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Abstract

We propose a modular method for proving termination of general logic programs (i.e. logic

programs with negation). It is based on the notion of acceptable programs, but it allows us

to prove termination in a truly modular way. We consider programs consisting of a hierarchy

of modules and supply a general result for proving termination by dealing with each module

separately. For programs which are in a certain sense well-behaved, namely well-moded or

well-typed programs, we derive both a simple verification technique and an iterative proof

method. Some examples show how our system allows for greatly simplified proofs.
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1 Introduction

It is standard practice to tackle a large proof by decomposing it into more man-

ageable pieces (lemmata or modules) and proving them separately. By composing

appropriately these simpler results, one can then obtain the final proof. This method-

ology has been recognized an important one also when proving termination of logic

programs. Moreover most practical logic programs are engineered by assembling

different modules and libraries, some of which might be pre-compiled or written in a

different programming language. In such a situation, a compositional methodology

for proving termination is of crucial importance.

The first approach to modular termination proofs of logic programs has been

proposed by Apt and Pedreschi (1994). It extends the seminal work on acceptable

programs (Apt and Pedreschi, 1993), which provides an algebraic characterization

of programs terminating under Prolog left-to-right selection rule. The class of

acceptable programs contains programs which terminate on ground queries. To

prove acceptability one needs to determine a measure on literals (level mapping)

such that, in any clause, the measure of the head is greater than the measure of each
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body literal. This implies the decreasing of the measure of the literals resolved during

any computation starting from a ground or bounded query and hence termination.

The significance of a modular approach to termination of logic programs has also

been recognized by other authors; more recent proposals can be found in Pedreschi

and Ruggieri (1996), Marchiori (1996), Verbaeten et al. (1999) and Etalle et al. (1999,

2001).

All previous proposals (with the exception of Verbaeten et al. (1999) and Etalle

et al. (1999)) require the existence of a relation between the level mappings used

to prove acceptability of distinct modules. This is not completely satisfactory: it

would be nice to be able to put together modules which were independently proved

terminating, and be sure that the resulting program is still terminating.

We propose a modular approach to termination which allows one to reason

independently on each single module and get a termination result on the whole

program. We consider general logic programs, i.e. logic programs with negation,

employing SLDNF-resolution together with the leftmost selection rule (also called

LDNF-resolution) as a computational mechanism. We consider programs which can

be divided into modules in a hierarchical way, so that each module is an extension

of the previous ones. We show that in this context the termination proof of the

entire program can be given in terms of separate proofs for each module, which

are naturally much simpler than a proof for the whole program. While assuming a

hierarchy still allows one to tackle most real-life programs, it leads to termination

proofs which, in most cases, are extremely simple.

We characterize the class of queries terminating for the whole program by intro-

ducing a new notion of boundedness, namely strong boundedness. Intuitively, strong

boundedness captures the queries which preserve (standard) boundedness through

the computation. By proving acceptability of each module w.r.t. a level mapping

which measures only the predicates defined in that module, we get a termination

result for the whole program which is valid for any strongly bounded query. When-

ever the original program is decomposed into a hierarchy of small modules, the

termination proof can be drastically simplified with respect to previous modular

approaches. Moreover, strong boundedness can be naturally guaranteed by common

persistent properties of programs and queries, namely properties preserved through

LDNF-resolution such as well-modedness (Dembiński and Maluszyński, 1985) or

well-typedness (Bronsard et al., 1992).

The paper is organized as follows. Section 2 contains some preliminaries. In

particular, we briefly recall the key concepts of LDNF-resolution, acceptability,

boundedness and program extension. Section 3 contains our main results, which

show how termination proofs of separate programs can be combined to obtain

proofs of larger programs. In particular, we define the concept of strongly bounded

query, and prove that for general programs composed by a hierarchy of n modules,

each one independently acceptable w.r.t. its own level mapping, any strongly bounded

query terminates. In section 4 we show how strong boundedness is naturally ensured

by some program properties which are preserved through LDNF-resolution, such as

well-modedness and well-typedness. In section 5 we show how these properties allow

us to apply our general results to also prove the termination of modular programs
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in an iterative way. In section 6 we compare our work with Apt and Pedreschi’s

approach. Other related work and concluding remarks are discussed in section 7.

2 Preliminaries

We use the standard notation and terminology of logic programming (Lloyd, 1987;

Apt, 1990; Apt, 1997), though note that general logic programs are called normal

logic programs in Lloyd (1987).

2.1 General programs and LDNF-resolution

A general clause is a construct of the form

H ← L1, . . . , Ln

with (n > 0), where H is an atom and L1, . . . , Ln are literals (i.e. either atoms or the

negation of atoms). In turn, a general query is a possibly empty finite sequence of

literals L1, . . . , Ln, with (n > 0). A general program is a finite set of general clauses1.

Given a query Q := L1, . . . , Ln, a non-empty prefix of Q is any query L1, . . . , Li with

i ∈ {1, . . . , n}. For a literal L, we denote by rel (L) the predicate symbol of L.

Following the convention adopted in Apt (1997), we use bold characters to denote

sequences of objects (so that L indicates a sequence of literals L1, . . . , Ln, while t

indicates a sequence of terms t1, . . . , tn).

For a given program P , we use the following notations: BP for the Herbrand base

of P , ground (P ) for the set of all ground instances of clauses from P , comp(P ) for

the Clark’s completion of P (Clark, 1978).

Since in this paper we deal with general queries, clauses and programs, from now

on we omit the qualification ‘general’, unless some confusion might arise.

We consider LDNF-resolution, and following Apt and Pedreschi’s approach in

studying the termination of general programs (Apt and Pedreschi, 1993), we view

LDNF-resolution as a top-down interpreter which, given a general program P and

a general query Q, attempts to build a search tree for P ∪ {Q} by constructing

its branches in parallel. The branches in this tree are called LDNF-derivations of

P ∪ {Q} and the tree itself is called LDNF-tree of P ∪ {Q}. Negative literals are

resolved using the negation-as-failure rule which calls for the construction of a

subsidiary LDNF-tree. If during this subsidiary construction the interpreter diverges,

the (main) LDNF-derivation is considered to be infinite. An LDNF-derivation is

finite also if during its construction the interpreter encounters a query with the

first literal being negative and non-ground. In such a case, we say that the LDNF-

derivation flounders.

By termination of a general program we actually mean termination of the under-

lying interpreter. Hence, to ensure termination of a query Q in a program P , we

require that all LDNF-derivations of P ∪ {Q} are finite.

1 In the examples through the paper, we will adopt the syntactic conventions of Prolog so that each
query and clause ends with the period ‘.’ and ‘←’ is omitted in the unit clauses.

https://doi.org/10.1017/S1471068402001382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001382


266 A. Bossi et al.

By an LDNF-descendant of P ∪ {Q} we mean any query occurring during the

LDNF-resolution of P ∪ {Q}, including Q and all the queries occurring during the

construction of the subsidiary LDNF-trees for P ∪ {Q}.
For a non-empty query Q, we denote by first(Q) the first literal of Q. Moreover

we define CallP (Q) = {first(Q′) | Q′ is an LDNF-descendant of P ∪{Q}}. It is worth

noting that if ¬A ∈ CallP (Q) and A is a ground atom, then A ∈ CallP (Q) too. Notice

that, for definite programs, the set CallP (Q) coincides with the call set Call (P , {Q})
in De Schreye et al. (1992) and Decorte et al. (1999).

The following trivial proposition holds.

Proposition 1

Let P be a program and Q be a query. All LDNF-derivations of P ∪ {Q} are finite

iff for all positive literals A ∈ CallP (Q), all LDNF-derivations of P ∪ {A} are finite.

2.2 Acceptability and boundedness

The method we use for proving termination of modular programs is based on the

concept of an acceptable program (Apt and Pedreschi, 1993). To introduce it, we

start by the following definition, originally due to Bezem (1993) and Cavedon (1989).

Definition 2 (Level Mapping)

A level mapping for a program P is a function | | : BP → N of ground atoms

to natural numbers. By convention, this definition is extended in a natural way to

ground literals by putting |¬A| = |A|. For a ground literal L, |L| is called the level

of L.

We use the following notation. Let P be a program and p and q be relations. We

say that p refers to q if there is a clause in P that uses p in its head and q in its

body; p depends upon q if (p, q) is in the reflexive, transitive closure of the relation

refers to. We say that p and q are mutually recursive, and write p ' q, if p depends

upon q and q depends upon p. We also write p A q, when p depends upon q but q

does not depend upon p.

We denote by NegP the set of relations in P which occur in a negative literal in

a clause of P , and by Neg∗P the set of relations in P on which the relations in NegP

depend. P− denotes the set of clauses in P defining a relation of Neg∗P .

In the sequel, we refer to the standard definition of a model of a program and

a model of the completion of a program (see Apt (1990, 1997) for details). In

particular, we need the following notion of complete model for a program.

Definition 3 (Complete Model )

A model M of a program P is called complete if its restriction to the relations from

Neg∗P is a model of comp(P−).

Notice that if I is a model of comp(P ) then its restriction to the relations in Neg∗P
is a model of comp(P−); hence I is a complete model of P .

The following notion of acceptable program was introduced in Apt and Pedreschi

(1993). They proved that such a notion fully characterizes left-termination, namely
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termination w.r.t. any ground query, both for definite programs and for general

programs which have no LDNF-derivations which flounder.

Definition 4 (Acceptable Program)

Let P be a program, | | be a level mapping for P and M be a complete model of P .

P is called acceptable w.r.t. | | and M if, for every clause A← A, B,B in ground (P ),

the following implication holds:

if M |= A then |A| > |B|.
Note that if P is a definite program, then both P− and Neg∗P are empty and M

can be any model of P .

We also need the notion of bounded atom.

Definition 5 (Bounded Atom)

Let P be a program and | | be a level mapping for P . An atom A is called bounded

w.r.t. | | if the set of all |A′|, where A′ is a ground instance of A, is finite. In this case,

we denote by max |A| the maximum value in this set.

Notice that if an atom A is bounded then, by definition of level mapping, the

corresponding negative literal, ¬A, is also bounded.

Note also that, for atomic queries, this definition coincides with the definition of

bounded query introduced in Apt and Pedreschi (1993) to characterize terminating

queries for acceptable programs. In fact, in case of atomic queries, the notion of

boundedness does not depend upon a model.

2.3 Extension of a program

In this paper, we consider a hierarchical situation where a program uses another

one as a subprogram. The following definition formalizes this situation.

Definition 6 (Extension)

Let P and R be two programs. A relation p is defined in P if p occurs in a head

of a clause of P ; a literal L is defined in P if rel (L) is defined in P ; P extends R,

denoted P A R, if no relation defined in P occurs in R.

Informally, P extends R if P defines new relations with respect to R. Note that

P and R are independent if no relation defined in P occurs in R and no relation

defined in R occurs in P , i.e. P A R and R A P .

In the sequel we will study termination in a hierarchy of programs.

Definition 7 (Hierarchy of Programs)

Let P1, . . . , Pn be programs such that for all i ∈ {1, . . . , n− 1}, Pi+1 A (P1 ∪ · · · ∪ Pi).

Then we call Pn A · · · A P1 a hierarchy of programs.

3 Hierarchical termination

This section contains our main results, which show how termination proofs of

separate programs can be combined to obtain proofs of larger programs. We start
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with a technical result, dealing with the case in which a program consists of a

hierarchical combination of two modules. This is the base both of a generalization

to a hierarchy of n programs and of an iterative proof method for termination

presented in section 5. Let us first introduce the following notion of P -closed class

of queries.

Definition 8 (P-closed Class)

Let C be a class of queries and P be a program. We say that C is P -closed if

it is closed under non-empty prefix (i.e. it contains all the non-empty prefixes of

its elements) and for each query Q ∈ C, every LDNF-descendant of P ∪ {Q} is

contained in C.

Note that if C is P -closed, then for each query Q ∈ C, CallP (Q) ⊆ C.

We can now state our first general theorem. Notice that if P extends R and P

is acceptable w.r.t. some level mapping | | and model M, then P is acceptable also

w.r.t. the level mapping | |′ and M, where | |′ is defined on the Herbrand base of the

union of the two programs BP∪R , and it takes the value 0 on the literals which are

not defined in P (and hence, in particular, on the literals which occur in P but are

defined in R). This shows that in each module it is sufficient to compare only the

level of the literals defined inside it, while we can ignore literals defined outside the

module. In the following, we make use of this observation in order to associate to

each module in a hierarchy a level mapping which is independent from the context.

Theorem 9

Let P and R be two programs such that P extends R, M is a complete model of

P ∪ R and C be a (P ∪ R)-closed class of queries. Suppose that

• P is acceptable w.r.t. a level mapping | | and M,

• for all queries Q ∈ C, all LDNF-derivations of R ∪ {Q} are finite,

• for all atoms A ∈ C, if A is defined in P then A is bounded w.r.t. | |.
Then for all queries Q ∈ C, all LDNF-derivations of (P ∪ R) ∪ {Q} are finite.

Proof

By the fact that C is (P ∪ R)-closed and Proposition 1, it is sufficient to prove that

for all positive literals A ∈ C, all LDNF-derivations of (P ∪ R) ∪ {A} are finite. Let

us consider an atom A ∈ C.

If A is defined in R, then the thesis trivially holds by hypothesis.

If A is defined in P , A is bounded w.r.t. | | by hypothesis, and thus max |A| is

defined. The proof proceeds by induction on max |A|.
Base. Let max |A| = 0. In this case, by acceptability of P , there are no clauses in

P whose head unifies with A and whose body is non-empty. Hence, the thesis holds.

Induction step. Let max |A| > 0. It is sufficient to prove that for all direct descen-

dants (L1, . . . , Ln) in the LDNF-tree of (P ∪R)∪ {A}, if θi is a computed answer for

P ∪ {L1, . . . , Li−1} then all LDNF-derivations of (P ∪ R) ∪ {Liθi} are finite.

Let c : H ′ ← L′1, . . . , L′n be a clause of P such that σ = mgu(H ′, A). Let H = H ′σ
and for all i ∈ {1, . . . , n}, let Li = L′iσ and θi be a substitution such that θi is a

computed answer of L1, . . . , Li−1 in P ∪ R.
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We distinguish two cases. If Li is defined in R then the thesis follows by hypothesis.

Suppose that Li is defined in P . We prove that Liθi is bounded and max |A| >
max |Liθi|. The thesis will follow by the induction hypothesis.

Let γ be a substitution such that Liθiγ is ground. By soundness of LDNF-

resolution (Clark, 1978), there exists γ′ such that M |= (L1, . . . , Li−1)γ
′ and cσγ′ is a

ground instance of c and Liγ
′ = Liθiγ. Therefore

|Liθiγ| = |Liγ
′|

= |L′iσγ′| (since Li = L′iσ)

< |H ′σγ′| (since P is acceptable)

= |Aσγ′| (since σ = mgu(H ′, A)).

Since A is bounded, we can conclude that Liθi is bounded and also that max |A| >
max |Liθi|. q

We are going to extend the above theorem to handle the presence of more than two

modules. We need to introduce more notation. Let us consider the case of a program

P consisting of a hierarchy Rn A . . . A R1 of distinct modules, and satisfying the

property that each module, Ri, is acceptable w.r.t. a distinct level mapping, | |i, and a

complete model, M, of the whole program. Under these assumptions, we identify a

specific class of queries which terminate in the whole program. We characterize the

class of terminating queries in terms of the following notion of strong boundedness.

This class enjoys the property of being P -closed.

Definition 10 (Strongly Bounded Query)

Let the program P := R1 ∪ . . . ∪ Rn be a hierarchy Rn A . . . A R1 and | |1, . . . , | |n be

level mappings for R1, . . . , Rn, respectively. A query Q is called strongly bounded wrt.

P and | |1, . . . , | |n if

• for all atoms A ∈ CallP (Q), if A is defined in Ri (with i ∈ {1, . . . , n}) then A is

bounded wrt. | |i.
Notice that the notion of boundedness for an atom (see Definition 5) does not

depend upon the choice of a particular model of P . As a consequence, the definition

of strong boundedness also does not refer to any model of P ; however, it refers to

the LDNF-derivations of P . For this reason, a ground atom is always bounded, but

not necessarily strongly bounded. On the other hand, if A is strongly bounded then

it is bounded too.

The following remark follows immediately.

Remark 11

Let the query Q be strongly bounded w.r.t. P and | |1, . . . , | |n, where P is a hierarchy

Rn A · · · A R1 . Let i ∈ {1, . . . , n}. If Q is defined in R1 ∪ . . . ∪ Ri then Q is strongly

bounded w.r.t. R1 ∪ . . . ∪ Ri and | |1, . . . , | |i.
To verify whether a query Q is strongly bounded wrt. a given program P one

can perform a call-pattern analysis (Janssen and Bruynooghe, 1992; Gabbrielli and

Giacobazzi, 1994; Codish and Demoen, 1995) which allows us to infer information

about the form of the call-patterns, i.e., the atoms that will be possibly called
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during the execution of P ∪ {Q}. However this is not the only way for guaranteeing

strong boundedness. There are classes of programs and queries for which strong

boundedness can be proved in a straightforward way. This is shown in the following

section.

Let us illustrate the notion of strong boundedness through an example.

Example 12

Let LIST01 be the following program which defines the proper lists of 0’s and 1’s,

i.e. lists containing only 0’s and 1’s and at least two distinct elements, as follows:

r1: list01([ ],0,0).

r2: list01([0|Xs],s(N0),N1) ← list01(Xs,N0,N1).

r3: list01([1|Xs],N0,s(N1)) ← list01(Xs,N0,N1).

r4: length([ ],0).

r5: length([X|Xs],s(N)) ← length(Xs,N).

r6: plist01(Ls) ← list01(Ls,N0,N1),

¬length(Ls,N0), ¬length(Ls,N1).
Let us distinguish two modules in LIST01: R1 = {r1, r2, r3, r4, r5} and R2 = {r6}
(R2 extends R1). Let | |1 be the natural level mapping for R1 defined by:

|list01(ls , n0 , n1 )|1 = |ls |length
|length(ls , n)|1 = |n|size

where for a term t , if t is a list then |t |length is equal to the length of the list,

otherwise it is 0, while |t |size is the number of function symbols occurring in the

term t . Also, let | |2 be the trivial level mapping for R2 defined by:

|plist01(ls)|2 = 1

and assume that |L|2 = 0, if L is not defined in R2.

Let us consider the following sets of atomic queries for LIST01 := R1 ∪ R2:

Q1 = {list01(ls , n0 , n1 )| ls is a list, possibly non-ground, of a fixed length};
Q2 = {length(ls , n)| n is a ground term of the form either 0 or s(s(...(0)))};
Q3 = {plist01(ls)| ls is a list, possibly non-ground, of a fixed length}.

By definition of | |1, all the atoms in Q1 and Q2 are bounded wrt. | |1. Analogously,

all the atoms in Q3 are bounded w.r.t. | |2. Notice that for all atoms A ∈ CallP (Qj),
with j ∈ {1, 2, 3}, there exists k ∈ {1, 2, 3} such that A ∈ Qk . Hence, if A is defined in

Ri then A is bounded w.r.t. | |i. This proves that the set of queries Q1, Q2 and Q3 are

strongly bounded w.r.t. LIST01 and | |1, | |2.
Here we introduce our main result.

Theorem 13

Let P := R1∪ . . .∪Rn be a program such that Rn A . . . A R1 is a hierarchy, | |1, . . . , | |n
be level mappings for R1, . . . , Rn, respectively, and M be a complete model of P .

Suppose that
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• Ri is acceptable w.r.t. | |i and M, for all i ∈ {1, . . . , n}.
• Q is a query strongly bounded w.r.t. P and | |1, . . . , | |n.

Then all LDNF-derivations of P ∪ {Q} are finite.

Proof

Let Q be a query strongly bounded w.r.t. P and | |1, . . . , | |n. We prove the theorem

by induction on n.

Base. Let n = 1. This case follows immediately by Theorem 9, where P = R1, R is

empty and C is the class of strongly bounded queries w.r.t. R1 and | |1, and the fact

that a strongly bounded atom is also bounded.

Induction step. Let n > 1. Also this case follows by Theorem 9, where P = Rn,

R = R1 ∪ . . .∪Rn−1 and C is the class of strongly bounded queries w.r.t. R1 ∪ . . .∪Rn

and | |1, . . . , | |n. In fact,

• Rn is acceptable w.r.t. | |n and M;

• for all queries Q ∈ C, all LDNF-derivations of (R1∪ . . .∪Rn−1)∪{Q} are finite,

by Remark 11 and the inductive hypothesis;

• for all atoms A ∈ C, if A is defined in Rn then A is bounded w.r.t. | |n, by

definition of strong boundedness.

q

Here are a few examples applying Theorem 13.

Example 14

Let us reconsider the program of Example 12. In the program LIST01, R1 and R2 are

acceptable w.r.t. any complete model and the level mappings | |1 and | |2, respectively.

We already showed that Q1,Q2 and Q3 are strongly bounded w.r.t. LIST01 and | |1,
| |2. Hence, by Theorem 13, all LDNF-derivations of LIST01 ∪ {Q}, where Q is a

query in Q1,Q2 or Q3, are finite.

Notice that in the previous example the top module in the hierarchy, R2, contains

no recursion. Hence, it is intuitively clear that any problem for termination cannot

depend upon it. This is reflected by the fact that the level mapping for R2 is

completely trivial. This shows how the hierarchical decomposition of the program

can simplify the termination proof.

Example 15

Consider the sorting program MERGESORT (Apt, 1997):

c1: mergesort([ ],[ ]).

c2: mergesort([X],[X]).

c3: mergesort([X,Y|Xs],Ys) ←
split([X,Y|Xs],X1s,X2s),

mergesort(X1s,Y1s),

mergesort(X2s,Y2s),

merge(Y1s,Y2s,Ys).

c4: split([ ],[ ],[ ]).
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c5: split([X|Xs],[X|Ys],Zs) ← split(Xs,Zs,Ys).

c6: merge([ ],Xs,Xs).

c7: merge(Xs,[ ],Xs).

c8: merge([X|Xs],[Y|Ys],[X|Zs]) ← X<=Y, merge(Xs,[Y|Ys],Zs).

c9: merge([X|Xs],[Y|Ys],[Y|Zs]) ← X>Y, merge([X|Xs],Ys,Zs).

Let us divide the program MERGESORT into three modules, R1, R2, R3, such that

R3 A R2 A R1 as follows:

• R3 := {c1, c2, c3}, it defines the relation mergesort,

• R2 := {c4, c5}, it defines the relation split,

• R1 := {c6, c7, c8, c9}, it defines the relation merge.

Let us consider the natural level mappings

|merge(xs , ys , zs)|1 = |xs |length + |ys |length
|split(xs , ys , zs)|2 = |xs |length
|mergesort(xs , ys)|3 = |xs |length

and assume that for all i ∈ {1, 2, 3}, |L|i = 0 if L is not defined in Ri.

All ground queries are strongly bounded w.r.t. the program MERGESORT and the

level mappings | |1, | |2, | |3. Moreover, since the program is a definite one, R1 and

R2 are acceptable w.r.t. any model and the level mappings | |1 and | |2, respectively,

while R3 is acceptable w.r.t. the level mapping | |3 and the model M below:

M =[mergesort(Xs, Ys)] ∪ [merge(Xs, Ys, Zs)]∪
{split([ ], [ ], [ ])}∪
{split([x ], [ ], [x ])| x is any ground term}∪
{split([x ], [x ], [ ])| x is any ground term}∪
{split(xs , ys , zs)| xs , ys , zs are ground terms and

|xs |length > 2, |xs |length > |ys |length, |xs |length > |zs |length}
where we denote by [A] the set of all ground instances of an atom A.

Hence, by Theorem 13, all LDNF-derivations of MERGESORT ∪ {Q}, where Q is a

ground query, are finite.

Note that by exchanging the roles of R1 and R2 we would obtain the same result.

In fact the definition of merge and split are independent from each other.

4 Well-behaving programs

In this section, we consider the problem of how to prove that a query is strongly

bounded. In fact, one could argue that checking strong boundedness is more difficult

and less abstract than checking boundedness itself in the sense of Apt and Pedreschi

(1993): we have to refer to all LDNF-derivations instead of referring to a model,

which might well look like a step backwards in the proof of termination of a program.

This is only partly true: to check strong boundedness we can either employ tools

based on abstract interpretation or concentrate our attention only on programs

which exhibit useful persistence properties w.r.t. LDNF-resolution.

https://doi.org/10.1017/S1471068402001382 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001382


On modular termination proofs of general logic programs 273

We now show how the well-established notions of well-moded and well-typed

programs can be employed to verify strong boundedness, and how they can lead to

simple termination proofs.

4.1 Well-moded programs

The concept of a well-moded program is due to Dembiński and Maluszyński (1985).

The formulation we use here is from Rosenblueth (1991), and it is equivalent to

that in Drabent (1987). The original definition was given for definite programs (i.e.

programs without negation), however it applies to general programs as well, just by

considering literals instead of atoms. It relies on the concept of mode, which is a

function that labels the positions of each predicate to indicate how the arguments

of a predicate should be used.

Definition 16 (Mode)

Consider an n-ary predicate symbol p. By a mode for p we mean a function mp from

{1, . . . , n} to the set {+,−}. If mp(i) = + then we call i an input position of p; if

mp(i) = − then we call i an output position of p. By a moding we mean a collection

of modes, one for each predicate symbol.

In a moded program, we assume that each predicate symbol has a unique mode

associated to it. Multiple moding may be obtained by simply renaming the predicates.

We use the notation p(mp(1), . . . , mp(n)) to denote the moding associated with a

predicate p (e.g. append(+,+,−)). Without loss of generality, we assume, when

writing a literal as p(s, t), that we are indicating with s the sequence of terms filling

in the input positions of p and with t the sequence of terms filling in the output

positions of p. Moreover, we adopt the convention that p(s, t) could denote both

negative and positive literals.

Definition 17 (Well-Moded )

• A query p1(s1, t1), . . . , pn(sn, tn) is called well-moded if for all i ∈ {1, . . . , n}

Var(si) ⊆
i−1⋃

j=1

Var(tj).

• A clause p(t0, sn+1) ← p1(s1, t1), . . . , pn(sn, tn) is called well-moded if for all

i ∈ {1, . . . , n + 1}

Var(si) ⊆
i−1⋃

j=0

Var(tj).

• A program is called well-moded if all of its clauses are well-moded.

Note that well-modedness can be syntactically checked in a time which is linear

w.r.t. the size of the program (query).

Remark 18

If Q is a well-moded query then all its prefixes are well-moded.
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The following lemma states that well-moded queries are closed under LDNF-

resolution. This result has been proved by Apt and Pellegrini (1994) for LD-

derivations and definite programs.

Lemma 19

Let P and Q be a well-moded program and query, respectively. Then all LDNF-

descendants of P ∪ {Q} are well-moded.

Proof

It is sufficient to extend the proof in Apt and Pellegrini (1994) by showing that if

a query ¬A,L1, . . . , Ln is well-moded and A is ground, then both A and L1, . . . , Ln

are well-moded. This follows immediately by definition of well-modedness. If A is

non-ground then the query above has no descendant. q

When considering well-moded programs, it is natural to measure atoms only in

their input positions (Etalle et al., 1999).

Definition 20 (Moded Level Mapping)

Let P be a moded program. A function | | is a moded level mapping for P if it is a

level mapping for P such that

• for any s, t and u, |p(s, t)| = |p(s, u)|.
Hence, in a moded level mapping the level of an atom is independent from the

terms in its output positions.

The following Remark and Proposition allow us to exploit well-modedness for

applying Theorem 13.

Remark 21

Let P be a well-moded program. If Q is well-moded, then first(Q) is ground in

its input position, and hence it is bounded w.r.t. any moded level mapping for P .

Moreover, by Lemma 19, every well-moded query is strongly bounded w.r.t. P and

any moded level mapping for P .

Proposition 22

Let P := R1 ∪ . . . ∪ Rn be a well-moded program and Rn A . . . A R1 a hierarchy,

and | |1, . . . , | |n be moded level mappings for R1, . . . , Rn, respectively. Then every

well-moded query is strongly bounded w.r.t. P and | |1, . . . , | |n.
Example 23

Let MOVE be the following program, which defines a permutation between two lists

such that only one element is moved. We introduce modes, and distinguish between

the two uses of append by renaming it as append1 and append2.

mode delete(+,−,−).

mode append1(−,−,+).

mode append2(+,+,−).

mode move(+,−).
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r1: delete([X|Xs],X,Xs).

r2: delete([X|Xs],Y,[X|Ys]) ← delete(Xs,Y,Ys).

r3: append1([ ],Ys,Ys).

r4: append1([X|Xs],Ys,[X|Zs]) ← append1(Xs,Ys,Zs).

r5: append2([ ],Ys,Ys).

r6: append2([X|Xs],Ys,[X|Zs]) ← append2(Xs,Ys,Zs).

r7: move(Xs,Ys) ← append1(X1s,X2s,Xs),

delete(X1s,X,Y1s), append2(Y1s,[X|X2s],Ys).

Let us partition MOVE into the modules R1 = {r1, r2, r3, r4, r5, r6} and R2 = {r7} (R2

extends R1). Let | |1 be the natural level mapping for R1 defined by:

|append1(xs , ys , zs)|1 = |zs |length
|append2(xs , ys , zs)|1 = |xs |length.
|delete(xs , x , ys)|1 = |xs |length.

R2 does not contain any recursive definition hence let | |2 be the trivial level mapping

defined by:

|move(xs , ys)|2 = 1

and assume that |L|2 = 0, if L is not defined in R2.

The program MOVE := R1 ∪ R2 is well-moded and hence by Proposition 22 every

well-moded query is strongly bounded w.r.t. MOVE and | |1, | |2.
Example 24

Let R1 be the program which defines the relations member and is, R2 be the program

defining the relation count and R3 be the program defining the relation diff with

the moding and the definitions below.

mode member(+,+).

mode is(−,+).

mode diff(+,+,+,−).

mode count(+,+,−).

r1: member(X,[X|Xs]).

r2: member(X,[Y|Xs]) ← member(X,Xs).

r3: diff(Ls,I1,I2,N) ← count(Ls,I1,N1), count(Ls,I2,N2),

N is N1-N2.

r4: count([ ],I,0).

r5: count([H|Ts],I,M) ← member(H,I), count(Ts,I,M1),

M is M1+1.

r6: count([H|Ts],I,M) ←¬ member(H,I), count(Ts,I,M).

The relation diff(ls , i1 , i2 , n), given a list ls and two check-lists i1 and i2 , defines

the difference n between the number of elements of ls occurring in i1 and the

number of elements of ls occurring in i2 . Clearly, R3 A R2 A R1. It is easy to see

that R1 is acceptable w.r.t. any complete model and the moded level mapping
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|member(e, ls)|1 = |ls |length
R2 is acceptable w.r.t. any complete model and the moded level mapping:

|count(ls , i , n)|2 = |ls |length
and R3 is acceptable w.r.t. any complete model and the trivial moded level mapping:

|diff(ls , i1 , i2 , n)|3 = 1

where |L|i = 0, if L is not defined in Ri.

The program DIFF := R1∪R2∪R3 is well-moded. Hence, by Proposition 22, every

well-moded query is strongly bounded w.r.t. DIFF and | |1, | |2, | |3.
Note that the class of strongly bounded queries is generally larger than the class

of well-moded queries. Consider, for instance, the program MOVE and the query Q :=

move([X1, X2], Ys), delete(Ys, Y, Zs), which is not well-moded since it is not ground

in the input position of the first atom. However, Q can be easily recognized to be

strongly bounded w.r.t. MOVE and | |1, | |2 defined in Example 23. We will come back

to this query later.

4.2 Well-typed programs

A more refined well-behavior property of programs, namely well-typedness, can also

be useful to ensure the strong boundedness property.

The notion of well-typedness relies both on the concepts of mode and type. The

following very general definition of a type is sufficient for our purposes.

Definition 25 (Type)

A type is a set of terms closed under substitution.

Assume as given a specific set of types, denoted by Types, which includes Any,

the set of all terms, and Ground the set of all ground terms.

Definition 26 (Type Associated with a Position)

A type for an n-ary predicate symbol p is a function tp from {1, . . . , n} to the set

Types. If tp(i) = T , we call T the type associated with the position i of p. Assuming

a type tp for the predicate p, we say that a literal p(s1, . . . , sn) is correctly typed in

position i if si ∈ tp(i).

In a typed program we assume that every predicate p has a fixed mode mp and a

fixed type tp associated with it, and we denote it by

p(mp(1) : tp(1), . . . , mp(n) : tp(n)).

So, for instance, we write

append(+ : List ,+ : List ,− : List)

to denote the moded atom append(+,+,−) where the type associated with each

argument position is List , i.e. the set of all lists.

We can then talk about types of input and of output positions of an atom.

The notion of well-typed queries and programs relies on the following concept of

type judgement.
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Definition 27 (Type Judgement)

By a type judgement we mean a statement of the form s : S⇒ t : T. We say that a

type judgement s : S⇒ t : T is true, and write |= s : S⇒ t : T, if for all substitutions

θ, sθ ∈ S implies tθ ∈ T.

For example, the type judgements (x : Nat , l : ListNat) ⇒ ([x|l] : ListNat) and

([x|l] : ListNat)⇒ (l : ListNat) are both true.

A notion of well-typed program has been first introduced in (Bronsard et al.,

1992) and also studied in (Apt and Etalle, 1993) and in (Apt and Luitjes, 1995).

Similarly to well-moding, the notion was developed for definite programs. Here we

extend it to general programs.

In the following definition, we assume that is : Is is the sequence of typed terms

filling in the input positions of Ls and os : Os is the sequence of typed terms filling

in the output positions of Ls.

Definition 28 (Well-Typed )

• A query L1, . . . , Ln is called well-typed if for all j ∈ {1, . . . , n}
|= oj1 : Oj1 , . . . , ojk : Ojk ⇒ ij : Ij

where Lj1 , . . . , Ljk are all the positive literals in L1, . . . , Lj−1.

• A clause L0 ← L1, . . . , Ln is called well-typed if for all j ∈ {1, . . . , n}
|= i0 : I0, oj1 : Oj1 , . . . , ojk : Ojk ⇒ ij : Ij

where Lj1 , . . . , Ljk are all the positive literals in L1, . . . , Lj−1, and

|= i0 : I0, oj1 : Oj1 , . . . , ojh : Ojh ⇒ o0 : O0

where Lj1 , . . . , Ljh are all the positive literals in L1, . . . , Ln.

• A program is called well-typed if all of its clauses are well-typed.

Note that an atomic query is well-typed iff it is correctly typed in its input positions

and a unit clause p(s : S, t : T)← is well-typed if |= s : S⇒ t : T.

The difference between Definition 28 and the one usually given for definite

programs is that the correctness of the terms filling in the output positions of

negative literals cannot be used to deduce the correctness of the terms filling in

the input positions of a literal to the right (or the output positions of the head in

a clause). The two definitions coincide either for definite programs or for general

programs whose negative literals have only input positions.

As an example, let us consider the trivial program

p(− : List).

q(+ : List).

p([]).

q([]).

By adopting a straightforward extension of well-typedness to normal programs

which considers also the outputs of negative literals, we would have that the query

¬p(a), q(a) is well-typed even if a is not a list. Moreover well-typedness would not
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be persistent wrt. LDNF-resolution since q(a), which is the first LDNF-resolvent of

the previous query, is no more well-typed. Our extended definition and the classical

one coincide either for definite programs or for general programs whose negative

literals have only input positions.

For definite programs, well-modedness can be viewed as a special case of well-

typedness if we consider only one type: Ground. With our extended definitions

of well-moded and well-typed general programs this is no more true. We could

have given a more complicated definition for well-typedness to also capture well-

modedness as a special case. For the sake of simplicity, we prefer to give two distinct

and simpler definitions.

Remark 29

If Q is a well-typed query, then all its non-empty prefixes are well-typed. In particular,

first(Q) is well-typed.

The following lemma shows that well-typed queries are closed under LDNF-

resolution. It has been proved by Bronsard et al. (1992) for definite programs.

Lemma 30

Let P and Q be a well-typed program and query, respectively. Then all LDNF-

descendants of P ∪ {Q} are well-typed.

Proof

Similar to the case of well-moded programs, to extend the result to general programs

it is sufficient to show that if a query Q := ¬A,L1, . . . , Ln is well-typed then both

A and L1, . . . , Ln are well-typed. In fact, by Remark 29, ¬A = first(Q) is well-typed

and by Definition 28, if the first literal in a well-typed query is negative, then it is

not used to deduce well-typedness of the rest of the query. q

It is now natural to exploit well-typedness to check strong boundedness. Anal-

ogously to well-moded programs, there are level mappings that are more natural

in presence of type information. They are the level mappings for which every well-

typed atom is bounded. By Lemma 30, we have that a well-typed query Q is strongly

bounded w.r.t. a well-typed program P and any such level mapping. This is stated

by the next proposition.

Proposition 31

Let P := R1 ∪ . . . ∪ Rn be a well-typed program and Rn A . . . A R1 be a hierarchy,

and | |1, . . . , | |n be level mappings for R1, . . . , Rn, respectively. Suppose that for every

well-typed atom A, if A is defined in Ri then A is bounded wrt. | |i, for i ∈ {1, . . . , n}.
Then every well-typed query is strongly bounded w.r.t. P and | |1, . . . , | |n.
Example 32

Let us consider again the modular proof of termination for MOVE := R1 ∪ R2, where

R1 defines the relations append1, append2 and delete, while R2, which extends R1,

defines the relation move. We consider the moding of Example 23 with the following

types:
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delete(+ : List ,− : Any ,− : List)

append1(− : List ,− : List ,+ : List)

append2(+ : List ,+ : List ,− : List)

move(+ : List ,− : List).

Program MOVE is well-typed in the assumed modes and types.

Let us consider the same level mappings as used in Example 23. We have already

seen that R2 is acceptable w.r.t. | |2 and any model, and R1 is acceptable w.r.t. | |1
and any model. By definition of | |2 and | |1, one can easily see that

• every well-typed atom A defined in Ri is bounded w.r.t. | |i.
Hence, by Proposition 31,

• every well-typed query is strongly bounded w.r.t. MOVE and | |1, | |2.
Let us consider again the query Q := move([X1, X2], Ys), delete(Ys, Y, Zs), which

is not well-moded, but it is well-typed. We have that Q is strongly bounded wrt.

MOVE and | |1, | |2, and consequently, by Theorem 13, that all LDNF-derivations of

MOVE ∪ {Q} are finite.

Example 33

Consider the program COLOR MAP from Sterling and Shapiro (1986) which generates

a coloring of a map in such a way that no two neighbors have the same color. The

map is represented as a list of regions and colors as a list of available colors. In

turn, each region is determined by its name, color and the colors of its neighbors,

so it is represented as a term region(name,color,neighbors), where neighbors

is a list of colors of the neighboring regions.

c1: color map([ ],Colors).

c2: color map([Region|Regions],Colors) ←
color region(Region,Colors),

color map(Regions,Colors).

c3: color region(region(Name,Color,Neighbors),Colors) ←
select(Color,Colors,Colors1)

subset(Neighbors,Colors1).

c4: select(X,[X|Xs],Xs).

c5: select(X,[Y|Xs],[Y|Zs]) ← select(X,Xs,Zs).

c6: subset([ ],Ys).

c7: subset([X|Xs],Ys) ← member(X,Ys), subset(Xs,Ys).

c8: member(X,[X|Xs]).

c9: member(X,[Y|Xs]) ← member(X,Xs).

Consider the following modes and types for the program COLOR MAP:

color map(+ : ListRegion ,+ : List)

color region(+ : Region ,+ : List)

select(+ : Any ,+ : List ,− : List)
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subset(+ : List ,+ : List)

member(+ : Any ,+ : List)

where

• Region is the set of all terms of the form region(name,color,neighbors)

with name, color ∈ Any and neighbors ∈ List ,

• ListRegion is the set of all lists of regions.

We can check that COLOR MAP is well-typed in the assumed modes and types.

We can divide the program COLOR MAP into four distinct modules, R1, R2, R3, R4,

in the hierarchy R4 A R3 A R2 A R1 as follows:

• R4 := {c1, c2} defines the relation color map,

• R3 := {c3} defines the relation color region,

• R2 := {c4, c5, c6, c7} defines the relations select and subset,

• R1 := {c8, c9} defines the relation member.

Each Ri is trivially acceptable w.r.t. any model M and the simple level mapping

| |i defined below:

|color map(xs , ys)|4 = |xs |length
|color region(x , xs)|3 = 1

|select(x , xs , ys)|2 = |xs |length
|subset(xs , ys)|2 = |xs |length
|member(x , xs)|1 = |xs |length

where for all i ∈ {1, 2, 3, 4}, |L|i = 0, if L is not defined in Ri.

Moreover, for every well-typed atom A and i ∈ {1, 2, 3, 4}, if A is defined in Ri

then A is bounded w.r.t. | |i. Hence, by Proposition 31,

• every well-typed query is strongly bounded w.r.t. the program COLOR MAP and

| |1, . . . , | |4.
This proves that all LDNF-derivations of the program COLOR MAP starting in a well-

typed query are finite. In particular, all the LDNF-derivations starting in a query of

the form color map(xs , ys), where xs is a list of regions and ys is a list, are finite.

Note that in proving termination of such queries the choice of a model is irrelevant.

Moreover, since such queries are well-typed, their input arguments are required to

have a specified structure, but they are not required to be ground terms as in the

case of well-moded queries. Hence, well-typedness allows us to reason about a larger

class of queries with respect to well-modedness.

This example is also discussed in Apt and Pedreschi (1994). To prove its termi-

nation they define a particular level mapping | |, obtained by combining the level

mappings of each module, and a special model M w.r.t. which the whole program

COLOR MAP is acceptable. Both the level mapping | | and the model M are non-trivial.
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5 Iterative proof method

In the previous section we have seen how we can exploit properties which are

preserved by LDNF-resolution, such as well-modedness and well-typedness, for

developing a modular proof of termination in a hierarchy of programs. In this

section we show how these properties also allow us to apply our general result (i.e.

Theorem 9) in an iterative way.

Corollary 34

Let P and R be two programs such that P ∪R is well-moded and P extends R, and

M be a complete model of P ∪ R. Suppose that

• P is acceptable w.r.t. a moded level mapping | | and M,

• for all well-moded queries Q, all LDNF-derivations R ∪ {Q} are finite.

Then for all well-moded queries Q, all LDNF-derivations of (P ∪R)∪{Q} are finite.

Proof

Let C be the class of well-moded queries of P ∪ R. By Remark 18 and Lemma 19,

C is (P ∪ R)-closed. Moreover,

• P is acceptable w.r.t. a moded level mapping | | and M, by hypothesis;

• for all well-moded queries Q, all LDNF-derivations of R ∪ {Q} are finite, by

hypothesis;

• for all well-moded atoms A, if A is defined in P then A is bounded w.r.t. | |,
by Remark 21, since | | is a moded level mapping.

Hence by Theorem 9, we get the thesis. q

Note that this result allows one to incrementally prove well-termination for general

programs, thus extending the result given in Etalle et al. (1999) for definite programs.

A similar result can be stated also for well-typed programs and queries, provided

that there exists a level mapping for P implying boundedness of atomic well-typed

queries.

Corollary 35

Let P and R be two programs such that P ∪ R is well-typed and P extends R, and

M be a complete model of P ∪ R. Suppose that

• P is acceptable w.r.t. a level mapping | | and M,

• every well-typed atom defined in P is bounded w.r.t. | |,
• for all well-typed queries Q, all LDNF-derivations of R ∪ {Q} are finite.

Then for all well-typed queries Q, all LDNF-derivations of (P ∪ R) ∪ {Q} are finite.

Proof

Let C be the class of well-typed queries of P ∪ R. By Remark 29 and Lemma 30, C
is (P ∪ R)-closed. Moreover

• P is acceptable w.r.t. a level mapping | | and M, by hypothesis;

• for all well-typed queries Q, all LDNF-derivations of R ∪ {Q} are finite, by

hypothesis;
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• for all well-typed atoms A, if A is defined in P then A is bounded w.r.t. | |, by

hypothesis.

Hence by Theorem 9, we have the thesis. q

Example 36

Let us consider again the program COLOR MAP with the same modes and types as

in Example 33. We apply the iterative termination proof given by Corollary 35 to

COLOR MAP.

First step

We can consider at first two trivial modules, R1 := {c8, c9} which defines the relation

member, and R0 := ∅. We already know that

• R1 is acceptable w.r.t. any model M and the level mapping | |1 already defined;

• all well-typed atoms A, defined in R1, are bounded w.r.t. | |1;
• for all well-typed queries Q, all LDNF-derivations of R0 ∪ {Q} are trivially

finite.

Hence, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of

(R1 ∪ R0) ∪ {Q} are finite.

Second step

We can now iterate the process one level up. Let us consider the two modules, R2 :=

{c4, c5, c6, c7} which defines the relations select and subset, and R1 := {c8, c9}
which defines the relation member and it is equal to (R1 ∪ R0) of the previous step.

We already showed in Example 33 that

• R2 is acceptable w.r.t. any model M and the level mapping | |2 already defined;

• all well-typed atoms A, defined in R2, are bounded w.r.t. | |2;
• for all well-typed queries Q, all LDNF-derivations of R1 ∪ {Q} are finite.

Hence, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of

(R2 ∪ R1) ∪ {Q} are finite.

By iterating the same reasoning for two steps more, we can prove that all LDNF-

derivations of the program COLOR MAP starting in a well-typed query are finite.

Our iterative method applies to a hierarchy of programs where on the lowest module,

R, we require termination w.r.t. a particular class of queries. This can be a weaker

requirement on R than acceptability as shown in the following contrived example.

Example 37

Let R define the predicate lcount which counts the number of natural numbers in

a list.

lcount(+ : List ,− : Nat)

nat(+ : Any).

r1: lcount([ ],0).

r2: lcount([X|Xs],s(N)) ← nat(X), lcount(Xs,N).

r3: lcount([X|Xs],N) ←¬ nat(X), lcount(Xs,N).
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r4: lcount(0,N) ← lcount(0,s(N)).

r5: nat(0).

r6: nat(s(N)) ← nat(N).

R is well-typed w.r.t. the specified modes and types. Note that R cannot be

acceptable due to the presence of clause r4. On the other hand, the program

terminates for all well-typed queries.

Consider now the following program P which extends R. The predicate split,

given a list of lists, separates the list elements containing more than max natural

numbers from the other lists:

split(+ : ListList ,− : ListList ,− : ListList)

>(+ : Nat ,+ : Nat)

<=(+ : Nat ,+ : Nat)

p1: split([ ],[ ],[ ]).

p2: split([L|Ls],[L|L1],L2) ← lcount(L,N), N > max,

split(Ls,L1,L2).

p3: split([L|Ls],L1,[L|L2]) ← lcount(L,N), N <= max,

split(Ls,L1,L2).

where ListList denotes the set of all lists of lists, and max is a natural number. The

program P ∪ R is well-typed. Let us consider the simple level mapping | | for P

defined by:

|split(ls , l1 , l2 )| = |ls |length
which assigns level 0 to any literal not defined in P . Note that

• P is acceptable w.r.t. the level mapping | | and any complete model M,

• all well-typed atoms defined in P are bounded w.r.t. | |,
• for all well-typed queries Q, all LDNF-derivations of R ∪ {Q} are finite.

Hence, by Corollary 35, for all well-typed queries Q, all LDNF-derivations of

(P ∪ R) ∪ {Q} are finite.

This example shows that well-typedness could be useful to exclude what might be

called ‘dead code’.

6 Comparing with Apt and Pedreschi’s approach

Our work can be seen as an extension of a proposal in Apt and Pedreschi (1994).

Hence we devote this section to a comparison with their approach.

On one hand, since our approach applies to general programs, it clearly covers

cases which cannot be treated with the method proposed in Apt and Pedreschi

(1994), which was developed for definite programs. On the other hand, for definite

programs the classes of queries and programs which can be treated by Apt and

Pedreschi’s approach are properly included in those which can be treated by our

method as we show in this section.

We first recall the notions of semi-acceptability and bounded query used in Apt

and Pedreschi (1994).
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Definition 38 (Semi-acceptable Program)

Let P be a definite program, | | be a level mapping for P and M be a model of P . P

is called semi-acceptable w.r.t. | | and M if for every clause A← A, B,B in ground (P )

such that M |= A

• |A| > |B|, if rel(A) ' rel(B),

• |A| > |B|, if rel(A) A rel(B).

Definition 39 (Bounded Query)

Let P be a definite program, | | be a level mapping for P , and M be a model of P .

• With each query Q := L1, . . . , Ln we associate n sets of natural numbers defined

as follows: For i ∈ {1, . . . , n},
|Q|Mi = {|L′i| | L′1, . . . , L′n is a ground instance of Q and M |= L′1, . . . , L′i−1}.

• A query Q is called bounded w.r.t. | | and M if |Q|Mi is finite (i.e., if |Q|Mi has a

maximum in N) for all i ∈ {1, . . . , n}.
Lemma 40

Let P be a definite program which is semi-acceptable w.r.t. | | and M. If Q is a query

bounded w.r.t. | | and M then all LD-descendants of P ∪ {Q} are bounded w.r.t. | |
and M.

Proof

It is a consequence of Lemma 3.6 in Apt and Pedreschi (1994) and (the proof of)

Lemma 5.4 in Apt and Pedreschi (1994). q

We can always decompose a definite program P into a hierarchy of n > 1

programs P := R1 ∪ . . . ∪ Rn, where Rn A . . . A R1 in such a way that for every

i ∈ {1, . . . , n} if the predicate symbols pi and qi are both defined in Ri then neither

pi A qi nor qi A pi (either they are mutually recursive or independent). We call such

a hierarchy a finest decomposition of P .

The following property has two main applications. First it allows us to compare

our approach with Apt and Pedreschi (1994), then it provides an extension of

Theorem 13 to hierarchies of semi-acceptable programs.

Proposition 41

Let P be a semi-acceptable program w.r.t. a level mapping | | and a model M and

Q be a query strongly bounded w.r.t. P and | |. Let P := R1 ∪ . . . ∪ Rn be a finest

decomposition of P into a hierarchy of modules. Let | |i, with i ∈ {1, . . . , n}, be

defined in the following way: if A is defined in Ri then |A|i = |A| else |A|i = 0. Then

• every Ri is acceptable w.r.t. | |i and M (with i ∈ {1, . . . , n}),
• Q is strongly bounded wrt. R1 ∪ . . . ∪ Rn and | |1, . . . , | |n.

Proof

Immediate by the definitions of semi-acceptability and strongly boundedness, since

we are considering a finest decomposition. q
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To compare our approach to that presented in Apt and Pedreschi (1994) we

consider only Theorem 5.8 in Apt and Pedreschi (1994), since this is their most

general result which implies the others, namely Theorems 5.6 and 5.7.

Theorem 42 (Apt and Pedreschi, 1994, Theorem 5.8 )

Let P and R be two definite programs such that P extends R, and let M be a model

of P ∪ R. Suppose that

• R is semi-acceptable w.r.t. | |R and M ∩ BR ,

• P is semi-acceptable w.r.t. | |P and M,

• there exists a level mapping || ||P such that for every ground instance of a

clause from P , A← A, B,B, such that M |= A

— ||A||P > ||B||P , if rel (B) is defined in P ,

— ||A||P > |B|R , if rel (B) is defined in R.

Then P ∪ R is semi-acceptable w.r.t. | | and M, where | | is defined as follows:

|A| = |A|P + ||A||P , if rel (A) is defined in P ,

|A| = |A|R , if rel (A) is defined in R.

The following remark follows from Lemma 5.4 and Corollary 3.7 in Apt and

Pedreschi (1994). Together with Theorem 42, it implies termination of bounded

queries in Apt and Pedreschi (1994).

Remark 43

If P ∪ R is semi-acceptable w.r.t. | | and M and Q is bounded wrt. | | and M then

all LD-derivations of (P ∪ R) ∪ {Q} are finite.

We now show that whenever Theorem 42 can be applied to prove termination of

all the queries bounded w.r.t. | | and M, then also our method can be used to prove

termination of the same class of queries with no need of || ||P for relating the proofs

of the two modules.

In the following theorem, for the sake of simplicity we assume that P A R is

a finest decomposition of P ∪ R. We discuss later how to extend the result to the

general case.

Theorem 44

Let P and R be two programs such that P extends R, and let M be a model of

P ∪ R. Suppose that

• R is semi-acceptable w.r.t. | |R and M ∩ BR ,

• P is semi-acceptable w.r.t. | |P and M,

• there exists a level mapping || ||P defined as in Theorem 42.

Let | | be the level mapping defined by Theorem 42. Moreover, suppose P A R is a

finest decomposition of P ∪R. If Q is bounded w.r.t. | |, then Q is strongly bounded

w.r.t. P ∪ R and | |P and | |R .
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Proof

Since we are considering a finest decomposition of P ∪ R, by Proposition 41, R is

acceptable w.r.t. | |R , while P is acceptable w.r.t. | |′P such that if A is defined in P

then |A|′P = |A|P else |A|′P = 0.

By Lemma 40 all LD-descendants of (P ∪ R) ∪ {Q} are bounded w.r.t. | | and M.

By definition of boundedness, for all LD-descendants Q′ of (P ∪ R) ∪ {Q}, first(Q′)
is bounded w.r.t. | |. By definition of | |, for all atoms A bounded wrt. | | we have

that: if A is defined in R then A is bounded w.r.t. | |R , while if A is defined in P then

A is bounded w.r.t. | |P and hence w.r.t. | |′P (since |A|′P = |A|P ). Hence the thesis

follows. q

If the hierarchy P A R is not a finest one and | |P and | |R are the level mappings

corresponding to P and R, respectively, then we can decompose P into a finest

decomposition, P := Pn A . . . A P1, and consider instead of | |P the derived level

mappings | |Pi
defined in the following way: if A is defined in Pi then |A|Pi

= |A|P
else |A|Pi

= 0. Similarly we can decompose R := Rn A . . . A R1 and define the

corresponding level mappings. The derived level mappings satisfy all the properties

we need for proving that if Q is bounded wrt. | |, then Q is strongly bounded w.r.t.

P ∪ R and | |P1
, . . . , | |Pn

, | |R1
, . . . , | |Rn

.

To complete the comparison with Apt and Pedreschi (1994), we can observe

that our method is also applicable for proving termination of queries in modular

programs which are not (semi-)acceptable. Such programs clearly cannot be dealt

with Apt and Pedreschi’s method. The program of Example 37 is a non-acceptable

program for which we proved termination of all well-typed queries by applying

Corollary 35. The following is a simple example of a non-acceptable program to

which we can apply the general Theorem 13.

Example 45

Let R be the following trivial program:

r1: q(0).

r2: q(s(Y)) ← q(Y).

The program R is acceptable w.r.t. the following natural level mapping | |R and

any model M:

|q(t)|R = |t |size.
Let P be a program, which extends R, defined as follows:

p1: r(0,0).

p2: r(s(X),Y).

p3: p(X) ← r(X,Y), q(Y).

The program P is acceptable w.r.t. the following trivial level mapping | |P and

any model M:

|q(y)|P = 0,

|r(x , y)|P = 0,

|p(x )|P = 1.
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Note that, even if each module is acceptable, P ∪ R cannot be acceptable w.r.t.

any level mapping and model. In fact, P ∪ R is not left-terminating: for example

it does not terminate for the ground query p(s(0)). As a consequence, Apt and

Pedreschi’s method does not apply to P ∪ R. On the other hand, there are ground

queries, such as p(0), which terminate in P ∪ R. We can prove it as follows.

• By Theorem 13, for all strongly bounded queries Q w.r.t. P ∪ R and | |R , | |P ,

all LD-derivations of (P ∪ R) ∪ {Q} are finite.

• p(0) is strongly bounded w.r.t. P ∪ R and | |R , | |P . In fact, Call (P∪R)(p(0)) =

{p(0), r(0,Y), q(0)} and all these atoms are bounded w.r.t. their correspond-

ing level mapping.

7 Conclusions

In this paper, we propose a modular approach to termination proofs of general

programs by following the proof style introduced by Apt and Pedreschi. Our tech-

nique allows one to give simple proofs in hierarchically structured programs, namely

programs which can be partitioned into n modules, R1 ∪ . . . ∪ Rn, such that for all

i ∈ {1, . . . , n− 1}, Ri+1 extends R1 ∪ . . . ∪ Ri.

We supply the general Theorem 9 which can be iteratively applied to a hierarchy

of two programs and a class of queries enjoying persistence properties through

LDNF-resolution. We then use such a result to deal with a general hierarchy of

acceptable programs, by introducing an extension of the concept of boundedness for

hierarchical programs, namely strong boundedness. Strong boundedness is a property

on queries which can be easily ensured for hierarchies of programs behaving well,

such as well-moded or well-typed programs. We show how specific and simple

hierarchical termination proofs can be derived for such classes of programs and

queries. We believe this is a valuable proof technique, since realistic programs are

typically well-moded and well-typed.

The simplifications in the termination proof derive from the fact that, for proving

the termination of a modular program, we simply prove acceptability of each module

by choosing a level mapping which focuses only on the predicates defined in it, with

no concern of the module context. Generally, this can be done by using very simple

and natural level mappings which are completely independent from one module

to another. A complicated level mapping is generally required when we prove the

termination of a program as a whole, and we have to consider a level mapping which

appropriately relates all the predicates defined in the program. Hence, the finer the

modularization of the program the simpler the level mappings. Obviously, we cannot

completely ignore how predicates defined in different modules relate to each other.

On one hand, when we prove acceptability for each module, we consider a model for

the whole program. This guarantees the compatibility among the definitions in the

hierarchy. On the other hand, for queries we use the notion of strong boundedness.

The intuition is that we consider only what may influence the evaluation of queries

in the considered class.

The proof method of Theorem 9 can be applied also to programs which are not
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acceptable. In fact, the condition on the lower module is just that it terminates on

all the queries in the considered class and not on all ground queries as required for

acceptable programs. From Theorem 9, we could also derive a method to deal with

pre-compiled modules (or even modules written in a different language), provided

that we already know termination properties and we have a complete specification.

For the sake of simplicity, in the first part of the paper we consider the notion of

acceptability, instead of the less requiring notion of semi-acceptability. This choice

makes proofs of our results much simpler. On the other hand, as we show in section

6, our results can also be applied to hierarchies of semi-acceptable programs.

We have compared our proposal with the one in Apt and Pedreschi (1994). They

propose a modular approach to left-termination proofs in a hierarchy of two definite

programs P A R. They require both the (semi)-acceptability of the two modules R

and P w.r.t. their respective level mappings and a condition relating the two level

mappings which is meant to connect the two termination proofs.

Our method is more powerful both because we consider also general programs,

and because we capture definite programs and queries which cannot be treated by

the method developed in Apt and Pedreschi (1994). In fact, there are non-acceptable

programs for which we can single out a class of terminating queries.

For the previous reasons, our method also improves with respect to Pedreschi and

Ruggieri (1996, 1999) where hierarchies of modules are considered. In Pedreschi and

Ruggieri (1996, 1999), a unifying framework for the verification of total correctness of

logic programs is provided. The authors consider modular termination by following

the approach in Apt and Pedreschi (1994).

In Marchiori (1996), a methodology for proving termination of general logic

programs is proposed which is based on modularization. In this approach, the

acyclic modules, namely modules that terminate independently from the selection

rule, play a distinctive role. For such modules, the termination proof does not

require a model. In combination with appropriate notions of up-acceptability and

low-acceptability for the modules which are not acyclic, this provides a practical

technique for proving termination of the whole program. Analogously to Apt and

Pedreschi (1994), also in Marchiori (1996) a relation between the level mappings of

all modules is required. It is interesting to note that the idea of exploiting acyclicity

is completely orthogonal to our approach: we could integrate it into our framework.

Another related work is Decorte et al. (1999), even if it does not aim explicitly at

modularity. In fact, they propose a technique for automatic termination analysis of

definite programs which is highly efficient also because they use a rather operational

notion of acceptability with respect to a set of queries, where decreasing levels are

required only on (mutually) recursive calls as in De Schreye et al. (1992). Effectively,

this corresponds to considering a finest decomposition of the program and having

independent level mappings for each module. However, their notion of acceptability

is defined and verified on call-patterns instead of program clauses. In a sense, such

an acceptability with respect to a set of queries combines the concepts of strongly

boundedness and (standard) acceptability. They start from a class of queries and try

to derive automatically a termination proof for such a class, while we start from the

program and derive a class of queries for which it terminates.
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In Verbaeten et al. (1999), termination in the context of tabled execution is

considered. Also, in this case modular results are inspired by De Schreye et al. (1992)

by adapting the notion of acceptability wrt. call-patterns to tabled executions. This

work is further developed in Verbaeten et al. (1999), where their modular termination

conditions are refined following the approach by Apt and Pedreschi (1994).

In Etalle et al. (1999), a method for modular termination proofs for well-moded

definite programs is proposed. Our present work generalizes such result to general

programs.

Our method may help in designing more powerful automatic systems for verifying

termination (De Schreye et al., 1992; Speirs et al., 1997; Decorte et al. 1999; Codish

and Taboch, 1999). We see two directions which could be pursued for a fruitful

integration with existing automatic tools. The first one exploits the fact that in each

single module it is sufficient to synthesize a level mapping which does not need

to measure atoms defined in other modules. The second one concerns tools based

on call-patterns analysis (De Schreye et al., 1992; Gabbrielli and Giacobazzi, 1994;

Codish and Demoen, 1995). They can take advantage of the concept of strong

boundedness which, as we show, can be implied by well-behavior of programs

(Debray and Warren, 1988; Debray, 1989).
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