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We investigate the energy transport and heat transfer efficiency in turbulent
Rayleigh–Bénard (RB) convection laden with radiatively heated inertial particles. Direct
numerical simulations combined with the Lagrangian point-particle mode were carried
out in the range of density ratio 854.7 ≤ ρp/ρ0 ≤ 8547 and radiation intensity 1 ≤
φ/φsolar ≤ 100 for both two-dimensional (2-D) and three-dimensional (3-D) simulations.
The Rayleigh number ranges from 2 × 106 to 108 for 2-D cases, and is 107 for 3-D cases
for Pr = 0.71. It is found that particles with small density ratio that encounter strong
radiation significantly alter the flow momentum transport and fluid heat transfer, so the
fluid temperature of bulk is remarkably heated. We then derived the theoretical relation of
the Nusselt number for interphase heat transfer in the heated particle-laden RB convection,
which reveals that the heat transfer difference between the top and bottom plates stems
from the interphase heat transfer. We further found that both the interphase heat transfer
and the interphase thermal energy transport exhibit universal properties. They are both
increased linearly with the reciprocal of the normalized density ratio. Additionally, both
the interphase heat transfer and the interphase thermal energy transport increase linearly
with the increase of radiation intensity. The growth rates exhibit specific scaling relations
versus Rayleigh number and density ratio. Two different regimes distinguished by the
critical density ratio, i.e. the exothermic particle regime and the endothermic particle
regime, are observed. We further derived the power-law relation of the critical density
ratios versus Rayleigh number and radiation intensity, i.e. ρp/ρc ∼ (φ/φsolar)

1/2 Ra1/3,
which is in remarkable agreement with the 3-D simulations.
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1. Introduction

The particle-laden turbulent flow is a common scene in nature (Grabowski & Wang
2013) and engineering applications (Sahu, Hardalupas & Tayler 2014; Pouransari & Mani
2017). In this multi-phase flow system, the particle–turbulence interaction can significantly
modulate the turbulence, and impact the kinetic and thermal behaviour of particles. This
further results in various important dynamics (Elghobashi 1994; Balachandar & Eaton
2010) that are crucial in natural and industrial processes.

Particles of sufficient inertia in turbulence can concentrate in clusters away from
vorticity core under the centrifugal effect and sweep-stick mechanism (Squires & Eaton
1991; Wang & Maxey 1993); they can also tend to cluster in the region close to the
wall due to the turbophoresis in the wall-bounded flow (Reeks 1983; Bragg, Richter
& Wang 2021). Thus the particles significantly alter the flow structures and the heat
transfer of the flow. For instance, it is found that particles transfer their momentum to
the small-scale flow, which increases the local velocity gradients (Ahmed & Elghobashi
2000) and further increases the viscous dissipation (Druzhinin & Elghobashi 1999).
Moreover, Ferrante & Elghobashi (2003) found that the preferential concentration of
settling particles significantly stretches the vortical structures in the gravitational direction,
thus the turbulent energy redistributes from the horizontal to the vertical direction.
Wang & Richter (2020) further investigated the multiscale interaction of inertial particles
with turbulent flow structures in the turbulent channel flow. They highlight that the
interaction between inertial particles and large-scale motions is crucial for the interphase
energy transport. When the thermal buoyancy is negligible, the temperature is treated
as a passive scalar. The modulation of fluid heat transfer and temperature field by
particles are well investigated in the turbulent homogeneous shear flow and turbulent
channel flow (Shotorban, Mashayek & Pandya 2003; Liu et al. 2018). Moreover, the
multiscale thermal properties of particles and their contribution to fluid temperature are
characterized (Carbone, Bragg & Iovieno 2019). In many conditions, the thermal buoyancy
is very important and even is the driving force of the flow system. The single-phase
buoyancy-driven flow, which is abstracted as the paradigmatic model Rayleigh–Bénard
(RB) convection, has been investigated extensively (Ahlers, Grossmann & Lohse 2009;
Lohse & Xia 2010; Wang, Zhou & Sun 2020). However, the study of particle-laden RB
convection is a new field that has not been investigated widely. Oresta & Prosperetti
(2013) found that the alteration of heat transfer is dominated by the thermal coupling
for small particles, and the mechanical coupling plays an increasingly important role as
the increasing of particle diameter in the cylindrical cell. Park, O’Keefe & Richter (2018)
investigated the RB convection laden with non-isothermal particles in a three-dimensional
rectangular cell, where particles are limited in the artificially tiny gravity. They found
that the effect of preferential concentration results in the significant enhancement of the
Nusselt number (Nu). Our recent work investigates the dynamic coupling between carrier
fluid and particles in RB convection laden with particles (Yang et al. 2022b). We found
that particles with medium Stokes number significantly enhance the Nusselt number due to
strong coupling of the two phases, where the particle-induced kinetic energy is dominated.

As one of the strategies to utilize renewable energy efficiently, concentrating solar
power (CSP) systems use low-cost materials to capture, store and transfer solar energy
in the form of radiant heat through particulate two-phase flow, which can substantially
reduce power generation costs and improve green energy supply. The particle solar receiver
plays a key role in CSP, which can be regarded as a radiatively heated particle-laden
two-phase flow (Tan & Chen 2010; Ho 2016). At present, some scholars have carried out
some research for engineering applications. Chen et al. (2007) investigated numerically
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Energy transfer in radiative heat particle-laden RB convection

the gas-particle flow in a solid-particle solar receiver. They found that particles with
small size are easy to heat up, and higher temperatures can be achieved. Kim et al.
(2009) studied the kinetic behaviour of heated particles in the solar particle receiver. They
observed that the local concentration of particles results in the higher energy collection
efficiency as it is more optically dense. Chinnici et al. (2015) investigated the particle
residence time in the solar vortex reactor with different geometry. They found that the
turbulent vortex structures strongly impact the resident time of particles. Researchers also
abstracted the particle-based solar receivers as simpler multi-phase flow system to study
the intrinsically physical mechanism. For instance, Pouransari & Mani (2017, 2018) found
that the preferential concentration of heated particles reduces the heat transfer between
particles and gas in a square channel. Rahmani et al. (2018) considered the particle
polydispersity in a square channel. They found that the polydisperse heated particles
perform better in transferring heat to the gas than the monodisperse particles. Frankel et al.
(2016) analysed the influence of settling of heated particles on the turbulent structures in
homogeneous turbulence. They found that the heated particles shed plumes of buoyant gas,
which further modifies the turbulent structures. In this way, the turbulent kinetic energy
varies non-monotonically as the increasing of radiation intensity due to the competing
effects between the downward gravity and the upward buoyancy. Banko et al. (2020)
investigated experimentally the temperature statistics in the heated particle-laden turbulent
square duct flow. The temperature statistics exhibit qualitatively differently at the duct
centreline and the near wall under the effect of preferential concentration of particles and
the streamwise elongated streaks in the centre and the near-wall regions, respectively.
Zamansky et al. (2014, 2016) investigated the turbulent thermal convection driven by
heated inertial particles. They found that the fluid temperature properties and dissipation
characteristics of energy are the result of the different forcing mechanisms that depend
on the distribution of the particles. We note that works exploring the complete physics of
particle–turbulence–radiation interaction are scarce, and the mechanisms and efficiency
of energy transport in radiatively heated particle-laden flows are not well investigated. For
example, little information exists that can address how the density ratio impacts exothermic
and endothermic laws between phases. In addition, regarding the application of using
solar radiant energy, the captured thermal energy tends to be high radiation intensity
and causes considerable temperature differences in which the non-Oberbeck–Boussinesq
effects should be considered, but this aspect is missing in previous studies. This has
stimulated our enthusiasm to study related issues.

When fluid flow laden with solid particles is subject to radiative heating, it is often
accompanied by the thermal buoyancy driving flow. There are temperature differences
as well as strong thermal convection in the particle solar receiver; the radiatively heated
particle-laden RB flow therefore can be regarded as one of the simplified models of particle
solar receiver. To our knowledge, there is a lack of theoretical analysis on the interphase
heat exchange of RB convection laden with heated particles, as well as an understanding
of the relationship among particle motion, distribution, thermal variation of the flow field,
and radiation intensity. Here, we focus on the energy transport characteristics and the
heat transfer efficiency. We study numerically and theoretically the plate heat transfer and
the interphase energy transport in the RB convection laden with heated particles, and
investigate the correlation between particle–fluid density ratio versus Rayleigh number
and radiation intensity.

The remainder of this paper is organized as follows. In § 2, we describe briefly the
mathematical model and numerical procedure. Results and discussion are presented in § 3,
which is divided into five parts. We describe the flow organization in § 3.1, and discuss the
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Figure 1. Configuration of turbulent RB convection laden with heated particles.

flow heat transfer and Reynolds number in § 3.2. In § 3.3, we derive the theoretical relation
of the Nusselt number for the interphase heat transfer in a particle-laden RB convection
system, and further analyse the specific relation between the interphase heat transfer and
the normalized density ratio. Section 3.4 analyses the energy transport characteristics and
discusses the kinetic energy and thermal energy. Section 3.5 discusses the scaling law of
the critical density ratio versus the radiation intensity and the Rayleigh number. Finally,
we give a conclusion for this work in § 4.

2. Mathematical model and numerical procedure

The configuration of the RB convection laden with heated particles is shown in figure 1,
with cell width W, height H and depth D. We consider air as the working fluid; the
temperature variation of fluid may be large under the effect of the heated particles, thus
the fluid flow is governed by the low-Mach-number Navier–Stokes equations (Paolucci
1982). Additionally, the air is an optically transparent gas, thus we ignore the effect of
thermal radiation on gas temperature. In addition, this work assumes that no portion of the
radiation is absorbed or reflected by the cavity walls. That implies that all radiated heat is
captured equally by the particles. The volume occupied by the particles is very small; we
write the momentum equations and the energy equation, in dimensionless form, as

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xj
+ 1

(Ra/Pr)1/2
∂τi,j

∂xj
+ 1

2ε
(ρ − 1)δ3i + Fi, (2.2)

ρcp

(
∂T
∂t

+ uj
∂T
∂xj

)
= 1

(Ra Pr)1/2
∂

∂xj
k

∂T
∂xj

+ Γ
dpth

dt
+ Q, (2.3)

pth = ρT, (2.4)

where ρ, u, T , p and pth are, respectively, the fluid density, velocity, temperature,
hydrodynamic pressure and thermostatic pressure; τi,j = μ(∂ui/∂xj + ∂uj/∂xi)

−(2/3)δijμ(∂uk/∂xk) is the viscosity stress tensor, where μ is the dynamical viscosity,
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λ = −2μ/3 is the volume viscosity, and δij is the Kronecker delta; cp is the isobaric
specific heat and is fixed at unity; Γ = (γ − 1)/γ represents the resilience of the fluid,
with the ratio of specific heats γ = 1.4. The dimensionless thermal conductivity k and
dynamic viscosity μ for air are governed by Sutherland’s law

k = T1.5(1 + Sk)/(T + Sk), μ = T1.5(1 + Sμ)/(T + Sμ), (2.5a,b)

where Sk = 0.648 and Sμ = 0.368 for the reference temperature T0 = 300 K (Suslov &
Paolucci 1999; Suslov 2010). Sutherland’s law is developed based on the kinetic theory of
ideal gases and an idealized intermolecular force potential (Sutherland 1893), thus fairly
accurate results can be obtained with an error less than a few per cent over a wide range
of temperatures. The terms Fi and Q, respectively, represent the momentum and thermal
feedback of the dispersed phase, which will be described later. The non-dimensional
equations (2.1)–(2.4) are obtained by the cell height H, the arithmetic average temperature
T0, the averaged density ρ0, the characteristic velocity u∗ = (2εgH)1/2, and the reference
thermodynamic pressure ρ0RT0, where g is the acceleration due to gravity, and R is the
gas constant. The fluid properties at the reference temperature and the thermodynamic
pressure are also the reference quantities, including cp,0, μ0 and k0. The dimensionless
temperature differential ε, the Rayleigh number and the Prandtl number are defined as

ε = 
T
2T0

, Ra = 2εcp,0ρ
2
0gH3

μ0k0
, Pr = cp,0μ0

k0
. (2.6a–c)

In this work, the particles in air are highly dilute and optically thin, thus we can neglect
particle–particle interaction (Elghobashi 1994, 2019) and assume that every particle
receives the same amount of radiation (Frankel, Iaccarino & Mani 2017). In addition, the
density of particles is much higher than that of the fluid, and particle diameters are small
compared with the Kolmogorov scale of turbulence. All the constant properties of the
simulations are shown in table 1. Under the above assumptions, movement of particles
is conducted by Stokes drag and gravity (Elghobashi & Truesdell 1992; Guha 2008;
Balachandar & Eaton 2010). Therefore, we write the particle equations, in dimensionless
form, as

dxp,i

dt
= up,i, (2.7)

dup,i

dt
= − 1

Fr2
p

δ3i − CD

Stf
(up,i − ui), (2.8)

dTp

dt
= Nup

2
Tf − Tp

StT
+ q, (2.9)

where xp, up and Tp are the particle dimensionless position, velocity and temperature,
respectively; Tf is the fluid temperature at the particle location; Frp = (2ε)1/2 represents
the ratio of inertia force of fluid to gravity of a particle; CD = 1 + 0.15 Re0.678

p
represents the drag correction coefficient that applies when the particle Reynolds
number Rep = (dp/H)(ρ/μ) |u − up| (Ra/Pr)1/2 exceeds unity, where dp is the particle
diameter, and the notation |u − up| refers to the magnitude of the vector difference
between the fluid and particle velocities. The particle Nusselt number Nup is given
by a well-known empirical correlation as Nup = 2 + 0.6 Re1/2

p Pr1/3 (Ranz & Marshall
1952). The particle Stokes number and the thermal Stokes number based on the
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Parameters Value

Prandtl number, Pr 0.71
Aspect ratio, H/D 1
Reference temperature, T0 300 K
Temperature difference, 
T 60 K
Reference density, ρ0 1.17 kg m−3

Dynamical viscosity, μ0 1.84 × 10−5 kg (m s)−1

Thermal conductivity, k0 2.60 × 10−2 W (m K)−1

Fluid specific heat, cp,0 1005 J (kg K)−1

Particle specific heat, cp,p 700 J (kg K)−1

Particle diameter, dp 40 μm
Mass loading, Φm 0.01

Table 1. Summary of the fluid and particle properties used in the simulation. Here, the heights of the
convection cell are 0.07, 0.12 and 0.26 m for Ra = 2 × 106, 107 and 108, respectively.

integral time scale are given by Stf = (1/18)(ρp/ρ0)(dp/H)2(μ0/μ)(Ra/Pr)1/2 and StT =
(1/12)(cp,p/cp,0)(ρp/ρ0)(dp/H)2(k0/k)(Ra Pr)1/2, respectively, where ρp denotes the
particle density. In this study, the non-Oberbeck–Boussinesq effect is considered, thus
the thermal conductivity k and dynamic viscosity μ are not constants. That is, both
Stokes numbers vary with the location of particles in the cell. They represent respectively
the inertia and the thermal inertia of a particle in turbulence. Here, q = φp/φ

∗
p is the

heat absorption by a particle with the radiation intensity φ, where φp = (π/4)d2
pφ and

φ∗
p = cp,pmpT0/(H/(2εg))1/2, and mp is the mass of a particle.
According to previous studies, in the case of particle mass fraction in table 1, the

interaction between particles and fluid is significant, thus particles change the turbulent
structures (Elghobashi & Truesdell 1992). The size of particles is far less than the
Kolmogorov scale of the flow field, so the point-particle model applies. In (2.2) and
(2.3), Fi and Q respectively represent the total force and heat exerted on the fluid by the
point-particle in each fluid cell (Oresta & Prosperetti 2013; Liu et al. 2018). Thus Fi and
Q are expressed as

Fi = −π

6
ρp

ρ0

d3
p

V

N∑
j=1

⎛
⎝du j

p,i

dt
−
(

− 1
Fr2

p
δ3i

)⎞⎠ , (2.10)

Q = −π

6
cp,p

cp,0

ρp

ρ0

d3
p

V

N∑
j=1

(
dT j

p

dt
− q

)
, (2.11)

where V is the fluid volume of the cell, and N is the number of particles in the cell.
The RB convection models that we consider here are both two-dimensional (2-D) and

three-dimensional (3-D). For the 2-D cases, it can be an approximate cross-section of
the two-phase flow in a square pipe with H/L = 1. Here, we consider the fluid layer
thickness in the y-direction W to be very thin, with W = H/(Np)

1/2, and Np is the total
number of particles. In this way, on average, a specific particle will occupy a 3-D box
with sides equal to H/(Np)

1/2. The coupling between fluid and particle features is 3-D to
some extent, while the flow characteristics tend to be generally 2-D. The reasonableness
of this approximation includes mainly the following. (i) Many well-cited theories for
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Energy transfer in radiative heat particle-laden RB convection

turbulent RB systems are essentially 2-D, e.g. the popular Grossmann–Lohse theory
(Grossmann & Lohse 2000) and the Whitehead–Doering theory for the ultimate regime
(Whitehead & Doering 2011). (ii) The 2-D turbulence has been a possible application
to intermediate-scale meteorological flow (Kraichnan 1967), and it can be used to better
understand the physical mechanisms of 3-D convection (van der Poel, Stevens & Lohse
2013). (iii) Many of the important physical processes found in 3-D flows laden with inertial
particles are also present in the 2-D model (Patočka, Calzavarini & Tosi 2020; Xu et al.
2020). For the 3-D cases, the geometry of the flow system is a cavity with H/L = 1 and
H/W = 1. For both the 2-D and 3-D cases, the bottom and top walls are respectively
fixed at constant temperatures 1 + ε and 1 − ε, while the lateral walls are assumed to be
thermally adiabatic; in addition, no-penetration and no-slip velocity boundary conditions
are applied to all solid walls. Here, we study both the 2-D and 3-D cases to compare the
similarities and the differences of heat transfer as well as the energy transport mechanism
in different geometries.

The governing equations (2.1)–(2.3) are discretized using the second-order central
difference method. The fractional-step method is used to solve the equations (Verzicco &
Orlandi 1996). A multi-grid strategy (Briggs, Henson & McCormick 2000) is adopted to
solve the pressure Poisson equation. For time advancement, the wall-normal viscous terms
are treated semi-implicitly with the Crank–Nicolson scheme, while all other terms are
discretized by the third-order Runge–Kutta scheme. The numerical details and validations
of the code have been elaborated in previous works (Xia et al. 2016; Liu et al. 2018;
Wang et al. 2019). After the flow field is fully developed, particles are injected into
the flow field at a random position, with their velocities and temperatures set to those
of the local fluid, then we continue the simulation of the particle-laden flow. In the
computation, Lagrangian particle tracking is employed to obtain the position and the
velocity of the particles. Equations of particles’ evolution are advanced in time by a
second-order Adams–Bashforth method (Dong & Chen 2011). For particles, an elastic
reflection is enforced at the upper wall and the lateral walls. When a particle reaches the
bottom of the cell, it is removed from the calculation and a new particle is re-injected
at a random position on the top plate with velocity zero and temperature 1 − ε, which
is the same as the top temperature. This assumption means that the volume fraction of
discrete phases in the system remains unchanged, and each particle injected is always
at the same temperature as the surrounding fluid. The present particle re-entry model
was supported by previous numerical studies (Oresta & Prosperetti 2013). In fact, newly
injected particles here do not represent the subsequent behaviour of removing particles.
The thermal modulation at small scales can be due only to the local non-uniformity
of the thermal coupling between interphases. The momentum and energy of the carrier
phase and discrete phase can be in equilibrium. Generally speaking, this approximation
is reasonable when the residence time of the particles in the flow is short, in view of
the comparatively smaller volumetric heat capacity of the fluid. To reveal systematically
the properties of the heat transfer and energy transport in the heated particle-laden RB
convection, we carried out both 2-D and 3-D direct numerical simulations (DNS) cases as
shown in table 2, where radiation intensity is 1 ≤ φ/φsolar ≤ 100, spanning the density
ratio range 854.7 ≤ ρp/ρ0 ≤ 8547. All the simulations are performed at fixed Prandtl
number Pr = 0.71, Froude number Frp = 0.447, mass loading Φm = 0.01, temperature
differential ε = 0.1, and particle diameter dp = 40 μm. We adopt the non-uniform
grid with more grid points clustered near walls to achieve a full resolution of the
boundary layer and the smallest scale of the flow. For 2-D DNS cases, the grid numbers
are set to be Nx × Nz = 256 × 256, 384 × 384 and 768 × 768 for Ra = 2 × 106, 107

953 A35-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

97
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.978


W. Yang, Z.-H. Wan, Q. Zhou and Y. Dong

2-D 3-D

Ra 2 × 106, 107, 108 107

φ φsolar ≤ φ ≤ 100 × φsolar
ρp/ρ0 854.7 ≤ ρp/ρ0 ≤ 8547
ΦV 1.17 × 10−5 ≤ ΦV ≤ 1.17 × 10−4

Table 2. Simulation parameters. For all cases, the Prandtl number is Pr = 0.71, the Froude number is Frp =
0.447, the mass loading is Φm = 0.01, the temperature differential is ε = 0.1, and the particle diameter is
dp = 40 μm.

and 108, respectively. For 3-D cases, Ra = 107 and Nx × Ny × Nz = 192 × 192 × 192
were used.

3. Results

3.1. Flow organization
The instantaneous temperature field and flow structures in the 2-D convection cell at
Ra = 107 and φ = 50 × φsolar for the single-phase case and the particle-laden cases with
three density ratios, i.e. ρp/ρ0 = 2564.1, 4273.5 and 8547.0, are shown in figures 2(a–d).
In the 2-D simulations, a large-scale circulation accompanied by small secondary rolls
is observed in the single-phase case in figure 2(a); the thermal plumes self-organize
into a large-scale coherent structure, and move along side walls (Xu et al. 2021). For
the small-density-ratio case ρp/ρ0 = 2564.1, there are more secondary rolls as the flow
is speeded up by the particle cluster, as shown in figure 2(b). This is in line with the
observation of our previous work in the RB convection laden with isothermal particles
(Yang et al. 2022b). Moreover, the temperature of bulk increases significantly due to
the heated particles transferring their heat to the fluid. The flow structures and the
temperature field vary a little at the medium-density-ratio case ρp/ρ0 = 4273.5. For the
large-density-ratio case ρp/ρ0 = 8547.0, the flow structures change a small amount. The
temperature of the bulk surprisingly drops a little, which implies that the heated particles
absorb heat from the fluid. In the 3-D simulations, vigorous sheet-like plumes are ejected
from the bottom and top plates, as shown in figure 2(e). For the particle-laden case at the
small density ratio ρp/ρ0 = 2564.1, the hot plumes stretch into the bulk, which indicates
that the bulk is heated significantly.

Additionally, the distribution of particles is also given in figures 2(b–d) for 2-D cases,
and figure 2(e) for 3-D simulation. For small density ratio ρp/ρ0 = 2564.1, particles
cluster into bands along the edge of the large-scale circulation as the effect of preferential
sweeping (Wang & Maxey 1993) for the 2-D case, as shown in figure 2(b). The clusters
that act on the edge of the eddy can change the strength and shape of the eddy, as shown in
figure 2(b). This is decided by the transport patterns of particles. Particles with a particular
density ratio (or Stokes number) can cluster into bands that correlate to the edges of
eddies, which is named as channel transport mode (Yang et al. 2022a). The preferential
concentration of particles is also observed repeatedly for RB convection, mixing layer and
jet flow (Lázaro & Lasheras 1992; Longmire & Eaton 1992). But in the 3-D case, the
distribution of particles is uniform, as shown in figure 2(e), as the flow strength is rather
weaker than in the 2-D case, and the preferential sweeping cannot significantly impact
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Figure 2. Typical snapshots of the 2-D instantaneous temperature field (colour) and streamlines (black lines
with arrows) for Ra = 107 at Pr = 0.71, ε = 0.1 and φ = 50 × φsolar: (a) single-phase, (b) ρp/ρ0 = 2564.1,
(c) ρp/ρ0 = 4273.5, and (d) ρp/ρ0 = 8547.0. (e, f ) Instantaneous temperature isosurfaces of 3-D cases with the
opacity set to be 50 % and the distribution of particles for Ra = 107 at Pr = 0.71, ε = 0.1 and φ = 50 × φsolar:
(e) single-phase, ( f ) ρp/ρ0 = 2564.1. Here, 50 % and 1 % of the total number of particles are shown for the
2-D cases and 3-D case, respectively.

the distribution of particles. For the medium and large density ratios ρp/ρ0 = 4273.5 and
8547.0, the particle motion is dominated by its gravity; consequently, the distribution of
particles has no significant correlation with the structures of eddies, and particles distribute
uniformly in the flow field, as shown in figures 2(c,d).
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Figure 3. Cold-plate Nusselt number Nuc as a function of density ratio ρp/ρ0 for (a) 2-D cases and (b) 3-D
cases. Hot-plate Nusselt number Nuh as a function of density ratio ρp/ρ0 for (c) 2-D cases and (d) 3-D cases.
For all the cases, Ra = 107, Pr = 0.71 and ε = 0.1. The black dashed lines denote the volume-averaged Nusselt
number for 2-D and 3-D single-phase cases.

3.2. Flow heat transfer and Reynolds number
The cold-plate Nusselt number and the hot-plate Nusselt number are shown in figure 3.
For the cold-plate Nusselt number Nuc as shown in figures 3(a,b), Nuc is decreased almost
monotonically as the increase of the density ratio ρp/ρ0, and it also noted that Nuc becomes
larger for large radiation intensity. The trends between the 2-D cases and the 3-D cases are
basically the same. The particles with a small density ratio and large radiation intensity
can substantially increase the cold-plate heat transfer of the convection cell; this implies
that in this situation, the temperature of particles is significantly larger than that of the cold
plate, thus it becomes important that the heat transfers between the hot particles and the
top plate. For the hot-plate Nusselt number Nuh as shown in figures 3(c,d), there is little
difference between the 2-D cases and 3-D cases. For the 2-D cases, Nuh climbs to a peak
then goes down near the heat transfer of the single-phase case with increasing density ratio,
when the radiation intensity is lower than 50 × φsolar. At larger radiation intensity, for
example, φ = 100 × φsolar as shown in figure 3(c), Nuh increases monotonically to the heat
transfer of the single-phase case with increasing density ratio. Note that slight ‘bump-like’
variations can be observed in the Nusselt numbers at high density ratios in figures 3(a,c).
This is related to thermal and mechanical fluid–particle coupling. The acceleration that
the particles impart to the colder, descending fluid stream is re-balanced by the retardation
that they cause on the warmer fluid. Meanwhile, the larger drag that they impose on the
flow in the thermal boundary layers is responsible for the decline of Nuc in the bump-like
variation at high density ratio. For the 3-D cases, Nuh becomes monotonically larger for
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Figure 4. Re as functions of ρp/ρ0 for different values of radiation intensity for (a) 2-D cases and (b) 3-D
cases, for Ra = 107 at Pr = 0.71 and ε = 0.1.

the large density ratio, and reaches a value that is slightly larger than the heat transfer of
the single-phase case. Moreover, for both the 2-D cases and 3-D cases, it is noted that
Nuh can become negative, with a very large absolute value at small density ratio and large
radiation intensity, which means that a large heat flux goes down. This implies that the
temperature of the heated particle at a small density ratio and large radiation intensity is
significantly larger than the hot-plate temperature; consequently, heat is transported from
particles with a higher position than the bottom wall to the hot plate. What is more, as the
density ratio becomes very large, the dependence of Nuc (or Nuh) on the radiation intensity
becomes inconspicuous.

The heated particles also change significantly the turbulent momentum transport. The
Reynolds number (Re) of the thermal convection system can imply the activity of the
turbulent momentum, and is calculated as Re = Urms(Ra/Pr)1/2, where Urms = 〈u · u〉1/2,
in which 〈·〉 denotes an ensemble (or space–time) average. We show Re for different
density ratios and radiation intensities in figures 4(a,b). For the 2-D cases, Re is increased
significantly, by up to 280 % for small density ratio as the particle clusters acting on
the edges of the eddy, called a circling transport pattern, as shown in figure 2(b), vastly
accelerate the motion of the fluid and then enhance the turbulent momentum transport
of the cell. In addition, a significant decline of Re is observed for large-density-ratio
cases, where particles settle uniformly due to large inertia, called a downpour transport
pattern, as shown in figures 2(c,d). Particles cannot transfer their momentum effectively to
fluid, instead increasing the dissipation of fluid kinetic energy, and causing a substantial
change in the Reynolds number. Our recent work (Yang et al. 2022a) found that the flow
structure and heat transfer processes can change significantly with different particle motion
patterns. This also implies that the buoyancy contribution from heated particles is less for
large-density-ratio particle-laden cases. For the 3-D cases, the physical model and the
boundary conditions (especially the constraints on the front and back walls) are different
from the 2-D cases. Particle clusters and the aforementioned particle transport patterns are
not observed within the current parameters; the particles tend to be distributed uniformly in
the flow field at all times – see figure 2( f ). Thus the Reynolds number shows a continuous
variation following the density ratio, and it is less than the single-phase Reynolds number
for small density ratio (small inertia particles). This is in line with the observations in a
cylindrical RB convection system by Oresta & Prosperetti (2013).
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3.3. Interphase heat transfer efficiency
The interphase heat transfer is one of the key focuses in the RB convection laden with
heated inertial particles. It is strongly related to how to exchange and store thermal energy
in the particle solar receiver flow system. Here, based on the energy equation and the
continuity equation of fluid, we derive the theoretical relation between the cold/hot plate
heat transfer and the interphase heat transfer. The fluid continuity equation and the energy
equation are given as equations (2.1) and (2.3). Here, for a closed system with no-slip and
no-penetration boundary conditions, the time derivative of thermodynamic pressure is

dpth

dt
= 1

(Ra Pr)1/2
1

(1 − Γ )V

∫
S

k
∂T
∂xj

nj dS. (3.1)

We combine this with the time-averaged fluid continuity equation (2.3) to get

cp

(
∂(ρT)

∂t
+ ∂(ρujT)

∂xj

)
= 1

(Ra Pr)1/2
∂

∂xj
k

∂T
∂xj

+ Γ
dpth

dt
+ Q. (3.2)

Applying stationarity (i.e. the first term on the left-hand side equals zero) and
the z-plane average for (3.2), and combining the no-penetration boundary condition
at all side walls,

∫
A(∂(ρuT)/∂x + ∂(ρvT)/∂y) dx dy vanishes;

∫
A((∂/∂x)k(∂T/∂x) +

(∂/∂y)k(∂T/∂y)) dx dy = 0 as there is no heat flux at all side walls.
Thus 〈

cp
∂(ρwT)

∂z

〉
A,t

= 1
(Ra Pr)1/2

〈
∂

∂z
k

∂T
∂z

〉
A,t

+
〈
Γ

dpth

dt

〉
A,t

+ 〈Q〉A,t , (3.3)

where 〈·〉A,t denotes the z-plane time average. We use the given definitions of Nuc and Nuh
to write

Nuc =
〈(

−kd
∂Td

∂zd

)∣∣∣∣
H

/(
k0


T
H

)〉
A,t

= − k
2ε

〈
∂T
∂z

〉
A,t

∣∣∣∣∣
1

, (3.4)

Nuh =
〈(

−kd
∂Td

∂zd

)∣∣∣∣
0

/(
k0


T
H

)〉
A,t

= − k
2ε

〈
∂T
∂z

〉
A,t

∣∣∣∣∣
0

. (3.5)

Then we perform the integration over 0 ≤ z ≤ z1 and z1 ≤ z ≤ 1. We can obtain the
non-dimensional heat flux of the hot plate and cold plate as

Nuh = (Ra Pr)1/2

2ε
〈ρwT〉A,t

∣∣∣∣
z1

−
〈

k(z1)

2ε

∂T
∂z

〉
A,t

∣∣∣∣∣
z1

− (Ra Pr)1/2

2ε

∫ z1

0
〈Q〉A,t dz − (γ − 1)z1 (Nuc − Nuh) , (3.6)

Nuc = (Ra Pr)1/2

2ε
〈ρwT〉A,t

∣∣∣∣
z1

−
〈

k(z1)

2ε

∂T
∂z

〉
A,t

∣∣∣∣∣
z1

+ (Ra Pr)1/2

2ε

∫ 1

z1

〈Q〉A,t dz + (γ − 1)(1 − z1) (Nuc − Nuh) . (3.7)
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Figure 5. Nuc/(Nuh + Nuq) as functions of ρp/ρ0 for different values of radiation intensity at Ra = 107 for
(a) 2-D cases and (b) 3-D cases.

Equation (3.7) minus (3.6) gives

Nuc − Nuh = (Ra Pr)1/2

2εγ

∫ 1

0
〈Q〉A,t dz

= − (Ra Pr)1/2

2εγ

π

6
cp,p

cp,0

ρp

ρ0

d3
p

HLW

〈 N∑
i=1

(
dTp,i

dt
− q

)〉
t

= Nuq. (3.8)

Here, Nuq denotes the difference between the Nusselt numbers of the cold and hot plates.
Equation (3.8) shows that Nuq is the result of the interphase heat transfer in the cell. We
can also verify our numerical resolution utilizing (3.8). Figure 5 compares Nuc and Nuh +
Nuq for various density ratios at different radiation intensities and at fixed Ra = 107. It is
seen from the figure that Nuc/(Nuh + Nuq) is quite close to unity for different radiation
intensities and density ratios, which indicates that the grid resolutions are fine enough to
obtain accurate results that are very close to the theory results, and the small flow structures
can be well captured. What is more, it also indicates that both the momentum feedback and
the thermal feedback imposed by the heated particles are properly calculated.

We further plot the variation of Nuq with density ratio at different radiation intensities
and at fixed Ra = 107 in figures 6(a,b). Despite the small difference in magnitudes, it is
noted that the variation of Nuq with density ratio is similar for 2-D cases and 3-D cases. As
the density ratio is increased, Nuq decreases very rapidly at first, and then slowly becomes
less than 0. This indicates that the small-density-ratio particles can absorb more radiation
heat and then transfer relatively more heat to the fluid, as the settling of small-density-ratio
particles is slow. It is also noted that particles with a large density ratio always absorb heat
from fluid even at very large radiation intensity φ = 100 × φsolar, as the temperature of
particles is increased a little under the process of fast settling. Two different regimes can be
identified: the exothermal particle regime where Nuq is larger than 0, and the endothermal
particle regime where Nuq is less than 0. The division between the two regimes gives
a critical density ratio ρc/ρ0 at which Nuq crosses 0. The regime shifts towards larger
ρp/ρ0 when the radiation intensity is increased, suggesting that the exothermal particle
regime occurs more easily at larger radiation intensity. To better compare the Nuq values
at different radiation intensities, we adopt ρc/ρ0 and the single-phase Nusselt number Nu∗
to normalize the data, and the results are plotted in figures 6(c,d). It is seen that all symbols
can collapse on a curve for both 2-D and 3-D cases. The two curves can be well described
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Figure 6. Plots of Nuq as a function of ρp/ρ0 obtained at various φ and fixed Ra = 107 for (a) 2-D cases and
(b) 3-D cases. Ratio Nuq/Nu∗ as a function of the normalized density ratio ρp/ρc for (c) all 2-D cases and (d)
all 3-D cases; the black solid curves are the best power function fits to the respective data. Here, φ1, φ2, φ3, φ4
and φ5 represent the radiation strengths of φsolar, 10φsolar , 20φsolar , 50φsolar and 100φsolar , respectively.

by Nuq/Nu∗ = Cq[(ρp/ρc)
−1 − 1], where the constant parameter Cq equals 0.6 for the

2-D simulations, and 0.4 for the 3-D simulations. This indicates that ρc/ρ0 is indeed a
relevant typical density ratio for the problem. This signals that the interphase heat transfers
for all cases studied exhibit universal properties and are governed by the same transfer
mechanism. In addition, Nuq values increase linearly with the radiation intensity, and their
slopes become large as the density ratio decreases, as shown in figure 7(a). Here, α is the
growth rate of Nuq with radiation intensity. In figure 7(b), we summarize α in the best
linear relation fits of Nuq ∼ α(φ/φsolar) as a function of the density ratio and the Rayleigh
number. One sees that all data collapse onto a single curve, and the best power-law fits to
the data yield α ∼ (ρp/ρ0)

−1.11 Ra0.65.

3.4. The energy transport
We plot the schematic of the energy process in the particle-laden RB convection as shown
in figure 8. In this flow system, the fluid energy includes kinetic energy and thermal energy.
Fluid kinetic energy can be obtained through interaction between thermal buoyancy or
particle and fluid, and finally dissipated by fluid viscosity. The injected kinetic energy is
from the work done by the driving buoyancy and the momentum feedback of particles
F · u; the injected thermal energy includes the part of the heat flux from the hot/cold plate
and the thermal feedback of particles QT . The energy finally dissipates due to the fluid
viscosity and the thermal diffusivity.

The kinetic energy of the fluid in RB convection can be revealed by the Reynolds
number, as shown in figure 4 and discussed in § 3.2. For the 2-D cases, the particle-induced
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Figure 7. (a) Plots of Nuq as functions of φ/φsolar obtained at various density ratios ρp/ρ0 and fixed Ra =
107 for 2-D cases. The solid and dashed lines are eye guides. (b) Fitted slope in the linear relation Nuq ∼
α(φ/φsolar) as a function of the product (ρp/ρ0)

−1.11 Ra0.65 for both 2-D and 3-D cases. The black dashed line
is the fitted relation for α versus (ρp/ρ0)

−1.11 Ra0.65.
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Figure 8. The schematic of the energy process in the RB convection laden with heated particles.

kinetic energy 〈F · u〉V,t is important for a small-density-ratio particle, as shown in
figure 9(a). Our recent work revealed that the mechanism for the increased Re as shown in
figure 4(a) results from particle-induced kinetic energy, therefore it enhances the strength
of turbulence (Yang et al. 2022b). For the 3-D cases, the particle-induced kinetic energy
decreases with the increasing of ρp/ρ0, while the fluid kinetic energy increases at larger
ρp/ρ0. This implies that the thermal plumes shed from heated particles accelerate the
motion of flow eddies, and its contribution to the fluid is larger than that of particle-induced
kinetic energy. That explains why the alteration of fluid kinetic energy is dominated
by the particle-induced kinetic energy for the 2-D cases, while it is dominated by the
buoyancy-induced kinetic energy by the heated particles for the 3-D cases.

The volume-averaged temperature of the fluid can reflect the fluid thermal energy;
figure 10 shows the volume-averaged temperature 〈T〉V,t of the fluid as functions of ρp/ρ0
at fixed Ra = 107. Despite the different magnitudes, both the data sets exhibit a similar
trend with Nuq, i.e. 〈T〉V,t decreases with increasing ρp/ρ0, and reaches a value less than
the single-phase temperature, for both the 2-D and 3-D cases. The 〈T〉V,t value tends to
be larger for large radiation intensity. Notably, the 〈T〉V,t value of the 3-D simulations
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Figure 9. The particle-induced kinetic energy as functions of ρp/ρ0 obtained at various φ and fixed
Ra = 107 for (a) 2-D cases and (b) 3-D cases.
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Figure 10. The volume-averaged temperature as functions of ρp/ρ0 obtained at various φ and fixed Ra = 107

for (a) 2-D cases and (b) 3-D cases.

is significantly larger than that of 2-D simulations at small ρp/ρ0 for large radiation
intensities φ = 50 × φsolar and 100 × φsolar, even if there is little difference Nuq between
the 2-D and 3-D simulations, as shown in figure 6. This implies that Nuq is an important
reference quantity for fluid heating, but it is not the only factor. It also involves the
dynamics of RB turbulent convection.

The particle-induced thermal energy is described by 〈Q〉V,t, and we plot 〈QT〉V,t as
functions of ρp/ρ0 at fixed Ra = 107 and at different radiation intensities, as shown
in figures 11(a,b). Here, 〈QT〉V,t and Nuq have similar trends as functions of ρp/ρ0 at
different radiation intensities. Namely, with increasing ρp/ρ0, 〈QT〉V,t decreases rapidly
at first, and then decreases slowly below 0. The particles with small ρp/ρ0 can transport
more thermal energy to the fluid. The exothermal particle regime and endothermal particle
regime are also observed, and the critical density ratio ρc/ρ0 between the two regimes is
the same as that of Nuq for specific radiation intensity. This implies that the interphase heat
transfer mechanism is consistent with the interphase thermal energy transport mechanism.
We further rescale 〈QT〉V,t by the thermal dissipation rate of the single-phase case, and
ρp/ρ0 by the critical density ratio ρc/ρ0, as shown in figures 11(c,d). This rescaling leads
to the converging of the data onto a single curve for 2-D and 3-D cases, representing the
functions 〈QT〉V,t/〈ε∗

T〉V,t = Cqt[(ρp/ρc)
−1 − 1] with the constant equal to 4.5 and 3.0 for

the 2-D and 3-D cases, respectively, where the thermal dissipation rate of single-phase is
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Figure 11. The particle-to-fluid thermal energy 〈QT〉V,t as a function of ρp/ρ0 obtained at various φ and fixed
Ra = 107 for (a) 2-D cases and (b) 3-D cases. Ratio 〈QT〉V,t/〈ε∗

T 〉V,t as a function of the normalized density
ratio ρp/ρc for (c) all 2-D cases and (d) all 3-D cases; the black solid curves are the best power function fits to
the respective data. Here, φ1, φ2, φ3, φ4 and φ5 represent the radiation strengths of φsolar, 10φsolar , 20φsolar ,
50φsolar and 100φsolar , respectively.

expressed as ε∗
T = 1/(Ra Pr)1/2k

∑
i(∂T/∂xi)

2. Moreover, 〈QT〉V,t increases linearly with
increasing radiation intensity at different density ratios ρp/ρ0. The linear slope increases
with the decrease of the density ratio ρp/ρ0, as shown in figure 12(a). Figure 12(b) plots
the growth rate β of particle-induced thermal energy with radiation intensity in the linear
relation 1000〈QT〉V,t ∼ β(φ/φsolar) at various Ra and ρp/ρ0. One sees that all growth
rates converge onto a curve, and the scaling relation of growth rate β versus Rayleigh
number and density ratio can be obtained, i.e. β ∼ (ρp/ρ0)

−1.20 Ra0.18.

3.5. The critical density ratio
It is noted that there are two regimes, i.e. the exothermal particle regime and the
endothermal particle regime; a critical density ratio divides the two regimes, at which
both Nuq and 〈QT〉V,t equal 0. The critical density is crucial for the interphase heat
transfer and thermal energy transport. The critical density ratios ρp/ρc as functions of
radiation intensity and Rayleigh number are illustrated in figures 13(a,b). One sees that
the critical density ratio ρp/ρc of 2-D cases collapses onto a single curve that is well
described by the power law ρp/ρc ∼ (φ/φsolar)

3/4 Ra0.18. For the 3-D cases, the critical
density ratio is larger than that of the 2-D cases at the present radiation intensity, as shown
in figures 6(a,b). Nevertheless, the ρp/ρc − (φ/φsolar) data set approaches the scaling of
ρp/ρc ∼ (φ/φsolar)

0.55, which is not as steep as the 2-D cases.
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Figure 12. (a) Plots of 〈QT〉V,t as functions of φ/φsolar obtained at various density ratios ρp/ρ0 and fixed
Ra = 107 for 2-D cases. The solid and dashed lines are eye guides. (b) Fitted slope in the linear relation
1000〈QT〉V,t ∼ β(φ/φsolar) as a function of the product (ρp/ρ0)

−1.2 Ra0.18 for both 2-D and 3-D cases. The
black dashed line is the fitted relation for β versus (ρp/ρ0)

−1.2 Ra0.18.
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Figure 13. (a) The characteristic density ratio ρp/ρ0 as a function of the product (φ/φsolar)
3/4 Ra0.18 for all

the 2-D cases. (b) The characteristic density ratio ρp/ρ0 as a function of the product (φ/φsolar)
0.55 for all the

3-D cases. The black dashed lines are the best functions that fit the respective data.

To deeply understand the above dependencies, we first idealize the scene for the
critical-density particle-laden cases as the situation where the temperature of particles
is consistently equal to the local fluid temperature during the settling of particles; particles
settle directly towards the bottom plate and are not advected into the bulk region again.
Based on this, the particle thermal equation is

dTp

dt
= Nup

2
Tf − Tp

StT
+ q. (3.9)

According to the above approximation, the first term of the right-hand side vanishes, so

dTp

dt
= q. (3.10)

We integrate both sides of (3.10) from t1 to t2 for a specific particle, where the particle
is released from the top plate at t1 and reaches the bottom plate at t2. According to the
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boundary condition of the convection cell, we can get

Tp(t2) − Tp(t1)
t2 − t1

= 2ε

1/Sp
= q, (3.11)

where Sp is the averaged settling velocity of particles. Additionally, we give the
formulation of q as

q = (π/4)d2
pφ

cp,pmpT0/(H/(2εg))1/2 , (3.12)

reforming it to get

q = 3
2

φ

φsolar

(
cp,p

cp,0

ρc

ρ0

dp

H

)−1
φsolar

k0T0/H
(Ra Pr)−1/2. (3.13)

According to Yang et al. (2022b), Sp � 1
18(1/Fr2

p)(ρc/ρ0)(d2
p/H2)(Ra/Pr)1/2 in the RB

convection. Consequently, for the cases with critical density, we can get that(
ρc

ρ0

)2

∼ Fr2
p

2ε

φ

φsolar

φsolar

k0T0/H

(
dp

H

)−3 (cp,p

cp,0

)−1

Ra−1. (3.14)

In the present study, the non-dimensional temperature difference ε between the top and
bottom plates is constant. Also, the working fluid is air at 300 K, and the physical
properties are also constant. Based on these facts, we can get H ∼ Ra1/3, and consequently

ρc

ρ0
∼
(

φ

φsolar

)1/2

Ra1/3. (3.15)

On account of the approximate assumption and the simplification in the derivative
procedure, there are three causes that can result in a small adjustment in the scaling
exponent for (3.15):

(1) In real turbulent circumstances, the transport modes of particles are complex and
diverse due to the interaction between turbulence and particles, and the particles
near the bottom plate can be brought into the bulk again by the fluid.

(2) The temperature of particles would not be consistently equal to the local fluid
temperature during the settling of particles.

(3) The kinetic and dynamic behaviour of particles in turbulence can result in some
small adjustments for the expression of particle settling velocity Sp, according to the
discussion of Yang et al. (2022b).

Specifically, for the 2-D cases, the scaling relation ρc/ρ0 ∼ (φ/φsolar)
3/4 Ra0.18

of the computed data has relative large difference with the derived scaling
ρc/ρ0 ∼ (φ/φsolar)

1/2 Ra1/3 on account of the transport modes of particles being diverse
and not as simple as the simplification. For the 3-D cases, the derived scaling ρc/ρ0 ∼
(φ/φsolar)

1/2 is very close to the obtained scaling relation ρc/ρ0 ∼ (φ/φsolar)
0.55 from

computed data as the transport of particles is similar to the approximation. What is more,
we predict the critical density ratio to be ρc/ρ0 = 2155.48 for φ/φsolar = 50 at Ra = 106

and Pr = 0.71 by using the scaling ρc/ρ0 ∼ (φ/φsolar)
0.55 Ra1/3, and the computed result

shows Nuq = 0.848, which is close to 0; this shows that the predicted critical density ratio
is very close to the real critical density ratio. This indicates that the theoretically predicted
scaling can well describe the relation between the critical density ratio and the control
parameters for the 3-D cases.
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4. Conclusion

We carried out the DNS combined with the Lagrangian point-particle mode for the RB
convection laden with heated inertial particles, where the two-phase flow is relevant to
particle-based solar receivers. We consider the particle–turbulence system in the ranges
of density ratio 854.7 ≤ ρp/ρ0 ≤ 8547 and radiation intensity 1 ≤ φ/φsolar ≤ 100 for
2-D and 3-D simulations. Three Rayleigh numbers, Ra = 2 × 106, 1 × 107 and 1 × 108

are considered for 2-D simulations, and Ra = 1 × 107 is considered for 3-D simulations
at fixed Pr = 0.71. We also theoretically derive and analyse the exact relation for the
interphase heat transfer in the heated particle-laden RB convection, which shows that the
Nusselt number difference between the cold and hot plates is caused by the interphase heat
transfer in the cell.

We found that particles with small density ratio and encountering strong radiation
significantly alter the flow momentum transport and fluid heat transfer, especially
enhancing the top plate heat transport, so the fluid temperature of the bulk is remarkably
heated. This indicates that the small-density-ratio particles absorb more radiant heat in
the slow settlement process, which further leads to the increase of heat flux between the
top plate and particles. Also, the heat transfer of the bottom plate becomes small at a
small density ratio, and the heat flux changes from positive to negative, and increases
gradually under the high radiation intensity. The negative value of heat transfer means that
the direction of heat flux is from up to down; this is because the temperature of particles
is significant higher than that of the bottom plate. Due to the preferential sweeping of
particles, particle clusters are relevant to the edges of eddies at small density ratio for
the 2-D cases, where particles can effectively do work on these eddies; this significantly
enhances the momentum transport of fluid.

What is more, two different regimes are observed: the exothermal particle regime
and the endothermal particle regime. By using the critical density ratio, the Nusselt
number and the energy dissipation rate of the single-phase flow as characteristic quantities
to normalize the data, both the interphase heat transfer and the interphase thermal
energy transport exhibit universal properties that are governed by the specific transfer
mechanism, respectively. They can be well described by Nuq/Nu∗ = Cq[(ρp/ρc)

−1 − 1]
and 〈QT〉V,t/〈ε∗

T〉V,t = Cqt[(ρp/ρc)
−1 − 1], respectively, where the constant parameter Cq

equals 0.6 for the 2-D simulations and 0.4 for the 3-D simulations, and with the constant
Cqt equal to 4.5 and 3.0 for the 2-D and 3-D cases, respectively. Additionally, both the
interphase heat transfer and the interphase thermal energy transport also increase linearly
with the increasing of radiation intensity. The linear growth rates in Nuq ∼ α(φ/φsolar)

and 1000〈QT〉V,t ∼ β(φ/φsolar) exhibit the scaling relations α ∼ (ρp/ρ0)
−1.11 Ra0.65 and

β ∼ (ρp/ρ0)
−1.20 Ra0.18, respectively.

Finally, the critical density ratios where the two regimes are divided are the same for
both the interphase heat transfer and the interphase thermal energy transport at specific
radiation intensity. The scaling relations of critical density ratio versus radiation intensity
and Rayleigh number are described by the power law ρp/ρc ∼ (φ/φsolar)

3/4 Ra0.18 for the
2-D cases, and ρp/ρc ∼ (φ/φsolar)

0.55 Raγ for the 3-D simulations. We further predict
theoretically the power-law relation of the critical density ratios versus Rayleigh number
and radiation intensity, i.e. ρp/ρc ∼ (φ/φsolar)

1/2Ra1/3, which is in remarkable agreement
with our 3-D simulations.
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