org/10.1017/S0143385711000976 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385711000976


392 A. de Lima and D. Smania

Therefore, for 0< n ≤ M ,

ci,l(un)= ci,l−1(un)− ci,l(un−1) for l ≥ 1, (16)

ci,0(un−1)=−ci,0(un). (17)

Since ci, j (u0)= 0 for 0≤ j < q , by equations (16) and (17), we can conclude that

ci, j (un)= 0 for 0≤ j < q and 0≤ n ≤ M. (18)

Now, by equation (16), considering l = q, we have

ci,q(un−1)= ci,q−1(un)− ci,q(un).

By equation (18), for every n ≤ M ,

ci,q(un−1)=−ci,q(un). (19)

By equation (19), we conclude that for n ≤ M ,

ci,q(un)= (−1)nci,q(u0).

Considering l = q + 1 in equation (16),

ci,q+1(un)= (−1)nci,q(u0)− ci,q+1(un−1)⇒

ci,q(u0)= (−1)nci,q+1(un)+ (−1)nci,q+1(un−1). (20)

Putting n = 1, . . . , M in equation (20) and adding the resulting equations, we obtain

M · ci,q(u0)= (−1)M ci,q+1(uM )− ci,q+1(u0). (21)

Therefore,

M =
−ci,q+1(u0)+ (−1)M ci,q+1(uM )

ci,q(u0)

≤
|ci,q+1(u0)| + |ci,q+1(uM )|

|ci,q(u0)|

≤
|ci,q+1(u0)| + Cvp,I (u0)

|ci,q(u0)|
,

so M0 is bounded. Note that by Corollary 4.2, if vn ∈ L1(hm) satisfies Lnvn = u0,
then vn = un + c in L1(hm) for some c ∈ R. This proves the uniqueness statements of
Theorem 1. 2

5. Proof of Theorem 2
Fix λ < 1. Denote by Sλ the linear space of the real sequences x = (x j ) j∈N such that there
exists C satisfying

|x j
| ≤ Cλ j .

Here we use x j to denote the j th element of the sequence x . Consider the linear space
`0(N) of real sequences x = (x j ) j∈N such that

lim
j

x j
= 0.

We define the operator U : `0(N)→ `0(N) as

U (x)= y,

where y0
= 0 and y j+1

= x j for j ≥ 0.
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We say that x ∈ `0(N) is infinitely cohomologous to zero with respect to U in `0(N) if
there exists an infinite sequence xi ∈ `0(N), with x = x0, such that

xi =U (xi+1)− xi+1. (22)

for every i ≥ 0.

LEMMA 5.1. [2] Let x ∈ Sλ. Suppose that there exists a finite sequence x = x0,
x1, . . . , xk ∈ `0(N) such that xi =U (xi+1)− xi+1 for every i < k. Then xi ∈ Sλ for
every i ≤ k. If x is infinitely cohomologous to zero with respect to U in `0(N), then
x = 0= (0, 0, . . .).

Proof. Let xi ∈ `0(N), i ≤ k, with x0 = x , satisfying equation (22) for i < k. One can see
that

x j
i+1 =−

∑
p≤ j

x p
i .

Since lim j x j
i+1 = 0, it follows that ∑

p
x p

i = 0;

since x0 ∈ Sλ, we can prove by induction on i that

|x j
i+1| =

∣∣∣∣∑
p> j

x p
i

∣∣∣∣≤ Ciλ
j

for some Ci . We concluded that xi ∈ Sλ for every i ≤ k. With each i ≤ k, we can associate
the power series

fi (z)=
∞∑
j=0

x j
i z j .

Since xi = (x
j
i ) j ∈ Sλ, the power series fi converges to a complex analytic function on a

disk with center at 0 and radius 1/λ > 1. Note that the sequence U (xi ) is the sequence of
coefficients of the Taylor series (centered at 0) of the function z fi (z). So, equation (22)
yields

fi (z)= z fi+1(z)− fi+1(z)= (z − 1) fi+1(z).

So, if x0 is infinitely cohomologous to zero, we conclude that

f0(z)= (z − 1)k fk(z)

for every k, where fk is defined in a disk strictly larger than the unit disk. It follows that
f (k)0 (1)= 0 for every k, so f0(z)= 0 everywhere. So, x = x0 = 0= (0, 0, . . .). 2

Proof of Theorem 2. Corollary 4.2 gives the uniqueness of the sequence ui . Now suppose
that u0 is infinitely cohomologous to zero. So, there exists a sequence ui ∈ L1(hm) such
that

ui = ui+1 ◦ T − ui+1. (23)
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Consider B̂ as in Corollary 3.7. Fix ϕ ∈ B̂. Define the sequence xi = (x
j

i ) j as

x j
i =

∫
ui · ϕ ◦ T j

· h dm.

Since x j
i are Fourier coefficients of ui ∈ L1(hm) with respect to the Hilbert basis W , by

Proposition 3.9, we have that lim j x j
i = 0. By equation (23) and Proposition 3.8 we have

xi =U (xi+1)− xi ,

so x0 is infinitely cohomologous to zero in `0(N). Note that

|x j
0 | =

∣∣∣∣∫ u0 · ϕ ◦ T j
· h dm

∣∣∣∣≤ Cλ j ,

so x0 ∈ Sλ. By Lemma 5.1, we have that x0 = 0; this holds for every ϕ ∈ B̂, so by
Corollary 3.7, the function u0 is zero. 2

6. Proof of Theorem 3
We first make a couple of remarks on condition (D5).

Remark 6.1. Suppose that T and B satisfy (D5). Let h̃ ∈ L1(m) be a function satisfying
8T (h̃)= h̃. Then

h̃ =
∫

h̃ dm · h, (24)

where h is as in (D5)(iii) Indeed, by (D5)(vi), there exists a sequence hn ∈ B such that
hn→n h̃ in L1(hm). Furthermore, since h, 1/h ∈ B, from (D5)(ii), there exist a, b > 0
such that

0< a ≤ h(x)≤ b <∞ (25)

on I . So,∣∣∣∣∫ h̃ dm · h − h̃

∣∣∣∣
L1(m)

≤ |h̃ − hn|L1(m) +

∣∣∣∣∫ hn dm · h −8k
T (hn)

∣∣∣∣
L1(m)

+|8k
T (hn)−8

k
T (h̃)|L1(m)

≤ 2|h̃ − hn|L1(m) +

∣∣∣∣∫ hn dm · h −8k
T (hn)

∣∣∣∣
B

≤ 2|h̃ − hn|L1(m) + Cλk
|hn|B.

Given ε > 0, choose n0 such that

|h̃ − hn0 |L1(m) ≤
1
a
|h̃ − hn0 |L1(hm) <

ε

4
,

and k0 such that
Cλk0 |hn0 |B <

ε

2
.

Then ∣∣∣∣∫ h̃ dm · h − h̃

∣∣∣∣
L1(m)

< ε

for every ε > 0, so equation (24) holds. In particular, if T and B satisfy (D1), (D4) and
(D5), we have that functions h in (D4) and (D5) coincide.
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Remark 6.2. Note that (D5)(ii) implies that

B⊂ L1(hm).

Moreover, (D5)(iii)–(v) imply that
1
h
9 j (vh)

converges exponentially to zero in L1(hm) and B.

LEMMA 6.3. Let T be a transformation satisfying (D1) and (D4), and suppose that B and
T satisfy (D5). Let u ∈ B, and suppose that there exists v ∈ L1(hm) such that

u = Lv

on I . Then v coincides hm-almost everywhere with a function v1 ∈ B.

Proof. The method we are going to use here is very well known for specific kinds of
dynamical systems and observables; for instance, see [5] for the case of C2 piecewise
smooth expanding maps and bounded variation observables. Replacing v by

v −

∫
vh dm 1I ,

we may assume, without loss of generality, that∫
vh dm = 0

since
u = v ◦ T − v.

Applying P j , j ≥ 1, we get
P j u = P j−1v − P jv. (26)

Putting j = 1, . . . , n in equation (26) and adding the resulting equations, we obtain

v = Pnv +

n∑
j=1

P j u.

We claim that |P jv|L1(hm)→ j 0. Indeed, from (D5)(vi), for every ε > 0, there exists
w ∈ B such that

∫
wh dm = 0 and |v − w|L1(hm) < ε. Since ‖P‖L1(hm) ≤ 1, for every j ,

|P jv − P jw|L1(hm) < ε.

From (D5), for every w ∈ B,

P j (w)=
1
h
9 j (wh),

and
|9 j (wh)|L1(hm) ≤ C |9 j (wh)|B ≤ Cλ j

|wh|B,

and we have that for j large enough,

|P jv|L1(hm) ≤ |P
jv − P jw|L1(hm) + |P

jw|L1(hm) < 2ε.
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This proves our claim. In particular,

v =

∞∑
j=1

P j u,

where the convergence of the series is in L1(hm). On the other hand, by Remark 6.2,
this series converges in L1(hm) and B to a function v1 ∈ B. So, v = v1 hm-almost
everywhere. 2

Proof of Theorem 3. Since u0 ∈ B, by (D5), for every v ∈ L∞(hm), we have∣∣∣∣∫ u0 · v ◦ T j
· h dm

∣∣∣∣= ∣∣∣∣∫ P j (u0) · v · h dm

∣∣∣∣≤ Cλ j
|u0|B|v|L∞(hm).

By Theorem 2, we have that u0 is not infinitely cohomologous to zero in L1(hm). Now
suppose Lui = u0. The uniqueness (up to a constant) of ui follows from Corollary 4.2. By
Lemma 6.3, we have ui ∈ B. 2

7. Topological results
Proof of Theorem 4. Define ũ0 = u0 ◦ H . Then ũ0 has bounded p-variation. By
Theorem 1, there exist bounded p-variation functions ũi , i ≤ M , unique up to a constant,
such that

L̃i ũi = ũ0 on L1(hm),

and
L̃α 6= ũM + c on L1(hm), (27)

for every bounded p-variation function α. Here L̃v = v ◦ T̃ − v. Since the support of hm
is I , it follows that L̃i ũi = ũ0 in I (e.c.s.). Define ui = ũi ◦ H−1. Then ui has bounded
p-variation and

Li ui = u0 on H(I ) (e.c.s.).

Suppose that there exists a function ρ with bounded p-variation such that Lρ = uM + c
(e.c.s.). Define ρ̃ = ρ ◦ H . Then ρ̃ has bounded p-variation and L̃ρ̃ = ũM + c on L1(hm).
This contradicts equation (27). So, Lρ 6= uM + c in an uncountable subset of H(I ). Since
the discontinuities of Lρ and uM + c are countable, it follows that there is a continuity
point x0 ∈ H(I ) of both functions such that (Lρ)(x0) 6= uM (x0)+ c. So, there is a non-
empty open subset of H(I ) such that Lρ 6= uM + c. 2

Proof of Theorem 5. The proof of this theorem is quite similar to the proof of Theorem 4.
Define ũ0 = u0 ◦ H . Then ũ0 has bounded p0-variation. By Theorem 3, there exist
bounded p0-variation functions ũi , i ≤ M , unique up to a constant, such that

L̃i ũi = ũ0 on L1(hm),

and
L̃α 6= ũM + c on L1(hm), (28)
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for every α ∈ L1(hm). Here L̃v = v ◦ T̃ − v. Since the support of hm is I , it follows that
L̃i ũi = ũ0 in I (e.c.s.). Define ui = ũi ◦ H−1. Then ui has bounded p0-variation and

Li ui = u0 on H(I ) (e.c.s.).

Now we show the uniqueness of ui in the set of continuous (e.c.s.), bounded Borelian
functions. If continuous (e.c.s.) bounded Borelian functions vi satisfy Livi = u0, then
ṽi = vi ◦ H are also continuous (e.c.s.) and, moreover, they belong to L1(hm) and satisfy
L̃i ṽi = ũ0. So, by Theorem 3, we have that ṽi = ũi + ci for some ci ∈ R, where this
equality holds in L1(hm). Since both functions ṽi , ũi are continuous (e.c.s.), it follows
that ṽi = ũi + ci (e.c.s.), so vi = ui + ci (e.c.s.).

To show conclusions (A) and (B), suppose that there exists a bounded Borelian function
ρ such that Lρ = uM + c (e.c.s.). Define ρ̃ = ρ ◦ H . Then ρ̃ is also a bounded Borelian
function, so it belongs to L1(hm) and L̃ρ̃ = ũM + c (e.c.s.). So, since hm has no
atoms, it follows that this equality holds on L1(hm). This contradicts equation (28). So,
Lρ 6= uM + c in an uncountable subset of H(I ). If ρ is continuous (e.c.s.), we can now
finish the proof exactly as in the proof of Theorem 4. 2

Remark 7.1. One can ask why the conclusions of Theorem 5 are weaker than those of
Theorem 3. The problem is that the conjugacy between one-dimensional maps can be
singular with respect to the Lebesgue measure. Indeed, that is often the case, even when
the two one-dimensional maps T and T̃ are very regular, as expanding maps on a circle
(see [8]). In particular, the conjugacy H does not in general preserve either L1(hm), L1(m)
or the space of Lebesgue-measurable functions (see [6]). So, note that if in the proof of
Theorem 5 we pick ρ to be either in L1(m) or L1(hm), then it is not true in general
that ρ ◦ H belongs to L1(hm). Moreover, since composition with H does not in general
preserve Lebesgue-measurable functions, we need to assume that ρ is a Borel-measurable
function, so ρ ◦ H is also Borel measurable. These are the reasons why we assume that ρ
is bounded and Borelian in Theorem 5.

8. Observables infinitely cohomologous to zero
Consider the Banach space of summable sequences `1(N). For a sequence x = (x j ) j∈N,
denote

|x |`1(N) =
∑

j

|x j
|.

We define the operator U : `1(N)→ `1(N) as the norm-preserving map

U (x)= y,

where y0
= 0 and y j+1

= x j for j ≥ 0.
We say that x ∈ `1(N) is infinitely cohomologous to zero with respect to U if there

exists an infinite sequence xi ∈ `
1(N), with x = x0 such that

xi =U (xi+1)− xi+1

for every i ≥ 0.
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LEMMA 8.1. [2] There is a non-vanishing sequence x ∈ `1(N) which is infinitely
cohomologous to zero with respect to U.

Proof. We claim that for every k ∈ N, there exist

x0,k, x1,k, . . . , xk,k ∈ `
1(N),

all of them with compact support, such that x0
0,k = 1,

xi,k =U (xi+1,k)− xi+1,k,

|xi,k+1 − xi,k |`1(N) < 2−k−1, (29)

for every i < k.

The proof is by induction on k. Choose x0,0 = (1, 0, 0, 0, . . .). Suppose that by
induction we found a finite sequence xi,k , i ≤ k, with the above properties. Fix N > 0.
Define xk,k+1 as x0

k,k+1 = x0
k,k , x j

k,k+1 = x j
k,k − δ/N , for 1≤ j ≤ N , and x j

k,k+1 = x j
k,k for

j ≥ N + 1. Here δ =
∑

j x j
k,k . Defining

x j
k+1,k+1 =−

∑
p≤ j

x p
k,k+1,

we have that xk+1,k+1 has compact support and xk,k+1 =U (xk+1,k+1)− xk+1,k+1. Now
define by induction

xi,k+1 =U (xi+1,k+1)− xi+1,k+1, i < k.

In particular, x0
i,k+1 =−x0

i+1,k+1 for i ≤ k. Since x0
i,k =−x0

i+1,k for i < k and x0
k,k+1 =

x0
k,k , we have x0,k+1 = 1. Furthermore, it is not difficult to see that if N is large enough,

then

|xi,k+1 − xi,k |`1(N) < 2−k−1,

for every i < k. This completes the inductive step.

By equation (29), for every i , there exists xi ∈ `
1(N) such that limk xi,k = xi on `1(N).

It is easy to check that xi =U (xi+1)− xi+1 and x0
0 = 1. Pick x = x0. 2

Proof of Theorem 6. Since T is topologically conjugate with T` = `x mod 1, ` ∈

Z\{−1, 0, 1}, it is enough to show Theorem 6 for T`. Choose n such that ` does not
divide n. Let x = (x j ) j ∈ `

1(N), as in Lemma 8.1. Define

u(x)=
∞∑
j=0

x j sin(2πn` j x).

The function u is continuous and non-constant. Using Remark 3.2 and Proposition 3.8,
one can easily show that u is infinitely cohomologous to zero. 2
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