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Abstract

The energy-momentum conservation law is used to investigate the interaction of pulses in the framework of nonlinear
electrodynamics with Lorentz-invariant constitutive relations. It is shown that for the pulses of the arbitrary shape, the
interaction results in phase shift only.
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1. INTRODUCTION

Although classical electromagnetic theory deals with linear
Maxwell equations, there have been numerous attempts to
bring the nonlinear phenomena into the stage. All relativis-
tic and gauge invariant versions of electromagnetism are
based on the Lagrangian density,L, which depends on the
invariants of the field tensor. Generally, in terms of the
electric~E! and magnetic~B! fields, the Maxwell equations
in absence of external charges may be written in a standard
form:

Dt 2 ¹ 3 H 5 0, ¹D 5 0,

Bt 1 ¹ 3 E 5 0, ¹B 5 0,

~1!

where we putc 5 1 andD 5 ]L0]E, H 5 2]L0]B. The
LagrangianL~I, J2! depends on the Poincaré invariantsI 5
E 2 2B2 andJ5EB only. The distinctive feature of Eqs.~1!
is that since the Poincaré invariants are identically zero for
the plane electromagnetic wave, the latter is insensitive to
vacuum nonlinearity and propagates without distortion.

Of particular interest are the nonlinear corrections to the
linear electrodynamics arising due to vacuum polarization
in the strong electromagnetic field. In the ultimate case of
slowly varying fields, this results in Heisenberg–Euler elec-
trodynamics, which is discussed in many textbooks~e.g.,
Akhiezer & Berestetskii, 1964!.

Recently a number of studies have been performed aimed
to investigation of the characteristic surfaces in the frame-
work of nonlinear electrodynamics, that is, the propagation
of infinitesimal discontinuities or “photons”~e.g., Muñoz,
1996; Dittrich & Gies, 1998; De Lorenciet al., 2000; No-
vello et al., 2000; Rikken & Rizzo, 2000; Novello & Salim,
2001!. However, very little is known about the finite ampli-
tude waves.

The main point of this paper is to describe the simplest, in
a sense, nonlinear vacuum process: the interaction of two
electromagnetic waveforms propagating in opposite direc-
tions. A similar particular solution of the Einstein–Born–
Infeld equations was found by Bretón~1996!. Here we
demonstrate that the pulses of the arbitrary shape behave
like solitons, that is, the scattering does not alter the shape of
the pulse but result in a phase shift only.

2. MAXWELL EQUATIONS

We consider a linearly polarized wave propagating in thez
direction of the formEx 5E~z, t !, By5B~z, t ! with all other
components being zero. In this situation, the second Poincaré
invariant vanishes,J [ 0, so the Maxwell equations are
written as

~EL~I !I !t 1 ~BL~I !I !z 5 0,

~B!t 1 ~E!z 5 0,
~2!

where the subscript denotes the derivative with respect to
the corresponding variable andI 5 E2 2 B2. The Lagrang-
ian in Eq.~2! is expanded in powers ofI. Keeping the low-
est order nonlinear corrections we have
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L~I ! 5 I 1
1

2
sI 2 1 . . . . ~3!

With the help of the appropriate scale transform, the coeffi-
cients may be reduced to61. For the particular case of the
Heisenberg–Euler electrodynamics,s 51 ~Akhiezer & Be-
restetskii, 1964!. Of interest also is to keep in mind the
Born–Infeld electrodynamics~e.g., Tonnelat, 1959! with the
Lagrangian

LBI ~I ! 5 12!12 I . ~4!

3. ENERGY-MOMENTUM TENSOR

The conservation laws for Eqs.~2! are given by

Wt 1 Nz 5 0, Nt 1 Pz 5 0, ~5!

where the components of the energy-momentum tensor,
namely, the energy density,W, the momentum density,N,
and the stress,P, may be obtained using standard variation
procedure~e.g., Landau & Lifshitz, 1971!. Explicitly,

W 5 2E2LI 2 L

N 5 2EBLI ~6!

P 5 2B2LI 1 L.

Usually Eqs.~5! and~6! are thought of as a consequence
of the Maxwell equations~2!. However, we may consider
the relations~6! as a constraint implied upon the compo-
nents of the momentum-energy tensor, so there are two in-
dependent variables in Eqs.~5!, for example,WandN. One
can easily check that for the nontrivial solutions of Eqs.~2!,
that is, forI Þ 0, the Jacobian of the transformE, Br W, N
is nonzero. Thus, instead of looking for the solutions of
Eqs.~2!, we can solve Eqs.~5! and~6! excluding the Poincaré
invariantI from Eqs.~6!.

4. SOLUTION

To excludeI, it is convenient to introduce the invariants of
the energy-momentum tensor, that is, its trace,S5 P 2 W,
and the determinantT 5 WP 2 N2. As it follows from
Eqs.~6!

S5 2~L 2 IL I !

T 5 I ~L2!I 2 L2.

~7!

The latter relations implicitly define the dependenceT 5
T~S!. Substituting the Lagrangian~3! into Eqs.~7!, we find
that the first nonvanishing term of the expansion ofT in
powers ofSis linear and it is provided by the quadratic term
of the expansion~3!: T~S! 5 2sS1 . . . . It is noteworthy
that the Born–Infeld Lagrangian~4! yields exactly the linear
dependenceT~S! 5 2S.

The relations~5! are resolved introducing the potentialc:
W5 czz, N 5 2czt, P 5 ctt . Restricting ourselves with the
linear relation betweenT and S, we obtain the Ampere–
Monge type equation forc:

czzctt 2 czt
2 5 s~czz2 ctt !. ~8!

There are trivial solutions to this equationc~z, t ! 5
F~z6 t ! with an arbitrary functionF, which correspond to
the plane electromagnetic waveforms described by Eqs.~2!
with I 5 0. Besides these, implementing the Legendre trans-
form ~Courant, 1962!, one can easily obtain the general
integral of Eq.~8! valid for T Þ 0 and, consequently, for
I Þ 0. As a result, we get the components of the energy-
momentum tensor in a parametric form:

W 5 s~F1
'~j! 1 F2

'~h! 1 2F1
'~j!F2

'~h!!0D~j,h!,

P 5 s~F1
'~j! 1 F2

'~h! 2 2F1
'~j!F2

'~h!!0D~j,h!,

N 5 s~F2
'~h! 2 F1

'~j!!0D~j,h!, ~9!

z 5 1
2
_ ~j 1 h 2 F1~j! 2 F2~h!!,

t 5 1
2
_ ~j 2 h 1 F1~j! 2 F2~h!!,

where F1,2 are arbitrary functions andD~j,h! 5 1 2
F1
'~j!F2

'~h!.
Consider, for example, two localized pulses of the arbi-

trary shape propagating in opposite directions. This corre-
sponds to the following initial conditions:

W~z, t !6tr2` 5 W1~z1 t ! 1 W2~z2 t !, ~10!

where W1,2~j!6jr6` r 0. This initial condition is pro-
vided by the following choice ofF1,2 in Eqs.~9!: F1,2

' ~j! 5
sW1,2~j! andF1~j!6jr2`r 0,F2~j!6jr`r 0. The asymp-
totic of the solution~9! at t r ` is then given by

W~z, t ! 5 W1~z1 t 2 sK2! 1 W2~z2 t 1 sK1!, ~11!

where

K1,2 5E
2`

`

dj W1,2~j! ~12!

is the net energy carried by the corresponding pulse.
Typical plotsW~z, t ! are depicted in Figures 1 and 2. The

first picture shows the interaction of two identical pulses.
The interaction of one pulse with a sequence of two pulses is
shown in Figure 2.

5. DISCUSSION

Of interest is the geometrical sense of the obtained solution
~9!. The parametersj and h are, in fact, the light-cone
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Fig. 1. Interaction of two identical pulses.

Fig. 2. A single pulse interacting with a sequence of two pulses.
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coordinates disturbed by the electromagnetic field. One
may say that the electromagnetic field alters the space–
time metric due to the dependence of the speed of light on
the field strength. The same conclusion stems also from
the analysis of the characteristic surfaces~Novello et al.,
2000!. However, the effective geometries originating from
linear analysis and our approach should not generally
coincide.

Another interesting point is that, fors 5 1, the increase
in the pulse amplitude results in delay in energy~and infor-
mation! exchange between distant points, that is, the solu-
tion described by~11! is subluminal. This takes place for
both the Heisenberg–Euler electrodynamics, which is cur-
rently the only one of physical sense, and for the elegant
Born–Infeld theory, for which our results are exact. How-
ever, for s 5 21, the pulse propagation would be
superluminal.

From the viewpoint of nonlinear physics, the electromag-
netic pulses in vacuum exhibit the soliton-like behavior:
The collision results in a phase shift but the form of a pulse
remains unchanged. The main interesting point with this
respect is that unlike solitons described by usual integrable
nonlinear equations, the shape of the Maxwellian soliton is
arbitrary.
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