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In the linear approximation, we study wave motions of a compressed elastic ice sheet
caused by the motion of a two-dimensional dipole in the water beneath the sheet. The fluid
flow is described by the potential theory, while the ice sheet is modelled through a thin
elastic plate floating on the water surface. The solution for the vertical displacement of the
ice sheet is derived for a transient dipole undergoing arbitrary two-dimensional motion.
Three cases are considered in detail when the dipole moves horizontally with a uniform
speed at some depth or horizontally oscillates, or moves and oscillates. The formulae for
the plate displacement are derived for the fluid of finite depth, but then analysed in detail
for the infinitely deep case. We show that the character of the solutions is different in
the different domains of the parameter plane and classify the possible cases. Then we
calculate the wave patterns on the plate for the different regimes of dipole motion and
typical values of plate parameters. The studied problem can be considered as the simplified
model of motion of a circular cylinder in a water under an ice cover. In the last section
we compare the characteristics of wave motions onsetting in the far-field zone of the flow
around a circular cylinder and its dipole approximation and show that the difference in
the wave characteristics and force loads for these two cases is small and quickly vanishes
when the ice plate thickness increases. In conclusion, we present estimates of amplitudes
and wavelengths of wave perturbations for the real oceanic conditions.

Key words: ice sheets, ocean processes, elastic waves

1. Introduction

Currently, many countries show an increasing interest in the development of natural
resources of the oceans, including ice-covered waters. This applies both to the northern
latitudes of the Northern Hemisphere, and to the southern latitudes adjacent to Antarctica.
This leads to the necessity to study a specific kind of oceanic wave motion: flexural–gravity
waves on the surface of an ocean covered by a viscous–elastic ice plate. The problem of
ice-cover influence on the spectrum of wave motions in the oceans is of both practical
and academic interest; the first publications on this theme are backdated to 1960s
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(Krasil’nikov 1962; Kheisin 1967). Since that time, the coupled set of equations describing
wave perturbations in the water and infinite homogeneous ice plate was studied by
many authors (see, for example, the review by Sturova (2013) and references therein).
Flexural–gravity waves in the ice plate generated by underwater sources were studied both
for still and moving water of a finite or infinite depth (Davys, Hosking & Sneyd 1987;
Schulkes, Hosking & Sneyd 1987; Il’ichev, Savin & Savin 2012; Savin & Savin 2012, 2013,
2015; Pavelyeva & Savin 2018). Great attention was also given to the cases when ice only
partially covers the ocean surface and contains cracks, polynyas and hummocks (see Liu &
Mollo-Christensen (1988), Chakrabarti & Mohapatra (2013) and Li, Wu & Shi (2019) and
references therein). The efficient direct mathematical method to study wave interactions
with floating flexible structures was developed by many authors and described in the book
by Sahoo (2012).

In natural conditions, an ice plate on the water can experience compression or stretching
due to the action of wind stress and pressure from other areas of the ice, for example, due
to continental ice creeping into the ocean. This makes topical the study of flexural–gravity
waves in the oceans covered by a compressed/stretched ice. The problem becomes very
non-trivial from the theoretical point of view as it leads to a big variety of possible cases
due to the rather complex dispersion relation (see, for example, Das et al. 2018a, Das,
Sahoo & Meylan 2018b,c).

In recent decades, there has been a significant interest in studying the hydroelastic
behaviour of very large floating structures (VLFS) which are aimed for various human
activities at utilization of the ocean space. The coupled analysis of hydroelastic properties
of VLFS and wave properties of ice-covered oceans was discussed by Squire (2008).

In this paper, we consider flexural–gravity waves generated by a transient dipole
horizontally moving or/and oscillating at some depth. We neglect viscosity in the water
and in the ice plate and derive the basic equations in the linear approximation for a fluid
of finite depth. Then, we analyse in detail wave patters generated by a cylinder in the
infinitely deep ocean. The paper is organized as follows: in § 2 we present a problem
statement and the general solution for the motion of a point source in water. In § 3 we
apply the developed approach to the motion of a point dipole; this models a horizontally
moving circular cylinder perpendicular to its axis. In § 4 we analyse the dispersion relation
for flexural–gravity waves and point out the specific features caused by stress. In § 5 we
present the analysis of wave perturbations with different characters of dipole motion,
translational, oscillatory and a combination of translational and oscillatory motions. In § 6
we present the solution of the problem for steady-state oscillations of a circular cylinder
under the compressed ice plate. Using the multipole expansion method, we derive the
stationary wave deflections of the plate in the far-field zone, as well as the added mass and
damping coefficients exerted on a cylinder. We also show that the wave motion generated
by the cylinder can be modelled with reasonable accuracy by the motion of a dipole. In
the Conclusion, we summarize the results obtained and present estimates for the typical
amplitudes and wavelengths in the real oceanic conditions.

2. Motion of a point source in a water. Problem statement and the general solution

Consider a fixed rectangular coordinate system Oxy, where the x-axis coincides with
the unperturbed upper boundary of the water, and the positive direction of the y-axis
is upward. The water of total depth H is assumed to be incompressible, inviscid and
homogeneous, and its motion is assumed to be potential. The upper boundary of the water
is covered with a relatively thin layer of ice, which is considered as an elastic material of
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uniform density under a uniform stress. It is assumed that the water motion occurs in the
result of the action of a point mass source of a variable intensity; the source turns on at
time t = 0. The source position at t ≥ 0 is determined by its trajectory ξ = (ξ(t), η(t)) and
the intensity μ(t), where −H < η(t) < 0 and μ(t) = 0 for t < 0.

As we assumed above that the water motion is irrotational, it can be described by the
velocity potential Φ(x, y, t), so that the fluid velocity vector V = ∇Φ, where the potential
satisfies the Poisson equation

ΔΦ = μ(t)δ(x − ξ(t)) (|x | < ∞, −H ≤ y ≤ 0). (2.1)

Here, Δ denotes the two-dimensional Laplace operator in the (x, y)-plane, x = (x, y),
and δ is the Dirac delta function.

Then we assume that the lower boundary of the ice plate is always in contact with
the water. Denoting by w(x, t) the vertical displacements of the ice plate from the
unperturbed position, we present the kinematic and dynamic boundary conditions at
y = 0, respectively (see, for example, Squire et al. 1996)

∂w
∂t

− ∂Φ

∂y
= 0, (2.2)

D
∂4w
∂x4

+ Q
∂2w
∂x2

+ M
∂2w
∂t2

= −
(

ρ
∂Φ

∂t
+ ρgw

)
, (2.3)

where D = Eh3
1/[12(1 − ν2)], M = ρ1h1, E is the Young’s modulus of the elastic plate,

Q is the longitudinal stress (Q > 0 corresponds to compression, and Q < 0 to stretching),
other parameters are ν the Poisson ratio, ρ1 the ice density and h1 the thickness of the
ice plate; ρ is the density of water, g is the acceleration due to gravity. The first term in
(2.3) describes the elastic property of the ice plate; the second term represents a horizontal
stress or strain of the plate; the third term describes the inertial property of ice plate; the
two terms on the right-hand side represent a pressure on the surface for small-amplitude
potential oscillations of a fluid. The bottom is assumed non-permeable, so that at y = −H
we have

∂Φ

∂y
= 0. (2.4)

It is assumed that far from the source the water is calm and the velocity field is
identically zero for all t > 0

lim
r→∞

∇Φ = 0, where r = |x − ξ(t)|. (2.5)

The initial conditions at y = 0 and all x are

Φ = w = ∂w/∂t = 0, t = 0. (2.6)

To solve the initial-boundary value problem (2.1)–(2.6) we use the Laplace and Fourier
transforms

Φ̂(k, y, s) =
∫ ∞

0
e−st

∫ +∞

−∞
Φ(x, y, t) e−ikx dx dt (2.7)
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with Re(s) > 0 and real k. In the result, we obtain the ordinary differential equation for
Φ̂(k, y, s) (the prime stands for differentiation with respect to y)

Φ̂ ′′ − k2Φ̂ =
∫ ∞

0
μ(t) exp(−st − ikξ(t))δ( y − η(t)) dt (2.8)

with the boundary conditions

[Υ (k) + Ms2]Φ̂ ′ + ρs2Φ̂ = 0 ( y = 0), Φ̂ ′ = 0 ( y = −H), (2.9a,b)

where Υ (k) = Dk4 − Qk2 + ρg.
Our main interest in this problem is the determination of the vertical displacements of

the ice plate from the unperturbed plane position. The Laplace and Fourier transforms for
the function w(x, t) can be found from the formula ŵ(k, s) = Φ̂ ′(k, 0, s)/s which follows
from (2.2). Solving (2.8) with the boundary conditions (2.9a,b) and substituting to this
formula, we find

ŵ = ρs
B(k)[s2 + ω2(k)] cosh kH

∫ ∞

0
μ(t) exp(−st − ikξ(t)) cosh [k(H + η(t))] dt, (2.10)

where B(k) = ρ + Mk tanh kH and the dispersion relation for the linear wave perturbations
is

ω(k) =
√

Dk4 − Qk2 + ρg
ρ + Mk tanh kH

k tanh kH. (2.11)

The ice plate deformation in the real (x, t)-space can be formally obtained by means of
inverse Fourier and Laplace transforms

w(x, t) = ρ

2π

∫ ∞

−∞

G(k, x, t) dk
B(k) cosh kH

, (2.12)

where

G(k, x, t) =
∫ ∞

0
μ(τ) exp(ik(x − ξ(τ ))) cosh [k(H + η(τ))]Z(k, t, τ ) dt, (2.13)

Z(k, t, τ ) = 1
2iπ

∫ λ+i∞

λ−i∞

s es(t−τ)

s2 + ω2(k)
ds. (2.14)

The value of λ should be chosen such that the integration path in (2.14) lies to the right
of all singular points of the integrand, which are the roots of the equation s2 + ω2(k) = 0.
It is clear that this equation has only two purely imaginary roots s = ±iω(k). The function
Z is non-zero only for t > τ and is equal to

Z = cos [ω(k)(t − τ)], (t > τ). (2.15)

Finally, the solution for the function w(x, t) takes the form

w(x, t) = ρ

π

∫ ∞

0

dk
B(k) cosh kH

×
∫ t

0
μ(τ) cos [k(x − ξ(τ ))] cos [ω(k)(t − τ)] cosh [k(H + η(τ))] dτ. (2.16)
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3. The motion of a dipole

In this paper we consider the linearized problem, therefore the solution to the set of
equations (2.1)–(2.6) can be presented as a linear combination of mass sources and sinks.
The simplest example of a moving body that can be modelled by point sources in the
two-dimensional case is a horizontal circular cylinder moving perpendicular to its axis.
The motion of such a cylinder is simulated by a dipole with the moment M(t) = M0U(t),
where M0 = 2πR2, U = (U1, U2) = dξ(t)/dt, x = ξ(t) is the trajectory of the cylinder
centre, and R is its radius.

Solution for vertical displacement of the elastic ice plate caused by the motion of a
dipole, has the form

w(x, t) = ρM0

π

∫ ∞

0

k dk
B(k) cosh kH

∫ t

0
{U1(τ ) sin [k(x − ξ(τ ))] cosh [k(H + η(τ))]

+U2(τ ) cos [k(x − ξ(τ ))] sinh [k(H + η(τ))]} cos [ω(k)(t − τ)] dτ. (3.1)

Further, we restrict ourselves to considering the motion of the dipole moving only in the
horizontal direction at a fixed depth h and set U2(t) = 0, η(t) = −h.

3.1. Horizontally translating dipole with constant speed
When a dipole instantly accelerates from zero to a constant speed U0, its trajectory is
determined by the formula

ξ(t) = U0t, U1(t) = U0. (3.2a,b)

Then, in the moving coordinate system X = U0t − x associated with the stationary
dipole and oriented such that the flow runs on it from the left, solution (3.1) takes the
form

w(X, t) = ρM0U0

π

∫ ∞

0

k cosh [k(H − h)]
B(k) cosh kH

∫ t

0
sin [k(U0p − X)] cos [ω(k)p] dp dk. (3.3)

After evaluation of the inner integral, we obtain

w(X, t) = ρM0U0

2π

∫ ∞

0

k cosh [k(H − h)]
B(k) cosh kH

[Ic(k) cos kX − Is(k) sin kX] dk, (3.4)

where

Ic(k) = 1 − cos [(U0k + ω(k))t]
U0k + ω(k)

+ 1 − cos [(U0k − ω(k))t]
U0k − ω(k)

, (3.5)

Is(k) = sin [(U0k + ω(k))t]
U0k + ω(k)

+ sin [(U0k − ω(k))t]
U0k − ω(k)

. (3.6)

Next, we consider a horizontally oscillating dipole with zero mean velocity.
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3.2. Horizontally oscillating dipole with zero mean velocity
When a dipole oscillates horizontally with constant amplitude γ and frequency Ω , its
trajectory has the form

ξ(t) = γ sin Ωt, U1(t) = γΩ cos Ωt. (3.7a,b)

Then, the vertical oscillations of elastic ice plate are

w(x, t) = ργΩM0

π

∫ ∞

0

k cosh [k(H − h)]
B(k) cosh kH

×
∫ t

0
cos Ωτ sin [k(x − γ sin(Ωτ))] cos [ω(k)(t − τ)] dτ dk. (3.8)

For small-amplitude oscillations when γ → 0, this formula can be simplified and
presented as

w(x, t) = γ [wc(x, t) cos Ωt + ws(x, t) sin Ωt], (3.9)

where

wc,s(x, t) = ρΩM0

2π

∫ ∞

0

k sin kx cosh [k(H − h)]
B(k) cosh kH

Pc,s(k, t) dk, (3.10)

Pc(k, t) = sin [(Ω + ω(k))t]
Ω + ω(k)

+ sin [(Ω − ω(k))t]
Ω − ω(k)

, (3.11)

Ps(k, t) = 1 − cos [(Ω + ω(k))t]
Ω + ω(k)

+ 1 − cos [(Ω − ω(k))t]
Ω − ω(k)

. (3.12)

Now we can combine the two types of dipole motion described above using the principle
of superposition for a linear system.

3.3. Horizontally moving and oscillating dipole
Assume now that a dipole moves horizontally and periodically oscillates in the direction
of motion. Its trajectory is described by the formula

ξ(t) = U0t + γ sin Ωt, U1(t) = U0 + γΩ cos Ωt. (3.13a,b)

In the moving coordinate system X = U0t − x , the solution (3.1) has the form

w(X, t) = ρM0

π

∫ ∞

0

k cosh [k(H − h)]
B(k) cosh kH

∫ t

0
(U0 + γΩ cos Ωτ)

× sin {k[U0(t − τ) − X − γ sin Ωτ ]} cos [ω(k)(t − τ)] dτ dk. (3.14)

For small-amplitude oscillations of the dipole this formula can be further linearized with
respect to γ , as above, and presented in the form

w(X, t) = w0(X, t) + γ [Wc(X, t) cos Ωt + Ws(X, t) sin Ωt] , (3.15)
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where function w0(X, t) is the same as in (3.4), and functions Wc(X, t) and Ws(X, t) are
given by the formulae

Wc(X, t) = ρM0Ω

π

∫ ∞

0

k cosh [k(H − h)]
B(k) cosh kH

×
∫ t

0
cos Ωp sin [k(U0p − X)] cos [ω(k)p] dp dk, (3.16)

Ws(X, t) = ρM0Ω

π

∫ ∞

0

k cosh [k(H − h)]
B(k) cosh kH

×
∫ t

0
sin Ωp sin [k(U0p − X)] cos [ω(k)p] dp dk. (3.17)

To study the behaviour of functions Wc and Ws in the far-field zone when |X|, t → ∞
we will use the method of stationary phase to estimate asymptotically the double integral
(3.16) and (3.17). The phase functions in these integrals have the following forms:

Ψ1,2(k, p) = k(U0p − X) ± p[Ω + ω(k)], (3.18)

Ψ3,4(k, p) = k(U0p − X) ± p[Ω − ω(k)]. (3.19)

The stationary points are solutions of the following set of simultaneous equations:

∂Ψi

∂k
= 0, → dω

dk
= ±

(
U0 − X

p

)
, (3.20)

∂Ψi

∂p
= 0, → ω

k
= ±Ω

k
± U0. (3.21)

We will use these equations in the following sections, and now we will present the
analysis of the dispersion relation (2.11).

4. Analysis of the dispersion relation

The behaviour of flexural–gravity waves (FGW) in a fluid covered by a floating elastic
plate is determined by the dispersion relation, which establishes a relationship between
the wavenumber k and frequency ω as per (2.11). The phase and group velocities can be
readily found from the dispersion relation

cp ≡ ω

k
=

√
(Dk4 − Qk2 + ρg) tanh kH

k(ρ + kM tanh kH)
, (4.1)

cg ≡ dω

dk
= Z(k)

2ω(k)(ρ + kM tanh kH)2
, (4.2)

where

Z(k) = 2k3M(2Dk2 − Q) tanh2 kH + ρHk(Dk4 − Qk2 + ρg)(1 − tanh2 kH)

+ ρ(5Dk4 − 3Qk2 + ρg) tanh kH. (4.3)

As is well known, the dispersion relation (2.11) imposes a restriction on the maximal
value of a compression force. The stability of oscillations of a floating ice plate is
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guaranteed by the condition Q < Q∗ ≡ 2
√

gρD, whereas at Q > Q∗ the ice plate shatters
(see, for example, Kheisin 1967; Bukatov 2017). There is one more critical value of the
parameter Q such that for Q < Q0 < Q∗ the group velocity of FGW is positive for all
wavenumbers k ≥ 0. Such a case when cg > 0 will be called normal dispersion in contrast
to the case of anomalous dispersion for Q0 < Q < Q∗, which is characterized by the
presence of a wavenumber interval within which the group velocity is negative (see below).
Both these critical values Q∗ and Q0, as well as the corresponding wavenumbers k∗ and
k0, can be determined from the joint solution of two simultaneous equations cg(k) = 0 and
dcg/dk = 0.

In the case of infinitely deep water when kH → ∞ the formulae (2.11) and (4.1)–(4.3)
simplify and become

ω(k) =
√

k(Dk4 − Qk2 + ρg)

ρ + kM
, (4.4)

cp =
√

Dk4 − Qk2 + ρg
k(ρ + kM)

, (4.5)

cg = 2k3M(2Dk2 − Q) + ρ(5Dk4 − 3Qk2 + ρg)

2ω(k)(ρ + kM)2
, (4.6)

dcg

dk
= 3ρ2k4Q2 − 2k2AQ + B

4ω3(k)(ρ + kM)4
, (4.7)

where

A = 6DM2k6 + 14DMρk5 + 11Dρ2k4 + 2M2ρgk2 + 2Mρ2gk + 3ρ3g, (4.8)

B = 8D2M2k10 + 20D2Mρk9 + 15D2ρ2k8 + 24DM2ρgk6 + 48DMρ2gk5

+ 30Dρ3gk4 − 4Mρ3g2k − ρ4g2. (4.9)

Equating the group velocity (4.6) and its derivative (4.7) to zero and eliminating Q, we
find the equation to determine the critical values for k(

Dk4 − ρg
) (

8DMk5 + 15ρDk4 − 3gρ2) = 0. (4.10)

From the expression in the first bracket we find k∗ = 4
√

ρg/D, and from the expression in
the second bracket we obtain a fifth degree polynomial the positive root of which defines
the second critical point k0

8DMk5
0 + 15ρDk4

0 − 3gρ2 = 0. (4.11)

Then we find

Q∗ = 2
√

ρgD, Q0 = 10Dk2
0

3
. (4.12a,b)

If M is negligibly small, then k0 = k∗/
4
√

5 ≈ 0.67k∗, and Q0 = 2
√

5Dk2
∗/3.

Figure 1 illustrates a fragment of the polynomial (4.11) in the dimensionless form
P(κ, K) = 8Kκ5 + 15κ4 − 3, where κ = k/k∗, and K = 4

√
ρg/D.
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FIGURE 1. Fragment of the polynomial P(κ, K) for three values of K. Line 1 pertains to K = 1,
line 2 to K = 10, and line 3 to K = 10−3. Dashed vertical line restricts the admissible values
of κ < 1; small vertical arrow indicates the limiting value of κ0 ≡ k0/k∗ = 1/

4√5 ≈ 0.67 when
K → 0.
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FIGURE 2. Dispersion relations for the FGW for the different values of the compression
parameter Q.

4.1. Numerical solution of the dispersion relation
To investigate the dispersion relation quantitatively, we set the following values for the
parameters:

ρ1 = 922.5 kg m−3, h1 = 1 m, E = 5 × 109 Pa, ν = 0.3,

ρ = 1025 kg m−3, h = 10 m, R = 5 m, g = 9.81 m s−2.

}
(4.13)

We remind the reader that, here, R is the radius of a cylinder moving at the depth h (see
§ 3). Three values for the total depth were chosen, H = 100 m, H = 40 m and infinite
depth, (H = ∞).

Figure 2 shows the dispersion relation (2.11) in dimensionless form for the parameters
indicated above (4.13) and H = 40 m. The dispersion curves were plotted for five values
of the parameter Q̃ ≡ Q/

√
gρD = 0, 1.2, 1.8, 1.95, 2. As one can see, the dispersion is

normal (the corresponding curves are monotonically increasing) for the first two values of
Q̃ and anomalous for the other three values.

In table 1 we present the values of k0R and Q̃0 ≡ Q0/
√

gρD for the parameters indicated
above (4.13) for three different depths.

The influence of water depth is noticeable only for relatively small wavenumbers. This
is illustrated by figure 3, where the dispersion relation is shown in the range 0 ≤ kR ≤ 0.3
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H k0R Q̃0

40 m 0.240 1.537
100 m 0.228 1.476
∞ 0.228 1.475

TABLE 1. Values of k0R and Q̃0 for the typical parameters indicated in (4.13) for three different
depths.
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FIGURE 3. Dispersion relation of FGW for three values of water depth H and two values of the
compression parameter Q̃. (a) Q̃ = 1.2, (b) Q̃ = 2. In both panels line 1 pertains to H = 40 m,
line 2 pertains to H = 100 m and line 3 pertains to infinite depth H = ∞ m.

for three values of the water depth and two values of the parameter Q̃ characterizing the
compression effect.

In figures 4 and 5 we present the dependences of phase and group speeds at H = 40 m
(solid lines) and H = ∞ (dashed-dotted lines) for two values of the compression parameter
Q̃ = 1.2 and Q̃ = 1.95, respectively. For a finite fluid depth in the long-wave limit we
obtain cp(0) = cg(0) = √

gH, whereas for infinitely deep water when k → 0 we have cp =
2cg ≈ √

g/k. When k → ∞, cg = 2cp ≈ 2k
√

D/M regardless of fluid depth.
From these figures we see again that the effect of water depth is noticeable only at

relatively small wavenumbers 0 ≤ kR ≤ 0.3. The behaviours of both phase and group
velocities are non-monotonic for FGW, since both speeds have local minima. As can be
seen from the graphs for the group velocity with the abnormal dispersion, figure 5, there
are two values of the wavenumber k1 and k2 (k1 < k2) where the group velocity turns
to zero. The dispersion curve has local extrema at these points, and ω(k1) > ω(k2). The
dependencies k1, k2 and ω(k1), ω(k2) on the parameter Q̃ are shown in figures 6 and 7,
respectively, for two different fluid depths, H = 40 m (solid lines) and H = ∞ m (dashed
lines).

The ×-symbol in figure 6 marks the value of Q̃0 for a particular water depth, so that we
have the dependence of k1R(Q̃) to the left and k2R(Q̃) to the right of this point.
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FIGURE 4. Phase cp and group cg speeds of FGW for Q̃ = 1.2. Solid lines pertain to
H = 40 m, and dashed lines to H = ∞ m.
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FIGURE 5. The same as figure 4, but for Q̃ = 1.95.
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FIGURE 6. Dependences of k1R and k2R on the parameter Q̃ for H = 40 m (solid line) and
H = ∞ m (dashed line).
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Q̃

1.4

1.6
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R/g�ω1
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FIGURE 7. Dependences of ω1
√

R/g and ω2
√

R/g on the parameter Q̃ for H = 40 m (solid
line) and H = ∞ m (dashed line).

5. Analysis of wave perturbations with a different character of dipole motion

5.1. Flexural–gravity waves generated by the uniform horizontal motion of a dipole
In this particular case, when Ω = 0, we see from the expressions (3.18), (3.19) that the
only solution for the stationary points is possible when

cp(kc) = U0, pc = X
U0 − cg(kc)

. (5.1a,b)

The first equation in (5.1a,b) has

(i) no roots for U0 < (cp)min , where (cp)min is the minimum phase velocity of FGW;
(ii) two roots k1,2 (k1 < k2) for (cp)min < U0 <

√
gH; and

(iii) only one root k2 for U0 >
√

gH.

Therefore, for U0 < (cp)min , the wave motion far from the dipole is absent. For (cp)min <
U0 <

√
gH a wave with the wavenumber k1 exists only for X > 0, and a wave with the

wavenumber k2 only if X < 0. This means that the wave motion exists both in front
and behind the moving dipole; moreover, the length of the generated wave for X > 0 is
greater than for X < 0. For U0 >

√
gH, a wave motion exists only in front of a moving

dipole at X < 0. From the second equation (5.1a,b) it follows that the wave fronts (i.e. the
boundaries dividing the regions of water perturbed by the waves from the regions where
water is unperturbed) move relative to the source to the right and to the left with speeds
U0 − cg(k1,2), respectively. In the motionless coordinate system the wave fronts move in
the corresponding directions with the group velocities of generated waves.

5.2. Flexural–gravity waves generated by a horizontally oscillating dipole
Consider now a horizontally oscillating dipole and the flexural–gravity waves generated
by it. In this case, in expressions (3.18), (3.19) we have U0 = 0, and the asymptotic analysis
shows that the wave pattern has a certain symmetry relative to the origin and can contain

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.764


Waves on a compressed floating ice plate caused by a dipole 907 A7-13

from one to three wave harmonics. Stationary points now have only the functions Ψ3,4 in
(3.19), and those equations reduce to

Ψ3(k, p) = kx + p[Ω − ω(k)], Ψ4(k, p) = kx − p[Ω − ω(k)]. (5.2a,b)

In the case of normal dispersion, i.e. for Q < Q0, each function Ψ3 and Ψ4 in (5.2a,b) has
a unique stationary point with the same wavenumber k1, which is defined by the expression

ω(k1) = Ω. (5.3)

The value of p1 in the immovable coordinate system equals to ±x/cg(k1), respectively.
Therefore, the wave defined by the stationary point of the function Ψ3 exists only for x > 0,
and the wave determined by the stationary point of the functions Ψ4 exists only for x < 0.
The speeds of front propagations of these waves are equal to ±cg(k1), respectively.

In the case of anomalous dispersion when Q0 < Q < Q∗, as shown above, there are
values of k1 and k2 (k1 < k2) in which the group velocity of the FGW vanishes, and the
group velocity is negative in the interval k1 < k < k2. In the frequency range ω(k2) <

Ω < ω(k1), the functions Ψ3,4 in (5.2a,b) have three stationary points, which we denote
k(1), k(2) and k(3) (k(1) < k(2) < k(3)). The values of k( j) with ( j = 1, 2, 3) satisfy (5.3) with
the replacement of k1 by k( j). In this case, the waves which are determined by the stationary
points k(1) and k(3) of the function Ψ3 exist only at x > 0, whereas a wave determined by k(2)

exists only at x < 0. The opposite situation occurs for waves determined by the stationary
points of the function Ψ4. As the result, we have a symmetrical wave pattern with respect to
x . Far from the dipole there is a system of three waves whose front propagation velocities
are ±cg(k( j)) ( j = 1, 2, 3).

5.3. Flexural–gravity waves generated by the superposition of the translating and
oscillating dipole motion

In this subsection we restrict ourselves to the consideration of an infinitely deep fluid,
because in this case, the definition of stationary points of the functions Ψi(k, p) (i =
1, 2, . . . , 4) in (3.18), (3.19) reduces to the determination of the roots of polynomials,
whereas in the case of a fluid of finite depth it is necessary to solve transcendental
equations.

It is convenient to transform the dimensionless variables in which the radius of a
cylinder R plays a role of the length scale, and the parameter

√
R/g plays a role of the

time scale. Then the main dimensionless parameters are as follows:

D̄ = D
gρR4

, M̄ = M
ρR

, Q̄ = Q
gρR2

, F = U0√
gR

, σ = Ω

√
R
g

. (5.4a–e)

The dispersion relation (4.4) in the dimensionless variables has a form

ω̄(k̄) =
√

k̄(D̄k̄4 − Q̄k̄2 + 1)

1 + k̄M̄
, (5.5)

where ω̄ = ω
√

R/g, k̄ = kR.
Function Ψ1 in (3.18) does not have stationary points, because the determining equation

k̄F + σ + ω̄(k̄) = 0 (5.6)

does not have positive real roots.
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Function Ψ2 in (3.18) also does not have stationary points if F < V1(σ ) ≡ c̄g(k∗
1), where

c̄g = cg/
√

gR and the wavenumber k∗
1 is the root of equation

k̄c̄g(k̄) − ω̄(k̄) = σ. (5.7)

If, however, F > V1(σ ), then function Ψ2 in (3.18) has two stationary points and the
determining equation

k̄F − σ − ω̄(k̄) = 0 (5.8)

has two roots, which we denote as k(1)

2 and k(2)

2 (k(1)

2 < k(2)

2 ). The values of k(i)
2 (i = 1, 2)

can be found as the positive roots of the fifth-degree polynomial

k̄2[D̄k̄3 − k̄(Q̄ + M̄F2) − F(F − 2σ M̄)] + k̄(1 + 2σF − σ 2M̄) − σ 2 = 0, (5.9)

satisfying (5.8).
It follows from the dispersion relation (5.5) that k∗

1 → kp and V1 → Fp when σ → 0,
where kp determines the dimensionless wavenumber that corresponds to the minimal
dimensionless phase velocity of FGW, Fp = Up/

√
gR, and Up ≡ (cp)min . The equation

which allows us to determine kp has the form

D̄k4
p(2M̄kp + 3) − Q̄k2

p − 2M̄kp − 1 = 0. (5.10)

Function Ψ3 in (3.19) has at most three stationary points. Equation

k̄F + σ − ω̄(k̄) = 0 (5.11)

always has one positive root k(1)

3 and two additional roots k(2)

3 and k(3)

3 provided that σ <
σ ∗ ≡ ω̄(kg) − kgFg and V3 < F < V2. The value of kg is such that the dimensionless group
velocity of FGW c̄g has a minimum Fg at k̄ = kg; it can be calculated as the positive root of
the tenth-degree polynomial which is obtained by equating to zero the numerator in (4.7)
and in dimensionless variables has the form

D̄k̄5[4D̄M̄(2M̄k̄ + 5)k̄4 + C1k̄3 − 28Q̄M̄k̄2 + C2k̄ + 48M̄]

+ k̄4C3 − 4Q̄M̄k̄3 − 6Q̄k̄2 − 4M̄k̄ − 1 = 0, (5.12)

where C1 = 3(5D̄ − 4Q̄M̄2), C2 = 2(12M̄2 − 11Q̄), C3 = 30D̄ + 3Q̄2 − 4Q̄M̄2. The value
of Fg can be evaluated from the dimensionless form of equation (4.6).

Functions V2(σ ) and V3(σ ) are determined as follows: V2 = c̄g(k∗
2) and V3 = c̄g(k∗

3),
where k∗

2 < kg < k∗
3 are the roots of the equation

ω̄(k̄) − k̄c̄g(k̄) = σ. (5.13)

As follows from the dispersion relation (5.5), k∗
2 → 0, k∗

3 → kp and V2 → ∞, V3 → Fp

when σ → 0, but {k∗
2, k∗

3} → kg and {V2, V3} → Fg when σ → σ ∗. The values of k( j)
3 ( j =

1, 2, 3) are the positive roots of the fifth-degree polynomial

k̄2[D̄k̄3 − k̄(Q̄ + M̄F2) − F(F + 2σ M̄)] + k̄(1 − 2σF − σ 2M̄) − σ 2 = 0, (5.14)

which satisfy (5.11).
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FIGURE 8. Dependences Vj ( j = 1, 2, 3) on the dimensionless frequency σ for three values of
the compression parameter Q̃ = 1.2 (a), Q̃ = 1.8 (b) and Q̃ = 1.95 (c).

Function Ψ4 in (3.19) has at most three stationary points. Equation

k̄F − σ + ω̄(k̄) = 0 (5.15)

always has one positive root k(1)

4 and two additional roots k(2)

4 and k(3)

4 provided that Q0 <

Q < Q∗. The values k(i)
4 (i = 1, 2, 3) can be determined as the positive roots of (5.9) which

satisfy (5.15).
The direction of wave propagation which is determined by the stationary points of

functions Ψ2 and Ψ3 depends on the sign of the expression F − c̄g(k), and for the
function Ψ4 it depends on the sign of the expression F + c̄g(k). In these expressions, the
wavenumbers k must be replaced by the stationary values of the corresponding functions.
Waves with a positive value of expressions F ± c̄g(k) propagate downstream (X > 0),
whereas waves with a negative value propagate upstream (X < 0).

Figure 8 shows the dependences of Vj ( j = 1, 2, 3) on the dimensionless frequency
σ for three different values of the compression parameter Q̃ = 1.2 (a), Q̃ = 1.8 (b) and
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Q̃ kp Fp kg Fg σ ∗

1.2 0.310 1.450 0.209 0.423 0.285
1.8 0.334 0.738 0.258 −0.821 0.484
1.95 0.340 0.370 0.287 −1.678 0.665

TABLE 2. Values of parameters kp, Fp, kg, Fg and σ ∗ for the used values of Q̃.

Q̃ = 1.95 (c). Curves V1, V2, V3 divide the plane of parameters (σ − F) into several
domains. In the case of normal dispersion (Q̃ = 1.2), the plane (σ − F) is divided into
four domains Gn (n = 1, . . . , 4). The domain G1 (marked by vertical hatching) is bounded
on the right by curve V1, and on the left by curve V2. The domain G2 (marked by the
combination of horizontal and vertical hatching) is bounded on the right by curve V2,
below by curve V1 and on the left by the vertical F-axis. The domain G3 (marked by
horizontal hatching) is bounded on the right by curve V2, on the left by curve V3 and above
by curve V1. The remaining part of the plane (σ − F) (not shaded domain) is denoted by
G4.

In the case of anomalous dispersion (Q̃ = 1.8, 1.95), the domains G1 and G2 have the
same boundaries as above, and the domain G3 is now bounded by curves V1, V2, V3 and
−V3. Meanwhile, two new domains appear: G5 (shown by oblique hatching), bounded
by curves V2, −V2, −V3, as well as the domain G6 (shown by combined horizontal and
oblique hatching), bounded by the horizontal axes σ and curves V2, −V3.

The vertical arrows on the horizontal axis show the values of σ ∗, and the horizontal
arrows on the vertical axis show the values of |Fg|. The common point of curves V1 and
V3 on the vertical axis corresponds to the value of Fp.

Values of parameters kp, Fp, kg, Fg and σ ∗ for the used values of Q̃ are given in table 2.
In the case of normal dispersion (e.g. for Q̃ = 1.2):

(i) For the parameters σ and F from the domain G1, there are four stationary points
k(1)

2 , k(2)

2 , k(1)

3 , k(1)

4 , two of which (k(1)

2 , and k(1)

4 ) cause wave perturbations running
downstream and the other two (k(2)

2 , k(1)

3 ) running upstream.
(ii) For the domain G2 there are six stationary points three of which (k(1)

2 , k(2)

3 , k(1)

4 ) cause
wave perturbations running downstream, and the other three (k(2)

2 , k(1)

3 , k(3)

3 ) running
upstream.

(iii) For the domain G3 there are four stationary points two of which (k(2)

3 and k(1)

4 ) cause
wave perturbations running downstream, and the other two (k(1)

3 and k(3)

3 ) running
upstream.

(iv) For the domain G4 there are only two stationary points, one of which k(1)

4 causes
wave perturbation propagating downstream, and another, k(1)

3 , running upstream.

In the case of anomalous dispersion, (e.g. for Q̃ = 1.8 or Q̃ = 1.95):

(i) For the domain G5 there are four stationary points two of which (k(1)

4 and k(3)

4 ) cause
wave perturbations running downstream, and the other two (k(1)

3 and k(2)

4 ) running
upstream.
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(ii) For the domain G6 there are six stationary points, three of which (k(2)

3 , k(1)

4 and k(3)

4 )
cause wave perturbations running downstream, and the other three (k(1)

3 , k(3)

3 and k(2)

4 )
running upstream.

In the conclusion to this section we mention that the main properties of FGW were
investigated by Bukatov (1980) by means of a different method (see also Bukatov 2017).
However, in our opinion the method described above is more visual. The three-dimensional
case for an infinitely deep fluid with normal dispersion was described in detail by Sturova
(2013).

5.4. Analysis of vertical displacements of the ice plate
To get an idea of the real displacements of an ice plate caused by the motion of a
dipole, we calculated the vertical displacements for the case of an infinitely deep water
for the translational motion of the dipole using the integral representation (3.4), and
for the superposition of the translational and oscillatory motions based on the integral
representations (3.14), (3.15). The results can be characterized by the dimensionless
parameter, the Froude number F = U0/

√
gR. Two typical values of the Froude number were

chosen for the calculations, they are F = 0.25 and F = 0.5; the dimensionless frequency
of oscillations were chosen as σ = 0.2 and 0.25; and the compression parameter was set
to Q̃ = 0 (no stress in the ice cover), Q̃ = 1.2 and Q̃ = 1.95.

The time variation of the vertical displacements of the ice plate in the case of
translational motion of the dipole source with the Froude number F = 0.5 is shown in
the videos for the different values of the parameter Q̃ (see the links below).

(i) Q̃ = 0, https://eportfolio.usq.edu.au/view/view.php?t=4AoZqtbj07wsy8BWTrH1;
(ii) Q̃ = 1.2, https://eportfolio.usq.edu.au/view/view.php?t=rDFPhJGxZNs8EKBHp2uo;

(iii) Q̃ = 1.95, https://eportfolio.usq.edu.au/view/view.php?t=LAR34te01uXwV2fgkcvF.

Only in the case (iii) when Q̃ = 1.95 is the dipole motion supercritical. As shown
in Savin & Savin (2012) and Il’ichev & Savin (2017), in infinitely deep water after
long-term motion of a dipole, a stationary wave w0(X) sets in the elastic plate w0(X,∞)
in the co-moving coordinate frame. In the subcritical regime of motion (F < Fp), a
symmetrical-in-X perturbation is formed in the elastic plate, which is a plate reaction to the
dipole motion, and the minimum of the elevation is located directly above the dipole. In
the dimensional variables the solution for the plate displacement w0(X) in the subcritical
regime has the form

w0(X) = −2ρR2U2
0

∫ ∞

0

k e−kh cos(kX) dk
Dk4 − (

Q + MU2
0

)
k2 − ρU2

0k + gρ
. (5.16)

In the supercritical regime (F > Fp), the solution for the w0(X) has a more complex
form

w0(X) = 2ρR2U2
0 [(μ + 1) χ(k1) sin(k1X) + (μ − 1)χ(k2) sin(k2X) + K(X)] , (5.17)
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FIGURE 9. Vertical displacements of elastic ice plate w(X, t) for superpositions of translational
and oscillatory motions of the dipole with F = 0.25, σ = 0.25. Panel (a) pertains to Q̃ = 1.2,
and (b) to Q̃ = 1.95. The time instants for each curve are indicated on the right of each panel.
Calculations were performed on the basis of the linearized solution (3.15).

where

K(X) =
∫ ∞

0

k
[
G(k) cos(hk) + ρU2

0k sin(hk)
]

G2(k) + ρ2U4
0k2

e−|X|k dk, (5.18)

G(k) = Dk4 + (
MU2

0 + Q
)

k2 + gρ, χ(kj) = πkj e−kjh

P(kj)
, (5.19a,b)

P(k) = 4Dk3 − 2(Q + MU2
0)k − ρU2

0 . (5.20)

Here, μ = sign(X), k1 and k2 (k1 < k2) are roots of the equation kU0 = ω(k). In the case
of infinitely deep fluid this equation reduces to the polynomial

Dk4 − (
Q + MU2

0

)
k2 − ρU2

0k + gρ = 0. (5.21)

In the videos presented above the limiting solutions are shown in the very end by the dotted
lines for the comparison with the transient solutions.

The behaviour of the elastic ice plate in superposition of the translational and oscillatory
dipole motions is shown for F = 0.25 and σ = 0.25 in figure 9. Panel (a) shows the plate
oscillation for Q̃ = 1.2 (this corresponds to the domain G4 in figure 8), and (b) shows the
oscillation for Q̃ = 1.95 (this corresponds to the domain G6).

Figure 10 shows plate oscillations for F = 0.5 and σ = 0.2. Panel (a) shows the plate
oscillation for Q̃ = 1.2 (this corresponds to the domain G4 in figure 8), and (b) shows the
oscillation for Q̃ = 1.95 (this corresponds to the domain G3).

The calculations were performed on the basis of the linearized solution (3.15) for γ /R =
0.5 (the applicability of this solution presumes that ΩR � 2U0). For comparison, in
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FIGURE 10. The same as in figure 9, but for F = 0.5 and σ = 0.2. The dark dots for Q̃ = 1.2
and t̄ = 3 and t̄ = 5 show the values of w(X, t) calculated on the basis of the complete solution
(3.14).

figure 10(a) we show by dark dots the complete solution (3.14) for the following parameters
F = 0.5, σ = 0.2, Q̃ = 1.2 and t̄ = 3, 5. It can be seen that, for the chosen amplitude of
the dipole oscillation, the complete (3.14) and approximate (3.15) solutions practically
coincide, whereas the calculation of the double integral in (3.14) requires significantly
more computer resources and time-consuming calculation than the calculation of the
single integral in (3.15) after analytic evaluation of the inner integrals in (3.16) and (3.17).

An increase in the compression coefficient Q̃ leads to an increase of wave intensity both
for the translational motion of the dipole and in the superposition of translational and
oscillatory motions.

6. Steady-state oscillations of a circular cylinder under an ice cover

The modelling of a moving cylinder under an ice cover by the point dipole can look a bit
doubtful because such modelling is correct, strictly speaking, only for a cylinder moving
in an unbounded uniform fluid. The presence of the ice cover results in a correction to
the shape of a body modelled by a dipole. The shape of the body can be determined,
in principle, at each instant of time. However, the correction to the circular cylindrical
shape caused by the presence of the ice sheet can be small if the cylinder moves relatively
slowly and not too close to the ice sheet. It is intuitively expected that the generated
small-amplitude waves in the linear approximation are not too sensitive to the shape of
a moving body. In this section, we demonstrate quantitatively when these assumptions
and expectations are correct by comparison of the characteristics of the wave motions
onsetting at the flow around a solid circular cylinder and the dipole approximation of the
cylinder. We present a solution for the steady oscillation of the ice plate generated by
the moving circular cylinder, taking into account the boundary conditions on its surface.
We compare wave amplitudes in the far-field zone and the damping coefficients derived
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by the multipole expansion method and within the dipole approximation. This aims to
underpin the applicability of the dipole approximation if the aforementioned restrictions
are fulfilled.

6.1. The problem statement
We assume that the wave motion is caused in the initially quiescent fluid by forced
oscillations of a horizontal circular cylinder of a radius R with the frequency Ω and
amplitudes of horizontal and vertical displacements η1,2 respectively. Assuming that the
fluid motion is steady state, we write down the full velocity potential in the form

Φ(x, y, t) = Re

⎡
⎣iΩ

2∑
j=1

ηjϕj(x, y) exp(iΩt)

⎤
⎦ . (6.1)

Vertical displacements of the ice cover W(x, t) are determined from the relation

∂W
∂t

= ∂Φ

∂y

∣∣∣∣
y=0

(6.2)

and by analogy with (6.1), it is convenient to write

W(x, t) = Re

⎡
⎣ 2∑

j=1

ηjwj(x) exp(iΩt)

⎤
⎦ . (6.3)

In the bulk of water for the radiation potentials ϕj(x, y) ( j = 1, 2) the Laplace equation
is satisfied

Δϕj = 0 (|x | < ∞, −∞ < y ≤ 0). (6.4)

At the upper boundary of the fluid, y = 0, the kinematic and dynamic conditions are
satisfied in accordance with conditions (2.2) and (2.3)

wj(x) = ∂ϕj

∂y
,

(
D

∂4

∂x4
+ Q

∂2

∂x2
− MΩ2 + ρg

)
wj − ρΩ2ϕj = 0 (|x | < ∞). (6.5a,b)

On the circular contour of the cylinder {S : x2 + ( y + h)2 = R2}, the non-leakage
condition is assumed

∂ϕj/∂n = nj (x, y ∈ S), ( j = 1, 2), (6.6)

where n = (n1, n2) is the internal normal to the contour S, h is the distance of the cylinder
centre from the upper boundary of the fluid (h > R). For the infinitely deep fluid, the
following condition secures the absence of fluid motion in the depth:

∇ϕj → 0 ( y → −∞). (6.7)

One more condition we use in the far-field zone requires the fulfilment of the radiation
condition, that means that the generated waves are outgoing.
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6.2. The multipole expansion method
To solve problem (6.4)–(6.7), the multipole expansion method is used (see, for example,
Linton & McIver 2001), which is the most effective method in studying bodies of a simple
geometry: in the two-dimensional case – circles, in the three-dimensional case – spheres.
Even and odd in x multipoles, cos(mθ)/rm and sin(mθ)/rm, where r = √

x2 + ( y + h)2,
θ = arctan[x/( y + h)], are fundamental solutions of the Laplace equation singular at the
point x = 0, y = −h.

The boundary condition (6.6) in terms of r, θ has the form

∂ϕ1/∂r = sin θ, ∂ϕ2/∂r = cos θ (r = R). (6.8a,b)

According to these boundary conditions, function ϕ1(x, y) is odd, and function ϕ2(x, y)
is even in the variable x .

For the vertical oscillations of the cylinder solution ϕ2(x, y) has the form

ϕ2(x, y) =
∞∑

m=1

pmRm

[
cos(mθ)

rm
+ fm(x, y)

]
, (6.9)

where

fm(x, y) = 1
(m − 1)!

∫ ∞

0
km−1 cos(kx)A(k) ek( y+h) dk, (6.10)

A(k) = kP(k) + ρΩ2

Z(k)
e−2kh, (6.11)

P(k) = Dk4 − Qk2 − MΩ2 + ρg, (6.12)

Z(k) = kP(k) − ρΩ2. (6.13)

The integrand in (6.10) has simple poles that are the roots of the equation Z(k) = 0
which can be written as Ω2 = ω2(k), where ω(k) is the dispersion relation (4.4) for
flexural–gravity waves in an infinitely deep fluid.

The function Z(k) is the fifth-degree polynomial which has only one real root k = k1 >
0 if Q < Q0, whereas for Q0 < Q < Q∗ it has three real positive roots kn (n = 1, 2, 3)

which we will arrange in the ascending order: k1 < k2 < k3. The remaining roots of the
polynomial are complex.

Taking into account the radiation condition in the far-field zone, we can present (6.10)
in the form

fm(x, y) = 1
(m − 1)!

[
P.V.

∫ ∞

0
km−1A(k) ek( y+h) cos (kx) dk

− iπ
N∑

n=1

χnkm−1
n A(n) ekn( y+h) cos (knx)

]
. (6.14)

Here, N = 1 for Q < Q0 and N = 3 for Q0 < Q < Q∗; P.V. means that the principal value
of the integral should be considered; A(n) is the residue of function A(k) in k = kn; χn =
1 (χn = −1) if the group velocity is positive (negative).
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Taking into account the dispersion relation, we obtain ω(kn) = Ω (n = 1, 2, 3), and the
group velocity (4.6) for k = kn is

cg(kn) = 5Dk4
n − 3Qk2

n + ρg − MΩ2

2Ω(ρ + knM)
. (6.15)

The constructed solution satisfies (6.4) and the boundary conditions (6.5a,b) and (6.7),
but does not satisfy the non-leakage condition on the cylinder surface (6.8b). To account
for this boundary condition, the known relation is used:

exp[k(ix + y + h)] =
∞∑

l=0

(kr)l

l!
exp(ilθ). (6.16)

Then, (6.10) takes the form

fm(x, y) = 1
(m − 1)!

∞∑
l=0

rl

l!
cos (lθ)Iml, (6.17)

where

Iml = P.V.

∫ ∞

0
km+l−1A(k) dk − iπ

N∑
n=1

χnkm+l−1
n A(n), Iml = Ilm. (6.18)

Using (6.17), we can present ϕ2(x, y) in (6.9) in the form

ϕ2 =
∞∑

m=1

pmRm

[
cos (mθ)

rm
+ 1

(m − 1)!

∞∑
l=1

rl

l!
cos (lθ)Iml

]
. (6.19)

In contrast to (6.17), the term with l = 0 is not taken into account in (6.19) when we sum
over l, since the radiation potential is determined up to an arbitrary constant.

This problem was solved by Das & Sahu (2019) in the absence of compression forces in
the elastic ice plate (Q = 0) by performing numerical integration in (6.18). In the current
paper, we use the recurrence formulae and integral exponential functions to calculate the
integral in (6.18). To this end, we make the following conversion:∫ ∞

0
km+l−1 e−2kh

[
1 + 2ρΩ2

Z(k)

]
dk = (m + l − 1)!

(2h)m+l
+ 2ρΩ2

∫ ∞

0

km+l−1 e−2kh

Z(k)
dk. (6.20)

The denominator in the integrand, which is the fifth-degree polynomial in k, can be
represented as

Z(k) = D
5∏

n=1

(k − kn), (6.21)

where kn are the roots of the polynomial. Then, we use the expansion

1
Z(k)

= 1
D

5∑
n=1

αn

k − kn
, (6.22)

where the coefficients αn can be calculated from the solution of the corresponding system
of linear algebraic equations obtained from the requirement of equality of the numerator
on the right- and left-hand sides of (6.22).
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Further we will use the recurrent formulae to calculate the integrals in (6.20) using the
substitution equation (6.22). Denoting

IJ =
∫ ∞

0

kJ e−2kh

k − kn
dk. (6.23)

For the real roots kn , taking into account the radiation condition in the far-field zone, we
obtain

IJ = ĨJ − iπχnkJ
n e−2knh, where ĨJ = P.V.

∫ ∞

0

kJ e−2kh

k − kn
dk. (6.24)

The recurrent formulae for ĨJ are

ĨJ+1 = J!
(2h)J+1

+ kn ĨJ, Ĩ0 = −e−2knhEi(2knh), (6.25a,b)

where Ei is the integral exponential function of a real argument (Abramowitz & Stegun
1964).

For the complex roots kn , we obtain in (6.23)

IJ = 1
(2h)J

GJ(−2hkn), (6.26)

where

GJ+1(z) = J! − zGJ(z) (J ≥ 1), G1(z) = 1 − zezE1(z), (6.27a,b)

where E1 is the integral exponential function of a complex argument (Abramowitz &
Stegun 1964).

Differentiating (6.9) with respect to r and taking into account the boundary conditions
(6.8b) and the orthogonality of trigonometric functions, we obtain a set of linear algebraic
equations for the determining of the coefficients pm in (6.9)

pm −
∞∑

l=1

plRl+mIml

m!(l − 1)!
= −Rδml, (6.28)

where δ is the Kronecker symbol.
After determining the coefficients pm, we can calculate all the characteristics of the fluid

motion and ice plate oscillations. The radiation forces F = (F1, F2) are usually written in
the matrix form (for more details see, for example, Linton & McIver 2001)

Fk =
2∑

j=1

ηjτkj (k = 1, 2), τkj = ρΩ2
∫

S
ϕjnk ds = Ω2μkj − iΩλkj, (6.29a,b)

where μkj and λkj are the coefficients of the added mass and damping, respectively.
Similarly to Das & Sahu (2019), we have τ21 = 0, τ22 = −πρRΩ2(2p1 + R).
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For the horizontal oscillations of the cylinder, the solution for ϕ1(x, y) can be presented
in a form similar to (6.9)

ϕ1(x, y) =
∞∑

m=1

qmRm

[
sin(mθ)

rm
+ gm(x, y)

]
, (6.30)

where

gm(x, y) = 1
(m − 1)!

∫ ∞

0
km−1 sin(kx)A(k) ek( y+h) dk, (6.31)

and A(k) is presented in (6.11).
The derivation of the solution presented above is largely repeated for the vertical

oscillations, and for an infinitely deep liquid we ultimately obtain

qm = pm, τ11 = τ22, τ12 = 0. (6.32a–c)

Further, we use the following notations for non-zero components of the radiation load:
μ = μjj, λ = λjj ( j = 1, 2).

6.3. Vertical displacement of the ice cover
For the horizontal oscillations of the cylinder, from (6.30), taking into account (6.5a), we
obtain

w1(x) = 2ρΩ2
∞∑

m=1

pmRm

(m − 1)!

∫ ∞

0

km sin(kx)

Z(k)
e−kh dk. (6.33)

The function w2(x) for the vertical oscillations of the cylinder has the same form but
with the replacement of the factor sin (kx) in the integrand by cos (kx).

The integral in (6.33) can be represented in alternative form taking into account the
poles of the integrand in (6.33) (see § 6.2) and the radiation conditions in the far-field
zone

∫ ∞

0

km sin (kx)

Z(k)
e−kh dk = P.V.

∫ ∞

0

km sin (kx)

Z(k)
e−kh dk − iπ

N∑
n=1

χn
km

n sin (knx)

Z′(kn)
e−knh,

(6.34)
where Z′(kn) ≡ (dZ/dk)|k=kn .

Vertical displacements of the elastic plate in the far-field zone at |x | → ∞ are
determined only by the second term in (6.34), since the integral term vanishes for large
values of |x |. Therefore, displacement in the far-field zone can be written as

(w1(x), w2(x)) ≈
N∑

n=1

Cn(sin (knx), cos (knx)) (|x | → ∞), (6.35)

where

Cn = −2iπρΩ2 χn e−knh

Z′(kn)

∞∑
m=1

pmRmkm
n

(m − 1)!
. (6.36)

In the case of the normal dispersion (N = 1), there are reciprocity relations connecting
the damping coefficients and wave amplitudes in the far-field zone. These relations can
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FIGURE 11. The added masses (a) and damping coefficients (b) as functions of dimensionless
frequency σ for the free surface (h1 = 0) and ice cover with Q = 0 and various ice thicknesses:
h1 = 0.5, 1, 2 m. Thick lines pertain to the coefficients for a circular cylinder, and thin lines
pertain to the dipole approximation of the damping coefficients.

be used for the verification of the accuracy of numerical calculations. In the absence of
compression in the elastic plate (Q = 0), there is a relation given in the paper by Li, Wu &
Ji (2018) for the case of a fluid of finite depth. In the presence of compression (Q < Q0),
i.e. when the dispersion for flexural–gravity waves is normal, this relation for an infinitely
deep fluid has the form

λ = 2|C1|2
[

k1

Ω
(2Dk2

1 − Q) + Ωρ

2k2
1

]
. (6.37)

In the dipole approximation, wave amplitudes in the far-field zone for each of the
generated modes C(d)

n (n = 1, 2, 3) can be determined using the stationary phase method
or the solution of Savin & Savin (2013) on wave generation by a pulsating source in
infinitely deep water under an ice sheet

|C(d)
n | = πρΩR2kn e−knh

(ρ + knM)cg(kn)
= 2πρΩ2R2kn e−knh

5Dk4
n − 3Qk2

n + ρg − MΩ2
. (6.38)

Here, the (6.15) has been used for cg(kn).

6.4. The numerical results
The added mass and damping coefficients for the various values of bending stiffness D and
submerged depth h of a cylinder have been presented by Das & Sahu (2019) for Q = 0.
Our results completely coincide with their values. To conduct the numerical computations,
the infinite summations in (6.9) and (6.30) were truncated at a finite number m = M. The
results for the hydrodynamic load were obtained by setting M = 6. It was found that a
further increase of M does not affect the first four decimal places.

The added mass and damping coefficients for a submerged cylinder under a free
surface (h1 = 0) and under an ice cover of various thicknesses (h1 = 0.5, 1, 2 m) without
compressive forces (Q = 0) are shown in figure 11 for the parameters presented in (4.13)
besides the value h1. The following dimensionless quantities are used for the added mass
and damping factors: μ̄ = μ/(πρR2), λ̄ = λ/(πρΩR2).

It is seen from this figure that the extreme hydrodynamic loads in the case of
uncompressed ice are less than in the case of a free surface. It should be noted that,
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FIGURE 12. The added masses (a) and damping coefficients (b) as functions of dimensionless
frequency σ for the ice cover of thickness h1 = 1 m and Q̃ = 1.2, 1.4, 1.8.

regardless of the upper boundary conditions (the free surface or ice cover), the solution in
the limit of low-frequency oscillations of a cylinder reduces to the solution for the cylinder
moving under a rigid horizontal cover. Therefore, for σ → 0, the added mass depends only
on the depth of cylinder submersion, and for h/R = 2, the value of μ̄(0) ≈ 1.135 (see, for
example, Eatock Taylor & Hu 1991). In figure 11(b), the values for the damping coefficients
obtained for a circular cylinder by the multipole expansion method (thick lines) and in the
dipole approximation (thin lines) are compared using (6.38) in (6.37). It can be seen that
the discrepancy between the exact solution and the dipole approximation decreases with
increasing ice-cover thickness.

The effect of compressive forces on the hydrodynamic loads in the ice cover at the
thickness h1 = 1 m is shown in figure 12. A few cases of Q̃ were considered: Q̃ = 1.2,
1.4, 1.8. In the two former cases the normal dispersion of FGW takes place, whereas in
the latter case it is anomalous so that FGW with the negative group velocities appear
in the range of dimensionless frequencies 0.240 < σ < 0.319. It can be seen that, in
the presence of ice-cover compression, the extreme value of the hydrodynamic load
significantly increases in the vicinity of frequencies where the group velocity of FGW
becomes very small or negative. The damping coefficient becomes very small at the
frequency σ ≈ σ2, which corresponds to the local maximum of the dispersion curve in
the case of anomalous dispersion.

The displacement amplitudes of the ice cover in the far-field zone are presented in
figure 13. The solutions obtained by the multipole expansion method (6.36) are compared
with the solutions obtained in the dipole approximation (6.38) for h1 = 1 m and various
values of the normalized longitudinal stress parameter: Q̃ = 0, 1.2, 1.4, 1.8. Panels (a–c)
in figure 13 pertain to the case of normal dispersion when only one wave propagates in the
far-field zone. In the case of anomalous dispersion, there are three waves with different
wavenumbers propagating in the far-field zone; the amplitudes of these three generated
waves are shown separately in figure 13(d). Arrows on the horizontal axis of figure 13(d)
show the values σ1 = 0.240 and σ2 = 0.319 for the considerate case. It is seen that the
maxima of wave amplitudes in the far-field zone increase with increasing compression
of the ice cover. The solution obtained by the multipole expansion method and within
the dipole approximation are in a good agreement. In the presented calculations, the
reciprocity relation (6.37) is fulfilled with high accuracy in the case of the normal
dispersion of the FGW.
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FIGURE 13. Amplitudes of ice-sheet displacements in the far-field zone determined by the
multipole expansion method (solid lines) and within the dipole approximation (dots) as functions
of the dimensionless frequency of the oscillating cylinder at h1 = 1 m and various compression
parameters: (a) Q̃ = 0, (b) Q̃ = 1.2, (c) Q̃ = 1.4, (d) Q̃ = 1.8.

7. Conclusion

In this paper we have studied in the linear approximation wave motions of a compressed
elastic ice plate caused by the motion of a two-dimensional dipole in the water beneath the
plate. At first, the velocity potential for a source of arbitrary strength, starting from rest and
moving along an arbitrary path, was derived. Using the solution, some special cases were
studied extensively. For the dipole steadily moving in a horizontal direction at some depth
or horizontally oscillating, or moving with oscillations, we have derived the formulae for
the plate displacement on a fluid of finite depth. The derived formulae have been analysed
then in detail for an infinitely deep fluid. We have shown that the character of the solutions
is different in the different domains of the parameter plane, the Froude number versus
frequency of oscillation. All possible cases have been considered and classified. The wave
patterns on the ice plate have been calculated for the different regimes of dipole motion
and typical values of plate parameters.

The problem of dipole motion studied here can be considered as the model of the motion
of a circular cylinder (or heavily elongated body) under an ice cover. To demonstrate that
the resultant wave motion in the far-field zone, as well as the load characteristics, are
almost the same for the both cases of cylinder and dipole, we have studied in § 6 the
effect of ice compression on wave disturbances caused by the movement of a submerged
circular cylinder and have determined the hydrodynamic loads acting on it with the help
of the multipole expansion method. It has been shown that the difference in the results
for both mentioned cases is small and quickly decreases when the ice-cover thickness
increases. The similar problem for a cylinder oscillating horizontally or vertically beneath
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an ice sheet was recently studied for a fluid of infinite depth (Das & Sahu 2019) but
for an uncompressed ice plate. The added masses and damping coefficients have been
determined. In another paper (Li et al. 2019), a uniform horizontal motion of a circular
cylinder beneath an ice cover in a fluid of finite depth was considered for the uncompressed
ice plate too. The wave resistance and lifting force have been determined along with the
vertical displacements of the ice sheet. In our paper we have studied the influence of ice
compression on the added masses and damping coefficients of a circular cylinder. Such
a problem is very important from the practical point of view because the knowledge of
force loads makes it possible to predict the movement of heavily elongated bodies (e.g.
underwater pipelines) under the influence of external forces.

As follows from our estimates for the Froude number F = 0.25 and the compression
parameter Q̃ ≡ Q/

√
gρD = 1.95, the amplitude of a wave on the ice plate generated by a

uniformly moving cylinder of radius R in the stationary regime is w0 ≈ 0.05R, and the
wavelength is λ ≈ 20R. For the cylinder of radius R = 5 m, we obtain the following:
U = 1.75 m s−1, Q = 4.2 × 106 Kg s−2; then, w0 = 0.25 m, and λ = 100 m. For the
greater Froude number, F = 0.5, the amplitude of the stationary wave is four times as
much, whereas the wavelength is approximately the same. This can be seen from the
corresponding movies (see the links above).

In the case of superposition of translational (U = 3.5 m s−1) and oscillatory motions
(with the frequency Ω = 0.28 rad s−1; σ = 0.2) of the cylinder of the same radius
and Froude number F = 0.5, we obtain for the stationary regime shown in figure 10
w0 = 1.5 m, and λ = 100 m.

Thus, as one can see from these estimates, the wave patterns generated by a horizontally
moving cylinder are quite notable. The wave energy, apparently, can be transmitted on
long distances. Perhaps, in some regimes of motion, this can lead to ice destruction.

The multipole expansion method used in this paper to study wave motion in the
compressed ice by the oscillatory motion of a circular cylinder can also be applied to
solving the steady-state problem by the superposition of the translational and oscillatory
motions of a cylinder; this is planned in future work.

In this paper we did not consider the influence of the blocking phenomenon on the
deflection of floating ice sheets. Such a phenomenon can occur in the ocean with a
horizontally varying flow and can be very important. It has been partially studied in the
linear approximation in the papers by Das et al. (2018a,b,c); it is worthy of further study,
taking into consideration nonlinear effects arising in the vicinity of a blocking point (Liu
& Mollo-Christensen 1988).
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