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For a continuous-time random walk X = {Xt, t � 0} (in general non-Markov), we
study the asymptotic behaviour, as t → ∞, of the normalized additive functional
ct
∫ t
0 f(Xs) ds, t � 0. Similarly to the Markov situation, assuming that the

distribution of jumps of X belongs to the domain of attraction to α-stable law with
α > 1, we establish the convergence to the local time at zero of an α-stable Lévy
motion. We further study a situation where X is delayed by a random environment

given by the Poisson shot-noise potential: Λ(x, γ) = e−
∑

y∈γ φ(x−y), where
φ : R → [0,∞) is a bounded function decaying sufficiently fast, and γ is a
homogeneous Poisson point process, independent of X. We find that in this case the
weak limit has both ‘quenched’ component depending on Λ, and a component, where
Λ is ‘averaged’.
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1. Introduction

An evolution of continuous-time random walk (CTRW) X = {Xt, t � 0} is
described by a sequence of times between consecutive jumps of the process, which
are assumed to be independent identically distributed (iid) positive random vari-
ables θn, n � 1, and by a sequence of iid sizes of jumps ξn, n � 1; the two sequences
are assumed to be independent. When the distribution of θn is exponential, CTRW
is nothing but a compound Poisson process. Otherwise, CTRW is in general not
a Markov process, so may be considered as a non-Markovian generalization of a
compound Poisson process.

It is handful to represent the CTRW X in the form

Xt =
Nt∑

k=1

ξk, (1.1)
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where Nt = max
{
k � 0 :

∑k
i=1 θi � t

}
is the number of jumps up to time t.

(Throughout the paper we use the convention that
∑0

k=1 = 0.)
Consider a Borel function f : R → R. We are interested in the asymptotic

behaviour, as t→ ∞, of the additive functional
∫ t

0
f(Xs) ds, normalized by a

suitable factor.
When X is a discrete- or continuous-time ergodic Markov process having an

invariant probability measure ν, additive functionals of the form At =
∑t

i=1 f(Xi)
(respectively At =

∫ t

0
f(Xs) ds) with f ∈ L1(ν) satisfy strong law of large numbers:

At/t→ ν(f) :=
∫
f(x)ν(dx), t→ ∞, almost surely, and, under some additional

assumptions, a central limit theorem: (At − ν(f)t) /
√
t

d−→ N(0, σ2
f ), t→ ∞, with

some variance σ2
f (see e.g. [6, Chapter 2]).

The situation is very different when X does not have an invariant probability
measure. In particular, when it is a recurrent random walk, under suitable normal-
ization, additive functionals converge to a local time of some α-stable Lévy motion
multiplied by

∫∞
−∞ f(x) dx (in the case of lattice random walk, by the sum of its

values at the lattice points), see [4,11]. It is also worth to mention works [12,14],
where a general result on convergence of additive functionals of Markov processes is
proved, [10], which studies convergence to local times and associated central limit
theorems for additive functionals of diffusions, and [17], which establishes a limit
theorem for local time at a state x of processes which are regenerative at x.

There are also results in the non-Markovian case. Most notably, [11] studies
cumulative sums Sk =

∑k
i=1Xi of some long-memory stationary sequences X of

moving-average type, and establishes convergence of normalized additive function-
als to the local time of fractional Brownian motion or, in a heavy-tail situation, of a
fractional α-stable process (it is also worth mentioning that this article establishes
some of the strongest results for the Markovian situation as well).

Despite a large body of research on limit theorems related to CTRWs (see e.g. [15]
and references therein), the asymptotic behaviour of additive functionals for a
CTRW in such a direct statement of the problem as ours has not been studied.
We can name a paper [13] where, in another version, limit theorems of a similar
type were considered. We are focussing on the case where the times between jumps
are integrable. In this case, despite the corresponding CTRW is possibly a non-
Markovian, the results we establish are similar to the Markovian case. The reason
for this similarity is that the process Nt grows approximately linearly, thanks to
the law of large numbers; the corresponding results are contained in § 3. In § 4, we
consider a quite different situation where the process X is delayed by some envi-
ronment Λ. We first study the case of non-random Λ, and prove a corresponding
limit theorem. Further we look at a random environment given by the Poisson shot
noise potential

Λ(x, γ) = e−
∑

y∈γ φ(x−y),

where γ is a homogeneous Poisson configuration, and φ : R → [0,∞) is bounded
and integrable. We establish a limit theorem for this case as well. The convergence
we show is ‘quenched’ in the sense that we have a weak convergence to a limit
depending on γ for almost all configurations γ. Another interesting feature is that
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the limit, besides the aforementioned ‘quenched’ component, contains a component,
where Λ is ‘averaged.’

The remaining structure of the article is following: § 2 contains some preliminary
information on domains of attraction and stable variables, and proofs, which are
rather technical, are postponed to Appendix.

2. Preliminaries

For any random variable X, we denote by ϕX(λ) = E
[
eiλX

]
its characteristic

function. If X has absolutely continuous distribution, fX denotes its density.
Throughout the proofs, C is a generic constant (possibly random), the value of
which is not important and may change between lines. To emphasize dependence
on some variables, we put them in subscripts: Cp, Ck, etc. The symbols d−→ and
fdd−→ designate the convergence in law and the convergence of finite dimensional
distributions, respectively.

2.1. Domains of attraction

Consider the basic definitions concerning the random variables {ξn, n � 1}, for
details see [7, Chapter XVII] and [19].

Definition 1. A random variable ξ is said to have a stable distribution with index
α ∈ (1, 2] if its characteristic function has the form

ϕξ(x) = exp {iax− c|x|αω(x, α, β)} ,
where ω(x, α, β) = 1 + iβ signx tan[(πα)/2]; c > 0 is called the scale parameter, β ∈
[−1, 1] is called the skewness parameter, a ∈ R is the expected value.

Definition 2. The distribution L is said to belong to the domain of attraction to
stable law with index α ∈ (1, 2] if there exist some sequence an ∈ R and a slowly
varying function L such that the normalized sums

ξ1 + · · · + ξn
L(n)n1/α

− an

of iid random variables {ξn, n � 1} with distribution L converge, as n→ ∞, to a
stable distribution with index α.

Definition 3. If in definition 2 L(n) = σ for some constant σ > 0, we say that L
belongs to the domain of normal attraction to stable law with index α ∈ (1, 2].

A distribution L belongs to a domain of attraction of a stable law with index α if
its characteristic function admits in some neighbourhood of 0 an expansion of the
form

ϕL(x) = exp {iax− h(|x|)|x|αω(x, α, β)} , (2.1)

where h(x) is a function slowly varying at 0; it belongs to the domain of normal
attraction to a stable law with index α ∈ (1, 2] if h(x) → c > 0, x→ 0. The relation
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between h and L is as follows:

1
L(n)n1/α

= inf
{
x > 0 : xαh(x) =

1
αn

}
, n � 1.

2.2. Symmetric local time

Definition 4. For a measurable real-valued stochastic process {X(t), t � 0}, a
symmetric local time at a point x ∈ R on an interval [0, t] is defined as the limit in
probability

�X(t, x) := P- lim
ε→0+

1
2ε

∫ t

0

1[x−ε,x+ε](Xs) ds.

3. Asymptotic behaviour of additive functionals for CTRW

In this section we study asymptotic behaviour of additive functionals of the form∫ t

0
f(Xt) dt for CTRW X given by (1.1). We will need several assumptions con-

cerning the distribution of jumps ξn and times between them θn as well as
function f .

A1. We will assume that the jump sizes ξn, n � 1, are centred and their distri-
bution belongs to the domain of attraction to α-stable law with α ∈ (1, 2]. In
this case (see e.g. [18, proposition 3.4] or [11, proposition 1 (ii)]) there is also
a functional convergence⎧⎨

⎩ 1
L(n)n1/α

[nt]∑
k=1

ξk, t � 0

⎫⎬
⎭ d−→ {Zα(t), t � 0}

towards an α-stable Lévy motion Zα(t).

A2. The assumptions on function f come from [11] and are accompanied by
additional assumptions on the distribution of ξ1, namely, we assume that
(i) either f ∈ L1(R) ∩ L∞(R) and the distribution of ξ1 has a nonzero

absolutely continuous component,

(ii) or f ∈ L1(R) ∩ L2(R) and the characteristic function ϕξ1 of jump sizes is
integrable to some power p > 0:∫ ∞

−∞
|ϕξ1(t)|p dt <∞.

A3. Concerning the times θn between jumps, we will assume that they are
integrable:

E [θ1] = μ.

Denote ct = L(t)t1/α−1, Sn = ξ1 + · · · + ξn. We will use the following result,
which is an adaptation of theorem 3 from [11] for the case x = 0, βn = yn, c0 = 1,
cj = 0, j � 1 (in the terms of [11]).
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Theorem 3.1 [11]. Under assumptions A1–A2, the finite-dimensional distributions
of the process

cn

[nt]∑
k=1

f(Sk), t � 0,

converge to those of ∫ ∞

−∞
f(x) dx · �α(t, 0), t � 0,

where �α(t, 0) is the symmetric local time at zero of the α-stable Lévy motion Zα

on [0, t].

Now we establish a similar result for the CTRW X defined by (1.1).

Theorem 3.2. Let X be given by (1.1). Under assumptions A1–A3, the finite-
dimensional distributions of the process

ct

∫ tu

0

f(Xs) ds, u � 0,

converge as t→ +∞ to those of

μ1/α

∫ ∞

−∞
f(x) dx · �α(u, 0), u � 0.

Remark 1. Using the results of [4], it is possible to replace the additional assump-
tions from A2 on the distribution of ξ by the requirement to be non-lattice. However,
in this case f should have a compactly supported Fourier transform, which is a very
restrictive requirement.

Remark 2. The results of [4] can be used to handle the lattice case. Namely, let
A1 and A3 hold, but A2 is replaced by the assumption that P(ξ1 ∈ {a+ bZ}) = 1
for some a ∈ R, b > 0, and

∑∞
n=−∞ |f(a+ bn)| <∞. Then

{
ct

∫ tu

0

f(Xs) ds, u � 0
}

fdd−→
{
μ1/αb

∞∑
n=−∞

f(a+ bn) · �α(u, 0), u � 0

}
, t→ +∞.

Remark 3. Under the assumptions of theorem 3.2, one can also show the
convergence of finite-dimensional distributions of(

Xtu

L(t)t1/α
, ct

∫ tu

0

f(Xs) ds,
)
, u � 0,

as t→ +∞ to those of(
μ−1/αZα(u), μ1/α

∫ ∞

−∞
f(x) dx · �α(u, 0)

)
, u � 0.

The proof is similar, but one needs an appropriate extension of theorem 3.1 estab-
lishing a similar joint convergence. Such extension is straightforward: the proof
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of theorem 3.1 in [11] relies on several auxiliary results, of which the only one,
lemma 8, is concerned with weak convergence. The latter lemma, in turn, appeals to
[8, theorem 1, p. 485], which is easily seen to provide the desired joint convergence.

Remark 4. Out results hold exclusively in the one-dimensional recurrent case. The
situation in the non-recurrent case is strikingly different. If we take, for example,
a compactly supported function f , additive functionals

∫ t

0
f(Xs) ds converge as

t→ ∞ without any normalization. So in order to get non-trivial results here, we
have to consider ‘larger’ functions f than in the recurrent case; as for now, precise
assumptions are beyond our understanding.

4. CTRW in a random environment

4.1. CTRW with location-dependent intensity of jumps

Consider now the situation that the time between jumps depends on the current
location of the random walker: the intensity of jumps from a location x is Λ(x) > 0.
In the Markovian case, the corresponding evolution is a pure jump process with the
generator

(Aψ)(x) = Λ(x)
∫

R

(ψ(x− y) − ψ(x))Fξ1(dy).

The consecutive locations visited by the random walker X are, as before, S1 =
ξ1, S2 = ξ1 + ξ2, . . . , Sn =

∑n
k=1 ξk, . . . The time spent in the nth location is an

exponential random variable with parameter Λ(Sn), which also can be written
as θn/Λ(Sn), where θn is an exponential random variable with parameter 1. In
view of independence of times between jumps, the random variables θn, n � 1, are
independent, so the evolution can be written in the form

Xt =
Nt∑

k=1

ξk, (4.1)

whereNt = max
{
k � 0 :

∑k
i=1 θi/Λ(Si) � t

}
. To construct a non-Markovian coun-

terpart of this dynamic, we now drop the requirement that the variables θn, n � 1,
have exponential distribution. So in the rest of this section X will be given by (4.1)
with iid jumps ξn, n � 1, and iid variables θn, n � 1, which are also independent
of ξ.

In this section we will need stronger assumptions than in the previous one.
Namely, we will assume that the jump sizes are from the normal domain of attrac-
tion of α-stable law. Moreover, since the case α = 2 is very different technically, we
will consider in this section only non-Gaussian case α ∈ (1, 2). We will also need
stronger assumptions on the distribution of jumps.

B1. The jump sizes ξn, n � 1, are centred and their distribution belongs to the
normal domain of attraction to α-stable law with α ∈ (1, 2], i.e. L(n) = σ > 0
in definition 2. In this case (see [18, proposition 3.4]) there is a functional
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convergence ⎧⎨
⎩ 1
σn1/α

[nt]∑
k=1

ξk, t � 0

⎫⎬
⎭ d−→ {Zα(t), t � 0}

towards an α-stable Lévy motion Zα(t).

B2. The distribution of ξn is absolutely continuous,
(i) for α ∈ (1, 2), ∫ ∞

−∞
x2 |fξ1(x) − fZα

(x)| dx <∞;

(ii) for α = 2, the density of SN is bounded for some N � 1, and

E
[
ξ211|ξ1|>t

]
= o(t−κ), t→ +∞,

with some κ > 0.

Concerning the jump intensity Λ we will assume sub-polynomial growth and
existence of Cezaro averages for its inverse.

B3. For any δ > 0, sup|x|�n Λ(x)−1 = o(nδ), n→ ∞.

B4. There exists Λ−1 > 0 such that for some r > α,

sup
|x|�tr

∣∣∣∣1t
∫ x+t

x

Λ(y)−1 dy − Λ−1

∣∣∣∣→ 0, t→ +∞.

We start by examining the properties of the sums
∑n

i=1 θi/Λ(Si) and the
process Nt.

Proposition 4.1. Under the assumptions A3, B1–B4,

1
n

n∑
i=1

θi

Λ(Si)
P−→ μΛ−1, n→ ∞,

and
Nt

t

P−→ 1
μΛ−1

, t→ ∞.

Finally we turn to asymptotics of the additive functional.

Theorem 4.2. Let X be given by (4.1). Under assumptions A2–A3 on f(x) =
g(x)/Λ(x) and B1–B4, the finite-dimensional distributions of the process

σt1/α−1

∫ tu

0

g(Xs) ds, u � 0,

converge as t→ +∞ to those of

μ1/α ·
(
Λ−1

)1/α−1

·
∫ ∞

−∞

g(x)
Λ(x)

dx · �α(u, 0), u � 0.
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4.2. CTRW in a Poisson shot-noise potential environment

The conclusion of theorem 4.2 is also true for a random Λ independent of X pro-
vided that Λ satisfies B3–B4 almost surely, and g/Λ satisfies one of the assumption
A2(i) or A2(ii) almost surely.

Of particular interest is a random Λ of the special form, a so-called Poisson
shot-noise potential:

Λ(x, γ) = e−
∑

y∈γ φ(x−y) =: e−Eφ(x,γ), (4.2)

where φ : R → R, γ is a homogeneous Poisson configuration, i.e. a point process such
that for any Borel set A ⊂ R having finite Lebesgue measure λ(A), the number of
points of γ in A, |γ ∩A|, has a Poisson distribution with parameter λ(A).

A sufficient condition for Λ to be well defined for almost all x ∈ R is that φ ∈
L1(R); we will impose a stronger assumption.

C1. φ ∈ C(R) and there exist some C, β > 0 such that |φ(x)| � C/(1 + |x|1+β).

Under this assumption, it is shown in [5] that

E
[
Λ(x, γ)−a

]
= exp

{∫ ∞

−∞

(
eaφ(y) − 1

)
dy
}

for any a ∈ R and

sup
|x|�n

|Eφ(x, γ)| = O

(
log n

log log n

)
, n→ ∞, (4.3)

a.s.

Proposition 4.3. Under the assumption C1, for any δ > 0,

sup
|x|�n

Λ(x, γ)−1 = o(nδ), n→ ∞, (4.4)

a.s., and for any r > 1,

sup
|x|�tr

∣∣∣∣1t
∫ x+t

x

Λ(y, γ)−1dy − E
[
Λ(0, γ)−1

]∣∣∣∣→ 0, t→ +∞,

almost surely.

We are now in the position to prove the main result of this section. To ensure A2
for the function g/Λ, we impose suitable assumptions on g.

C2. Either g ∈ L1(R) ∩ L2(R) and the characteristic function ϕξ1 of jump sizes is
integrable to some power p > 0, or g ∈ L1(R) and there exist some C, ε > 0
such that |g(x)| � C(1 + |x|ε)−1 for all x ∈ R.
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Theorem 4.4. Let X be given by (4.1) and Λ be given by (4.2) with γ independent
of X. Under assumptions A3, B1, B2, C1, C2, the finite-dimensional distributions
of the process

σt1/α−1

∫ tu

0

g(Xs) ds, u � 0,

converge as t→ +∞ to those of

μ1/α · exp
{(

1
α− 1

)∫ ∞

−∞

(
eφ(y) − 1

)
dy
}
·
∫ ∞

−∞

g(x)
Λ(x, γ)

dx · �α(u, 0), u � 0,

with �α independent of γ.
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Appendix A. Proofs and auxiliary results

Proof of theorem 3.2. For simplicity, we show marginal convergence for u = 1; for
arbitrary finite-dimensional distributions the proof is the same, just heavier in terms
of notation.

Denote τn =
∑n

k=1 θk, n � 0, and write

ct

∫ t

0

f(Xs) ds = ct

Nt∑
k=1

θkf(Sk−1) + ct
(
t− τNt

)
f(SNt

). (A.1)

By the strong law of large numbers, Nt/t→ μ, t→ ∞, a.s., therefore, Nt ∼ t/μ,
t→ ∞, a.s. Therefore, since ct is regularly varying at infinity of index 1/α− 1,

ct ∼ μ1/α−1cNt
, t→ ∞, (A.2)

a.s. Thus, thanks to Slutsky’s lemma, we need to study the asymptotics of the
normalized sums

ζn = cn

n∑
k=1

θkf(Sk−1) as n→ ∞

(the remainder ct(t− τNt
)f(SNt

) will be handled later).
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Step 1. Let us first consider the case of a bounded f . Thanks to independence of
ξ and θ, we can write

ϕζn
(λ) = E

[
E

[{
iλcn

n∑
k=1

θkxk

}]] ∣∣
xk=f(Sk−1), k=1,...,n

= E

[
n∏

k=1

ϕθ1

(
λcnf(Sk−1)

)]
= E

[
exp

{
n∑

k=1

Logϕθ1

(
λcnf(Sk−1)

)}]
,

where Log denotes the branch of the natural logarithm such that Log z ∈ (−π, π]
for all z ∈ C \ {0}. From assumption A3 we have

ϕθ1(t) = 1 + iμt+ o(t), t→ 0.

Since also

Log(1 + x) − x = o(x), x→ 0,

we get

r(t) := Logϕθ1(t) − iμt = o(t), t→ 0.

Now

ϕζn
(λ) = E

[
exp

{
n∑

k=1

(
iμλcnf(Sk−1) +Rk,n

)}]

= E

[
exp

{
iμλcn

n∑
k=1

f(Sk−1) +Rn

}]
, (A.3)

where Rk,n = r
(
λcnf(Sk−1)

)
, Rn =

∑n
k=1Rk,n. By theorem 3.1,

cn

n∑
k=1

f(Sk−1)
d−→
∫ ∞

−∞
f(x) dx · �α(1, 0), n→ ∞.

Since the absolute value of the expression inside the expectation in (A.3) is bounded
by 1, we just need to show that Rn → 0, n→ ∞, in probability. To this end, fix
arbitrary ε > 0 and let δ > 0 be such that |r(t)| < ε |t| whenever |t| < δ. Since f is
bounded, λcn|f(x)| � δ for all x ∈ R and all n large enough. Then we can write

|Rn| �
n∑

k=1

|Rk,n| � ε |λ| cn
n∑

k=1

|f(Sk−1)| .

By theorem 1,

cn

n∑
k=1

|f(Sk−1)| d−→
∫ ∞

−∞
|f(x)|dx · �α(1, 0), n→ ∞, (A.4)

so for any η > 0,

lim sup
n→∞

P (Rn � η) � P
(∫ ∞

−∞
|f(x)|dx · �α(1, 0) � η

ε|μλ|
)
.
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Letting ε→ 0+, we arrive at lim supn→∞ P(Rn � η) = 0, which gives the desired
convergence in probability.

Consequently, from the Lévy theorem we get

ζn
d−→ μ

∫ ∞

−∞
f(x) dx · �α(1, 0), n→ ∞. (A.5)

Step 2. Now let f be unbounded. We are going to apply [3, theorem 3.2]. As we
have just shown, for any m � 1,

ζm
n := cn

n∑
k=1

θkf(Sk−1)1|f(Sk−1)|�m
d−→ ζm

:= μ

∫ ∞

−∞
f(x)1|f(x)|�m dx · �α(1, 0), n→ ∞.

It is also clear that

ζm d−→ μ

∫ ∞

−∞
f(x) dx · �α(1, 0), m→ ∞.

So it remains to deal with

|ζn − ζm
n | = cn

∣∣∣∣∣
n∑

k=1

θkf(Sk−1)1|f(Sk−1)|>m

∣∣∣∣∣ � cn

n∑
k=1

θk |f(Sk−1)|1|f(Sk−1)|>m.

Denote fm(x) = |f(x)|1|f(x)|>m. For any ε > 0, owing to independence of ξ and θ,
we can write

P
(|ζn − ζm

n | > ε
)

� E

⎡
⎣P

(
cn

n∑
k=1

θkxk > ε

)∣∣∣∣∣
xk=fm(Sk−1), k=1,...,n

⎤
⎦ . (A.6)

Thanks to the Markov inequality,

P

(
cn

n∑
k=1

θkxk > ε

)
� cn

ε
E

[
n∑

k=1

θkxk

]
=
cnμ

ε

n∑
k=1

xk,

so

P

(
cn

n∑
k=1

θkxk > ε

)∣∣∣∣∣
xk=fm(Sk−1), k=1,...,n

� cnμ

ε

n∑
k=1

fm(Sk−1).

By theorem 3.1,

cn

n∑
k=1

fm(Sk−1)
d−→
∫ ∞

−∞
|f(x)|1|f(x)|>m dx · �α(1, 0), n→ ∞.

By the Skorokhod representation theorem (see e.g. [3, theorem 6.7]), there exist
random variables �′α(1, 0) and Sm,n

k−1, m,n � 1, k = 1, . . . , n, such that:
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• �′α(1, 0) d= �α(1, 0);

• for each n,m � 1,
(
Sm,n

k−1, k = 1, . . . , n
) d= (Sk−1, k = 1, . . . , n) ; (A.7)

• for each m � 1,

cn

n∑
k=1

fm

(
Sm,n

k−1

)→ ∫ ∞

−∞
|f(x)|1|f(x)|>m dx · �′α(1, 0), n→ ∞,

almost surely.

Then, using (A.7) and the Fatou lemma, we obtain from (A.6) that

lim sup
m→∞

lim sup
n→∞

P
(|ζn − ζm

n | > ε
)

� E

⎡
⎣lim sup

m→∞
lim sup

n→∞
P
(
cn

n∑
k=1

θkxk > ε

)∣∣∣∣∣
xk=fm(Sm,n

k−1 ), k=1,...,n

⎤
⎦

� E

[
lim sup
m→∞

lim sup
n→∞

cnμ

ε

n∑
k=1

fm(Sm,n
k−1)

]

= E
[
lim sup
m→∞

μ

ε

∫ ∞

−∞
|f(x)|1|f(x)|>m dx · �′α(1, 0)

]
= 0.

Therefore, using [3, theorem 3.2], we get (A.5) also in this case.
Step 3. Taking into account (A.2), the independence of ζn of Nt, and the

convergence Nt → ∞, t→ ∞, a.s., we get

ct

Nt∑
k=1

θkf(Sk−1)
d−→ μ1/α

∫ ∞

−∞
f(x) dx · �α(1, 0), t→ ∞.

It remains to handle the term ct(t− τNt
)f(SNt

). Clearly, (t− τNt
) � θNt+1. There-

fore, appealing to (A.2) and to the almost sure convergence Nt → ∞, it suffices
to show that cnθn+1f(Sn) P−→ 0, n→ ∞. Since θn are identically distributed, they
are bounded in probability, so we only need to show that cnf(Sn) P−→ 0, n→ ∞.
This, however, easily follows from (A.4). Indeed, we clearly have also

cn

n−1∑
k=1

|f(Sk−1)| d−→
∫ ∞

−∞
|f(x)|dx · �α(t, 0), n→ ∞. (A.8)

But if lim supn→∞ P
(
cn|f(Sn)| � η

)
were positive for some η > 0, the limiting

distribution of cn
∑n

k=1 |f(Sk−1)| = cn|f(Sn)| + cn
∑n−1

k=1 |f(Sk−1)| would strictly
dominate that of cn

∑n−1
k=1 |f(Sk−1)|, which would contradict (A.4) and (A.8). �

Lemma A.1. Assume B1, B2 and let a function h : R → [0,∞) satisfy
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H1. For any δ > 0, sup|x|�n h(x) = o(nδ), n→ ∞.

H2. There exists h̄ � 0 such that for some r > 1 there is a uniform convergence of
Cezaro averages:

sup
|x|�tr

∣∣∣∣1t
∫ x+t

x

h(y) dy − h̄

∣∣∣∣→ 0, t→ +∞.

Then,

1
n

n∑
k=1

h(Sk) P−→ h, n→ ∞.

Proof. Consider first the case of α ∈ (1, 2). Take some b ∈ (1/α, r/α) and define
hn(x) = h(x)1|x|�nb + h̄1|x|>nb . It follows from H1 that for any δ > 0,

sup
x∈R

|hn(x)| = o(nδ), n→ ∞. (A.9)

Clearly, extending h by h̄ may only improve convergence to h̄, so it follows from
H2, that for any sequence (an, n � 1) such that an � nb/r,

sup
x∈R

∣∣∣∣ 1
an

∫ x+an

x

hn(y) dy − h̄

∣∣∣∣→ 0, n→ ∞. (A.10)

Since ξn belong to the normal domain of attraction to α-stable law, we have
P(|Sk| > x) � Ckx−α for all x > 0, k � 1. Then, for any a ∈ (0, α− b−1),

1
n

E

[∣∣∣∣∣
n∑

k=1

h(Sk) −
n∑

i=1

hn(Sk)

∣∣∣∣∣
]

� 1
n

n∑
k=1

E [|h(Sk) − hn(Sk)|] � C

n

n∑
k=1

E
[|Sk|a1|Sk|�nb

]

=
Ca

n

n∑
k=1

∫ ∞

nb

xa−1P(|Sk| > x) dx

� Cnb(a−α)−1
n∑

k=1

k � Cnb(a−α)+1 → 0, n→ ∞.

Therefore, it is enough to prove that

1
n

n∑
k=1

hn(Sk) P−→ h, n→ ∞.

To this end, consider

φs,t
n =

1
n

∑
sn�k<tn

hn(Sk) =
∑

sn�k<tn

Fn

(
Xn(k/n)

)
, s < t, n � 1,

where Xn(k/n) = n−1/αSk, Fn(x) = n−1hn(n1/αx). As it was proved in [14], the
processes Xn provide a Markov approximation for the α-stable Lévy motion Z,
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therefore, we can use [12, theorem 1] about the convergence of additive functionals
(concerning the terminology, we advise to consult the articles [12,14]). First note
that

sup
x∈R

|Fn(x)| � 1
n

(
sup

|x|�nb

|h(x)| + h̄

)
→ 0, n→ ∞.

Further, the characteristic of the limiting functional

fs,t(x) := E
[∫ t

s

h̄du
]

= h̄ · (t− s), s < t,

does not depend on x, so obviously satisfies the uniform continuity assumption
of [12, theorem 1]. It then remains to show the uniform (in x ∈ R, 0 � s < t � 1)
convergence of characteristics

fs,t
n (x) :=

∑
sn�k<tn

E
[
Fn

(
Xn(k/n) + x

)]
=

1
n

∑
sn�k<tn

E
[
hn(Sk + n1/αx)

]

to fs,t(x). Since fs,t(x) is independent of x, this is equivalent to the uniform
convergence of fs,t

n (n−1/αx).
Fix some ε ∈ (bα/r, 1) and consider

E [hn(Sk + x)] =
∫ ∞

−∞
hn(k1/αy + x)fk−1/αSk

(y) dy, k � nε.

By [1](see also [2]),∫ ∞

−∞
|fZα

(y) − fk−1/αSk
(y)|dy = o(k1−2/α), k → ∞. (A.11)

Therefore, for any δ ∈ (0, ε(2/α− 1)
)
, thanks to (A.9),

sup
x∈R,k�nε

∣∣E [hn(Sk + x)] − E
[
hn(k1/αZα + x)

] ∣∣
� sup |hn| · sup

k�nε

∫ ∞

−∞
|fZα

(y) − fk−1/α(y)|dy = o
(
nδ+ε(1−2/α)

)→ 0, n→ ∞.

(A.12)

Further,

E
[
hn(k1/αZα + x)

]
=
∫ ∞

−∞
hn(k1/αy + x)fZα

(y) dy

=
∫ ∞

0

∫
y:fZα (y)�z

hn(k1/αy + x) dy dz.

It is well known (see e.g. [19, Chapter 2]) that a stable distribution has an unimodal
analytic density, so for each z ∈ [0,max fZα

), there exist some az < bz such that
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{y : fZα
(y) � z} = [az, bz]. Then we can write for some γ ∈ (0, 2(ε/α− b/r)

)

E
[
hn(k1/αZα + x)

]
=
∫ max fZα

0

∫ bz

az

hn(k1/αy + x) dy dz

=

(∫ max fZα−n−γ

0

+
∫ max fZα

max fZα−n−γ

)∫ bz

az

hn(k1/αy + x) dy dz.

(A.13)

Clearly, ∣∣∣∣∣
∫ max fZα

max fZα−n−γ

∫ bz

az

hn(k1/αy + x)

∣∣∣∣∣ dy dz � sup |hn|(b1 − a1)n−γ ,

whence, in view of (A.9),

sup
x∈R,k�1

∣∣∣∣∣
∫ max fZα

max fZα−n−γ

∫ bz

az

hn(k1/αy + x) dy dz

∣∣∣∣∣→ 0, n→ ∞. (A.14)

Further, for z � max fZα
− n−γ ,

∫ bz

az

hn(k1/αy + x) dy =
1

k1/α

∫ k1/αbz+x

k1/αaz+x

h(u) du

=
bz − az

k1/α(bz − az)

∫ k1/αbz+x

k1/αaz+x

h(u) du.

Thanks to continuous differentiability of fZα
, there exists some positive c > 0 such

that bz − az � cn−γ/2 for any z � max fZα
− n−γ . Therefore, for such z and for

k � nε, k1/α(bz − az) � cnε/α−γ/2 � nb/r for all n large enough. Consequently, in
view of (A.10),

sup
x∈R,k�nε

z�max fZα−n−γ

∣∣∣∣∣ 1
k1/α(bz − az)

∫ k1/αbz+x

k1/αaz+x

h(u) du− h̄

∣∣∣∣∣→ 0, n→ ∞.

Combining this with (A.13)–(A.14) and noting that
∫max fZα

0
(bz − az) dz =∫∞

−∞ fZα
(x) dx = 1, we get

lim sup
n→∞

sup
x∈R,k�nε

∣∣∣E [hn(k1/αZα + x)
]
− h̄
∣∣∣

= lim sup
n→∞

sup
x∈R,k�nε

∣∣∣∣∣
∫ max fZα

0

∫ bz

az

hn(k1/αy + x) dy dz −
∫ max fZα

0

(bz − az)h̄dz

∣∣∣∣∣
= lim sup

n→∞
sup

x∈R,k�nε

∣∣∣∣∣
∫ max fZα−n−γ

0

(bz − az)
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1

k1/α(bz − az)

∫ k1/αbz+x

k1/αaz+x

hn(u) du− h̄

)
dz

∣∣∣∣∣
� lim sup

n→∞

∫ max fZα

0

(bz − az) dz·

sup
x∈R,k�nε

z�max fZα−n−γ

∣∣∣∣∣ 1
k1/α(bz − az)

∫ k1/αbz+x

k1/αaz+x

hn(u) du− h̄

∣∣∣∣∣ = 0.

Recalling (A.12), we arrive at

sup
x∈R,k�nε

∣∣E [hn(Sk + x)] − h̄
∣∣→ 0, n→ ∞,

whence

sup
x∈R,nε−1�s<t�1

∣∣∣∣∣∣
1
n

∑
k:sn�k<tn

E [hn(Sk + x)] − h̄ · (t− s)

∣∣∣∣∣∣→ 0, n→ ∞.

Also, thanks to (A.9),

sup
x∈R,s�nε−1

∣∣∣∣∣ 1n
∑

k<ns

E [hn(Sk + x)]

∣∣∣∣∣ � Cnε−1 sup
x∈R

|hn(x)| → 0, n→ ∞.

Consequently,

sup
x∈R,0�s<t�1

∣∣∣∣∣∣
1
n

∑
sn�k<tn

E [hn(Sk + x)] − h̄ · (t− s)

∣∣∣∣∣∣→ 0, n→ ∞.

This shows the required uniform convergence of characteristics, so by
[12, theorem 1] we get

1
n

n∑
k=1

hn(Sk) −→ h, n→ ∞,

in law, equivalently, in probability.
For α = 2, instead of (A.11) we have, thanks to [16],

sup
y∈R

(1 + |y|)2+κ|fZα
(y) − fk−1/αSk

(y)| = o(k−κ), k → ∞,

whence ∫ ∞

−∞
|fZα

(y) − fk−1/αSk
(y)|dy = o(k−κ), k → ∞,

so we can choose δ ∈ (0, εκ) is (A.12); the rest of proof is unchanged. �
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Proof of proposition 4.1. Denote γn = 1/n
∑n

i=1 θi/Λ(Si) and write, similarly to
the proof of theorem 3.2, for any λ ∈ R \ {0},

ϕγn
(λ) = E

⎡
⎣E

[{
i

n

n∑
k=1

θkxk

}] ∣∣∣∣∣
xk=Λ(Sk−1)−1,k=1,...,n

⎤
⎦

= E

[
n∏

k=1

exp
{
ϕθ1

( λ

nΛ(Sk)

)}]

= E

[
exp

{
n∑

k=1

Logϕθ1

( λ

nΛ(Sk)

)}]

= E

[
exp

{
iμλ

n

n∑
k=1

1
Λ(Sk−1)

+Rn

}]
,

where

Rn =
n∑

k=1

r

(
λ

nΛ(Sk)

)
, r(x) = Logϕθ1(x) − iμx = o(x), x→ 0.

By lemma A.1,

Yn :=
1
n

n∑
k=1

1
Λ(Sk−1)

P−→ Λ−1, n→ ∞. (A.15)

In order to prove the first claim it remains to show that Rn
P−→ 0, n→ ∞. Fix some

ε > 0. For any a > 0, there exists some δ > 0 such that |r(x)| � a|x| for |x| < δ.
Therefore, on the event An :=

{
maxk�n Λ(Sk)−1 � nδ/ |λ|}, we have |Rn| � aYn.

Therefore,

P (|Rn| > ε) � P(Yn > ε/a) + P(Ac
n).

Choosing a < ε/Λ−1, we get from (A.15) that P(Yn > ε/a) → 0, n→ ∞. On the
other hand, since by B3 for any η < 1 it holds that Λ(x)−1 � Kη|x|η with some
Kη > 0, we have

P(Ac
n) �

n∑
k=1

P
(

Λ(Sk)−1 � nδ

|λ|
)

�
n∑

k=1

P
(
|Sk|η � nδ

Kη |λ|
)

�
n∑

k=1

P
(
|Sk| � Cn1/η

)

� n2P(|ξ1| � Cn1/η−1) = n2O(nα(1−1/η)), n→ ∞,

where the last follows from B1 (see e.g. [4, § 1.1]). Taking η < (1 + 2/α)−1, we get
P(Ac

n) → 0, n→ ∞, thus establishing the convergence Rn
P−→ 0, n→ ∞, which
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finishes the proof for the first claim that γnμP−→Λ−1, n→ ∞. The second one
follows in a standard way: for any x <

(
μΛ−1

)−1,

P (Nt � tx) = P

⎛
⎝ [tx]∑

i=1

θi

Λ(Si)
� t

⎞
⎠ = P

(
γ[tx] � t

[tx]

)
→ 0, t→ +∞,

since limt→∞ t/[tx] = 1/x < μΛ−1, and similarly for any x >
(
μΛ−1

)−1, P(Nt � tx) → 0,
t→ ∞. �

Proof of theorem 4.2. Similarly to (A.1), we can write

∫ t

0

g(Xs) ds =
Nt∑

k=1

θk
g(Sk−1)
Λ(Sk−1)

+ g
(
t− τNt

) g(SNt
)

Λ(SNt
)
.

From proposition 4.1, we have Nt/t
P−→ (

μ · Λ−1
)−1, n→ ∞. Therefore, repeating

the proof of theorem 3.2, we arrive at the statement. �

The following lemma is probably well known: for instance, a similar statement
can be found in [9, lemma A.2]. However, we did not find it in the given form, so
we include it for completeness.

Lemma A.2. Let {Yt, t ∈ [0, T ]} be a centred measurable process which is
a-dependent for some a ∈ (0, T ), i.e. {Yt, t ∈ A} and {Yt, t ∈ B} are independent
whenever inft∈A,s∈B |t− s| � a. For each integer k � 1, there exists a universal
constant Ck > 0 such that

E

⎡
⎣(∫ T

0

Yt dt

)2k
⎤
⎦ � Ck(aT )k sup

t∈[0,T ]

E
[
Y 2k

t

]
.

Proof. Since Y is centred and a-dependent, we have

E

⎡
⎣(∫ T

0

Ytdt

)2k
⎤
⎦ =

∫
S2k,a,T

E

[
2k∏
i=1

Yti

]
dt1 . . . dt2k,

where S2k,a,T = {(t1, . . . , t2k) ∈ [0, T ] | ∀i = 1, . . . , 2k ∃j �= i : |ti − tj | � a}. Using
the Hölder inequality, we get

E

⎡
⎣(∫ T

0

Yt dt

)2k
⎤
⎦ � λ(S2k, a, T ) sup

t∈[0,T ]

E
[
Y 2k

t

]
. (A.16)

Clearly, λ(S2k, a, T ) = T 2kλ(S2k, a/T, 1). In turn,

λ(S2k, a/T, 1) = P (∀i = 1, . . . , 2k ∃j �= i : |Ui − Uj | � a/T ) ,

where U1, . . . , U2k are iid U(0, 1) random variables. Denote by G2k the set of all
graphs on N2k := {1, . . . , 2k} having no isolated vertices; for G ∈ G2k, let V (G) be
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its set of edges, and S(G) be its minimal vertex cover, i.e. the minimal (in cardinal-
ity) set of vertices adjacent to all edges of G. It is well known that |S(G)| is equal
to the number of edges in the maximal matching (disjoint set of edges) of G, so
S(G) � k. Then

P (∀i = 1, . . . , 2k ∃j �= i : |Ui − Uj | � a/T )

= P

( ⋃
G∈G2k

⋂
i,j∈V (G)

{|Ui − Uj | � a/T}
)

�
∑

G∈G2k

P

( ⋂
i∈N2k\S(G)

⋃
j∈S(G)

{|Ui − Uj | � a/T}
)

=
∑

G∈G2k

E

⎡
⎣P

( ⋂
i∈N2k\S(G)

⋃
j∈S(G)

{|Ui − xj | � a/T}
)∣∣∣∣∣

xj=Uj ,j∈S(G)

⎤
⎦

=
∑

G∈G2k

E

⎡
⎣ ∏

i∈N2k\S(G)

P

( ⋃
j∈S(G)

{|Ui − xj | � a/T}
)∣∣∣∣∣

xj=Uj ,j∈S(G)

⎤
⎦

�
∑

G∈G2k

E

⎡
⎣ ∏

i∈N2k\S(G)

∑
j∈S(G)

P

(
{|Ui − xj | � a/T}

)∣∣∣∣∣
xj=Uj ,j∈S(G)

⎤
⎦

�
∑

G∈G2k

E

⎡
⎣ ∏

i∈N2k\S(G)

(
|S(G)| · 2a

T

)⎤⎦

�
∑

G∈G2k

(2ka
T

)2k−|S(G)|
�
( a
T

)k ∑
G∈G2k

(2k)2k−|S(G)| = Ck

( a
T

)k

.

Recalling the fact that λ(S2k, a, T ) is T 2k times this expression and the esti-
mate (A.16), we arrive at the statement. �

Proof of proposition 4.3. The first statement follows immediately from (4.3). In
order to establish the second one, we start by noting that, in view of (4.4), for large
t the average of X over [x, x+ t] will be close to that over [x, x+ �t], where �t is
the integer part of t, so it is enough to show the convergence over integers. Most
of the statements below will hold almost surely, so for brevity, we omit this phrase
throughout.

Fix some a ∈ (0, 1) define φn(x) = φ(x)1|x|�na , Λn(x, γ) = e−Eφn (x,γ), φ̄n = φ−
φn. Let νk =

∣∣γ ∩ [k − 1
2 , k + 1

2 ]
∣∣, k ∈ Z. It is easy to show (see e.g. [5, lemma 2.1])

that

sup
k∈Z

νk

l(k)/l(l(k))
<∞,

where l(x) = 2 + log(2 + |x|), x ∈ R.
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Therefore, for any x ∈ R and any η ∈ (0, aβ), using C1, we have

|Eφ(x, γ) − Eφn
(x, γ)|

=
∣∣Eφ̄n

(x, γ)
∣∣ �∑

y∈γ

∣∣φ̄n(x− y)
∣∣

� C
∑

k∈Z,|k−x|�na−1

νk

1 + |k − x|β+1
� C

∑
m∈Z,|m|�na−1

1
1 +mβ+1

· l(m+ x)
l
(
l(m+ x)

)
� C

∑
|m|∈Z,|m|�na−1

1
1 +mβ+1

·
(

l(m)
l(l(m))

+
l(x)
l(l(x))

)
�

� C

(
n−aβ+η + n−aβ · l(x)

l(l(x))

)
� Cn−aβ+η · l(x)

l(l(x))
.

Hence, owing to (4.3), we get that for any r > 1,

sup
|x|�2nr

∣∣Λ(x, γ)−1 − Λn(x, γ)−1
∣∣→ 0, n→ ∞,

consequently,

sup
|x|�nr

∣∣∣∣ 1n
∫ x+n

x

Λ(y, γ)−1 dy − 1
n

∫ x+n

x

Λn(y, γ)−1 dy
∣∣∣∣→ 0, n→ ∞.

Since Λn(0, γ) � Λ(0, γ) and Λn(0, γ) → Λ(0, γ), n→ ∞, then E
[
Λn(0, γ)−1

]→
E
[
Λ(0, γ)−1

]
, n→ ∞, so we are left to show that

sup
|x|�nr

∣∣∣∣ 1n
∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

]∣∣∣∣→ 0, n→ ∞.

Observe that the process Λn(y, γ) is 2na-independent. Then, using the stationarity
of Λn, we obtain from lemma A.2 that for any k � 1,

E

[(
1
n

∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

])2k
]

= n−kE

[(∫ x+n

x

(
Λn(y, γ)−1 − E

[
Λn(y, γ)−1

])
dy
)2k

]

� Ckn
k(a−1)E

[(
Λn(0, γ)−1 − E

[
Λn(0, γ)−1

])2k
]

� CkE
[(

Λ(0, γ)−1 + E
[
Λ(0, γ)−1

])2k
]
nk(a−1).

By Markov’s inequality, for any ε > 0,

P
(∣∣∣∣ 1n

∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

]∣∣∣∣ � ε

)
� Ckn

k(a−1)

εk
.
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Define the set An = {nr−ai, i = −[na], . . . , [na] + 1} and for x ∈ [−nr, nr] denote
an(x) = sup{y ∈ An, y � x}. Thanks to (4.4),

sup
|x|�nr

∣∣∣∣∣ 1n
∫ x+n

x

Λn(y, γ)−1 dy − 1
n

∫ an(x)+n

an(x)

Λn(y, γ)−1 dy

∣∣∣∣∣
� sup

|x|�nr

2(x− an(x))
n

· sup
|y|�2nr

Λn(y)−1 � 2na−1 sup
|y|�2nr

Λ(y)−1 → 0, n→ ∞.

Consequently,

lim sup
n→∞

P

(
sup

|x|�nr

∣∣∣∣ 1n
∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

]∣∣∣∣ � ε

)

= lim sup
n→∞

P
(

sup
x∈An

∣∣∣∣ 1n
∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

]∣∣∣∣ � ε

)

� lim sup
n→∞

∑
x∈An

P
(∣∣∣∣ 1n

∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

]∣∣∣∣ � ε

)

� lim sup
n→∞

∑
x∈An

Ckn
k(a−1)

εk
� Ck,ε lim sup

n→∞
nk(a−1)+a.

Now taking k > (1 + a)/(1 − a), we obtain that

sup
|x|�nr

∣∣∣∣ 1n
∫ x+n

x

Λn(y, γ)−1 dy − E
[
Λn(0, γ)−1

]∣∣∣∣→ 0, n→ ∞,

by virtue of the Borel–Cantelli lemma, concluding the proof. �

Proof of theorem 4.4. Since γ is independent of X, it suffices to show the quenched
weak convergence, i.e. that the required weak convergence holds for almost all fixed
realizations of γ. This, in turn, boils down to verifying the assumptions B3, B4
for Λ and A2 for f = g/Λ. The former follow from proposition 4.3. Concerning the
latter, note that

E
[∥∥∥ g

Λ

∥∥∥
L1(R)

]
= E

[∫ ∞

−∞

|g(x)|
Λ(x, γ)

dx
]

=
∫ ∞

−∞
|g(x)|E

[
eEφ(x,γ)

]
dx

=
∫ ∞

−∞
|g(x)|E

[
eEφ(x,γ)

]
dx

=
∫ ∞

−∞
|g(x)| dx · exp

{∫ ∞

−∞

(
eφ(y) − 1

)
dy
}
<∞.

Consequently, g/Λ ∈ L1(R) a.s. Similarly, if g ∈ L2(R), then

E
[∥∥∥ g

Λ

∥∥∥2

L2(R)

]
=
∫ ∞

−∞
g(x)2E

[
e2Eφ(x,γ)

]
dx

=
∫ ∞

−∞
g(x)2 dx · exp

{∫ ∞

−∞

(
e2φ(y) − 1

)
dy
}
<∞
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and g/Λ ∈ L2(R) a.s.; if |g(x)| � C(1 + |x|ε)−1, then g/Λ is bounded thanks to B3.
Consequently, B3, B4 and A2 hold for almost all γ, which implies the required
quenched weak convergence. �
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walks and fractional Pearson diffusions. Bernoulli 24 (2018), 3603–3627.

16 M. Maejima. A non-uniform estimate in the local limit theorem for densities. II. Yokohama
Math. J. 26 (1978), 119–135.

17 A. Mijatovic and G. Uribe Bravo, Invariance principles for local times in regenerative
settings. Preprint, 2019. arXiv:1910.09501.

18 S. I. Resnick. Point processes, regular variation and weak convergence. Adv. Appl. Probab.
18 (1986), 66–138.

19 V. M. Zolotarev. One-dimensional stable distributions. Translations of Mathematical
Monographs, vol. 65, pp. x+284 (Providence, RI: American Mathematical Society: 1986).

https://doi.org/10.1017/prm.2020.33 Published online by Cambridge University Press

https://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Andreas_Eberle/Markov_Processes_1617/MPSkript1617.pdf
https://wt.iam.uni-bonn.de/fileadmin/WT/Inhalt/people/Andreas_Eberle/Markov_Processes_1617/MPSkript1617.pdf
arXiv:1910.09501
https://doi.org/10.1017/prm.2020.33

	1 Introduction
	2 Preliminaries
	2.1 Domains of attraction
	2.2 Symmetric local time

	3 Asymptotic behaviour of additive functionals for CTRW
	4 CTRW in a random environment
	4.1 CTRW with location-dependent intensity of jumps
	4.2 CTRW in a Poisson shot-noise potential environment

	A Appendix A. Proofs and auxiliary results
	References

