
Robotica: (2021) volume 39, pp. 885–927. C© The Author(s), 2020. Published by Cambridge University Press.
doi:10.1017/S0263574720000806

Safe Motion Planning Based on a New
Encoding Technique for Tree Expansion
Using Particle Swarm Optimization
Sara Bouraine∗ and Ouahiba Azouaoui
Center for the Development of Advanced Technologies (CDTA), Baba Hassen, Algiers, Algeria

(Accepted August 12, 2020. First published online: September 10, 2020)

SUMMARY
Robots are now among us and even though they compete with human beings in terms of performance
and efficiency, they still fail to meet the challenge of performing a task optimally while providing
strict motion safety guarantees. It is therefore necessary that the future generation of robots evolves
in this direction. Generally, in robotics state-of-the-art approaches, the trajectory optimization and
the motion safety issues have been addressed separately. An important contribution of this paper
is to propose a motion planning method intended to simultaneously solve these two problems in a
formal way. This motion planner is dubbed PASSPMP-PSO. It is based on a periodic process that
interleaves planning and execution for a regular update of the environment’s information. At each
cycle, PASSPMP-PSO computes a safe near-optimal partial trajectory using a new tree encoding
technique based on particle swarm optimization (PSO). The performances of the proposed approach
are firstly highlighted in simulation environments in the presence of moving objects that travel at
high speed with arbitrary trajectories, while dealing with sensors field-of-view limits and occlusions.
The PASSPMP-PSO algorithm is tested for different tree expansions going from 13 to more than
200 nodes. The results show that for a population between 20 and 100 particles, the frequency of
obtaining optimal trajectory is 100% with a rapid convergence of the algorithm to this solution.
Furthermore, an experiment-based comparison demonstrates the performances of PASSPMP-PSO
over two other motion planning methods (the PassPMP, a previous variant of PassPMP-PSO, and
the input space sampling). Finally, PASSPMP-PSO algorithm is assessed through experimental tests
performed on a real robotic platform using robot operating system in order to confirm simulation
results and to prove its efficiency in real experiments.

KEYWORDS: Particle swarm optimization; Motion planning; Motion safety; Mobile robots;
Dynamic environment.

1. Introduction
In recent years, robotic technology has largely evolved making robots present everywhere, at home,
at work, in transportation, in recreational areas, etc. Different researches have been developed to
design systems that integrate the human world, to serve humans (e.g., service robotics, transporta-
tion, space exploration, accompanying the elderly, leisure robots, companion robots, etc.). Great
technological resources and years of research have been deployed aiming at reaching a level of intel-
ligence approximating the human reasoning or animals’ behaviour in accomplishing specific tasks.
Hence, bio-inspired systems would be an interesting approach to solve many issues when working
on robotic systems navigating in the real world.

In fact, a robotic system is subject in real-world situations, to the same constraints as a biological
system. Two main constraints should be considered: the first one is related to the system’s sensory

∗ Corresponding author. E-mail: s_bouraine@yahoo.fr

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806
https://orcid.org/0000-0002-7656-844X
mailto:s_bouraine@yahoo.fr
https://doi.org/10.1017/S0263574720000806

886 Safe motion planning based on a new encoding technique

Fig. 1. Robot with a limited field-of-view in an unknown environment with fixed and moving objects. The black
region is unobserved and may contain unexpected objects.

limitations (presence of unseen objects in the limits of the robot’s field-of-view and occluded regions)
and the second one is related to the dynamics of the environment (presence of moving objects with
unknown future behaviour) (see Fig. 1).

The purpose of this paper is precisely to propose a motion planning method that handles such
challenging constraints using an appropriate state× time model of the future, provides strict guaran-
tees of motion safety with formal proofs and solves the trajectory optimization problem by proposing
a technique that formally integrates safety to compute an optimal trajectory to the goal.

Given that motion safety has to do with staying away from states where a collision occurs (now
or eventually), the first position taken in this work is to address the motion safety issue. In an ideal
case, motion safety is the guarantee that no collision between the robot and its surroundings will ever
occur whatever happens. Theoretically, this form of safety (called absolute motion safety) consists
in finding a collision-free trajectory of infinite duration, which requires knowledge of the future
up to infinity (a priori known objects behaviour). In situations such as Fig. 1, this form of safety is
impossible to guarantee.1 In a previous work,2 this problem was solved by considering a weaker level
of safety (better guarantee less than nothing) by guaranteeing that the robot will be at rest before an
inevitable collision occurs whatever happens. A passive motion safety is therefore guaranteed where
the robot takes its own responsibility with respect to the collision problem by braking and stopping
before collision occurs. This choice was provably argued in ref. [2] the proposed solution is based
on the braking inevitable collision state concept [braking inevitable collision states (ICS)] (for more
details, see refs. [2, 3]). This form of safety is integrated in the motion planning process presented in
this paper.

In order to solve a motion planning problem, two ways are possible: global approaches or local
approaches. A global approach (e.g., refs. [4, 5]) computes a complete trajectory from an initial
state to the goal. It is most often adapted for static environments and requires a priori knowledge
of the environment. Whereas, a local approach uses the on-board sensors information of systems to
calculate at each time step the control to apply and hence reasons only on the next step. Due to such
reasoning, it lacks foresight to reach a goal. In the literature, these approaches are more known as
obstacle avoidance approaches (e.g., refs. [6–8]). Given the constraints discussed above, none of the
global or local methods offer a viable solution to our problem. Therefore, the reactive planning is
an alternative solution to gain on reactivity and improve convergence towards the goal. As its name
suggests, it is motion planning with a reactivity aspect that can be present in several ways. Some
approaches compute a complete trajectory to the goal and when changes in the environment occur,
this trajectory is re-planned while similar methods recompute only the obstructed part by an object.
Other approaches adopt a completely different concept by reasoning over many time steps (i.e., for
a given lookahead) and accordingly generate a partial trajectory. The whole set of partial trajectories
drives the system to the goal. This is the approach adopted in this paper; in ref. [9], a safe partial
motion planning (PMP) concept has been proposed. It allows planning safe partial trajectories given
a regular update of the environment’s evolution. However, the problem of trajectory optimization has
not been addressed at all.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 887

Among existing approaches (see Section 3), bio-inspired stochastic approaches present better
performances to solve optimization problems, particularly the particle swarm optimization method
(PSO)10 which is famous for its efficiency and fast convergence. In this paper, the developed approach
is dubbed PASSPMP-PSO. It is a modified version of the passively safe partial motion planner9 based
on the PSO method to solve the trajectory optimization problem. PASSPMP-PSO has to react dur-
ing a limited period of time related to a given lookahead (Aka time horizon, i.e., depicting how far
into the future the reasoning is used) during which motion safety must be guaranteed to find a near-
optimal partial trajectory. To do so, a tree encoding technique is proposed, where partial trajectories
are encoded as possible solutions (particles).

The paper is organized as follows: Section 2 states the motivation, contribution and novelty of
this work. A review of the relevant literature is shown in Section 3. Section 4 presents the proposed
approach. The motion planning scheme is explained in Section 4.1. The trajectory optimization-
based approach is illustrated in Section 4.2, whereas the particle’s encoding technique is itemized
in Section 4.3 and the used objective function is given in Section 4.4. Validations in simulation and
real-world experiments are given in Section 5. Finally, Section 6 includes a theoretical comparison
of the proposed approach to other approaches in the field.

2. Motivation and Contribution
Motion safety and trajectory optimization are two closely related issues. In biology, the problem has
been already addressed; fish schooling or bird flocking, for example, can both optimize individuals’
motion and remain safe from a predator, thanks to the concept of “safety in numbers”.11 However,
in robotics, most state-of-the-art approaches addressed the two issues separately, even if a natural
way to evolve for a system is both accomplishing a mission in an optimal manner and remaining safe
with regard to itself and its environment. As stated above, many trajectory optimization approaches
are inspired from animals’ swarm behaviour such as PSO, but they focus solely on the optimization
problem. About the motion safety, it is a critical issue when navigating in the real world and among
humans. Despite the rapid advance of robotic technology, developed robotic systems still fail to meet
the challenge of motion safety. An eminent example is the self-driving vehicles, which can cause
material and human damage. The first crash caused by a wrong decision (i.e., due to vehicle collision
avoidance system) occurred in February 2016.12 Such examples prove that safety is still not guaran-
teed. For a long time, motion safety notion has been ill-defined and it has been mainly addressed as a
collision-free problem. However, it is now agreed that safety is more than a mere collision avoidance,
but it is the ability of staying away from ICS, in any given situation or circumstance.13 An ICS is
a state for which, no matter what the future trajectory of the robot is, a collision eventually occurs.
However, ICS are defined with an absolute motion safety perspective and therefore require to reason
about the future evolution of the environment with an infinite lookahead. This is impossible to guar-
antee in real-world constraints. An alternative to the ICS concept in such challenging conditions is
the braking ICS concept (braking ICS or ICSb),2, 3 that is, a version of the ICS concept correspond-
ing to passive motion safety. Braking ICS are defined as states such that, whatever the future braking
trajectory followed by the robot is, a collision occurs before it is at rest. Passive motion safety is
obtained by avoiding braking ICS at all times. Unlike existing trajectory optimization approaches,
the proposed approach PASSPMP-PSO has the ability to generate near-optimal trajectories when
staying away from braking ICS whatever happens, that is, near-optimal passively safe trajectories.

The main contributions and novelties of this paper are the following:

(1) We propose a new motion planner dubbed PASSPMP-PSO that integrates both safety guar-
antee and trajectory optimization in challenging scenarios as in Fig. 1. Among the few works
rigorously addressing the safety issue (e.g., refs. [9,14]), none of them deals with trajectory opti-
mization even if the two issues are strongly related (both are necessary for a good performance
of a mission).

(2) PASSPMP-PSO computes a passively safe near-optimal partial trajectory, where motion safety
and trajectory optimization are addressed in a formal way. PASSPMP-PSO reasons about the
future evolution of the environment over a limited lookahead, which is formally defined so as
to ensure passive safety guarantee. In addition, PASSPMP-PSO is based on a PMP concept to
ensure regular update of the environment and therefore respect real-world constraints.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

888 Safe motion planning based on a new encoding technique

(3) PSO is a widely used method, thanks to its efficiency and fast convergence. However, to the
authors’ knowledge, this is the first time that motion safety (in the sense of avoiding ICS
whatever happens) is integrated in PSO and also the first time that this issue is tackled in an
optimization problem. The optimal solution is defined, thanks to an objective function based on
three important constraints: passive motion safety guarantee, minimum trajectory time cost and
minimum distance to the goal. Therefore, the approach used will be a variant of PSO.

(4) A new tree encoding technique is proposed, a modified priority-based encoding technique for
trees. Previous approaches have addressed the encoding-based shortest path problem in the case
of a network graph, while, in this paper, it is applied for rapidly exploring random trees (RRTs)
or to find the optimal trajectory in a tree.

(5) PASSPMP-PSO deals with real-world constraints, moving objects with unknown future
behaviours, both seen and unseen (i.e., objects present in the limits of the robot’s field-of-view
and occluded ones) with a conservative model of the future. All these constraints are addressed at
once, unlike previous approaches that deal with only some constraints or none. PASSPMP-PSO
also provides feasible trajectories and it is very suitable for solving high dimensional problems
in the state× time space, thanks to its tree-based expansion strategy.

(6) PASSPMP-PSO has been tested in simulation to demonstrate its performances under challeng-
ing constraints (e.g., crowded environments with objects travelling at high speed, etc.) and in
real experiment to validate the algorithm in real-world situations on an experimental robotic
system. It should be noted that most existing approaches dealing with the motion safety issue
(e.g., refs. [9,14]) are validated only in simulation. Finally, PASSPMP-PSO performances have
been compared, for the same test conditions, to a previous work presented in ref. [9] and to input
space sampling (ISS), a commonly used reactive planning method known to be among the best
when dealing with unknown environment.

3. Related Works
As stated above, a still open issue is the paradigm motion safety versus trajectory optimization,
should the robot select the safest trajectory or the most optimal? So far, these two issues have been
addressed separately. Furthermore, most motion planning schemes do not deal with the safety issue.

When it comes to motion safety, most approaches focus on providing a safety guarantee without
worrying about reaching a goal in an optimal way9, 14 or not.15, 16 In the latter case, a simple cost
function is generally used, for example, minimal distance to the goal. It is important to emphasize
that there is a rich literature in collision avoidance approaches;6, 7, 17–20 however, all of them provide
only collision-free guarantee where motion safety is not considered at all. Motion safety requires
guaranteeing that collision will never occur. When a mobile robot is led to navigate in the real world,
the dynamics of moving objects should be considered because even if a collision does not occur at the
present time, there is no guarantee that it will not occur in the future. Consequently, it is necessary to
design a navigation scheme for which motion safety is guaranteed. Among the few works addressing
safety problem, many do not consider moving objects at all (only fixed objects are considered).21–24

Other works cope with this problem by solving a multi-robots collision avoidance problem (both
robot and moving objects are considered as robots).25–28 Collision is avoided by coordinating the
movement of the whole robots. However, this solution is ineffective in the presence of uncontrollable
moving objects (which is the case in the real world). There are few approaches that take into account
the future behaviour of moving objects and use either a probabilistic model1, 31, 32 or a deterministic
one.7, 14, 15, 29, 30 Generally, with deterministic models, one considers objects with a constant velocity
or a priori known trajectory. Both approaches are interesting, but there is no guarantee of safety.
Another real-world constraint that should be considered is the limited field-of-view of the robot and
occlusions. When using the embedded sensors of the robot to perceive the environment, only a partial
view of its surroundings is possible, which implies that some objects are perceived while others are
not. From the safety perspective, these unseen objects represent a risk in case they are not handled
in time. There are few works that take into consideration these constraints: the problem of regions
hidden by obstacles (occlusions) is tackled in refs. [33, 34] and the problem of limited field-of-view
is addressed in ref. [35] for a static environment and in ref. [14] for dynamic environment, but it is
assumed that objects should always be maintained within the robot’s field-of-view.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 889

Therefore, an important contribution of the proposed approach PASSPMP-PSO is to formally
guarantee motion safety while considering at once limited field-of-view, occlusions and unknown
future behaviour of both seen and unseen objects. To do so, a conservative model of the future is
used to handle all possible future trajectories of each object during a given lookahead.

There is a rich literature to solve the motion planning issue. However, from the paradigm global
approaches versus local approaches, reactive planning is the most suitable solution when dealing with
partially observable environments. Mainly, two types of methods can be distinguished: the first type
is a variant of the global approaches that has been modified so as to deal with environment changes.
There are simple methods such as trajectory deformation (TD)36, 37 and discrete planning methods
(e.g., A*3D, D*, etc.),38–40 for which the trajectory is either deformed or recomputed in case it is
obstructed by a new obstacle. Even if these methods are reactive to environment changes, most often
the future behaviour of moving objects is not considered or it is assumed a priori known or short-
term predicted. Moreover, a priori knowledge of the environment is necessary as an initial plan is
required. Similarly, methods like RRT33 have been modified to address dynamic environments.41–45

Each variant offers solutions and has drawbacks. For example, in Refs. [42] and [43] a linear veloc-
ity of objects is considered but the computing time is very expensive, in ref. [41] (anytime RRT)
objects trajectories are not considered but suboptimal solutions are guaranteed while another vari-
ant (RRT*)46 is asymptotically optimal for static environments only. However, for the whole cases,
objects trajectories are not considered or assumed a priori known. For the second type of methods,
instead of planning a complete motion to the goal, planning is carried out for a certain period of time.
Therefore, sampling methods like ISS47–50 and state space sampling (SSS) techniques47, 51 are best
suitable for unknown environment, where the robot uses its embedded sensors for perception. With a
similar concept, tentacles-based approach52, 53 uses different curvatures discretizing the basic driving
options of a vehicle. These approaches are local planners and require a global planner to guide the
robot towards the goal. Approaches like global dynamic window54, 55 integrate a reactive approach to
determine the control to apply and a global planner to solve the motion planning problem. However,
all these methods do not consider objects trajectories and are inefficient in complex environments.
More interesting methods plan over an appropriate time horizon where the information about the
environment is regularly updated, for example, the PMP method56 and the model predictive control
(MPC) method.57–60 A serious drawback with MPC is the lack of a guarantee that the environment’s
model is still valid over the planning period, where no constraint is considered with respect to this
time duration. Besides, PMP considers a decision time constraint for planning, and the model of the
future is assumed valid during planning and execution. Nevertheless, only collision-free trajectories
based on a priori known model of the future can be provided with no formal guarantees. In this case,
motion safety is not guaranteed. Even so, the concept of planning partial trajectories is very interest-
ing, because it allows world model update (necessary when only a partial view of the environment
is available) and it is very suitable for real-time applications as the planning and execution processes
are interleaved. For this reason, one purpose of this paper is to adopt a planning strategy based on a
PMP concept, but for which the problems of safety and trajectory optimization are solved.

Regarding the second part of the paradigm motion safety versus trajectory optimization, in motion
planning, an important issue that has been tackled for a long time is the trajectory optimization
problem. Among the above approaches, A* and Dijkstra61, 62 can offer a potential solution, but
they are limited to low dimensional problems. Recent works on trajectory optimization include
stochastic trajectory optimization for motion planning (STOMP) based on a gradient-free stochastic
optimization63 and covariant Hamiltonian optimization for motion planning (CHOMP) which is a
gradient-based method.64, 65 These methods optimize individual trajectory steps. To deal with obsta-
cles, a pre-computed distance for collision checking in trajectory optimization was integrated. These
methods are computationally expensive and can be subject to local minima. Bio-inspired stochastic
optimization approaches such as genetic algorithms (GA),66 ant colony optimization (ACO),67 neural
networks (NN)68, 69 and PSO10 present better performances to find a global optimum. Indeed, for the
last few years, a great deal of interest has been brought to bio-inspired-based approaches to solve
motion planning problems, such as in refs. [70–74]. Most often, the kinodynamic constraints of the
system and the future evolution of the environment are not considered. Among these methods, PSO
is the most performant to solve different optimization problems. This method is interesting due to its
simplicity, its low computing cost and fast convergence compared to the other optimization methods.
However, as the other optimization-based approaches, the safety issue is not tackled at all.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

890 Safe motion planning based on a new encoding technique

The most relevant works mentioned above, dealing with the motion planning issue, are summa-
rized in Table I. They are evaluated with respect to different constraints: robot’s dynamics, planning
using sensors, unknown and dynamic environment, reasoning about the future, considering unseen
objects (field-of-view limits and occlusions), safety guarantee and optimization.

The main contribution of this paper is to propose a motion planning approach, called
PASSPMP-PSO that solves both motion safety and trajectory optimization issues. It is based on
a new tree encoding technique based on PSO to find an optimal safe trajectory that drives the robot
from an initial state to a goal state. Furthermore, unlike previous works, PASSPMP-PSO considers at
once limited field-of-views, occlusions and unknown future behaviour of objects (for both seen and
unseen objects). PASSPMP-PSO is therefore able to meet all the addressed constraints in Table I,
while the other methods fail.

4. The Proposed Approach: PASSPMP-PSO
The main purpose of this paper is to generate a trajectory from an initial state to a goal state for a
mobile robot navigating in dynamic and partially observable environment, where both motion safety
and trajectory optimization issues are tackled. This work is therefore about solving a motion planning
problem by finding an optimal and safe trajectory. The proposed approach PASSPMP-PSO has been
built upon the following main points:

• In its general form, the motion planner scheme is based on the process of interleaving planning and
execution, adopted in ref. [9]. During this process, a partial trajectory is generated at each planning
cycle. The main advantage of this planning scheme is to react to the environment dynamics given
an appropriate time horizon (formally set) and to manage the real-time constraint. Section 4.1
provides a description of this process.
• The trajectory optimization problem is solved, thanks to a tree encoding technique based on the

PSO method. For more clarity, the basic principal of PSO is first introduced in Section 4.2. In PSO,
the population (the swarm) is represented by a set of particles that are moving in the search space,
representing possible solutions to the optimization problem. Each particle is assigned position and
velocity vectors. From a formal point of view, PSO is mainly based on two equations (Eqs. (2)
and (3)) to update these vectors that are continuously recomputed through optimization iterations,
given two key parameters: the personal best position and the global best position. These parameters
should be computed, thanks to a specific objective function, where at the end of the optimization
process, the optimal solution corresponds to the global best particle found so far.
• After introducing PSO, the tree encoding technique is presented in detail in Section 4.3. A new

approach is proposed, it is a modified priority-based encoding technique for trees. The main objec-
tive is to find the optimal safe partial trajectory in an RRT (expanded during a planning cycle). The
primary issue lies in how the particles are encoded. In this step, the particle is represented by a
vector of priorities corresponding to a position vector, which is associated with the nodes of the
expanded tree. The second issue is how to construct a trajectory from this priorities’ vector. The
whole construction process is explained and supported by Algorithm 1. This trajectory is con-
structed based on a minimum cost value (given Eq. (4)) depending on both priorities of nodes
and cost of trajectory’s primitives (state trajectories delimited by two nodes). However, one con-
dition that must be checked is the validity of the constructed trajectory, which is explicitly stated
in Definition 1.
• At the end of the previous step, several trajectories are constructed representing possible solutions

to the motion planning problem. The optimal solution (best particle) is selected, thanks to the
objective function provided in Eq. (5) that satisfies three main constraints: (1) passive motion
safety: it is a level of safety which is defined with respect to the braking ICS concept.2 A passively
safe state is a braking ICS-free state. Indeed, braking ICS states must be avoided by the robot
in order to guarantee a passive safety. Definitions 2 and 3 define, respectively, what a passively
safe state and a braking ICS state is, and they are respectively formulated by Eqs. (6) and (7).
Furthermore, to determine the passive safety of a whole trajectory, Property 1 is necessary. After
establishing this property and definitions, the weighting factor associated with safety constraint
can be expressed by Eq. (8). Noting that this parameter can be improved by including sensory

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe
m

otion
planning

based
on

a
new

encoding
technique

891

Table I. Review of motion planning methods. (–) the constraint is verified or can be verified in certain conditions.

Kinematic Dynamic Sensory Unknown Unseen Dynamic Future
Methods constraints constraints information environment objects environment reasoning Safety Optimization

TD36 Yes Yes – – No Yes – No –
PMP56 Yes Yes Yes Yes Yes34 Yes – – –
Tentacles53 Yes No Yes Yes No Yes No No No
ISS49 Yes Yes Yes Yes No Yes No No No
SSS51 Yes Yes Yes Yes No Yes No No No
AD*35 Yes Yes – – No Yes – No –
MPC59 Yes Yes Yes Yes No Yes Yes No –
RRT41 Yes Yes Yes Yes No Yes – (43, 45) No Yes46 (in static

environment)
STOMP63 Yes No – No No No No No Local minima
CHOMP64 Yes No – No No No No No Local minima
GA-based planning70 No No No No No No No No Yes
ACO-based planning71 No No No No No No No No Yes
NN-based planning72 No No No No No No No No Yes
PSO-based planning73 No No No No No No No No Yes (fast convergence)

https://doi.org/10.1017/S0263574720000806 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0263574720000806

892 Safe motion planning based on a new encoding technique

uncertainty (given Eqs. (9)–(17)). (2) A minimum distance to the goal formulated by Eq. (18). (3)
A minimum time cost of the trajectory formulated by Eq. (19).
• The passive safety guarantee of PASSPMP-PSO is formally proved in Section 4.5. At first,

PASSPMP-PSO time cycle must be set while respecting a decision time constraint (as the robot
has a limited time to return a decision otherwise a collision occurs), given Eq. (20). This decision
time is defined, thanks to Definition 4. Secondly, Property 2 with its corresponding proof demon-
strates that at each planning cycle, a passively safe trajectory (ICSb-free) is found. Finally, the
model of the future used (conservative model) must still be valid over a limited interval of time to
guarantee safety, given Property 3 (with the corresponding proof). This time interval depends on
the time horizon defined in Eq. (21).
• The optimality and stability of PASSPMP-PSO are addressed in Section 4.6.
• The overall process of the PASSPMP-PSO algorithm is detailed in Section 4.7.

The reader is referred to Table II for the list of variables and parameters used in this paper.

4.1. Motion planning scheme
To deal with the environment dynamics and robot sensory limitations, PASSPMP-PSO is based on
a PMP concept. A detailed study about the planning strategy has been provided in ref. [9], where the
developed approach is called PASSPMP. It is a cyclic process whose basic principle is to compute
a partial trajectory during a limited period of time δcycle, given an updated model of the future W
(a space× time representation). The whole set of computed trajectories over planning cycles drives
the robot A to its goal (see Fig. 2). A’s dynamics is described by the following differential equations
of the form:

ṡ = f (s, u) (1)

where s ∈ S is the state of A, ṡ its time derivative and u ∈U a control. S and U are, respectively, the
state space and the control space of A. The state of A at time tk is denoted sk.

The state× time space of A is explored based on a variant of the rapidly exploring random tree
approach, a diffusion technique that extends a sub-tree during each cycle.9 The tree is a set of nodes
and primitives (state trajectories delimited by two nodes) that is incrementally built through different
levels of extension (depths). Each node is extended by a fixed set of controls (i.e., an exhaustive
search). Passively safe partial trajectories are generated while considering a limited lookahead (aka
time horizon) Th. The time horizon is how far reasoning is done in the future. This parameter is
critical, the motion safety guarantee is not just about keeping the robot away from collision states,
but also keeping it away from the states that would drive it to a collision at a given point in the future.
That is why reasoning about the future is required. For safety purpose, the robot must have enough
time to avoid the collision. In general, it is assumed that a prior knowledge about the future behaviour
of the environment is available. In this case, to guarantee that the robot will never reach an ICS, risks
of collision are checked through an infinite time horizon. However, when only a partial knowledge
of the environment is available (the robot has a limited field-of-view), the previous assumption is no
longer valid. Therefore, safety must be guaranteed over a finite time horizon. This amounts to ensure
that no collision will occur during this time limit. The choice of this time parameter is defined in
Section 4.5.

This same safety level is adopted in PASSPMP-PSO. Nevertheless, in PASSPMP, the optimiza-
tion problem has not been addressed. PASSPMP-PSO tackles both the two issues and uses an
encoding technique to construct partial trajectories to deal with the huge search spaces.

4.2. Trajectory optimization using PSO
In this paper, the trajectory optimization problem is solved using the PSO approach. Among relevant
trajectory optimization-based methods,63–65 PSO has the best performances to find a global optimum
with less computing cost. It is an efficient stochastic population-based optimization approach inspired
by the social behaviour of bird flocking or fish schooling, proposed by Kennedy and Eberhart.10

A detailed review on PSO is presented in ref. [75]. Even if the flock behaviour sometimes seems
anarchic when birds suddenly change their direction, scatter or regroup, this behaviour is very
intelligent. Indeed, when looking closely, a huge number of birds move synchronously based on

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 893

Table II. Variables and parameters.

Notation Description

A The robotic system
s State of A
ṡ Time derivative of s
u A control
S State space of A
U Control space of A
sk State of A at time tk
(x, y) Cartesian coordinates of A
θ Orientation of A
v Linear velocity of A
ξ Steering angle of A
uα Linear acceleration
uξ Steering angle velocity
L Wheelbase of A
A(s) Closed subset of the workspace occupied by A when it is in the state s
ũb A braking trajectory

Ũs
b Set of all possible braking trajectories for the state s

tb Duration of the braking trajectory ũb

s̃(s, ũb, t) State reached at time t starting from s while following ũb

W Model of future (the dynamics of the environment’s objects)
δcycle Planning cycle time
Th Time horizon
�k Partial trajectory executed during a cycle k
p A particle in the swarm
Np Swarm size
X(p) Position vector of p
V(p) Velocity vector of p
f Objective function of the optimization algorithm
τ Optimization process iteration
Pbest The personal best position (among all traversed positions by the particle)
Gbest The global best (among all positions traversed by the whole swarm thus far)
wc Cognitive parameter, affecting attractive forces towards a personal best
ws Social parameter, affecting attractive forces towards a global best
randi Random variables uniformly distributed in the range [0, 1]
Ntree Number of nodes in the tree
ηroot Root of the tree
dtree Tree depth
�particle Constructed trajectory
η A tree node
δ� A trajectory primitive
wps Safety weighting factor
wd, wt Distance and time weighting factors
Costd Distance cost function of a trajectory
Costt Time cost function of a trajectory

a social interaction and some individual skills with the final objective to reach food. This complex
flock behaviour can be simply formalized as follows: to reach the goal (food), every bird has to
learn from its own experience and the experience of its neighbours thanks to its memorization and
communication abilities with others, and so it continuously updates its position.

This motion to the quest for food looks like a search of a solution for an optimization prob-
lem, where every bird is a possible solution to the problem. In PSO, a member of the population

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

894 Safe motion planning based on a new encoding technique

Fig. 2. Planning/execution process timeline. During a cycle k, while the partial trajectory �k (computed in cycle
k− 1) is executed, the planner computes a passively safe partial trajectory �k+1 to be executed in cycle k+ 1.
The world model W is periodically updated and remains valid over the time interval [tk, tk+2 + Th], sufficient
to support the planning and execution of �k+1 besides to the passive safety of sk+2.

is dubbed particle representing a possible solution to the optimization problem in the search space.
Each particle p in the swarm is assigned a position X(p) and a velocity V(p), for p= 1, ..., Np; Np the
swarm size. These particles are moving in the search space and continuously update their positions
and velocities given two key information. The first one is the personal best position (the particle’s
own best position), that is, the best position among all particle’s traversed positions, denoted Pbest.
The second one is the global best position which is the best position among the whole swarm’s tra-
versed positions so far, denoted Gbest (i.e., the optimum Pbest among all particles). It represents
the global optimum. The best positions can be determined, thanks to a specific objective function
(fitness) f . This function must answer three issues: passive motion safety, minimum trajectory’s time
cost and minimum distance to the goal. By minimizing this function, the corresponding particle will
verify both the safety guarantee condition and the trajectory optimality among the set of all possible
solutions.

The formal definitions to update the velocity and hence position of a given particle p for one
optimization step τ are given in what follows:

Vτ+1(p)= Vτ (p)+wc|rand1|(Pbestτ (p)− Xτ (p))+ws|rand2|(Gbestτ − Xτ (p)) (2)

Xτ+1(p)= Xτ (p)+ Vτ+1(p) (3)

Vτ+1(p) and Xτ+1(p) are, respectively, the velocity and the position of a particle p at iteration τ + 1,
where Vτ+1(p) must be upper bounded; Vτ+1(p) ∈ [−Vpmax,+Vpmax]. rand1and rand2 are random
variables uniformly distributed in the range [0, 1]. wc and ws are acceleration coefficients, also
known, respectively, as cognitive and social parameters affecting attractive forces either towards
a personal best Pbest or a global best Gbest. Indeed, the swarm displacement can be easily dis-
tinguished from Eq. (2) where three main behaviours can be highlighted: (1) the particle is urged
to move continuously in its current direction (the first term; Vτ (p)), (2) the particle movement
is subjected to a cognitive constraint that attracts the particle to return to its own best position

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 895

Fig. 3. The particle p, an Ntree dimensional vector, with X(p) the particle’s position vector.

(i.e., wc|rand1|(Pbestτ (p)− Xτ (p))) and (3) a social constraint that attracts it towards the best posi-
tion found so far among the swarm (i.e., ws|rand2|(Gbestτ − Xτ (p))). All the above parameters vary
with PSO iterations and particles.

4.3. Encoding particles for trajectory optimization problem
The previous section introduced the standard PSO method. In PSO, particles represent candidate
solutions to the optimization problem, a tricky step of this algorithm is the particles encoding. In
PASSPMP-PSO, an optimal safe partial trajectory should be found during each planning cycle. To
do so, the adopted solution is based on encoding partial trajectories into particles.

There are two main families of encoding techniques proposed in GA-based shortest path problems.
From a given graph1, they encode a path into a chromosome, but the way of encoding is different
leading to two different approaches: direct and indirect encoding techniques. In the direct approach,
the path is directly encoded in the chromosome, that is, node IDs are directly represented in the chro-
mosome.76–78 However, in the indirect approach, some guiding information about the path, called
priorities, is encoded.79, 80 Given these works (applied mainly in GA), the encoding has been subse-
quently applied in PSO to solve a shortest path problem (based on graph theory).81–84 Among the two
types of encoding (direct and indirect), only the indirect encoding is suitable for PSO as this latter
is based on arithmetic operation for updating the particles’ position and velocity (Eqs. (2) and (3)).
Direct encoding is more appropriate for discrete optimization. In refs. [81–84], an indirect encoding
has been used to find the shortest path in a graph.

However, all the above works have addressed the encoding-based shortest path problem in the
case of a network graph. To the authors’ knowledge, this is the first time it is applied for RRTs or to
find the optimal trajectory in a tree.

To solve the trajectory optimization problem in PASSPMP-PSO, partial trajectories from the
expanded tree (denoted TREE, with TREE= {η1, ..., ηNtree} and η1 = ηroot is the root node) are
implicitly encoded into particles. To do so, a modified priority-based encoding technique (indirect
approach) for trees is proposed; the particle p is represented by a set of priorities associated with the
nodes of the expanded tree (during a planning cycle), where the size of the particle corresponds to
the number of nodes in the tree, Ntree. This vector of priorities corresponds to a position vector X(p)

(each position is associated with a tree node) (see Fig. 3). Once this vector is defined, a valid tra-
jectory from the node ηroot (root of the tree) to a final node (belonging to the last tree depth denoted
dtreef) should be constructed. A valid trajectory in the tree can be defined as follows:

Definition 1 (Valid trajectory). Given an expanded tree, a valid trajectory is a set of nodes, such
as all nodes belong to different tree depths and every two successive nodes share the same trajectory
primitive.

Let us define �particle the constructed trajectory, η a tree node and δ� a trajectory primitive.
The whole construction process is illustrated in Algorithm 1. The trajectory is incrementally con-

structed; at the first algorithm iteration, the trajectory is initialized with ηroot associated with the ID 1
(from the first tree depth). This node is considered as a parent node. In the next iteration, following
Definition 1, the next trajectory node is selected from the next tree depth and this node shares the
same primitive with the parent node (with ID: ParentID). Therefore, the node to select is a child node
(with ID: ChildID) from a set of child nodes (set of IDs: ChildID_SET) associated with this parent
node. The selection is based on a minimum cost value which depends on both the priority of the node
and the cost of the primitive relating this node to the parent node δ�(ParentID, ChildID). This cost
can be computed by the following equation:

CostChildID = X(p)[ChildID]Cost(δ�(ParentID, ChildID)) (4)

1A graph consists of vertices (nodes) and edges connecting each two vertices in the graph. A path in this graph is a
sequence of edges from a start node to a destination node, where each two successive edges share the same node.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

896 Safe motion planning based on a new encoding technique

Algorithm 1 Trajectory construction in the particle.
Input: particle p; Ntree-dimensional vector X(p), TREE (expanded tree), root node= ηroot (at depth
dtree = 0), dtreef (the last depth).
Output: Traj_IDs (constructed trajectory IDs for a particle p), �particle (state trajectory corresponding
to Traj_IDs).

1: itconstruct = 0;
2: ParentID= ID(ηroot)= 1; //ID of the parent node
3: Traj_IDs(itconstruct)= {ParentID};
4: while dtree < dtreef do
5: // for all descendants (children) of the node with ID ParentID
6: Forall ChildID ∈ChildID_SET(ParentID) do
7: //compute child cost
8: CostChildID = X(p)[ChildID]Cost(δ�(ParentID, ChildID))

// δ�(ParentID, ChildID) is a trajectory primitive delimited by the two nodes with IDs
ParentID and ChildID

9: end
10: ChildIDselected = argmin

p=1,...,Np

CostChildID; //child with minimum cost

11: Traj_IDs(itconstruct + 1)= Traj_IDs(itconstruct)∪ChildIDselected;
12: ParentID=ChildIDselected;
13: itconstruct ++;
14: endwhile
15: return �particle //state trajectory corresponding to Traj_IDs (with each state belonging to TREE).

This process is repeated through all tree depths. At the end, the IDs of the constructed trajectory
(Traj_IDs) for a particle p are returned. The trajectory �particle(p) with the IDs corresponding to
Traj_IDs represents a possible solution to the optimization problem.

4.4. Objective function
From the previous step (Section 4.3), during a planning cycle, several trajectories are constructed
from the expanded tree, representing possible solutions (�particle(p), p= 1, ..., Np) to the motion
planning problem. In our case, the optimal solution should be selected with respect to three main
constraints: passive motion safety, a minimum distance to the goal and a minimum time cost of
the trajectory. Consequently, the particles are optimized by minimizing the following objective
function f :

f (p)=wps(wdCostd(�particle(p))+wtCostt(�particle(p))) (5)

where wj are weighting factors and Costj are cost functions, both related to the above three
constraints.

4.4.1. Safety constraint. Concerning the first constraint, despite the importance to find the shortest
trajectory, the first objective of PASSPMP-PSO remains to guarantee passive motion safety, that is,
the optimal solution has to verify this criterion. It is based on the braking inevitable collision state
concept (braking ICS).2 Let us recall some necessary definitions for PASSPMP-PSO. Definitions 2
and 3 determine, respectively, what a passively safe state and a braking ICS state are:

Definition 2 (Passive motion safety). Given a model of the future W , a passively safe or p-safe
state for a system A is a state s such that there exists one braking trajectory starting at s which is
collision-free until A has stopped.

This definition can be also formulated by :

s is p-safe iff ∃ũb ∈ Ũs
b , ∀t ∈ [0, tb[,A(s̃(s, ũb, t))∩W(t)=∅ (6)

where ũb a braking trajectory, Ũs
b the set of all possible braking trajectories for the state s and tb the

duration of the braking trajectory ũb. A(s̃(s, ũb, t)) designates the closed subset of the workspace

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 897

occupied by A when it is in the state s̃ reached at time t starting from s while following ũb. The
dynamics of the environment’s objects (model of future W) is considered to determine a collision-
free braking trajectory (A(s̃(s, ũb, t))∩W(t)=∅, in Eq. (6)).

Definition 3 (Braking ICS). A braking ICS (ICSb) is a state for which whatever the future
braking trajectory of A, it is impossible to stop before collision.

Formally, a braking ICS (ICSb) is defined by the following equation:

ICSb(W) = {s ∈ S|∀ũb ∈ Ũs
b , ∃t ∈ [0, tb[,

A(s̃(s, ũb, t))∩W(t) 	= ∅} (7)

From Definitions 2 and 3, a state that is a braking ICS is a no p-safe state (and inversely). As a
result, this type of states must be avoided by the robot to guarantee a passive safety (see ref. [2] for
more details).

Furthermore, the following property is necessary to determine the p-safety of a given trajectory:9

Property 1 (Passively safe trajectory). Given a model of the future and a state trajectory � with
an initial state s0 and a final state sf , if (1) � is collision-free and (2) sf is ICSb-free, then every state
of � is ICSb-free. Therefore, � is ICSb-free; by duality, � is p-safe.

Proof. Let us assume that: (1) s2 (belonging to the state trajectory between s0 and sf) is p-safe,
that is, it exists at least one braking trajectory starting at s2 which is collision-free untilA has stopped.
(2) s1 is not p-safe, that is, whatever existing braking trajectories, a collision occurs (no collision-free
braking trajectory).

However, as the state trajectory between s0 and sf is collision-free and there exists a braking
trajectory for the state s2, starting from s1, A can brake without a collision occurring. Therefore, s1

is p-safe, a contradiction with (2).

In order to address the passive safety constraint, in Eq. (5), an enabling factor wps representing the
safety factor is used. It can be expressed as follows:

wps =
{∞ if �particle(p) is not p-safe (i.e., ICSb)

1 otherwise
(8)

The braking ICS-ness of �particle(p) can be verified, thanks to Property 1 and the ICSb-CHECK

algorithm (which checks whether a given state is ICSb or not).2 When �particle(p) is not p-safe
(ICSb), wps and the function f are set to infinity. However, if �particle(p) is p-safe, wps is set to 1,
to restrict the objective function to the two other constraints, that is, f =wdCostd(�particle(p))+
wtCostt(�particle(p)).

In cases other than braking ICS, wps can be improved by including sensory uncertainty. wps can be
determined by evaluating the probability of p-safety of �particle (the probability that a collision will
not occur in the future). As the p-safety of the particle is verified by ICSb-CHECK,2 a probabilistic
version of this algorithm should be used in such a case. In refs. [85, 86], a probabilistic ICS concept
has been proposed. However, the main issue with such a concept is that no strict guarantees of safety
are available. Instead, the risks of collision are minimized.87

A safe state is a state that is not ICS. Therefore, by duality, a probabilistic ICS-CHECK has to
determine the probability that a state s is an ICS. This algorithm should have as input, the state
to check (s) and a probabilistic model of the future Wp. Indeed, instead of a conservative model
(braking ICS case), a probabilistic model of the future, which can be built by different existing
methods,88–91 should be used. A probabilistic measure is assigned to each object’s future trajectory.

As the function f in Eq. (5) should be minimized to solve the optimization problem, a small wps

corresponds to a high safety probability of �particle. By duality, it corresponds to a low ICS-ness
probability of �particle. Therefore,

wps = PICS(�particle) (9)

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

898 Safe motion planning based on a new encoding technique

Let �particle = {s0, ..., sf }, wps can be expressed according to the probability of ICS-ness of each state
trajectory si (each state corresponds to a given time step and is independent of other time steps);

wps =
f∏

i=0

PICS(si) (10)

PICS(s) is determined by a probabilistic ICS-CHECK, where the calculation steps are the same as in
ICSb-CHECK.2 However, instead of determining a binary answer for ICS-ness, a probability of ICS-
ness is computed. In ICSb-CHECK, ICSb is determined given a set of controls ũb ∈ Ũs

b and a world
model W . s is ICSb if at least a braking trajectory ũb is collision-free (see ref. [2] for more details
about the computing process). With a same reasoning, PICS is the minimum of collision probabilities
for a set of controls ũ ∈ Ũs , such that:

PICS(s)= min
ũ∈Ũs

(
P(ũ∈Ũs)

ICS (s)
)

(11)

where P(ũ∈Ũs)
ICS (s) can be computed from the probability of collision between A(s) and Wp for ũ

(when A follows ũ) at each time t of this trajectory, that is, P(ũ,t)
ICS (s). It is assumed that the probability

at each time step is independent of the other time steps. Note that from partial planning perspective,
the model of the future should be considered over the time interval [tk, tk+2 + T] (as illustrated in the
planning process of Fig. 2), with tk the initial time step of the planning cycle k and T an appropriate
time horizon. In this case:

P(ũ∈Ũs)
ICS (s)=

tk+2+T∏
t=tk

P(ũ,t)
ICS (s) (12)

To determine the probability of a collision between A(s) and Wp at time t when following ũ (i.e.,
P(ũ,t)

ICS (s)), we must define the subset of points Xt for which A will be in collision with Wp at time t
when following ũ.

Xt = {qw/qw = (x, y) ∈ Tran−1
ũ (t)[Wp(t)�A(st)]} (13)

where � denotes Minkowski difference and qw is the workspace coordinates of A(s). Tran−1
ũ is the

unique geometric transformation describing the motion of A from s to st when following ũ [with s
(state to be checked) the initial state of ũ and st the collision state].

P(ũ,t)
ICS (s)=max

qw∈Xt

(P(qw)) (14)

This is the probability that a subset of points Xt is occupied by Wp. Wp is modelled by an inde-

pendent stochastic process for each object Bj, j= 1, ..., nb of the environment. f
Bj
p (x, t) and f

Bj
p (y, t)

denote the probability density functions of occupancy of an object Bj in the 2D workspace at time t
for a position coordinates x and y. Therefore, the probability of collision of qw; PBj(qw) for Bj can be
obtained by integration:

PBj(qw)=
∫

Xt

f
Bj
p (x, t)f

Bj
p (y, t)dxdy (15)

f
Bj
p can be modelled by a normal probability density distribution, where sensors’ uncertainty can be

added as Gaussian noise.

f
Bj
p (x, t)=N(μ, σ 2) (16)

μ is the mean value of the pdf of x at time t and σ is the corresponding covariance. Finally, the
probability of a collision of qw for all environment objects is

P(qw)= min
j=1,...,nb

PBj(qw). (17)

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 899

4.4.2. Distance constraint. The second constraint that should be considered is the minimum distance
to the goal. It is expressed by the term wdCostd(�particle(p)) in Eq. (5). wd is a weighting factor that
biases the function f towards the distance cost Costd. This cost represents the Euclidean distance
between the goal state sg and the final state of the trajectory �particle(p); sf (i.e., the state with the ID
corresponding to the last ID in Traj_IDs). It has the form:

Costd(�particle(p))= ||sf − sg|| (18)

4.4.3. Time constraint. Besides the minimum distance, when reasoning in the state× time space,
the time parameter is very important. Indeed, the third constraint is to consider a minimum time cost
of the solution, thanks to the term wtCostt(�particle(p)) in the function f (Eq. (5)). wt is a weighting
factor related to the time parameter which biases f towards the time cost Costt, where Costt is the
time cost of the trajectory �particle(p) such that:

Costt(�particle(p))=
|Traj_IDs|−1∑

j=1

Tδ�j (19)

with
Tδ�j the time cost of δ�j, the trajectory primitive linking two successive nodes corresponding
to two successive IDs in Traj_IDs. The two weighting factors ws and wt balance the prominence of
distance and time parameters to find the optimal solution.

4.5. Passive safety guarantee
The passive safety of PASSPMP-PSO has been defined and formulated in the previous sections, but
it should be proved. Therefore, to guarantee the safety of PASSPMP-PSO, the first addressed issue
is the algorithm time cycle δcycle that should be set carefully because the robot has a limited time to
return a decision, otherwise a collision may occur. Consequently, a decision time constraints δd must
be respected. It depends on the current state of the robot and the surrounding environment. Generally,
its value should be selected so that the robot does not take more time than the collision time (i.e.,
time taken by the robot to collide with an object) to decide what to do and to give the robot enough
time to avoid collision. δd can be formally defined as follows:

Definition 4 (Decision time). Given the current trajectory of A, δd is the time that separates the
current time instant of A from the instant corresponding to the first ICSb state on this trajectory.

To fulfil this requirement, the time cycle must never exceed the decision time, that is,

δcycle < δd (20)

This condition is necessary for the choice of PASSPMP-PSO time cycle. However, this is insufficient
to ensure that the robot always remains passively safe. Indeed, it must be proven that at each planning
cycle, a passively safe trajectory (ICSb-free) is found. To do so, the following property is required:

Property 2 (P-Safety guarantee). If a state s0 is p-safe, then there exists at least one p-safe state
trajectory that drives A through states that are also p-safe.

Proof. Given Definition 2, if s0 is p-safe, then there exists at least a braking trajectory ũb (from
the state s0 to sj) that is collision-free. At the state sj, A is at rest. Therefore, sj is p-safe. By applying
Property 1, as ũb is collision-free and sj is p-safe, then ũb is p-safe and every state of this trajectory
is also p-safe. Let ũb a particular case of possible trajectories, it has been proven that there exists a
p-safe trajectory.

Given Property 1, Property 2 guarantees that at each planning cycle, a p-safe partial trajectory is
available.

Another important element regarding safety issue is the model of the future. To consider all possi-
ble future motions of a given moving object with an unknown future behaviour (seen or unseen), the
model used herein is conservative: given an upper bound of the velocity of objects, every point of the
limit and outside the field-of-view is modelled as a disc that grows as time passes, that is, a cone in
space× time (see Fig. 4).2 Regarding this model, it is necessary to answer the question how far into

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

900 Safe motion planning based on a new encoding technique

Fig. 4. Model of the future: (a) space× time conservative model (partially represented for visualization pur-
poses) for a scenario with three fixed objects and one moving object. Every point of the limit of the field-of-view
and occlusions (unseen objects) is modelled as a disc that grows as time passes (i.e., a cone in space× time).
The fixed object remains constant over time (i.e., a vertical line in space× time). The moving objects are mod-
elled according to their future behaviour (i.e., a curve in space× time) if it is available and reliable, otherwise it
is treated as an unseen object and modelled as a growing disc. (b) How FOV shrinks as time passes (for a time
t1 greater than the sensing time), with δFOV the limit of the field-of-view and FOV the subset of WS perceived
by A.

the future reasoning is done? This model must still valid over a limited interval of time to guarantee
safety, hence, the following property:

Property 3 (Future model validity). The model of the future has to remain valid over the time
interval [tk, tk+2 + Th], for every cycle k, with tk+2 = tk + 2 ∗ δcycle.

Proof. PASSPMP-PSO is based on a PMP concept (see Section 4.1) where the future model
is updated at each cycle. Let us consider the planning cycle 0. Based on the world model W(t0),
PASSPMP-PSO has a time interval [t0, t1] to compute the trajectory �1 that will start at time t1 (cor-
responding to the state s1, i.e., the beginning of the next cycle [t1, t2]). This behaviour is iteratively
repeated until A reaches its goal. From a safety point of view, it is guaranteed that s1 is p-safe since
it is obtained from �0 (computed during the previous cycle) which is a p-safe trajectory. Thanks to
Property 2, the existence of a p-safe trajectory �1 (starting at s1 and driving A to the state s2) is
guaranteed. Normally, to ensure that PASSPMP-PSO can compute a p-safe trajectory �2 at the next
cycle ([t1, t2]), s2 must be p-safe with respect to W(t0). However, s2 corresponds to the time instant
t2 when W(t0) begins at t0. Assuming that, at time t2 (when the updated model of the future W(t2) is
available), s2 turns out to be a braking ICS with respect to W(t2), it means that a collision will occur.
That is why, W(t0) must be considered until t2 + Th.

From a braking ICS perspective and given Definition 2, for an arbitrary subset. Ũs
b (from a state s)

of the whole set of possible braking trajectories ũb of finite duration tb, a finite time horizon Th exists:

Th = max
ũb∈Ũs

b

{tb} (21)

For details and proof, readers are referred to ref. [2].

4.6. Stability and optimality
Regarding stability of the control system, in a partially unknown environment, stability in the sense
of reaching the goal is not possible to guarantee as long as the system has only a partial knowledge of
its environment. For example, unknown objects (i.e., not perceived by A) could prevent the system
to reach its goal. This problem has already been tackled in ref. [92], where it has been established
that in such conditions, stability is impossible to ensure. The primary concern of PASSPMP-PSO is
to guarantee the safety of the robot’s mission rather than completion of the mission, which may be
infeasible. Typically, motion safety has to be guaranteed before tackling the stability issue, and so it
is a problem of interest in itself.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 901

For the same reasons, the optimality issue is challenging in such conditions. Generally, to solve
an optimization problem, the solution should be defined by constraints to respect and an objective
function to maximize or minimize. The solution is feasible (admissible) if it respects the imposed
constraints. Equivalently, the optimality problem of motion planning requests finding a feasible
trajectory with a minimum cost.

First of all, the feasibility of PASSPMP-PSO’s resulting trajectory can be explicitly proven.
Conceptually, PASSPMP-PSO explores the search space by extending a tree in the state× time
space of A. The generated trajectories obey the feasibility constraint given the dynamic model of
the system (see Eq. (1)). Furthermore, PASSPMP-PSO is based on a passive safety guarantee where
generated trajectories are p-safe and every trajectory state is p-safe, that is, not braking ICS (given
Properties 1 and 2).

From the definition of a braking ICS (ICSb) in Eq. (7), A(s̃(s, ũb, t)) designates the closed subset
of the workspace occupied by A when it is in the state s̃ reached at time t starting from s while
following ũb by integrating the differential equation of A’s dynamics (Eq. (1)). States p-safety is then
defined while respecting kinodynamic constraints of the system. Therefore, given all these points,
PASSPMP-PSO is feasible.

Now that the feasibility is proven, the optimization problem can be addressed. Given the same
constraints mentioned above, PASSPMP-PSO computes partial trajectories to the goal so as to deal
with real-world situations. In this case, the optimization problem is subdivided into sub-problems
where the optimal solution is defined for each sub-problem. Thus, given the planning concept and
the harsh constraints imposed by the environment and the robot, a near-optimal partial trajectory is
computed at each PASSPMP-PSO planning cycle. It is defined as follows:

Definition 5 (Near-optimality). Given a PMP problem defined with an initial sk, a goal state sg,
a planning time cycle δd and a cost function f :�→R≥0, a trajectory �∗ is near-optimal if �∗ is
feasible and �∗ = argmin f (�n), ∀�n ∈�.

With �n a feasible partial trajectory and � the set of all feasible partial trajectories gen-
erated during the planning cycle. Based on the objective function in Eq. (5), the near-optimal
solution corresponds to the global best particle, that is, �∗ =Gbest. Gbest is the global mini-
mizer of the objective function. It is the best particle among all particles (trajectories), that is,
f (Gbest)= {f (�particle(p)), p= 1, ..., Np}. Therefore, �∗ is a near-optimal solution during δc time
cycle.

4.7. PASSPMP-PSO algorithm
Let us first summarize the addressed parts about the design concept of PASSPMP-PSO.
Conceptually, the algorithm has been designed primitively, with a natural reasoning behaviour
approach. For example, if a human is in a dynamic environment and has to reach a target that is out-
side his field-of-view, he will naturally plan an optimal partial trajectory in the limit of his knowledge
and will modify his trajectory continuously given the new update from the environment. Similarly,
given the model of the environment, PASSPMP-PSO computes an optimal partial trajectory in the
limit of its knowledge (related to Th, the time horizon). This trajectory can be completely or partially
executed when a new one is available. However, to handle real-time constraints, planning and exe-
cution are interleaved, that is, when executing a trajectory, a new one is planned to be executed in
the next cycle. The search space is explored using a tree-based method. It is based on a state× time
space exploration, where each node in the tree is extended given a set of feasible controls, starting
with the root node, and the process is repeated for new extended nodes until the whole tree is con-
structed. From the set of tree nodes, trajectories are encoded into particles, thanks to the encoding
technique presented in Section 4.3. The optimal trajectory corresponds to the global best Gbest. It is
determined using the objective function of Eq. (5) which is based on the time/distance costs and the
safety guarantee condition. Indeed, to guarantee safety, the natural behaviour when encountering a
danger (imminent collision) is to brake and stop. That is, in cases where collision is inevitable, the
system has to brake and stop to remain safe (given Definition 2). Therefore, given the PMP process
of PASSPMP-PSO (more details are in ref. [9]), at each planning cycle, a near-optimal passively
safe partial trajectory is computed. The set of partial trajectories computed during the whole process
drives the robot to its goal sg.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

902 Safe motion planning based on a new encoding technique

Algorithm 2 PASSPMP-PSO process for planning cycle k.
Input: goal sg, model of the future W(tk, tk+2 + Th), cycle duration δcycle, partial trajectory �k to
execute, number of particles Np − 1.
Output: �k+1 optimal p-safe partial trajectory to execute in next cycle k+ 1.

1: TREE=GROW_TREE(W(tk, tk+2 + Th), sk+1, δcycle); //state× time space exploration
2: �k+1= TRAJ_OPTIMIZATION (TREE,sg, Np − 1); //compute an optimal p-safe partial trajec-

tory to apply in cycle k+ 1
3:
4: Procedure GROW_TREE(W(tk, tk+2 + Th), sk+1, δcycle)
5: Tree initialization: ηroot = sk+1 (initial state of k+ 1 cycle, provided by �k), TREE= {ηroot},

N1 = {ηroot} (set of nodes ηi belonging to actual depth, i= 1, ..., |N1|), dtree = 0 (current tree
depth);

6: set texploration < δcycle;
7: while t < texploration do
8: N2 =∅;
9: for i=1 to |N1| do

10: Forall uj ∈Uctrl do //each node ηi is expanded given a set of control Uctrl

11: (ηnew,δ�new)← SAFE_EXPANSION(ηi, uj,W ,TREE);
12: //save ID of ηnew as child node ID in children IDs set of the parent ηi

13: ChildID_SET(ηi).push_back(ID(ηnew));
14: N2.push_back(ηnew);
15: end
16: if ηnew =∅ then
17: (ηnew,δ�new)← GENERATE_BRAKING_TRAJ(ηi);
18: ChildID_SET(ηi).push_back(ID(ηnew); //save ID of ηnew as a child node ID of the

parent node ηi

19: end if
20: end for
21: N1←N2;
22: dtree = dtree + 1;
23: end while
24: return TREE

25: EndProcedure
26:
27: Procedure SAFE_EXPANSION(ηi,uj,W, TREE)
28: // generate a trajectory primitive
29: (ηnew, δ�new)← GENERATE_PRIM(ηi, uj); //δ�new is delimited by the two nodes ηi and ηnew

30: //passive safety check based on ICSb-CHECK algorithm2

31: if BRAKING_ICS_CHECK(ηnew,W) = False then
32: //ηnew is p-safe
33: if δ�new is collision-free then
34: TREE= TREE ∪ ηnew;
35: TREE= TREE ∪ δ�new;
36: return TREE

37: end if
38: end if
39: EndProcedure

Algorithm 2 illustrates the overall process of PASSPMP-PSO for one planning cycle (cycle k)
and Algorithms 1, 3 and 4 represent sub-algorithms corresponding to the functions of Algorithm 2.
During this cycle, the partial trajectory �k+1 (the output of Algorithm 2) is planned towards the goal
sg based on the conservative model of the future W dealing with unseen objects (occlusions and
perception limits) and their unknown future behaviour. This model is valid during 2δcycle + Th (given
Property 3), that is, it remains valid so as to guarantee p-safety of �k+1 until sk+2 (its final state).

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 903

Algorithm 3 Trajectory optimization.
Input: expanded tree TREE, goal sg, number of particles Np − 1.
Output: best particle �k+1.

1: //Particles initialization (optimization iteration τ = 0)
2: for each particle p=0 to Np − 1 do
3: (Xτ (p), Vτ (p))← INITIALIZE_SWARM(Ntree); //Algorithm 4
4: Pbestτ (p)= Xτ (p);
5: �particle(p)← CONSTRUCT_TRAJ(Xτ (p)); //state trajectory constructed using Algorithm 1
6: compute fτ (p); // the objective function according to Eq. (5)
7: end for
8: Gbestindex = argmin

p=1,...,Np

fτ (p); //index of the particle corresponding to the global best

9: Gbestτ = Xτ (Gbestindex);
10: while τ < iterationmax do
11: for each particle p=0 to Np − 1 do
12: Vτ+1(p)= Vτ (p)+wc|rand1|(Pbestτ (p)− Xτ (p))+ws|rand2|(Gbestτ − Xτ (p));
13: if |Vτ+1(p)|> Vpmax then
14: Vτ+1(p)= Vpmax;
15: end if
16: Xτ+1(p)= Xτ (p)+ Vτ+1(p);
17: //construct trajectory
18: �particle(p)← CONSTRUCT_TRAJ(Xτ+1(p)); //state trajectory constructed according to

Algorithm 1
19: //compute the objective function
20: compute fτ+1(p); //according to Eq. (5)
21: if fτ+1(p) < fτ (p) then
22: Pbestτ+1(p)= Xτ+1(p); //update personal best
23: end if
24: end for
25: //update global best
26: if minp=1,...,Np fτ+1(p) < minp=1,...,Np fτ (p) then
27: Gbestindex = argmin

p=1,...,Np

fτ+1(p);

28: Gbestτ+1 = Xτ+1(Gbestindex);
29: end if
30: end while
31: �k+1 =�particle(Gbestindex);
32: return �k+1

Algorithm 4 Particles initialization.
Input: Ntree.
Output: X, V; position and velocity vectors.

1: for n=0 to Ntree do
2: X(p)[n]=RANDOM_POSITION();
3: V(p)[n]=RANDOM_VELOCITY();
4: end for
5: return X
6: return V

In parallel to planning, �k the trajectory computed in the previous cycle is executed. The goal sg, the
world model W and the time cycle δcycle are all inputs of Algorithm 2 to plan the trajectory �k+1.

Associated with Algorithm 2, the schematic diagram of Fig. 5 simply introduces a general
overview of the different parts of the planning process and how they interact. PASSPMP-PSO algo-
rithm contains mainly two steps: (1) the state× time space exploration (GROW_TREE function) and

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

904 Safe motion planning based on a new encoding technique

Fig. 5. The schematic diagram of PASSPMP-PSO process of Algorithm 2.

(2) computing an optimal p-safe partial trajectory �k+1 (TRAJ_OPTIMIZATION function, given by
Algorithm 3). The latter step requires Algorithm 4 for the particles initialization and Algorithm 1 for
the trajectories construction (as illustrated in Fig. 5).

The first step of Algorithm 2 is therefore performed by expanding a tree in the state× time space
of A (GROW_TREE function, in Algorithm 2). For each node ηi (parent node), all child nodes
(states) are tested for p-safety and then p-safe nodes are retained as descendants of this node. Their

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 905

corresponding IDs are, respectively, saved in the ChildID_SET to be used in the next step. For a given
node ηi, there exist situations where no p-safe primitive exists. A collision-free braking trajectory is
therefore generated to guarantee passive safety (given Definition 2). In this case, ηi has a unique child
whose ID is also saved.

The second step of the PASSPMP-PSO algorithm is to compute a near-optimal p-safe partial tra-
jectory �k+1 to apply in cycle k+ 1 (using the TRAJ_OPTIMIZATION function, in Algorithm 2
and detailed in Algorithm 3). This is accomplished, thanks to an iterative optimization pro-
cess based on PSO. During the first iteration (τ = 0), the swarm is randomly initialized by the
INITIALIZE_SWARM function, in Algorithm 4, where each particle is represented by an Ntree

dimensional position vector Xτ (p) (see Fig. 3). Based on the Xτ vector, for each particle p, the
personal best vector Pbestτ is initialized and a state trajectory is constructed using Algorithm 1.
The global best Gbestτ is then computed based on the objective function fτ of each particle. The
velocity and position vectors are then updated given Pbestτ and Gbestτ . As for the first process iter-
ation, a state trajectory �particle is constructed (for each particle) based on the new position vector
Xτ+1 according to Algorithm 1. The corresponding objective function fτ+1 is computed according to
Eq. (5). Consequently, the personal best Pbestτ+1 and the global best Gbestτ+1 are computed. This
process is repeated for a maximum number of iterations (iterationmax). At the end of this process,
the constructed trajectory �particle corresponding to the global best (the best solution found so far) is
saved as �k+1.

5. Results
In this paper, a new motion planner called PASSPMP-PSO has been proposed. Unlike existing state-
of-the-art approaches, it solves both motion safety and trajectory optimization issues, thanks to a new
tree encoding technique based on PSO. The particularity of this method is to extend feasible trajecto-
ries (instead of paths for the other encoding techniques) in the state× time space, that is, to consider
the kinodynamic constraints of the system and the time parameter. In addition, the solution is defined,
thanks to an objective function which, unlike the other methods, depends on a safety criterion and
minimum trajectory costs (wrt time and distance). Safety is formally guaranteed, it is based on a pas-
sive motion safety concept. To better deal with real-world constraints, PASSPMP-PSO interleaves
planning and execution processes. At each cycle, a near-optimal and passively safe partial trajectory
is generated. It is guaranteed that at each cycle, a p-safe trajectory is always found. PASSPMP-PSO
algorithm has been implemented in simulation and in real-world experiments, to illustrate its perfor-
mances, respectively, in challenging scenarios and real situations. Furthermore, it has been evaluated
wrt two other motion planning methods.

5.1. Simulation results
5.1.1. Test conditions. To validate PASSPMP-PSO and demonstrate its performances, it has been
implemented and tested in simulation on scenarios similar to that of Fig. 1. The simulation envi-
ronment is a 2D workspace of 180× 180 m, featuring fixed and moving objects with arbitrary
trajectories2 and an upper bounded velocity vbmax = 20 m/s. The used robotic system A is a car-like
vehicle, governed by the following dynamics:⎡

⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

v̇

ξ̇

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

v cos θ

v sin θ

v tan ξ/L

0

0

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦ uα +

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎦ uξ (22)

where A’s state is a 5-tuple s = (x, y, θ, v, ξ), (x, y) the Cartesian coordinates, θ the orientation, v the
linear velocity and ξ the steering angle. (uα, uξ) is the control couple, with uα the linear acceleration
and uξ the steering angle velocity. L denotes A’s wheelbase.

The system constraints are : |v| ≤ vmax, |ξ | ≤ ξmax, |uα| ≤ uαmax and |uξ | ≤ uξmax , with, vmax =
20 m/s, ξmax = 0.314 rad, uαmax = 7 m/s2 and uξmax = 0.314 rad/s.

2Note that objects trajectories are generated using B-spline method.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

906 Safe motion planning based on a new encoding technique

Fig. 6. Test scenario: the environment features three fixed objects (polygons) and two moving objects (black
discs) (with their future trajectories). The robot A is the disc at the centre and the red point is the goal state.

Fig. 7. Field-of-view for the scenario of Fig. 6. The circular arc corresponding to the maximum range of the
range finder has been replaced by straight segments; this conservative simplification could easily be lifted. The
limits of the field-of-view are represented by the magenta segments and occlusions are represented by the green
segments.

A is equipped with an omnidirectional laser range finder placed in the centre of A (i.e., A has a
360◦ field-of-view), with a maximum range of 80 m. A conservative model of the future is considered
in PASSPMP-PSO dealing with field-of-view limits, occlusions and the unknown future behaviour
of moving objects.

The implementation of different developed algorithms has been done in C++ on a laptop computer
Intel Core i7 1.6GHz CPU, 4GB RAM, ATI Mobility Radeon HD 4500 GPU.

5.1.2. PASSPMP-PSO at work. PASSPMP-PSO has been tested in two different scenarios: a sim-
ple environment and a crowded environment. To understand how PASSPMP-PSO works, it is
illustrated at first for a simple scenario featuring two moving objects and three fixed objects. The 2D
workspace and A’s field-of-view are, respectively, represented in Figs. 6 and 7. The size of the swarm

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 907

Fig. 8. PASSPMP-PSO for a given planning cycle. The robot is the red disc at the centre. The environment
corresponds to the scenario of Fig. 6. The red point is the goal state. The grey regions illustrate the braking ICS
states (computed by ICSb-CHECK2). The green points are all p-safe tree nodes. Particles are represented by
the red trajectories (corresponding to the final iteration of the optimization process). The optimal solution is the
green trajectory. For more clarity, the trajectory primitives represented in cyan are not p-safe and the blues are
other possible trajectories (not encoded as particles).

is 100 particles. The acceleration coefficients wc and ws in Eq. (2) are set to 2 [wc =ws = 2]10, 93 and
the weighting factors wt and wd in the objective function of Eq. (5) are, respectively, set to 0.8 and
0.2 [wt = 0.8 and wd = 0.2].

Figure 8 illustrates PASSPMP-PSO behaviour during one planning cycle. After the expansion of
the tree in the search space, partial trajectories are constructed from the set of tree nodes based on the
encoding algorithm (Algorithm 1). Finally, each particle represents a partial trajectory (trajectories in
red). Given the objective function, the optimization problem is solved based on safety and trajectory
cost (wrt time and distance) constraints. To verify the passive safety, ICSb-CHECK2 is used. Based
on the current model of the future, the grey areas in Fig. 8 represent ICSb states while the remain-
ing areas of the space are p-safe. Note that for friendly printing, ICSb regions are represented in
grey instead of black colour representing the intersection of all ICSb sets as stated in ICSb-CHECK

algorithm.2 A first conclusion is that all particles are p-safe as they are out of the ICSb regions.
By adding the cost constraints, the optimal solution can finally be determined. It is the particle repre-
sented in green (the global best Gbest). Therefore, unlike existing trajectory optimization approaches,
the resulting solution in our case fulfils both safety and optimality conditions.

Figure 9 illustrates the optimization process through different iterations. At each iteration, the
global best (the green trajectory) is determined from a set of possible partial trajectories (particles).
The particles are different over iterations, as at each iteration, a trajectory is constructed given an
updated particle’s priority vector.

Figure 10 illustrates the planning process for different PASSPMP-PSO cycles, with δcycle = 2.4 s.
At each cycle, the world model is updated and accordingly ICSb-free regions are recomputed. Based
on these regions, a p-safe optimal partial trajectory is computed to be executed in the next cycle [i.e.,
during a cycle k and given the world model W(tk) (corresponding to the state sk), the trajectory �k+1

is computed (starting at the state sk+1)]. Planning and execution are interleaved; when a trajectory is
executed, the trajectory to be executed in the next cycle is computed and the process is repeated until
the robot reaches its goal. Through its different cycles, PASSPMP-PSO drives the robot to its goal

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

908 Safe motion planning based on a new encoding technique

Fig. 9. Snapshots of PASSPMP-PSO for different iterations of the optimization process. The optimal solution
is represented in the last snapshot (on the bottom right), that is, the global best found so far (the solution is the
green trajectory).

by generating optimal partial trajectories while guaranteeing passive safety. When most planning
approaches miss reactivity to environment changes, especially with regard to its future evolution,
PASSPMP-PSO with its PMP process, guarantees a regular update of the environment future model
within a valid lookahead. From a passive safety perspective, this last parameter depends on the max-
imum braking time (the ratio between the linear speed of the robot and its linear acceleration), given
Eq. (21). Furthermore, a special feature of this model lies in considering the future evolution of
both perceived objects and unexpected objects (representing imminent collision risk from occluded
regions and field-of-view limits). Therefore, the robot avoids these moving objects or brakes to stop
when avoidance is impossible. To remain p-safe, the robot is always moving out of the grey area (i.e.,
braking ICS states) in Fig. 10.

To evaluate PASSPMP-PSO performances, it has been tested in a more complex scenario (see
Fig. 11), a crowded environment with 22 objects moving arbitrarily and at high speed. Figure 12
illustrates the PASSPMP-PSO process interleaving planning and execution, many snapshots corre-
sponding to different cycles are represented, with δcycle = 1.4 s. At each cycle, a partial trajectory
is computed while another is executed. The executed trajectory is the thick mark behind the robot
(computed in the previous cycle). The planned trajectory is the trajectory ahead of the robot (to be
executed in next cycle). The whole computed partial trajectories drive the robot to its goal.

5.1.3. PASSPMP-PSO performances. The purpose of this section is to evaluate the performances of
PASSPMP-PSO wrt some important algorithm parameters, namely the wt and wd weighting factors,
the objects velocity, the time cycle and the swarm size. The experiments have been carried out in the

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 909

Fig. 10. PASSPMP-PSO planning cycles. During the current cycle (corresponding to a given snapshot) and
given the current world model/ICSb region, the next trajectory is planned (for more clarity, the robot state
corresponding to the first state of the current cycle is represented by the grey dashed disc, depicting also the
first state of the previously planned trajectory). The optimal partial trajectory is green. Trajectory primitives
in blue are p-safe while those in cyan are ICSb. The magenta primitives are collision-free braking trajectories
generated to guarantee passive safety (a case where no p-safe primitive exists for a given node). The grey
regions of the space are the ICSb states to be avoided by the robot. Note that the first snapshot corresponds to
the first plan computed while the robot is at rest (as no plan is a priori available at the beginning of the process).

Fig. 11. A crowded environment with 22 objects moving arbitrarily.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

910 Safe motion planning based on a new encoding technique

Fig. 12. PASSPMP-PSO at work in a crowded environment: sequences of A’s displacement at different instants
of the process. The red mark left behind the robot is the executed trajectory. The trajectory ahead the robot is
the planned trajectory (to be executed). The marks in cyan behind the objects represent their displacement and
the arrows depict the directions of their trajectories, where each object is assigned an arrow colour (for a better
visualization of their position with time).

scenario of Fig. 12 and for the same experimental conditions as those defined in Section 5.1.1 (A’s
kinodynamics constraints, A’s field-of-view, environment constraints, etc.).

Weighting factors. One contribution of PASSPMP-PSO is to find an optimal solution, which is
based on the objective function of Eq. (5). The two parameters wd and wt of this function (distance
and time weighting factors) can significantly affect PASSPMP-PSO’s results. To analyse the perfor-
mance of the approach according to different combinations of these two weighting factors, from 100
runs of the algorithm, some illustrative results are depicted in Tables III and IV. Let us first recall
that PASSPMP-PSO is based on a tree exhaustive expansion, that is, the tree is expanded accord-
ing to a set of controls defined by a constant maximum linear acceleration uα = uαmax and a constant
steering angle |uξ |<= uξmax, namely the control couples: (uα,−uξ), (uα, 0), (uα, uξ). This tree is
expanded in a passively safe manner (given Algorithm 2), where, in case of no p-safe node is avail-
able, a braking trajectory is generated. Therefore, each generated partial trajectory (particle) can be

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 911

Table III. Performance of PASSPMP-PSO according to different combinations of the two weighting factors
wd and wt for a given goal state (tests carried out in the scenario of Fig. 11). f , costd and costt correspond to

the best particle. The grey shaded values represent the results corresponding to the best combination (wd, wt).

wd 0 0.1 0.2 0.3 0.5 1
wt 1 0.9 0.8 0.7 0.5 0
costd(m) 39.9 29.4 29.4 24.9 24.9 24.9
costt(s) 4.8 4.8 4.8 7.2 7.2 7.2
f 4.8 9.7 9.7 12.5 12.5 24.9

Table IV. Performance of PASSPMP-PSO according to different combinations of the two weighting factors
wd and wt for different goal states (tests carried out in the scenario of Fig. 11). For simplicity, only the best

(wd, wt) combination is represented for each goal.

wd 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
wt 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2
costd(m) 131.1 29.4 12.5 11.9 30.9 12.2 32.4 11.2
costt(s) 5.3 4.8 5.3 5.3 5.3 4.8 5.3 5.3
f 17.9 9.7 7.4 7.9 18.1 9.2 24.2 10
Diff+d (m) 17 4.5 3.4 2.2 1.6 1.1 0.7 0.4

Diff−t (s) 1.9 2.4 1.9 1.9 1.9 2.4 1.9 1.9

the concatenation of a set of primitives (accelerating, decelerating or with constant velocity) and a
braking trajectory (in case the robot has to stop to remain p-safe).

Table III depicts the performance of PASSPMP-PSO according to wd and wt for a given goal state,
where the results for each (wd, wt) combination correspond to the best particle. Given Algorithm 3,
the best solution is selected from a set of particles (partial trajectories) verifying p-safety criterion,
which can be of different durations (cumulated time costt in Eq. (19)) and of different Euclidean dis-
tances (distance separating the final state of the partial trajectory and the goal state; costd in Eq. (18)).
Some trajectories can be optimal wrt time, that is, the corresponding cumulative time costt is the
minimum among possible trajectories, but in return, the distance costd is very large. This is the case
where the function f is minimized only wrt time (i.e., wd = 0, then f = costt) (case of the first column
of Table III). Other trajectories are optimal wrt distance (costd is the minimum), while the duration of
the trajectory is large (with regard to the durations of the other trajectories). In this case, the function
f is minimized only wrt distance (i.e., wt = 0, then f = costd) (case of the last column of Table III).
Unlike these two cases, our purpose is to minimize the function f wrt both time and distance parame-
ters. Therefore, the partial trajectory should be selected by finding a compromise between these two
parameters. It is clear from Table III that, for values of wt less than 0.8 (respectively wd > 0.2), the
trajectory is selected by minimizing the distance (i.e., costd is minimum). However, when wt ≥ 0.8
(respectively wd ≤ 0.2), both time and distance parameters are minimized. costd corresponding to the
selected trajectory is greater than the minimum costd with a difference of 4.5 m, but the duration of
the trajectory gains 2.4 s less. Moreover, the distance travelled during this time (2.4 s) is generally
greater than the lost distance (4.5 m). If, for example, the robot is moving with 5 m/s speed, the
distance travelled during this time (2.4 s) is 12 m, which is much greater than 4.5 m.

The same tests as those of Table III have been carried out but for different goal states. The corre-
sponding results are depicted in Table IV; for each goal state, only the results corresponding to the
best combination (wd, wt) are represented (the column in grey in Table III is represented for each
case). For each combination (wd, wt), the objective function f , the distance to the goal costd and the
trajectory’s time cost costt are computed (as for Table III). We also compute the distance difference
between the selected trajectory and the trajectory with the minimum distance costd, denoted Diff+d ,
as well as the time difference between the two trajectories, denoted Diff−t . The main remark deduced
from Table IV is that the larger the wd factor (or the smaller wt), the smaller the distance difference
Diff+d . This makes sense because the larger the wd, the more the distance parameter is favoured.
Moreover, when comparing the obtained results for low and high values of wt, it may seem that it is
better to use low values of wt (relatively to Diff+d and Diff−t values). However, if, for example, a time

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

912 Safe motion planning based on a new encoding technique

Table V. Effect of the objects maximum speed on the resulting p-safe states set.

vbmax (m/s) 5 10 20 30 40 50
P-safe states (%) 35.7 34.2 31.8 21 16 11.8

Table VI. Evaluation of the duration of the generated trajectory and tree expansion for different
values of PASSPMP-PSO’s time cycle (for scenario of Fig. 11).

δc(s) 0.3 1.5 2.5 3.5 4.5 5.5
nnodes 1 13 40 135 176 237
δe(s) 0 1.76 2.64 3.52 7.12 8

factor wt = 0.2 is used (resp. wd = 0.8), in the case of the test of Table III, only the distance will be
minimized and not both parameters (time and distance). That is why, it is more convenient to use
high values of wt. When wt = 0.9, Diff+d is relatively large, but in the case where wt = 0.8, the value
of Diff+d is acceptable relative to time earned (Diff−t). However, an important note is that in the case
where wt = 0.9, the selected partial trajectory never ends with a braking trajectory (except of course
in the case where all trajectories end with a braking trajectory). Therefore, if in a particular case, it
is not desirable to favour braking trajectories, it is sufficient to set the wt factor to this value. These
results justify our choice for parameters wt = 0.8 and wd = 0.2.

Influence of velocity. Given the conservative nature of the model of the future, this model allows
to take into account all the possible future movements of a given object with an arbitrary dynamics
while considering only its maximum speed. The maximum speed of moving objects is therefore
an important parameter that directly affects the computation of braking ICS states (respectively, p-
safe states set). To do so, the ICSb set is computed for different values of the maximum speed of
moving obstacles. The results obtained are represented in Table V, where the percentage of p-safe
states (around the robot) is given according to the different values of obstacles’ maximum speed vbmax

(noting that the whole region outside the field-of-view limits is unsafe). From the table, it is clear
that the higher the speed, the more the p-safe region shrinks (the number of p-safe states decreases).
Since each point of the field-of-view limits and occlusions is considered as a potential object with an
unknown trajectory, the future behaviour of each of these points is modelled by a disc that increases
proportionally with time, with a growth ratio corresponding to the object’s maximum speed (a cone
in the space× time). Therefore, when the maximum speed of objects varies, the growth ratio of discs
varies too. Accordingly, when the speed vbmax increases, the space occupied by the discs also increases
(the free space decreases). It can be concluded that the set of p-safe states differs according to the
nature of objects being present in the environment. For example, if moving obstacles are pedestrians
with 5 m/s maximum speed (a pedestrian running), the p-safe states region is relatively large (the
case of the first column in Table V), while, for a vehicle with 50 m/s maximum speed, the p-safe
region decreases considerably (the case of the last value in Table V). This value is set according to
the application and the robotic system constraints.

Influence of the time cycle. PASSPMP-PSO generates a p-safe partial trajectory towards the
goal at each δcycle time cycle. In order to understand the algorithm’s behaviour, the duration δe of
this trajectory as well as the number of nodes generated during the cycle are estimated for different
values of δcycle. Table VI shows that the duration of the trajectory increases wrt δcycle. The longer the
time cycle, the longer the planner has time to explore the search space. As a result, the generated
trajectory is larger and closer to the goal. However, it is worth noting that when the cycle’s duration
is very small, it may be insufficient to calculate a p-safe trajectory (the case of the first δc value in
Table VI). In this case, the duration of the safety check process (computation of ICSb) is greater
than the duration of the cycle. Recalling that the safety check process is based on the ICSb-CHECK

algorithm.2 Therefore, PASSPMP-PSO performance depends on the ICSb-CHECK time complexity.
It is also illustrated in Table VI that the number of nodes nnodes increases with δcycle, which is obvious
from the moment that the tree grows over time and its expansion is limited by the cycle duration
(see Algorithm 2, GROW_TREE function). The number of nodes nnodes grows exponentially, but
for the last two values of the table, it is not the case, where the number of nodes generated should

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 913

Fig. 13. Evaluation of PASSPMP-PSO for different swarm sizes Np. Particles (decoded trajectories) are the red
trajectories and the optimal solution is the green trajectory.

have been larger. This is due to unsafe regions (ICSb states); the longer the tree extends, the more
trajectory primitives generated will come close to the ICSb states (mainly corresponding to the limit
of the field-of-view). As a result, many nodes cannot be expanded (i.e., it is not possible to generate
p-safe primitives from a given node). In this case, a collision-free braking trajectory is generated
to guarantee passive safety (see line # 17 of Algorithm 2). The time cycle must then be chosen
neither too small so as to take into account the complexity of ICSb-CHECK nor too big because of
the restrictions of the braking ICS region. Moreover, from a PMP perspective, it will also allow the
model of the future to be more frequently updated.

Swarm size. An important parameter in the PASSPMP-PSO’s optimization process is the number
of swarm particles. PASSPMP-PSO is therefore evaluated for different swarm sizes (Np). After sev-
eral tests, some results are presented in Fig. 13. For a number of particles less than 20, the resulting
solution (trajectory depicted in green) is not the optimal solution, as the number of decoded trajec-
tories (depicted in red) is small. Noting that for Np = 15, among many runs, the optimal solution
can be found but it is random (due to the random initialization of the optimization process). From
20 particles and more, PASSPMP-PSO manages to find the optimal solution. The statistical result
regarding the frequency for obtaining optimal trajectory over 100 runs is 100%. However, this is not

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

914 Safe motion planning based on a new encoding technique

Fig. 14. The behaviour of PASSPMP-PSO (on the left) and the PASSPMP (on the right) in the presence of a
U-shaped object.

.

the case for most encoding-based shortest path approaches (e.g., refs. [79, 82]) for which the fre-
quency of obtaining optimal path is less than 100% for the same range of particles values. Besides,
we observe for PASSPMP-PSO that beyond 100 particles, decoded trajectories are different when
the size changes but their number does not increase. It can be concluded that PASSPMP-PSO per-
forms well for Np ∈ [20, 100], and especially Np must not be less than 20 particles, because it is not
sufficient to find the optimal solution.

5.1.4. PASSPMP-PSO versus PASSPMP. In this section, PASSPMP-PSO is compared to
PASSPMP9 with respect to the problem of local minima. The two algorithms have been tested in
the same conditions and constraints. Figure 14 illustrates their behaviour in a scenario containing a
U-shaped fixed object. It is clear that both approaches verify passive motion safety as the robot avoids
ICSb states (grey regions). However, the planned trajectory is different for each case. In PASSPMP,
the robot is trapped in a local minimum, because the planned trajectory ends with a braking trajectory
and then drives the robot to a stagnation state. As the PASSPMP ultimate objective is to guarantee p-
safety, the robot brakes when approaching the ICSb regions. Furthermore, even if the robot can leave
the concave region, its trajectory will not be an optimal solution. In another case, PASSPMP-PSO
planned trajectory is an optimal solution and prevents the robot from falling into a local minimum.
It can be concluded that PASSPMP-PSO has more performances than PASSPMP in finding a global
optimum.

5.1.5. PASSPMP-PSO versus ISS approach. This section evaluates the performance of
PASSPMP-PSO wrt another planning approach, ISS.49 Among planning approaches, this approach
is the most suitable for unknown environments where the robot only uses its on-board sensors for
perception. Furthermore, it is very adapted for real-time applications and it is highly applied in
road networks and rough terrains. This method is used as a local planner, thus gaining in reactiv-
ity. However, the planned trajectories can be biased by a global planner so as to guide the robot
towards the goal. Therefore, this method can be easily adapted to such constraints of Fig. 1. These
constraints are the most challenging with regard to the safety guarantee criterion, which is the main
purpose of PASSPMP-PSO.

ISS is a straightforward approach intended to generate feasible motion planning search space,
where all motions sampled in the input space are inherently executable. Each input is simulated
using the predictive motion model (dynamics of the robotic system) to determine the shape of the
resulting trajectory. The generated trajectories can be evaluated according to a given cost function
and can be tested for collision-free.

PASSPMP-PSO and ISS have been tested in the same conditions (as stated in Section 5.1.1) and
the respective results have been compared with regard to the safety guarantee issue, the local minima
problem and the algorithms running time.

The above sections demonstrate the passive motion safety of PASSPMP-PSO in partially observ-
able environment while considering occlusions, field-of-view limits and objects future trajectories.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 915

Fig. 15. ISS at work in the scenario of Fig. 11: (a) Snapshot at a given time tk : A is in a collision-free state,
orange trajectories are not safe and the blue trajectory is the selected collision-free trajectory to apply. (b)
Snapshot at time tk + ζ (ζ duration of the executed trajectory part): A is in a collision state with a moving
object [which is a state of the previously selected trajectory (blue trajectory in the left snapshot)].

Fig. 16. The behaviour of ISS in the presence of a U-shaped object, a case where the robot is trapped in an
unsafe state. The selected trajectory is depicted in green. In the first snapshots (from left), low cost collision-
free trajectories to the goal are selected. In the last snapshot (on the right), the robot is in a state where no
collision-free trajectory is available. For more clarity, the robot’s planning state of the previous snapshot is
represented by the grey disc.

To evaluate the safety of ISS approach, it has been tested in a same scenario, namely the environment
of Fig. 11. In Fig. 15a, the robot is in a collision-free state and generates a set of 11 trajectories to
drive it towards the goal. The trajectories depicted in orange are not safe. Accordingly, a collision-free
trajectory with a low cost to the goal is selected (represented in blue). When executing this trajectory,
the robot will end up in a collision situation that cannot be avoided as shown in Fig. 15b. Even if
the ISS approach can deal with moving objects, their future behaviour (objects dynamics) is not con-
sidered. Therefore, even if the robot is in a collision-free state at the present time and its generated
trajectory is collision-free, there is no guarantee that collision will not occur in the future. Reasoning
about the future is a safety criterion. Missing this criterion, ISS approach will fail at guaranteeing
safety.

The second issue for which ISS approach has been evaluated is the local minima problem. In
Section 5.1.4, PASSPMP-PSO has been compared to PASSPMP wrt this problem. It has been found
that PASSPMP-PSO has good performances to find a global optimum, while PASSPMP has been
trapped in a local minimum. However, PASSPMP’s safety guarantee remains valid. ISS approach has
been tested in the same scenario of Fig. 14, with a U-shaped obstacle and for the same conditions
and constraints.

Two situations are highlighted: in the first case, the robot can end up in a situation where no
collision-free trajectory is available. Figure 16 illustrates ISS results for such a situation. In the two
first snapshots (on the left), a collision-free trajectory to the goal is selected (the closest to the goal).
However, in the last snapshot, even if the previous trajectory drives the robot to a collision-free state,
no collision-free trajectory is available from this state. Therefore, the robot is trapped in a local
minimum which, in addition, is unsafe.

In the second situation, the robot has found a collision-free trajectory, which has been selected
closest to the goal, as illustrated in Fig. 17. However, the robot is trapped in the concave region of the

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

916 Safe motion planning based on a new encoding technique

Table VII. Average running time of PASSPMP-PSO and ISS (for scenario of Fig. 11).

PASSPMP-PSO ISS

Running time (ms) 29 65

Fig. 17. The behaviour of ISS in the presence of a U-shaped object, a case where the robot is trapped in the
concave region of the object (snapshots are depicted in a chronological order from left to right). The selected
trajectory is represented in green. The grey disc is the robot’s planning state of the previous snapshot.

object indefinitely or until it finds an exit or is driven to an unsafe state (case of the first situation).
This confirms that the ISS method is not optimal and no safety guarantee can be provided.

Finally, the running times of PASSPMP-PSO and ISS algorithms are evaluated in Table VII. The
tests have been carried out for several runs of each algorithm, for the scenario of Fig. 11 with 22
moving objects. For PASSPMP-PSO, the swarm size is set to 100 particles and δc = 2.4 s, while
for ISS, collision check is performed for a set of 11 trajectories. From Table VII, both algorithms
are suitable for real-time applications. However, PASSPMP-PSO presents more performances than
ISS. This is due to the parallel process between planning (decision making) and execution (executed
trajectory is planned in the previous cycle), where the time cycle is appropriately set.

Noting that PASSPMP-PSO depends mainly on the number of particles (for loops in Algorithm 2
and its corresponding diagram of Fig. 5). However, even if the swarm size can grow exponentially,
the computing time of the algorithm can easily decrease, thanks to the use of sub-swarms. The com-
putations are therefore performed for each sub-swarm, where the whole sub-swarms act in parallel
(using threads). At the end of the process, the final solution is computed, thanks to the sub-swarms’
solutions.

To conclude, after evaluating the results of PASSPMP-PSO and ISS with respect to the motion
safety guarantee, the local minima problem and the algorithms running time (for the same test con-
ditions), it has been confirmed that the ISS method is not optimal and no safety guarantees can be
provided. By contrast, PASSPMP-PSO generates a trajectory that answers both the safety and opti-
mality conditions. Furthermore, the average running time of the PASSPMP-PSO algorithm is less
than 50% of the average running time of the ISS algorithm.

5.2. Experimental results
PASSPMP-PSO has been implemented on a real platform; a robotic wheelchair (presented in
Fig. 18) to demonstrate its performances from real experiments. These experiments allow showing
PASSPMP-PSO at work in a partially observable environment where the wheelchair uses its on-
board sensors only. However, the most challenging issue is to verify in real conditions the passive
safety of PASSPMP-PSO. The time cycle is set to δcycle = 0.4 s and the number of particles is set
to Np = 50. The experimental platform is a robotic wheelchair that has been developed at CDTA3.
It is basically a manual wheelchair that we have motorized by replacing its classic wheels with a
motorized chassis based on Brushless motors and have equipped with a hardware and a software
architecture and a perception system. The computing resources are mainly partitioned into two parts;
(1) the low level part whose main functions are the data acquisition and processing, the control
(PID4), and the communication of all low level components (e.g., motors, encoders, electronic cards,

3CDTA; Center for the Development of Advanced Technologies.
4PID, proportional-integral-derivative controller.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 917

Fig. 18. Experimental platform; a robotic wheelchair.

etc.), (2) the on-board computer: a computing unit that is obviously essential to support the intelli-
gent part (i.e., the implementation of PASSPMP-PSO). The on-board computer has been selected
powerful enough to support all the algorithms developed in this work. It is an Intel Core i7-6500U
2.5 GHz× 4 CPU, 8GB RAM, Intel HD Graphics 520 (Skylake GT2) GPU. The PASSPMP-PSO
algorithm has been implemented in C++ under robot operating system5, a tool that greatly eases
implementation, and is very suitable for real-time applications. The robotic wheelchair is mainly
equipped with a Laser sensor UST-10LX covering 270◦ field-of-view and 10 m maximum range,
placed in the front part of the wheelchair. The dynamics of the robotic wheelchair is described below.

5.2.1. Robot model. The wheelchair is a Differential drive system, composed of two indepen-
dently controlled non-steerable fixed wheels. This system is characterized by a 5-tuple state s =
(x, y, θ, vr, vl); (x, y) the Cartesian coordinates, θ the orientation and vr, vl the right and left wheel
velocities. ur and ul are respectively the acceleration of the right and left wheels. L denotes A’s
wheelbase. The motion of the system is governed by the following dynamics:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

v̇r

v̇l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 1/2

⎡
⎢⎢⎢⎢⎢⎢⎣

(vr + vl) cos θ

(vr + vl) sin θ

2(vr − vl)/L

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

ur +

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

ul (23)

The system constraints are : |vr|, |vl| ≤ 4.16 m/s and |vr|, |vl| ≤ 1.35m/s2.

5.2.2. PASSPMP-PSO at work. At first, PASSPMP-PSO is tested in static indoor and outdoor envi-
ronments. In Fig. 19, the wheelchair evolves in an outdoor environment and, given its initial state, it
has to pass through a narrow passage to reach the goal. The obtained results show good performances
of PASSPMP-PSO in such a situation.

In Fig. 20, the robotic wheelchair evolves in a corridor and successfully reaches the goal while
passing through static objects. Sequential snapshots for wheelchair motion from the initial position
to the goal position are represented in this figure. In this case, PASSPMP-PSO generates a safe
trajectory to the goal.

However, to better verify the passive motion safety of PASSPMP-PSO, in the same scenario of
Fig. 20, a moving object is introduced, where a person obstructs the wheelchair trajectory. In this
case, and due to the narrow free space, the wheelchair stops to avoid collision with this moving
object (see Fig. 21), where an arbitrary braking trajectory has been executed. Noting that, as no

5www.ros.org

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

www.ros.org
https://doi.org/10.1017/S0263574720000806

918 Safe motion planning based on a new encoding technique

Fig. 19. PASSPMP-PSO at work in an outdoor environment; sequential snapshots (from top left to bottom
right) of wheelchair motion towards a goal while passing through a narrow passage (the red arrow designates
the goal).

Fig. 20. PASSPMP-PSO at work in an indoor environment. Sequential snapshots of wheelchair motion (from
top left to bottom right); it evolves in a corridor and reaches its goal while avoiding static objects. The goal is
just before the tripods.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 919

Fig. 21. PASSPMP-PSO at work in the presence of a moving object, sequential snapshots of wheelchair motion
(from top left to bottom right). When the pedestrian is detected, an arbitrary collision-free braking trajectory
is executed (the first two snapshots). In the third snapshot, the wheelchair is at rest. In the last snapshot, the
wheelchair has pursued its trajectory as the passage is free.

Fig. 22. PASSPMP-PSO’s behaviour in a dead-end situation. A collision-free braking trajectory is executed to
guarantee p-safety. In the last snapshot (on the right), the wheelchair is at rest (there is no issue, even at right).

object’s trajectory prediction module is available, the object trajectory is conservatively modelled.
Therefore, all object’s possible orientations are considered, the fact that explains generating arbitrary
braking trajectory since the object orientation cannot be predicted (using a conservative model). This
experiment shows how PASSPMP-PSO remains p-safe in the presence of a moving object even in a
narrow environment (a corridor).

Another case where safety should be verified is when no safe trajectory driving the system to its
goal is available. In Fig. 22, the wheelchair is placed in a dead-end situation; when it is in a state
from which no safe trajectory is available, a collision-free braking trajectory is executed to guarantee
passive motion safety.

Noting that most state-of-the-art approaches dealing with the motion safety issue (e.g. refs.
[9, 14]) are validated in simulation and they are not implemented in real experiments. However,
through the different tests presented in this section, the results that have been obtained demonstrate
the effectiveness of PASSPMP-PSO, particularly its ability of guaranteeing motion safety in real
experiments.

6. Discussion
In this discussion, PASSPMP-PSO is evaluated with respect to other approaches in the field accord-
ing to motion safety, trajectory optimization and real-world constraints. A theoretical comparison is
carried out with the PASSPMP,9 the ISS49 and the conservative viability14 approaches. On the one

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

920 Safe motion planning based on a new encoding technique

hand, it is important to evaluate PASSPMP-PSO with other reactive planning approaches such as
PASSPMP and ISS that have the ability to deal with real-world constraints being similar to those
addressed in this paper (e.g., partial knowledge of the environment due to sensory limitations).
An experimental comparison has already demonstrated the performances of PASSPMP-PSO over
PASSPMP and ISS (see Sections 5.1.4 and 5.1.5). However, in this section, the obtained results are
justified in a formal way. On the other hand, PASSPMP-PSO is evaluated wrt eminent guaranteed
safe navigation approaches such as the conservative viability.14

PASSPMP9 is a previous work based on PMP and passive motion safety, for which the problem of
trajectory optimization has not been addressed. ISS49 is a straightforward technique for generating a
feasible motion planning search space because all motions sampled in the input space are inherently
executable. It is designed as a local planner within the sensors’ field-of-view. A global planner is
also used to guide the robot towards the goal. In ref. [14], the conservative viability algorithm has
addressed the issue of controlling dynamical systems subject to viability constraints, which generally
define states within which the system should remain. A viable state is guaranteed to have at least one
sequence of controls which, when applied from this state, will keep the robotic system within the
viability constraint set indefinitely.

6.1. Motion safety
In order to analyse the safety issue, three criteria must be considered:94 system dynamics, reasoning
about the future and an appropriate time horizon. Each navigation scheme should verify these three
criteria. If one of them is violated, the risk of collision will be inevitable between the robot and the
environment’s objects.

Thanks to the definitions and properties of PASSPMP-PSO, presented in previous sections, it is
possible to prove that PASSPMP-PSO verifies all the three safety criteria. From Eqs. (5) and (8), it is
clear that the optimal solution has to verify the safety condition. To guarantee safety, PASSPMP-PSO
is based on the passive motion safety defined by duality wrt, the braking ICS concept (braking ICS).
Definitions 2 and 3 determine, respectively, what a passively safe and a braking ICS state are. These
definitions are, respectively, formulated in Eqs. (6) and (7). According to these two equations, it is
clear that passive safety (respectively braking ICS) is defined from A(s̃(s, ũb, t)) and W(t).

(1) A(s̃(s, ũb, t)) is obtained by integrating the differential equation of the dynamics of A (Eq. (1)),
that is, both the kinematic and dynamic models of the system are considered. The first safety
criterion is then verified.

(2) W designates the space× time model of the future evolution of the environment with an
unknown behaviour. The collision check is performed for W(t) at each time t belongs to a
well-defined time interval (test A(s̃(s, ũb, t))∩W(t) , ∀t ∈ [0, tb[). The second safety criterion
regarding the reasoning about the future is, thus, verified.

(3) Finally, the last criterion about using an appropriate time horizon is also verified by
PASSPMP-PSO. The principle is already rooted in the braking ICS concept, which considers
trajectories of finite duration (given Eqs. (6) and (7)). The collision check, for a given braking
trajectory ũb is limited to the time interval [0, tb[. For the whole set of possible braking trajec-
tories, the collision check is limited to the time interval [0, Th[(where Th is a function of tb as
formalized in Eq. (21)) and the model of the future is considered until this time Th, which is
clearly illustrated by Property 3.

As for PASSPMP,9 because it is based on a concept similar to PASSPMP-PSO to guarantee safety,
namely passive motion safety, the three safety criteria are also verified.

Similarly to PASSPMP-PSO and PASSPMP, ISS approach49 is evaluated wrt the three safety
criteria:

(1) In ref. [49], ISS approach is applied for vehicles, where their motion is governed by a differential
equation as in Eq. (1). Therefore, the first safety criterion is satisfied as the dynamics of the
system is considered.

(2) For the second criterion which concerns the reasoning about the future, ISS approach handles
moving objects but their dynamics (future evolution) is not considered at all.49 In this case,

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 921

collision check is performed at current time without any consideration of the future. However,
even if a state is collision-free at the present time, there is no guarantee that collision will not
occur in the future. Therefore, the second safety criterion is not verified.

(3) As the second safety criterion is not verified, the third criterion about the appropriate time
horizon (collision check up to a limited time) is automatically not verified either, where ISS
approach basically does not reason about the future.

Finally, the three safety criteria are applied for the conservative viability.14

(1) The approach is applied for a continuous-time dynamical system whose dynamics is described
by a differential equation having the form of Eq. (1). Therefore, the first safety criterion is
satisfied.

(2) In viability terms, the viability constraint set Kc within which A must be kept is the set of states
where A is not in collision with any of the workspace obstacles, such that:14

Kc = {s(t) ∈ S|A(s(t))∩ B(t)=∅} (24)

where A(s(t)) the closed subset of the workspace occupied by system A when it is in the state
s(t). B denotes the union of the workspace objects and Bi(t) is the closed subset of the workspace
occupied by an object Bi at time t, with

B=
b⋃

i=1

Bi =
b⋃

i=1

Bi([0,∞))=
b⋃

i=1

⋃
t∈[0,∞)

Bi(t) (25)

where the trajectory of Bi is a priori known (e.g., a periodic behaviour with constant velocity).
From the viability constraint set of Eq. (24), it is clear that the reasoning about the future is
considered. However, as this approach uses objects with a priori known behaviours, the second
safety criterion cannot be satisfied in the real world, where objects’ trajectories are unknown.

(3) According to Eqs. (24) and (25), the viability constraints are defined for objects with infinite
trajectories (i.e., the model of the future is considered up to infinity). Therefore, the collision
check is done for an infinite time interval, which is ideal for guaranteeing absolute safety, but it
is not possible in real situations. Nevertheless, it is possible to identify two classes of situations
for which it is possible to set a limited time horizon: the freezing case and the periodic case.14

In these two cases, the third safety criterion about the use of an appropriate time horizon is
satisfied.

To sum up, under real-world constraints (robot with a limited field-of-view, environment contain-
ing moving objects with unknown future behaviour, etc.), the PASSPMP-PSO and the PASSPMP
approaches satisfy all the three safety criteria. The ISS approach satisfies only the first criterion. As
for the conservative viability, the first criterion is always satisfied, the second criterion is satisfied
under some assumptions (a priori known future behaviour of objects up to infinity) and the third one
depends on the applications at hand (freezing case or periodic case).

6.2. Trajectory optimization
The trajectory optimization issue is challenging in partially unknown environment due to the fact that
the system has only a partial knowledge of its environment.

PASSPMP-PSO computes partial trajectories to the goal so as to deal with real-world situa-
tions. In this case, it is not possible to ensure optimality. An alternative, though, is to subdivide the
optimization problem to sub-problems where the optimal solution is defined for each sub-problem.
Consequently, given the planning concept and the harsh constraints imposed by the environment and
the robot, PASSPMP-PSO can generate a near-optimal partial trajectory at each planning cycle (see
Definition 5 about the near-optimality of PASSPMP-PSO) thanks to the tree encoding-based PSO
technique.

For PASSPMP and conservative viability, the problem of trajectory optimization is not addressed
where the priority of these approaches is to guarantee motion safety at a first stage. Instead,
PASSPMP selects the trajectory to apply by minimizing a simple cost function which depends on

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

922 Safe motion planning based on a new encoding technique

the trajectory’s distance and time costs. As for the conservative viability, the choice of the control is
performed by minimizing the distance to a goal.

The ISS approach is mainly based on generating local motion plans by sampling in the control
space. In this case, the trajectory optimization problem is not solved. However, a global planner is
used to find the optimal (the lowest-cost) path among the vehicle’s local paths. It is based on Field
D*95 (a grid-based planner) that provides global guidance to the local motion planner; the path with
the lowest Field D* distance to the goal (based on the part of the world that is known at that point)
is selected. Like most grid-based planners, it produces “jerky” paths that consist of straight and
diagonal line segments through a grid. In fact, the true optimal path cannot typically be represented
in the grid, since all paths are required to pass through grid vertices.49 The resulting path is therefore
not the optimal solution.

6.3. Real-world constraints
When a mobile robot is led to navigate in the real world, it is necessary to mainly handle (1) moving
objects with unknown future behaviours (to prevent possible collisions in the future) and (2) sensory
limitations, when using the embedded sensors of the robot to perceive the environment, only a partial
view of its surroundings is possible, leading to the presence of known and unknown regions that
represent a risk in case they are not handled on time.

PASSPMP-PSO takes into consideration the unknown future behaviour of objects and solves the
problem by considering all the possible trajectories of an object, thanks to a conservative model of
the future (as previously explained). To guarantee safety, PASSPMP-PSO computes braking ICS
states that must be avoided at all times, thanks to Eq. (7) that can be rewritten in the following
form:

ICSb(W) =
{

s ∈ S|∀ũb ∈ Ũs
b , ∃t ∈ [0, tb[,

A(s̃(s, ũb, t))∩ (δFoV(t)∪ FoV(t)∪ FoVc(t)) 	= ∅
}

(26)

Such that W = δFoV ∪ FoV ∪ FoVc, with δFoV the boundary of the field-of-view, FoV the subset
of the workspace perceived by A (the region inside the field-of-view) and FoVc the region out-
side the field-of-view. δFoV contains seen objects δFoVs and unseen objects δFoVu (sensing limits
and occluded objects), that is, δFoV = δFoVs ∪ δFoVu. Therefore, PASSPMP-PSO is conceptually
designed to handle seen and unseen moving objects with unknown future behaviours.

Nevertheless, based on a conservative model of the future, a high level of safety can be guaranteed
as all possible trajectories of an object are considered. However, it could be interesting to think about
a less restrictive solution while maintaining a high level of safety (which is not yet the case with other
existing models) and which is applicable in real-world experiments.

The second approach, the PASSPMP, is also able to deal with such constraints as a similar concept
has been adopted (a conservative model of the future has been used).

In the ISS approach, the first point about the dynamics of moving objects is not addressed. Indeed,
their future behaviour is not taken into account. For the second constraint, the ISS approach deals with
sensory limitations, where the known part of the environment is the perceived region. Only objects
present in this region are considered in collision avoidance. Unseen objects (unknown region) are not
handled even though they represent a risk of collision.

In the conservative viability approach, two cases of study have been considered: pursuit and eva-
sion.14 In the pursuit case (the system A is the observer), it is assumed that A is equipped with an
omnidirectional sensor and it should always maintain one or more workspace targets Bt

i (the target)
within its field-of-view at all times while avoiding collisions. The corresponding viability constraint
set in this case is

Kc =
{

s(t) ∈ S|
∧

i

FoV(s(t))∩ Bt
i(t) 	= ∅

}
(27)

In the evasion case (A is the target), the moving obstacles are assumed to be sentinels on patrol duty,
and they are equipped with omnidirectional sensors with a limited field-of-view.A should alwaysstay

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 923

out of the field-of-view of one or more workspace observers B0
i at all times. The corresponding

viability constraint set in this case is

Kc =
{

s(t) ∈ S|
∧

i

A(s(t))∩ FoV(B0
i (t))=∅

}
(28)

Therefore, for the first constraint about the unknown behaviour of moving objects, Eqs. (27) and (28)
confirm that the conservative viability considers the dynamics of objects but in return, it is assumed
that they have a periodic behaviour with constant velocity. That is, the future evolution of an object
is a priori known. For the second constraint, an advantage of this work is that sensory limitations
are considered. However, according to the two addressed cases, it is clear from Eqs. (27) and (28)
that only the known region (either FoV or Bt

i) is implied to determine the viability constraint set. The
unknown regions and their future evolution are not considered, despite being one of the real-world
constraints representing an imminent risk of collision which may not be avoided on time.

From this study, it can be concluded that PASSPMP-PSO has the particularity over the other
methods to propose a solution that solves both motion safety and trajectory optimization issues; it
meets the three safety criteria, offers a near-optimal solution and deals with real-world constraints.
As a drawback, PASSPMP-PSO is based on a conservative model of the future to guarantee a high
level of safety, but it can be constraining in some applications. Therefore, PASSPMP-PSO can be
improved further by exploring other models (which remains an open issue).

7. Conclusion and Future Works
Motion safety and trajectory optimization are two key issues that have always been addressed sep-
arately even if they are both required to solve a motion planning problem. This paper has proposed
the PASSPMP-PSO motion planner that integrates both the two issues in a formal way. In its general
form, PASSPMP-PSO is based on the PMP concept, a periodic process that interleaves planning and
execution for a regular update of the world model. A set of partial trajectories is computed to drive
the robot from its initial state to the goal state. These trajectories are generated, thanks to a new tree
encoding technique based on PSO. Unlike previous approaches, addressing encoding-based shortest
path problem for the case of a network graph, the proposed encoding technique is applied to RRTs
expanded in the state× time space. From a set of nodes, partial trajectories are built and encoded into
particles using a modified priority-based encoding. The candidate solution (best particle) is selected,
thanks to an objective function which is based on three important constraints: passive motion safety
guarantee, minimum trajectory time cost and minimum distance to the goal. Passive motion safety is
obtained by avoiding braking ICS at all times that are defined as states for which, whatever the future
braking trajectory followed by the robot, a collision occurs before it is at rest.

The simulation and real experiment results show that the PASSPMP-PSO algorithm is able to
generate a passively safe near-optimal trajectory, while dealing with the robot’s limited field-of-
view, occlusions and the unknown future behaviour of perceived and unexpected moving objects at
once. For a population between 20 and 100 particles, the statistical result related to the frequency of
obtaining optimal trajectory over 100 runs is 100%, and the risk that collision happens when the robot
is moving is zero (i.e., passive motion safety is guaranteed). Furthermore, the encoding technique has
been tested for different tree expansions from 13 to more than 200 nodes, and the results are very
encouraging as the algorithm converged rapidly to the optimal solution.

PASSPMP-PSO has been evaluated with respect to other motion planning approaches. An exper-
imental comparison has been carried out with the ISS approach. The results obtained demonstrate
that, for the same test conditions, the ISS algorithm fails to guarantee safety and to fulfil the optimal-
ity condition, compared to PASSPMP-PSO which is able to verify the two conditions. Furthermore,
it has been confirmed that both the PASSPMP-PSO and ISS algorithms are suitable for real-time
applications. However, the average running time of PASSPMP-PSO algorithm is less than 50% of
the average running time of the ISS algorithm. As for PASSPMP algorithm, unlike ISS, the safety
condition is verified, but the comparison results prove that PASSPMP-PSO has more performances
to find a global optimum while PASSPMP is easily trapped in a local minimum.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

924 Safe motion planning based on a new encoding technique

This work could be extended in the following directions:

• To guarantee motion safety, PASSPMP-PSO uses a natural behaviour by braking when collision is
inevitable. It could also be worth exploring other levels of motion safety, for instance, the passive
friendly motion safety34, 96 which guarantees that, in case a collision takes place, the robot will be
at rest and the colliding object could have the time to stop or avoid the collision. Nevertheless,
in this case, the safety of the robot is strongly related to the decision taken by the other colliding
objects, the fact that could make it too limited in some applications. In general, other forms of
motion safety can be explored depending on the particularity of the navigation problem at hand.
• In this work, a conservative model of the future is adopted to provide a strict guarantee of motion

safety. This model considers all possible future motions for an object with an arbitrary dynamics.
In return, this representation is constraining with respect to the ICSb-free space and is directly
related to the time horizon value. In real-world situations, the suitable solution is either con-
servative or probabilistic. The probabilistic model is appropriate to support uncertainties, but
approaches using this model offer no strict motion safety guarantees. Instead, the risks of collision
are minimized. An extension to this work would be to find a compromise between conservative and
probabilistic models by proposing a model of the future capable of overcoming the drawbacks of
the two models, that is, propose an alternative solution, other than existing models, which would
allow to keep a high level of safety while respecting real constraints (e.g., the unknown future
behaviour of objects).
• It is now more obvious, from experiences like self-driving, that the safety issue is not a sin-

gle technological area. Safety guarantee requires coordinating multi-disciplinary areas: software,
hardware, human–computer interaction, robotics, etc. For example, a collision can happen due to
a software crash, a hardware failure or reasoning errors (decision-making errors), where the lat-
ter is the concern of robotic field. Therefore, existing motion safety-based approaches should be
expanded to the other fields to really get closer to an absolute motion safety.
• It could also be interesting to implement the PASSPMP-PSO algorithm in a real self-driving

system where the question “will the driver seat ever be empty?” always remains open.
• This work is a first step towards solving safe trajectory optimization problems with bio-inspired

approaches. However, in biology, there are more pertinent systems from which we can learn and
propose new concepts.

Acknowledgment
We thank Tarik Ouacine and Samir Benabadji for their help in real-world experiments. This work
has been tested on an autonomous wheelchair developed as part of the project FAURSA finan-
cially supported by the Directorate General for Scientific Research and Technological Development
(DGRSDT).

References
1. D. Althoff, J. J. Kuffner, D. Wollherr and M. Buss, “Safety assessment of robot trajectories for navigation

in uncertain and dynamic environments,” Auton. Robots 32(3), 285–302 (2012).
2. S. Bouraine, T. Fraichard and H. Salhi, “Provably safe navigation for mobile robots with limited field-of-

views in dynamic environments,” Auton. Robots 32(3), 267–283 (2012).
3. S. Bouraine, T. Fraichard and H. Salhi, “Provably Safe Navigation for Mobile Robots with Limited Field-

of-Views in Unknown Dynamic Environments,” Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (2011).

4. L. Heon-Cheol, Y. Touahmi and L. Beom-Hee, “Grafting: A path replanning technique for rapidly-
exploring random trees in dynamic environments,” Adv. Robot. 26(18), 2145–2168 (2012).

5. J. van den Berg and M. Overmars, “Roadmap-based motion planning in dynamic environments,” IEEE
Trans. Robot. 21(5), 885–897 (2005).

6. F. A.Yaghmaie, A. Mobarhani and H. D.Taghirad, “A New Method for Mobile Robot Navigation in
Dynamic Environment: Escaping Algorithm,” Proceeding of the 2013 RSI/ISM International Conference
on Robotics and Mechatronics (2013) pp. 212–217.

7. M. Seder and I. Petrovic, “Dynamic Window Based Approach to Mobile Robot Motion Control in the
Presence of Moving Obstacles,” IEEE International Conference on Robotics and Automation (2007).

8. D. Wilkie, J. van den Berg and D. Manocha, “Generalized Velocity Obstacles,” Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (2009) pp. 5573–5578.

9. S. Bouraine, T. Fraichard, O. Azouaoui and H. Salhi, “Passively Safe Partial Motion Planning for Mobile
Robots with Limited Field-of-Views in Unknown Dynamic Environment,” IEEE International Conference
on Robotics and Automation (2014) pp. 3576–3582.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 925

10. J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference on Neural
Networks, vol. 4 (1995) pp. 1942–1948.

11. M.C. Hager and G.S. Helfman, “Safety in numbers: Shoal Size choice by minnows under predatory threat,”
Behav. Ecol. Sociobiol. 29(4), 271–276 (1991).

12. T. Fraichard, “Will the driver seat ever be empty?,” ERCIM News, ERCIM (2017) pp. 39–40.
13. T. Fraichard and H. Asama, “Inevitable collision states. A step towards safer robots?,” Adv. Robot. 18(10),

1001–1024 (2004).
14. M.A. bouguerra, T. Fraichard and M. Fezari, “Viability-based guaranteed safe robot navigation,” J. Intell.

Robot. Syst. 95(2), 459–471 (2019).
15. M. Blaich, S. Weber, J. Reuter and A. Hahn, “Motion Safety for Vessels: An Approach Based on Inevitable

Collision States,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1077–
1082 (2015).

16. N. Bohorquez, A. Sherikov, D. Dimitrov and P. B. Wieber, “Safe Navigation Strategies for a Biped Robot
Walking in a Crowd,” IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (2016)
pp. 379–386.

17. J. Snape, V. Berg, S. J. Guy and D. Manocha, “Independent Navigation of Multiple Mobile Robots
with Hybrid Reciprocal Velocity Obstacles,” Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (2009) pp. 5917–5922.

18. B. Gopalakrishnan, A. Singh and K. Krishna, “Time Scaled Collision Cone Based Trajectory Optimization
Approach for Reactive Planning in Dynamic Environments,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (2014) pp. 4169–4176.

19. C. Shuai, X. Junhao and L. Huimin, “Real-Time Obstacle Avoidance Using Subtargets and Cubic B-
spline for Mobile Robots,” IEEE International Conference on Information and Automation (ICIA) (2014)
pp. 634–639.

20. Y. Lu, Z. Xi and J. M. Lien, “Collision Prediction Among Polygons with Arbitrary Shape and Unknown
Motion,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)
pp. 4148–4153.

21. A. Lawitzky, A. Nicklas, D. Wollherr and M. Buss, “Determining States of Inevitable Collision Using
Reachability Analysis,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (2014) pp. 4142–4147.

22. J. Pan, L. Zhang and D. Manocha, “Collision-free and smooth trajectory computation in cluttered
environments,” J. Robot. Res., 1155–1175 (2012).

23. S. Sarid, B. Xu and H. Kress-Gazit, “Guaranteeing High-Level Behaviors while Exploring Partially Known
Maps,” In: Robotics: Science and Systems (MIT Press, 2013) pp. 377–384.

24. H. Taubig, U. Frese, C. Hertzberg, S. Mohr, E. Vorobev and D. Walter, “Guaranteeing functional safety:
design for provability and computer-aided verification,” Auton. Robots 32(3), 303–331 (2012).

25. L. Pallottino, V. Scordio, A. Bicchi and E. Frazzoli, “Decentralized cooperative policy for conflict
resolution in multivehicle systems,” IEEE Trans. Robot. 23(6), 1170–1183 (2007).

26. J. Van den Berg and M. Overmars, “Planning time-minimal safe paths amidst unpredictably moving
obstacles,” Int. J. Robot. Res. 27(11–12), 1274–1294 (2008).

27. E. Lalish and K. Morgansen, “Decentralized Reactive Collision Avoidance for Multivehicle Systems,”
IEEE Conference on Decision and Control (2008).

28. K. Bekris, K. Tsianos and L. Kavraki, “Safe and Distributed Kinodynamic Replanning for Vehicular
Networks Mobile Networks and Applications,” IEEE Conference on Decision and Control, vol. 14(3)
(2009).

29. D. Hsu, R. Kindel, J.C. Latombe and S. Rock, “Randomized kinodynamic motion planning with moving
obstacles,” Int. J. Robot. Res. 21(3), 233–255 (2002).

30. K. Bekris and L. Kavraki, “Greedy but Safe Replanning under Kinodynamic Constraints,” IEEE
International Conference on Robotics and Automation (2007).

31. D. Seward, C. Pace and R. Agate, “Safe and Effective Navigation of Autonomous Robots in Hazardous
Environments Autonomous Robots,” IEEE International Conference on Robotics and Automation, vol. 22
(2007) pp. 223–242.

32. J. van den Berg, P. Abbeel and K. Goldberg, “LQG-MP: Optimized Path Planning for Robots with Motion
Uncertainty and Imperfect State Information,” Robot. Sci. Syst. 30(7), 895–913 (2011).

33. S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Int. J. Robot. Res. 20(5), 378–400 (2001).
34. K. Macek, D. Vasquez-Govea, T. Fraichard and R. Siegwart, “Towards safe vehicle navigation in dynamic

urban scenarios,” Automatika 50(3–4), 184–194 (2009).
35. D. Fergusson, N. Kalra and A. Kuffner, “Anytime Path Planning and Replanning in Dynamic Environment,”

IEEE International Conference on Robotics and Automation (2006) pp. 2366–2371.
36. H. Kurniawati and T. Fraichard, “From Path to Trajectory Deformation,” Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (2007) pp. 159–164.
37. V. Delsart and T. Fraichard, “Navigating Dynamic Environments Using Trajectory Deformation,”

Proceedings IEEE International Conference on Intelligent Robots and Systems (2008) pp. 226–233.
38. J. Horwood, N. Aragon and A. Poore, “Gaussian sum filters for space surveillance: Theory and simulation,”

J. Guid. Control Dynam. 34(6), 1839–1851 (2011).
39. Y. Bestaoui Sebbane, “Planning and decision making for aerial robots,” Intell. Syst. Cont. Autom. Sci. Eng.

71 (2014).

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

926 Safe motion planning based on a new encoding technique

40. A. Stentz, “The Focussed d* Algorithm for Real-Time Replanning,” Proceedings of the International Joint
Conference on Artificial Intelligence (1995) pp. 1652–1659.

41. D. Ferguson and A. Stentz, “Anytime RRTs,” Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (2006) pp. 5369–5375.

42. M. Zucker, J. Kuffner and M. Branicky, “Multipartite RRTs for Rapid Replanning in Dynamic
Environments,” IEEE International Conference on Robotics and Automation (2007) pp. 1603–1609.

43. K. Macek, M. Becked and R. Siegwart, “Motion Planning for Car-Like Vehicles in Dynamic Urban
Scenarios,” IEEE/RSJ International Conference on Intelligent Robots and Systems (2006) pp. 4375–4380.

44. L. Heon-Cheol, Y. Touahmi and L. Beom-Hee, “Grafting: A path replanning technique for rapidly exploring
random trees in dynamic environments,” Adv. Robot. 26(18), 2145–2168 (2012).

45. L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma and N. Zheng, “Efficient sampling-based motion planning for
on-road autonomous driving,” IEEE Trans. Intell. Transp. Syst. 16(4), 1961–1976 (2015).

46. S. Karaman, and E. Frazzoli, “Sampling based algorithms for optimal motion planning,” Int. J. Robot. Res.
16, 846–894 (2011).

47. T. Fraichard and T. Howard, “Iterative Motion Planning and Safety Issue,” In: Handbook of Intelligent
Vehicles (Springer, 2012) pp. 1433–1458.

48. A. Kelly and T. Stentz, “Rough terrain autonomous mobility - Part 2: An active vision and predictive control
approach,” Auton. Robots 5(2), 163–198 (1998).

49. A. Kelly, T. Stentz, O. Amidi, M. Bode, D. Bradley, R. Mandelbaum, T. Pilarski, P. Rander, S. Thayer,
N. Vallidis and R. Warner, “Toward reliable off-road autonomous vehicles operating in challenging
environments,” Int. J. Robot. Res. 25(5–6), 449–483 (2006).

50. R. Knepper, S. Srinivasa and M. Mason, “An Equivalent Relation for Local Path Sets,” Proceedings of the
Ninth International Workshop on the Algorithmic Foundations of Robotics, vol. 68 (2010) pp. 19–35.

51. T. Howard, C. Green, A. Kelly and D. Ferguson, “State space sampling of feasible motions for high
performance mobile robot navigation in complex environments,” J. Field Robot. 25(6–7), 325–345
(2008).

52. F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller and H.-J. Wuensche “Driving with
tentacles-integral structures of sensing and motion,” J. Field Robot., 64–673 (2008).

53. A. Cherubini, F. Spindler and F. Chaumette, “A New Tentacles-Based Technique for Avoiding Obstacles
During Visual Navigation,” IEEE International Conference on Robotics and Automation, vol. 20 (2012)
pp. 4850–4855.

54. B. Oliver and O. Khatib, “High-Speed Navigation Using the Global Dynamic Window Approach,” IEEE
International Conference on Robotics and Automation, vol. 1 (1999).

55. E. Demeester, M. Nuttin, D. Vanhooydonck, G. Vanacker and H. Van Brussel, “Global dynamic win-
dow approach for holonomic and non-holonomic mobile robots with arbitrary cross-section,” IEEE Trans.
Neural Netw., 2357–2362 (2005).

56. S. Petti and T. Fraichard, “Safe Motion Planning in Dynamic Environments,” Proceeding of the IEEE-RSJ
International Conference on Intelligent Robots and Systems (2005) pp. 2210–2215.

57. J. Richalet, A. Rault, T. Testud and J. Papon, “Model predictive heuristic control: Applications to industrial
processes,” Automatica 14(5), 413–428 (1978).

58. M. Farrokhsiar and H. Najjaran, “Unscented Predictive Motion Planning of a Nonholonomic System,”
IEEE International Conference on Robotics and Automation (2011) pp. 4480–4485.

59. S. Maniatopoulos, D. Panagou and K. Kyriakopoulos, “Model Predictive Control for the Navigation of
a Nonholonomic Vehicle with Field-of-View Constraints,” American Control Conference (ACC) (2013)
pp. 3967–3972.

60. M. Hoy, and A. S. Matveev and A. V. Savkin, “Algorithms for collision-free navigation of mobile robots in
complex cluttered environments: a survey,” Robotica 33(3), 463–497 (2015).

61. P. Hart, N. Nilsson and B. Raphael, “Formal basis for the heuristic determination of minimum cost paths,”
IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968).

62. E. W.Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math. 1(1), 269–271 (1959).
63. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor and S. Schaal, “STOMP: Stochastic Trajectory

Optimization for Motion Planning,” IEEE International Conference on Robotics and Automation (2011)
pp. 4569–4574.

64. N. D. Ratliff, M. Zucker, J. A. Bagnell and S. S. Srinivasa, “CHOMP: Gradient Optimization Techniques
for Efficient Motion Planning,” IEEE International Conference on Robotics and Automation (2009)
pp. 489–494.

65. M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell and
S. S. Srinivasa, “CHOMP: Covariant Hamiltonian optimization for motion planning,” Int. J. Robot. Res.
32(9–10), 1164–1193 (2013).

66. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, New York, NY,
USA, 1996).

67. A. Colorni, M. Dorigo and V. Maniezzo, “Distributed Optimization by Ant Colonies,” European
Conference on Artificial Life, France (1991) pp. 134–142.

68. M. Dorigo, Optimization, Learning and Natural Algorithms (Politecnico di Milano, Italie, 1992).
69. J. Freeman and D. Skapura, Neural Networks: Algorithms, Applications and Programming Techniques

(Addison Wesley, 1991).
70. A. Ghorbani, “Using Genetic Algorithm for a Mobile Robot Path Planning,” International Conference on

Future Computer and Communication (2009) pp. 164–166.

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

Safe motion planning based on a new encoding technique 927

71. K. Sugawara, “Foraging Behavior of Interacting Robots with Virtual Pheromone,” Proceedings of the
International Conference on Intelligent Robots and Systems, vol. 3 (2004) pp. 3074–3079.

72. H. Qu, “Real-time robot path planning based on a modified pulse-coupled neural network model,” IEEE
Trans. Neural Netw. 20(11), 1724–1739 (2009).

73. X. Chen and Y. Li, “Smooth Path Planning of a Mobile Robot Using Stochastic Particle Swarm
Optimization,” Proceedings of the IEEE International Conference on Mechatronics and Automation (2006)
pp. 1722–1727.

74. Q. Qin, “Path Planning for Mobile Robot Using the Particle Swarm Optimization with Mutation Operator,”
Proceedings of International Conference on Machine Learning and Cybernetics, vol. 4 (2004) pp. 2473–
2478.

75. M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for single objective continuous space
problems: A review,” Evol. Comput. 25(1), 1–54 (2016).

76. M. Munemoto, Y. Takai and Y. Sato, “A Migration Scheme for Genetic Adaptive Routing Algorithm,”
IEEE International Conference on Systems, Man, and Cybernetics (1998) pp. 2774–2779.

77. J. Inagaki, M. Haseyama and H. Kitajima, “A genetic Algorithm for Determining Multiple Routes and Its
Applications,” IEEE International Symposium on Circuits and Systems (1999) pp. 137–140.

78. C. Ahn and R. Ramakrishna, “A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of
Populations,” IEEE Trans. Evol. Comput., 566–579 (2002).

79. M. Gen, R. Cheng and D. Wang, “Genetic Algorithms for Solving Shortest Path Problems,” Proceeding of
the IEEE International Conference on Evolutionary Computation (1997) pp. 401–406.

80. G. Raidl, “A Weighted Coding in a Genetic Algorithm for the Degree Constrained Minimum Spanning
Tree Problem,” Proceeding of the 2000 ACM Symposium on Applied Computing (2000) pp. 440–445.

81. A. W. Mohemmed and N. C. Sahoo, “Particle Swarm Optimization Combined with Local Search and
Velocity Re-Initialization for Shortest Path Computation in Networks,” Proceedings of the 2007 IEEE
Swarm Intelligence Symposium (2007) pp. 266–272.

82. A. W. Mohemmed and N. C. Sahoo, “Efficient Computation of Shortest Paths in Networks Using Particle
Swarm Optimization and Noising Metaheuristics,” Discrete Dynamics in Nature and Society (2007)
pp. 1–25.

83. S. V. Ragavan, S. G. Ponnambalam and C. Sumero, “Waypoint-Based Path Planner for Mobile Robot
Navigation Using PSO and GA-AIS,” 2011 IEEE Recent Advances in Intelligent Computational Systems
(2011) pp. 756–760.

84. K. Su, Y. Wang and X. Hu “Middle node optimization algorithm for global optimal path planning,” Int. J.
Adv. Comput. Sci. Appl. (IJACSA) 6(4) (2015).

85. A. Bautin, L. Martinez-Gomez and T. Fraichard “Inevitable Collision States: A Probabilistic Perspective,”
IEEE International Conference on Robotics and Automation (2010) pp. 4022–4027.

86. D. Althoff, M. Althoff, D. Wollherr and M. Boss “Probabilistic Collision State Checker for Crowded
Environments,” IEEE International Conference on Robotics and Automation (2010) pp. 1492–1498.

87. T. Fraichard and T. M. Howard “Iterative Motion Planning and Safety Issue,” In: Handbook of Intelligent
Vehicles (Springer, London, 2012) pp. 1433–1458.

88. F. Rohrmuller, M. Althoff, D. Wollherr and M. Buss “Probabilistic Mapping of Dynamic Obstacles Using
Markov Chains for Replanning in Dynamic Environments,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (2008) pp. 2504–2510.

89. D. Vasquez, T. Fraichard and C. Laugier, “Growing hidden Markov models: An incremental tool for
learning and predicting human and vehicle motion,”
Int. J. Robot. Res. 28(11–12), 1486–1506 (2009).

90. A. Broadhurstr, S. Baker and T. Kanade “Monte Carlo Road Safety Reasoning,” Proceedings IEEE
Intelligent Vehicles Symposium (2005) pp. 319–324.

91. A. Kushleyev and M. Likhachev “Time-Bounded Lattice for Efficient Planning in Dynamic Environments,”
IEEE International Conference on Robotics and Automation (2009) pp. 1662–1668.

92. T. Schouwenaars, “Safe Trajectory Planning of Autonomous Vehicles,” Thesis (Massachusetts Institute of
Technology, 2006).

93. Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” IEEE World Congress on Computational
Intelligence (1998) pp. 69–73.

94. T. Fraichard, “A Short Paper About Motion Safety,” IEEE International Conference on Robotics and
Automation (ICRA) (2007) pp. 1140–1145.

95. D. Ferguson and A. Stentz, “Field D*: An Interpolation-Based Path Planner and Replanner,” Carnegie
Mellon Robotics Institute, Technical Report (CMU-RI-TR-05-19, 2005).

96. S. Mitsch, K Ghorbal and A. Platzer,“On provably safe obstacle avoidance for autonomous robotic ground
vehicles,” Robotics Science and Systems (RSS) (2013).

https://doi.org/10.1017/S0263574720000806 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000806

	Safe Motion Planning Based on a New Encoding Technique for Tree Expansion Using Particle Swarm Optimization
	Introduction
	Motivation and Contribution
	Related Works
	The Proposed Approach: PassPMP-PSO
	Motion planning scheme
	Trajectory optimization using PSO
	Encoding particles for trajectory optimization problem
	Objective function
	Passive safety guarantee
	Stability and optimality
	PassPMP-PSO algorithm

	Results
	Simulation results
	Experimental results

	Discussion
	Motion safety
	Trajectory optimization
	Real-world constraints

	Conclusion and Future Works

