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Motivated by hydrological applications, the exact distributions of R = X + Y,
P =XY,and W= X/(X + Y) and the corresponding moment properties are derived
when X and Y follow Block and Basu’s bivariate exponential distribution. An appli-
cation of the results is provided to drought data from Nebraska.

1. INTRODUCTION

The aim of this article is to derive the exact distributions of R=X + Y, P = XY, and
W = X/(X + Y) when (X,Y) follows Block and Basu’s [1] bivariate exponential
distribution given by the joint probability density function (p.d.f.)

A”\(AﬁA”)ex{ Mx— (A +An)y if0<x<
- - X — X
A+ p 1 2 12)Y y

flx,y) = 1)
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forx>0,y>0,a>0,8>0,a’">0,and 8’ > 0, where A = A| + A, + Ay,. This
is one of the most flexible bivariate exponential distributions in the literature: It
was derived by Block and Basu by omitting the singular part of Marshall and Olkin’s
[6] distribution.

Since the pioneering work of Gumbel [4], bivariate exponential distributions
have attracted many applications in hydrological sciences. The above model due to
Block and Basu [1] would be an ideal model for these applications. There is clear
reason to believe that distributions of R=X+ Y, P = XY, and W= X/(X + Y) will
be of interest in hydrological applications. For example, if X and Y denote the drought
intensity and the drought duration, respectively, then P = XY will represent the
magnitude of the drought. If X and Y denote the drought duration and the successive
nondrought duration, respectively, then R = X + Y and W = X/(X + Y) will repre-
sent the interarrival time of drought events and the proportion of drought events,
respectively (see Section 4).

This article is organized as follows. In Sections 2 and 3 explicit expressions for
the p.d.f.s and moments of R=X+ Y, P = XY, and W = X/(X + Y) are derived. In
Section 4 an application of the results to drought data from Nebraska is provided.
The calculations in this article involve the complementary incomplete gamma func-
tion defined by

[(a,x) =f t Vexp(—t)dt.

The properties of this special function can be found in Prudnikov, Brychkov, and
Marichev [7] and Gradshteyn and Ryzhik [3].

2. PROBABILITY DENSITY FUNCTIONS

Theorems 1-3 derive the p.df.sof R=X+ Y, P = XY, and W = X/(X + Y) when
X and Y are distributed according to (1).

THEOREM 1: If X and Y are jointly distributed according to (1), then

. AN (A + A )exp{—(Ay + Ap)r} l _ _
T = T ) O — Ay + A) [exp{(2>(“ “””)r} 1]

AN (A + Ap)exp{—(A, + App)r}
(/\1 + )‘2)()\2 - )\1 - Alz)

><[1—exp{—(%)(/\z—/\l—)\lz)r}} 2)

for 0 <r < oo.
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ProoOF: From (1), the joint p.d.f. of (R,W) = (X + Y, X/R) becomes

MAA, + Ap)r ) 1
ﬁexp{—/\lrw—(/\z-i-/\lz)r(l—w)} if w< >
(r,w) = 3)
/ MAA + Ap)r ) 1
ﬁexf’{_)‘zr(l —w) — (A, + App)rw} lfWZE.
Thus, the p.d.f. of R can be written as
MAA, + Ap)r 1/2
fr(r) = exp{—(A, + Ap)r} exp{(Ay = Ay + Ap)rwhdw
A+ A, 0

N AMAA, + Ap)r

1
exp(—A f expi(A, —A; — A dw.
A+ A, p(—Ayr) s p{(A, 1 12) W} dw

The result of the theorem follows by elementary integration of the above two
integrals. u

THEOREM 2: If X and Y are jointly distributed according to (1), then

{()\2 + A]z)P}kr(_k»(/\z + /\12)\/1—7)

fr(p) = 2

A/\I(A2+A]2) & (_)\1)
A+A Sk
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o 2w (A TER (A + AVp) @)
1 2 = :

for 0 < p < oo.

ProoF: From (1), the joint p.d.f. of (X, P) = (X, XY) becomes

A AA, + A ) P
I Bt R R
fx,p) =
AN L2 ] e
(/\]+/\2)x p 2x 1 12 p.
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Thus, the p.d.f. of P can be written as
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where we have set y = 1/x and used the series expansion

o (4 )k

exp(—x) = >, )

By the definition of the complementary incomplete gamma function,

J/\/_)’(kﬂ) eXP{_(/\z + /\12)17)’} dy = (A, + Alz)kpkr(_k,()‘z + A12)\/[—7) (6)
1/~Np

and
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~p

The result of the theorem follows by substituting (6) and (7) into (5). |
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THEOREM 3: If X and Y are jointly distributed according to (1), then

A (A + Ap) . 1
A+ A4 w+ (A + A (1 — w2 ifw <

fww) = AL (A + Apy) . : 8)
()\1+A2){/\2(1_W)+()‘1+/\12)W}2 1fw25

for0<w<1.
Proor: Using (3), one can write
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The result of the theorem follows by elementary integration of the above
integrals. u

3. MOMENTS

Here we derive the moments of R=X+ Y, P=XY,and W= X/(X + Y) when X and
Y are distributed according to (1). We need the following lemma.

LEmMA 1: If X and Y are jointly distributed according to (1), then

FOy - AL $ (m +k)(Ay + Apy)

(Al + )\2)()\2 + )\12)n k=0 k'()\l + )\2 + )\12)m+k+l

N A, mo(nHR)IA + A,)E
A+ )N+ A)" S0 kA + Ay + Atk

form=1andn=1.
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PrOOF: One can express
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where we have used the definition of the complementary incomplete gamma func-
tion and the identity

noxk
I'(n+1,x) = nlexp(—x Ek_

The result of the theorem follows by elementary integration of the two integrals
in (9). u
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The moments of R = X + Y and P = XY are now simple consequences of this
lemma, as illustrated in Theorems 4 and 5. The moments of W = X/(X + Y) require

a separate treatment, as shown by Theorem 6.

THEOREM 4: If X and Y are jointly distributed according to (1), then

" n AN, Fon—k+ DA+ Ap)!
E(Rn) = Z (k)[ r E n—k+1+1
k=0 (A + ) A+ A) S 1A + A, +Ay,)
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forn=1.

ProOF: The result in (10) follows by writing

E(X+Y)") = I;) (Z) E(X"*y¥)

and applying Lemma 1 to each expectation in the sum. u

THEOREM 5: If X and Y are jointly distributed according to (1), then

AA o (nF k)N A, AR
E(P") = ' v
(A +2A) (A + A0)" o k(A + A, + Ap,)"
N A, o (n+ k)AL AR an
AL+ A2) (A + A)" S0 kA + Ay + Apy) !
forn=1.

ProOF: The proof follows by writing E(P") = E(X"Y") and applying Lemma 1
with m = n. ]

THEOREM 6: If X and Y are jointly distributed according to (1), then
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for n =1, where
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ProoF: Using (8), one can write
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where we havesetu = A w+ (A, + Ap) (1 —w)andov = A,(1 —w) + (A + Ap)w.
The result of the theorem follows by noting that the two integrals in (13) reduce to
8,(1 — 2) and 8,(1 — 2) after elementary integration. u
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TABLE 1. Basic Drought Statistics for Nebraska PDSI Data

Drought frequency Mean drought duration
Climate division No. of droughts (No./year) (months)
1 83 0.75 6.0
2 66 0.60 8.6
3 89 0.81 6.3
5 81 0.74 6.3
6 90 0.82 6.3
7 81 0.74 6.1
8 76 0.69 6.5
9 74 0.67 7.5

4. APPLICATION

Here we return to the drought problem discussed in Section 1 and provide an
application of the model given by (1). We use the drought data from the state of
Nebraska. The data comprises the monthly modified Palmer Drought Severity Index
(PDSI) from the period from January 1895 to December 2004. A drought is said
to have happened when the PDSI is below zero. Defined by the theory of runs [9],
some statistics of the observed drought for the eight climatic divisions of Nebraska
are summarized in Table 1. The state of Nebraska is divided into eight climate
divisions numbered 1, 2, 3, 5, 6, 7, 8, and 9; there is no climate division 4 for

Nebraska.

TABLE 2. Expected Values of the Sum, Product, and Ratio

Climate division E(R) (95% CI)

E(P) (95% CI)

E(W) (95% CI)

15.740 (1.621, 52.640)
19.716 (2.228, 59.144)
14.709 (1.704, 43.145)
16.129 (1.813, 48.742)
14.672 (1.724, 42.186)
16.137 (1.741, 50.933)
17.376 (1.995, 51.073)
17.875 (1.949, 55.255)

O 00 31O\ LW~

91.4 (0.2, 572.7)
201.2 (0.3, 1256.7)
107.4 (0.2, 688.9)
113.1 (0.2, 710.4)
106.5 (0.2, 682.7)

98.4 (0.2, 617.5)
124.2 (0.2, 776.6)
161.3 (0.3, 1015.7)

0.492 (0.011, 0.977)
0.494 (0.014, 0.978)
0.487 (0.015, 0.976)
0.454 (0.011, 0.978)
0.473 (0.017, 0.971)
0.463 (0.009, 0.979)
0.417 (0.010, 0.977)
0.507 (0.018, 0.968)
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Fi1GURE 1. Fitted values of the p.d.f. (2) for the eight climate divisions of Nebraska
(X = drought duration and Y = successive nondrought duration).

Using the PDSI data, data on drought duration, nondrought duration, and drought
intensity were obtained for each climate division. The interest is in determining the
distributions of the following:

1. The interarrival time of droughts (R) = Drought duration + Nondrought
duration.

2. The magnitude of droughts (P) = Drought intensity X Drought duration.

3. The proportion of droughts (W) = Drought duration/(Drought duration +
Nondrought duration).

The distribution of R was determined by fitting the model given by (1) to the observed
values of (drought duration (X), nondrought duration (¥)) and using (2) to com-
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F1GURE 2. Fitted values of the p.d.f. (4) for the eight climate divisions of Nebraska
(X = drought intensity and Y = drought duration).

pute the fitted p.d.f. The distribution of W was determined in the same way by using
(8). The distribution of P was determined by fitting (1) to the observed values of
(drought intensity (X ), drought duration (Y)) and using (4) to compute the fitted
p.d.f. The fitting of (1) was performed by the method of maximum likelihood. The
quasi-Newton algorithm nlm in the R software package (Dennis and Schnabel [2],
Schnabel, Koontz, and Weiss [8], Thaka and Gentleman [5]) was used to maximize
the likelihood.

The fitted p.d.f.s of R, P, and W for the eight climate divisions are shown in
Figures 1-3. The estimated values of the moments E(R), E(P), and E(W) along
with their 95% percentile-based confidence intervals (CI) are given in Table 2. These
estimates were computed using (10)—(12). It is evident from both Figures 1-3 and
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Fi1GURE 3. Fitted values of the p.d.f. (8) for the eight climate divisions of Nebraska
(X = drought duration and Y = successive nondrought duration).

Table 2 that there is little difference among the climate divisions. This is what one
would expect given the geography of the state of Nebraska.
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