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An idempotent phonological grammar maps phonotactically licit forms faithfully to
themselves. This paper establishes tight sufficient conditions for idempotency in (classical)
Optimality Theory. Building on Tesar (2013), these conditions are derived in two steps.
First, idempotency is shown to follow from a general formal condition on the faithfulness
constraints. Second, this condition is shown to hold for a variety of faithfulness constraints
which naturally arise within McCarthy & Prince’s (1995) Correspondence Theory of
faithfulness. This formal analysis provides an exhaustive toolkit for modeling chain shifts,
which have proven recalcitrant to a constraint-based treatment.

This paper contributes to a research program in constraint-based phonology
which aims at distilling analytically the implications of constraint theories for
formal typological properties (Prince 2007). For instance, Moreton (2004b)
develops constraint conditions for the property of eventual idempotency and Tesar
(2013) develops constraint conditions for the property of output-drivenness. This
paper focuses on a third formal property which is intermediate between those
two, namely idempotency. Building on Tesar’s analysis of output-drivenness,
the paper develops tight sufficient conditions for idempotency within classical
Optimality Theory (OT; Prince & Smolensky 2004, Moreton 2004b). Magri (to
appear) extends the theory of idempotency developed in this paper to the case
of Harmonic Grammar (Legendre, Miyata & Smolensky 1990a, b; Smolensky &
Legendre 2006) and discusses the relationship between idempotency and Tesar’s
output-drivenness.

A formal theory of idempotency is relevant both for phonological theory and
for modeling the acquisition of phonology. In fact, idempotency is related to
opacity: a grammar fails at idempotency provided it displays a chain shift, which
corresponds to counter-feeding ordering in a rule-based phonological framework.
An understanding of the conditions that ensure idempotency thus yields a toolkit
for modeling chain shifts, which have proven recalcitrant to constraint-based
analyses. Furthermore, various models of the early acquisition of phonotactics

[1] Parts of this paper have been presented at WCCFL 33 at Simon Fraser University in March
2015 (see also Magri 2016), at the Workshop on Computational Phonology and Morphology
at Chicago University in July 2015, and at OCP 12 in Budapest in January 2016. The research
reported in this paper has been supported by a Marie Curie Intra European Fellowship (Grant
agreement number: PIEF-GA-2011-301938).
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(Gnanadesikan 2004, Hayes 2004, Prince & Tesar 2004) assume that the learner
posits a fully faithful underlying form for each training phonotactically licit
surface form. These models thus effectively assume that the typology explored
by the learner consists of idempotent grammars. Magri (2015) explores the
implications of the analysis of idempotency developed in this paper for this class
of models of the acquisition of phonotactics.

1. OVERVIEW

Within classical generative phonology, a phonological grammar maps underlying
to surface forms (Kenstowicz & Kisseberth 1977, Heinz 2011). Suppose that
there are no representational differences between underlying and surface forms:
any given representation can be construed as both an underlying and a surface
form. In this case, a phonological grammar is called idempotent provided that any
form that is phonotactically licit (as a surface form) is faithfully mapped (as an
underlying form) to itself (as a surface form). Section 2 formalizes this notion of
idempotency within a representational framework where underlying and surface
forms are strings of segments related by correspondence relations (McCarthy &
Prince 1995).

Within OT, formal grammatical properties follow from properties of the
candidate and constraint sets. Which conditions on these two sets suffice to
guarantee that the grammars in the corresponding typology are all idempotent?
The answer to this question developed in Section 3 can be informally previewed
as follows. (It was anticipated in Moreton & Smolensky 2002: Section 3; Prince
2007 and Buccola 2013. Furthermore, it is analogous to the analysis in Tesar
2013: Section 3.2.) Suppose that an OT grammar maps the underlying form /a/
to the surface form [e], as represented by the arrow (1a). This means that [e]
is phonotactically licit. Idempotency then requires the underlying form /e/ to be
faithfully mapped to [e], as represented by the loop (1b).

(1)

We reason by contradiction. Thus, we make the contradictory assumption that
idempotency fails and that /e/ is instead mapped to something else; say it is
raised further to [i] for concreteness, as represented by the arrow (1b′). In order to
establish idempotency, we want to derive the contradictory conclusion that /a/ is
also mapped to [i], as represented by the long arrow (1a′), against the hypothesis
that /a/ be mapped to [e].

Assume that every constraint C in the constraint set satisfies the implication
(2). The contradictory assumption that /e/ is raised to [i] rather than faithfully
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mapped to [e] intuitively means that high ranked constraints fail at penalizing the
contradictory mapping (/e/, [i]) in (1b′) with respect to the idempotent mapping
(/e/, [e]) in (1b), thus satisfying the antecedent of (2).

(2) If: constraint C does not prefer the idempotent mapping (/e/, [e]) to
the contradictory mapping (/e/, [i])

namely: C(/e/, [i])6 C(/e/, [e])

Then: constraint C does not prefer the actual mapping (/a/, [e]) to the
contradictory mapping (/a/, [i])

namely: C(/a/, [i])6 C(/a/, [e])

The implication (2) thus ensures that high ranked constraints also fail at penalizing
the contradictory mapping (/a/, [i]) in (1a′) with respect to the actual mapping (/a/,
[e]) in (1a). In conclusion, we intuitively expect this implication (2) to provide a
sufficient condition for the contradictory assumption to entail the contradictory
conclusion, thus guaranteeing the idempotent mapping of /e/ to [e].

The mappings (/e/, [e]) and (/e/, [i]) compared in the antecedent of (2)
feature the underlying form /e/. The mappings (/a/, [e]) and (/a/, [i]) compared
in the consequent only differ because they feature the underlying form /a/.
The implication (2) thus trivially holds for the markedness constraints, because
they are insensitive to the underlying forms, so that antecedent and consequent
coincide. The implication (2) is thus a condition on the faithfulness constraints.
For a faithfulness constraint, the number of violations assigned to the identity
mapping (/e/, [e]) is zero. The implication (2) therefore becomes (3), where I
have replaced ‘C’ with ‘F’, to highlight the fact that the implication only needs
to be checked for the faithfulness constraints.

(3) If: F(/e/, [i])= 0

Then: F(/a/, [i])6 F(/a/, [e])

This sufficient condition for idempotency (3) is referred to as the faithfulness
idempotency condition (FIC).

The problem of establishing OT idempotency is thus reduced to the problem of
determining which faithfulness constraints satisfy the FIC. The latter problem is
taken on by Sections 4–6, for a variety of faithfulness constraints that naturally
arise within McCarthy & Prince’s (1995) Correspondence Theory. To start,
Section 4 looks at the three basic faithfulness constraints, MAX, DEP, and IDENT.
MAX is shown to satisfy the FIC under no additional assumptions, while DEP
and IDENT require no correspondence relation in the candidate set to break any
underlying segment. This edge of MAX over DEP and IDENT can be intuitively
explained as follows. The left- and right-hand sides of the inequality in the
consequent of the FIC (3) look at two mappings that have the same underlying
form (in this specific case, the underlying vowel /a/) but two different surface
forms (in this case, the two surface vowels [i] and [e]). While MAX only ‘counts’
over underlying segments, DEP and IDENT are also sensitive to the surface
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segments and thus need some additional assumption (in the form of the no-
breaking condition) to guarantee the ‘commensurability’ of the two candidates
being compared.

Section 5 extends the analysis of the FIC to restricted variants of these basic
constraints, such as faithfulness constraints that penalize consonant deletion but
not vowel deletion, that penalize de-nasalization but not nasalization, or that
penalize obstruent devoicing only before a sonorant. Section 6 concludes the anal-
ysis of the FIC by looking at a variety of other constraints, such as INTEGRITY,
UNIFORMITY, featural DEP[±ϕ] and MAX[±ϕ], CONTIGUITY, ALIGNMENT, and
LINEARITY, as well as constraint conjunction and disjunction.

Section 7 articulates the phonological implications of the theory of idempo-
tency. A grammar fails at idempotency provided that it enforces a chain shift
(Łubowicz 2011) such as the mapping a→ e→ i in (1). From this perspective,
the result obtained in Section 3 can be reinterpreted as follows: any analysis of
chain shifts within (classical) OT requires at least one faithfulness constraint
that fails at the FIC (in fact, if all faithfulness constraints in the constraint set
did satisfy the FIC, every grammar in the corresponding typology would be
idempotent, and would thus display no chain shifts). This result is intuitive:
in order to get the chain shift a→ e→ i, the top ranked relevant faithfulness
constraint cannot penalize the mapping e→ i relative to e→ e, thus satisfying
the antecedent of the FIC (3); and cannot penalize the mapping a→ e relative to
a→ i, thus failing the consequent of the FIC (3). Section 7 systematizes various
approaches to chain shifts in the OT literature by showing that they differ in how
they choose the culprit faithfulness constraint from the list of non-FIC abiding
constraints compiled in Sections 4–6. The final Section 8 summarizes the results
obtained in this paper and sketches the results presented in the two companion
papers Magri (to appear) and Magri (2015). The presentation is kept informal
throughout the paper, with proofs relegated to an appendix.

2. IDEMPOTENCY

This section introduces the notion of idempotent phonological grammar within a
representational framework which is a segmental version of McCarthy & Prince’s
(1995) Correspondence Theory.

2.1 Representational framework

Consider a finite set of segments (for instance, the segments in the IPA table, or
some subset thereof), denoted by a, b, c, . . . . Strings obtained through segment
concatenation are denoted by a, b, c, . . . . The notation a= a1 · · · a` says that
the string a is the concatenation of the segments a1, . . . , a` and thus has
length `. This paper assumes the representational framework (4). Underlying
and surface forms are strings of segments. Phonological candidates establish a
correspondence between the segments of these underlying and surface strings.
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(4) The candidate set consists of triplets (a, b, ρa,b) of an underlying segment
string a and a surface segment string b together with a correspondence
relation ρa,b between the segments of a and b.2

Correspondence relations will be denoted by thin lines. To illustrate, (5) represents
the candidate (a, b, ρa,b) whose underlying string a is /bnIk/, whose surface
string b is [blIk], whose correspondence relation ρa,b maps underlying to surface
segments respecting their position in the strings.

(5) a = b n I k
| | | |

b = b l I k

The representational assumption (4) is consistent with additional restrictions on
the candidate set (Blaho, Bye & Krämer 2007). This flexibility will be exploited
in this paper, which will explore the implications of various restrictions on the
correspondence relations that can figure in the candidate set.

2.2 Identity candidates

As anticipated in Section 1, idempotency is about phonotactically licit forms
being mapped to themselves. It thus requires the distinction between underlying
and surface forms to be blurred. This is achieved through axiom (6). It can be
interpreted as a candidacy reflexivity axiom, as it requires each (surface) string
to be in correspondence with itself. This axiom will play a crucial role in the
definition of idempotency in the next subsection.

(6) If the candidate set contains a candidate (a, b, ρa,b) with a surface form b,
it also contains the identity candidate (b, b, Ib,b), where Ib,b is the identity
correspondence relation among the segments of b.

By (6), any surface form can be construed as an underlying form (of the corre-
sponding identity candidate). In other words, the set of surface forms is a subset
of the set of underlying forms. This is a slightly weaker condition than Moreton’s
(2004b) homogeneity condition, which requires the sets of underlying and surface
forms to coincide. Both reflexivity and homogeneity hold when underlying and
surface representations are constructed out of the same ‘building blocks’. Moreton
claims that ‘most phonological representations are in fact present in both [under-
lying and surface forms]’, so that reflexivity and homogeneity hold for ‘much of

[2] Correspondence relations might want to distinguish between multiple occurrences of the same
segment in a string. Thus, correspondence relations cannot be defined simply as relations
between the two sets of underlying and surface segments. To keep the presentation straight-
forward, this paper will follow common practice and ignore these subtleties.
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the core business of phonology’. Yet, the reflexivity axiom (6) obviously does
not hold in full generality. To illustrate, suppose that the candidate set contains
the candidate (a, b)= (/mabap/, [ma.ba]). The reflexivity axiom (6) requires
the candidate set to also contain the candidate (b, b)= (/ma.ba/, [ma.ba]). This
contravenes the plausible assumption that syllabification is a property of the
surface representations and is absent in the underlying representations. In the case
of constraint-based phonology, this difficulty can be circumvented by switching
from the identity candidates required by (6) to McCarthy’s (2002) fully faithful
candidates, as explained in Section 3.6.

2.3 Idempotency

Within the representational framework just defined, a phonological grammar is a
map G that takes an underlying form a and returns a candidate (a, b, ρa,b) whose
underlying string is indeed a.3 A string b is called phonotactically licit according
to a grammar G provided that there exists at least one string a (with a possibly
identical to b) such that the grammar G maps the underlying form a to a candidate
(a, b, ρa,b) whose surface string is b. A grammar G is idempotent provided
that it maps any phonotactically licit surface form to itself, as formalized by
the implication (7) in the following definition. The antecedent of the implication
says that the surface form b is phonotactically licit relative to the grammar G,
because it is the surface realization of some underlying form a. The consequent
says that b is then mapped faithfully to itself. The reflexivity axiom (6) ensures
the existence of the identity candidate (b, b, Ib,b) in the consequent of (7).

Definition. A grammar G is idempotent provided that it satisfies the implication

(7) If: G(a)=
(
a, b, ρa,b

)
Then: G(b)=

(
b, b, Ib,b

)
for any candidate (a, b, ρa,b) in the candidate set. �

To illustrate, suppose that a grammar raises the low vowel /a/ to [e]. The mid
vowel [e] is therefore phonotactically licit. In order for that grammar to comply
with condition (7) and thus qualify as idempotent, the underlying form /e/ must
be mapped faithfully to [e].4

[3] For the sake of simplicity, this paper assumes that a grammar maps an underlying form to a
single candidate. This assumption is not crucial, and the results obtained extend to a framework
where grammars map an underlying form to a set of candidates, thus modeling phonological
variation.

[4] Usually, idempotency is a notion that applies to a function f between a set X and itself
and requires the identity f ( f (x))= f (x) for every argument x ∈ X . The connection between
this notion and the definition above is straightforward. Given a grammar G, let g be the
corresponding string function, namely the function from strings to strings defined by the
condition g(a)= b provided that G(a)= (a, b, ρa,b) for some correspondence relation ρa,b.
The grammar G is idempotent according to the definition above if and only if the corresponding
string function g satisfies the condition g(g(a))= g(a) for any underlying string a.
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2.4 Chain shifts

The candidate set might provide many different relations ρb,b to put a string b in
correspondence with itself. Some options are illustrated in (8) in the case where
b= amba. Axiom (6) requires one of these correspondence relations provided
by the candidate set to be the identity relation Ib,b, illustrated by the left-most
candidate in (8). This identity relation Ib,b is intuitively the best way to put the
string b in correspondence with itself. A grammar G is well-behaved provided
that it abides by this intuition: whenever G maps an underlying string b to the
same surface string b, it does so through the identity correspondence relation Ib,b.
In other words, G(b)= (b, b, ρb,b) is impossible when ρb,b 6= Ib,b.

(8)

Suppose now that a grammar G fails at the idempotency implication (7) for
some candidate (a, b, ρa,b), as stated in (9): G maps the underlying form a to
(a, b, ρa,b), as required by the antecedent of the idempotency implication; but
G fails to map the underlying form b to the identity candidate (b, b, Ib,b), as
required by the consequent.

(9) A grammar G fails at idempotency on a candidate (a, b, ρa,b) iff:
(a) G(a)= (a, b, ρa,b);
(b) G(b) 6= (b, b, Ib,b).

Condition (9b) means that G maps the underlying form b to some candidate
(b, c, ρb,c) different from (b, b, Ib,b). This means that either the two strings b and
c differ, or b and c coincide but the two correspondence relations ρb,c and Ib,b
differ. The latter option is impossible when G is well-behaved. The strings b and
c must thus differ and condition (9) becomes (10).

(10) A (well-behaved) grammar G fails at idempotency on a candidate
(a, b, ρa,b) iff there is a candidate (b, c, ρb,c) with b 6= c such that:
(a) G(a)= (a, b, ρa,b);
(b) G(b)= (b, c, ρb,c).

Condition (10) says that G maps a to b and then in turn maps b to c. Since b 6= c,
this scheme a→ b→ c is called a chain shift in the phonological literature (see
Łubowicz 2011 for a comprehensive review). In conclusion, a (well-behaved)
grammar G fails at idempotency if and only if it enforces chain shifts.

3. IDEMPOTENCY IN OPTIMALITY THEORY

The notion of idempotency introduced in the preceding section is independent of
any specific phonological framework used to define the grammar G. Starting with
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this section, I focus on the specific framework of Optimality Theory (OT; Prince
& Smolensky 2004) (Magri to appear extends the theory of idempotency to the
related framework of Harmonic Grammar). Which conditions guarantee that all
of the grammars in an OT typology are idempotent? The answer developed in this
section has two parts: a condition on the candidate set, in the form of a candidacy
transitivity axiom, and a condition on the violation profiles of the faithfulness
constraints, illustrated in Section 1 with (3).

3.1 Optimality Theory (OT)

A constraint C is a function that takes a candidate (a, b, ρa,b) and returns a
number of violations C(a, b, ρa,b) that is large when the candidate scores poorly
from the perspective relevant to that constraint. A constraint C prefers a candi-
date (a, b, ρa,b) to another candidate (c, d, ρc,d) provided that it assigns fewer
violations to the former than to the latter, namely C(a, b, ρa,b) < C(c, d, ρc,d).
A constraint ranking is an arbitrary linear order � over a set of constraints.
A constraint ranking � prefers a candidate (a, b, ρa,b) to another candidate
(c, d, ρc,d) provided that the �-highest constraint among those which assign a
different number of violations to the two candidates (a, b, ρa,b) and (c, d, ρc,d),
prefers the former candidate to the latter. Given a ranking �, the corresponding
OT grammar G� maps an underlying form a to a candidate (a, b, ρa,b) that is
preferred by the ranking � to all other candidates (a, c, ρa,c) that share that
underlying form a.5

3.2 Classical OT

A faithfulness constraint F has the property that it never assigns any violations
to any identity candidate (b, b, Ib,b), as stated in (11a). A markedness constraint
M has the property that it is blind to underlying forms, so that it assigns the same
number of violations to any two candidates (a, c, ρa,c) and (b, c, ρb,c) sharing
the surface form c (independently of their underlying forms), as stated in (11b).

(11) (a) F(b, b, Ib,b)= 0
(b) M(a, c, ρa,c)= M(b, c, ρb,c)

Given the candidacy reflexivity axiom (6), no (non-trivial) constraint can be
both a faithfulness and a markedness constraint. In fact, suppose by contradiction
that were the case for some constraint C . Consider an arbitrary candidate
(a, b, ρa,b) in the candidate set. The reflexivity axiom thus ensures that the

[5] As noted in footnote 84, I assume throughout the paper that grammars map an underlying form
to a single candidate. This condition holds for OT grammars provided that the constraint set is
sufficiently rich relative to the candidate set, in the following sense: for any two candidates
(a, b, ρa,b) and (a, c, ρa,c) that share the underlying form a, the constraint set contains a
constraint C which assigns them a different number of violations.
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candidate set also contains the corresponding identity candidate (b, b, Ib,b).
These two candidates (a, b, ρa,b) and (b, b, Ib,b) share the surface form b. Since
C is a markedness constraint, C must assign the same number of violations to
those two candidates, as stated in (12a). Since C is also a faithfulness constraint,
it does not penalize the identity candidate (b, b, Ib,b), as stated in (12b).

(12) C(a, b, ρa,b)
(a)
= C(b, b, Ib,b)

(b)
= 0

In conclusion, C does not penalize any candidate, and it is therefore trivial.6

Although no constraint can be both a faithfulness and a markedness constraint,
it can easily be neither (for instance, comparative markedness constraints are
neither; see McCarthy 2002, 2003a as well as Section 7 below for additional
references). To rule out the latter case, I assume throughout the paper that the
constraint set only consists of faithfulness and markedness constraints (this is
Moreton (2004b) conservativity assumption).

(13) Constraint set = faithfulness constraints ∪ markedness constraints

Let me call classical the version of OT endowed with the latter restriction (13) on
the constraint set.

3.3 A sufficient condition for chain shifts

The classical assumption (13) that each constraint is either a faithfulness con-
straint (11a) or a markedness constraint (11b) ensures that the identity candi-
date (b, b, Ib,b) harmonically bounds any candidate (b, b, ρb,b)with ρb,b 6= Ib,b.
To illustrate, the left-most candidate in (8) outperforms the other candidates listed.
In fact, faithfulness constraints cannot prefer (b, b, ρb,b) to (b, b, Ib,b), by (11a);
and markedness constraints do not distinguish between two such candidates,
by (11b). In other words, the OT grammar G� corresponding to any ranking
� is well-behaved in the sense of Section 2.4: G�(b) 6= (b, b, ρb,b) whenever
ρb,b 6= Ib,b. The characterization of non-idempotency in terms of chain shifts in
Section 2.4 thus applies to (classical) OT grammars. To distill the implications of
that characterization, let me weaken the ‘if-and-only-if’ statement (10) into the
‘if’ statement (14). In fact, if the grammar G� maps the underlying form a to
the candidate (a, b, ρa,b), as stated in (10a), the ranking � must in particular
prefer the candidate (a, b, ρa,b) to any other loser candidate (a, c, ρa,b), as stated
in (14a). Furthermore, if the grammar G� maps the underlying form b to the
candidate (b, c, ρb,c), as stated in (10a), the ranking� must in particular prefer
this candidate (b, c, ρb,c) to the identity candidate (b, b, Ib,b), as stated in (14b).

[6] This conclusion crucially rests on the candidacy reflexivity axiom (6), which intuitively ensures
that the candidate set has enough identity candidates. Without this axiom, the assumption that C
is a faithfulness constraint would indeed have no bite, as the faithfulness definitional condition
(11a) is stated in terms of identity candidates.
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(14) If G� fails at idempotency on a candidate (a, b, ρa,b), there exists some
candidate (b, c, ρb,c) with b 6= c such that:
(a) � prefers (a, b, ρa,b) to (a, c, ρa,c),

for any correspondence ρa,c in the candidate set (if any);
(b) � prefers (b, c, ρb,c) to (b, b, Ib,b).

Condition (14b) that the ranking � prefers (b, c, ρb,c) to the identity candi-
date (b, b, Ib,b) means that the constraint set contains a constraint that prefers
(b, c, ρb,c) to (b, b, Ib,b), such that all of the constraints that are ranked by �
above it assign the same number of violations to the two candidates. By (11a),
this constraint that prefers (b, c, ρb,c) to (b, b, Ib,b) cannot be a faithfulness
constraint and must instead be a markedness constraint M . Condition (14b) can
thus be explicitated as (15b) and (15c).

(15) If G� fails at idempotency on (a, b, ρa,b), there exist a candidate
(b, c, ρb,c) with b6=c and a markedness constraint M such that:
(a) � prefers (a, b, ρa,b) to (a, c, ρa,c),

for any correspondence ρa,c in the candidate set (if any);
(b) M assigns fewer violations to (b, c, ρb,c) than to (b, b, Ib,b);
(c) any faithfulness or markedness constraint�-ranked above M assigns

(b, c, ρb,c) and (b, b, Ib,b) the same number of violations.

Since faithfulness constraints assign no violations to identity candidates by
(11a), condition (15c) that any faithfulness constraint ranked above M assigns the
same number of violations to (b, c, ρb,c) and (b, b, Ib,b) means that it assigns no
violations to (b, c, ρb,c). Condition (15c) can thus be made explicit as in (16c)
and (16d).

(16) If G� fails at idempotency on (a, b, ρa,b), there exist a candidate
(b, c, ρb,c) with b 6=c and a markedness constraint M such that:
(a) � prefers (a, b, ρa,b) to (a, c, ρa,c),

for any correspondence ρa,c in the candidate set (if any);
(b) M assigns fewer violations to (b, c, ρb,c) than to (b, b, Ib,b);
(c) any faithfulness constraint �-ranked above M assigns no violations

to (b, c, ρb,c);
(d) any markedness constraint �-ranked above M assigns the same

number of violations to (b, c, ρb,c) and (b, b, Ib,b).

The designated markedness constraint M prefers (b, c, ρb,c) to (b, b, Ib,b), by
(16b). Furthermore, it is blind to the underlying forms, by (11b). Hence, M also
prefers (a, c, ρa,c) to (a, b, ρb,b). Assumption (16a) thus requires M to be ranked
below some constraint with the opposite preference. The latter constraint cannot
be a markedness constraint, because of (16d). It must therefore be a faithfulness
constraint. Condition (16a) can thus be made explicit as in (17a).
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(17) If G� fails at idempotency on (a, b, ρa,b), there exist a candidate
(b, c, ρb,c) with b6=c and a markedness constraint M such that:

(a) for any correspondence ρa,c in the candidate set (if any), there exists
a faithfulness constraint �-ranked above M which assigns fewer
violations to (a, b, ρa,b) than to (a, c, ρa,c);

(b) M assigns fewer violations to (b, c, ρb,c) than to (b, b, Ib,b);

(c) any faithfulness constraint �-ranked above M assigns no violations
to (b, c, ρb,c);

(d) any markedness constraint �-ranked above M assigns the same
number of violations to (b, c, ρb,c) and (b, b, Ib,b).

Condition (17) just derived is necessary for idempotency to fail.

3.4 The faithfulness idempotency condition (FIC)

I am now ready to tackle the central question of this section: which conditions
ensure that the OT grammars corresponding to any ranking of a given constraint
set are idempotent? The answer to this question is provided by the following
Lemma 1. The assumption made by the lemma is twofold. First, it restricts the
candidate set: if it contains two candidates (a, b, ρa,b) and (b, c, ρb,c) that share
a string b as the surface and underlying form respectively, it must also contain a
candidate (a, c, ρa,c) that puts the underlying string a of the former candidate in
correspondence with the surface string c of the latter candidate, as in (18).

(18)

Second, the assumption of the lemma restricts the constraint set: it requires all
the faithfulness constraints to satisfy the implication (19), which is referred to
as the faithfulness idempotency condition (FIC). The specific implication (3) in
Section 1 is a concrete example of the FIC.

Lemma 1. Assume that, for any two candidates (a, b, ρa,b) and (b, c, ρb,c) that
share b as the underlying and surface form respectively, the candidate set also
contains a candidate (a, c, ρa,c) such that the following implication holds for
every faithfulness constraint F in the constraint set.

(19) If: F
(
b,c, ρb,c

)
= 0

Then: F
(
a,c, ρa,c

)
6 F

(
a,b, ρa,b

)
Then, the OT grammar corresponding to any ranking of the constraint set is
idempotent. �
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Lemma 1 follows straightforwardly from the discussion in the preceding
subsection: the FIC (19) makes the two conditions (17a) and (17c) incompatible
and thus prevents idempotency from failing. In fact, (17a) requires the designated
markedness constraint M to be outranked by a faithfulness constraint F which
assigns fewer violations to (a, b, ρa,b) than to (a, c, ρa,c). This means that the
consequent of the FIC (19) fails. The antecedent must therefore fail as well. This
means in turn that F assigns some violations to (b, c, ρb,c), contradicting (17c).

3.5 Composition candidates and the FICcomp

Lemma 1 makes no assumptions on the nature of the correspondence relation
ρa,c depicted in (18) and in particular on its relationship with the two other
correspondence relations ρa,b and ρb,c. For instance, ρa,c could be the empty
relation. This would make the FIC (19) trivial when F is an identity faithfulness
constraint (because the quantity on the left-hand side of the inequality in the
consequent would be equal to zero) but difficult when F is DEP or MAX (because
the quantity on the left-hand side of the inequality would be large in this case). At
the opposite extreme, ρa,c could be the total relation, which puts any underlying
segment in correspondence with any surface segment. This would make the FIC
(19) trivial when F is DEP or MAX but difficult when F is an identity faithfulness
constraint.

A natural assumption is that ρa,c is the composition ρa,c = ρa,bρb,c of the two
correspondence relations ρa,b and ρb,c.7 This means that a segment a of the string
a and a segment c of the string c are in correspondence through ρa,bρb,c if and
only if there exists some ‘mediating’ segment b of the string b such that a is in
correspondence with b through ρa,b and furthermore b is in correspondence with
c through ρb,c (many examples will be provided in Sections 4–6). The existence
of this composition candidate is guaranteed by (20), which can thus be interpreted
as a candidacy transitivity axiom, complementing the reflexivity axiom (6).

(20) If the candidate set contains two candidates (a, b, ρa,b) and (b, c, ρb,c)

that share b as the surface and the underlying form, it also contains
the composition candidate (a, c, ρa,bρb,c) whose correspondence relation
ρa,bρb,c is the composition of ρa,b and ρb,c.

The original FIC (19) can now be specialized in terms of this composition
candidate as the implication (21), which will be referred to as the FICcomp to
highlight the fact that the left-hand side of the inequality in the consequent
features the composition candidate. The FICcomp entails the original FIC and thus
provides a sufficient condition for the idempotency of all of the grammars in an
OT typology.

[7] The operation of composition between two relations is usually denoted by ‘◦’. In the rest of the
paper, I write more succinctly ρa,bρb,c instead of ρa,b ◦ ρb,c.
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(21) If: F
(
b, c, ρb,c

)
= 0

Then: F
(
a, c, ρa,bρb,c︸ ︷︷ ︸

ρa,c

)
6 F

(
a, b, ρa,b

)
The FICcomp is only a sufficient condition for idempotency, not a necessary-and-
sufficient characterization of idempotency.8 Yet, the FICcomp is a tight sufficient
condition: for any faithfulness constraint that fails at the FICcomp, it is possible
to construct a counterexample where idempotency indeed fails, as will be shown
in Section 7.

3.6 Refinements

The definition of idempotency in Section 2.3 crucially relies on the existence
of the identity candidate, as guaranteed by the reflexivity axiom (6). Yet, as
discussed in Section 2.2, this reflexivity axiom fails when surface representations
are richer than underlying representations. For instance, the identity candidate
(b, b)= (/ma.ba/, [ma.ba]) makes no sense if syllabification is construed as a
surface property. Within a constraint-based framework such as OT, this difficulty
can be circumvented as follows.9 Following McCarthy (2002: Section 6.2),
(a, b, ρa,b) is called a fully faithful candidate (FFC) relative to a constraint set
provided that it violates no faithfulness constraints in that constraint set. Identity
candidates (b, b, Ib,b) are FFCs, because of the definition (11a) of faithfulness
constraints. Yet, non-identity candidates can also qualify as FFCs. For instance,
the candidate (/maba/, [ma.ba]) is not the identity candidate and yet qualifies
as an FFC, under the plausible assumption that syllabification of tautomorphemic
sequences is never contrastive and that no faithfulness constraint is therefore sen-
sitive to syllabification. The reasoning presented in this section holds unchanged if
idempotency is re-defined as follows: whenever G(a)= (a, b, ρa,b), there exists
an FFC (β, b, ρβ,b) such that G(β)= (β, b, ρβ,b). This definition of idempotency
does not require the existence of the identity candidate (b, b, Ib,b) and thus
dispenses with the problematic reflexivity axiom (6). Instead, it requires the
following weaker axiom on the candidate set: for any candidate (a, b, ρa,b)with a
surface string b, the candidate set also contains an FFC (β, b, ρβ,b)with that same
surface form b. This assumption complements McCarthy’s (2002) assumption
that each underlying form a admits an FFC (a, α, ρa,α)with that underlying form.

[8] Looseness has loomed at two steps in the derivation of the FICcomp: first, in the replacement
of the if-and-only-if condition (10) with the if-condition (14); second, in the replacement of the
original FIC (19) for an arbitrary correspondence relation ρa,c with the FICcomp (21) for the
composition correspondence relation ρa,bρb,c.

[9] I thank an anonymous reviewer for discussion on the content of this subsection.
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4. ESTABLISHING THE FICCOMP : BASIC CONSTRAINTS

The preceding section has established the FICcomp (21) as a sufficient condition
for idempotency in OT. This condition places no restrictions on the markedness
constraints and instead only concerns the faithfulness constraints. The theory
of idempotency in the rest of this paper thus turns into an investigation of the
formal underpinning of theories of faithfulness. Consider the strictest faithfulness
constraint Fstrictest, which is violated by every candidate except the identity candi-
date and thus demands perfect string identity. This constraint Fstrictest satisfies the
implication (22). In fact, the antecedent of (22) requires the candidate (b, c, ρb,c)

to be the identity candidate. This means that the two strings b and c are identical
and that the correspondence relation ρb,c is the identity relation, so that the
composition ρa,bρb,c coincides with ρa,b. The equation in the consequent of (22)
thus holds because the two candidates being compared are identical.

(22) If: Fstrictest
(
b, c, ρb,c

)
= 0

Then: Fstrictest
(
a, c, ρa,bρb,c

)
= Fstrictest

(
a, b, ρa,b

)
The faithfulness constraints adopted in the phonological literature require some-
thing weaker than perfect string identity. Correspondingly, the FICcomp (21) is
weaker than (22), because the consequent of the former features an inequality
while the consequent of the latter features an identity. Is it the case that what
is left of perfect string identity in the definition of the common faithfulness
constraints suffices to satisfy the FICcomp (21)? This section starts to address this
question, focusing on the three core constraints in McCarthy & Prince’s (1995)
Correspondence Theory: MAX, DEP, and IDENT. A variety of other constraints
will be considered in Sections 5 and 6.

4.1 MAX

The faithfulness constraint MAX assigns to a candidate (a, b, ρa,b) one violation
for each deleted underlying segment, namely for each segment of the underlying
string a that has no corresponding segments in the surface string b according to
ρa,b (McCarthy & Prince 1995, Harris 2011, and references therein). To illustrate,
MAX assigns two violations to the candidate (a, b, ρa,b) in (23), because of its
two underlying deleted segments /s/ and /e/.

(23)

Let us consider two candidates (a, b, ρa,b) and (b, c, ρb,c) together with their
composition candidate (a, c, ρa,bρb,c). Does the faithfulness constraint MAX
satisfy the FICcomp (21)?

If the antecedent of the implication is false, the implication trivially holds.
Thus, let us suppose that the antecedent is true, namely that the candidate
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(b, c, ρb,c) does not violate MAX. For instance, assume that the strings b and
c consist of two corresponding consonants each, as represented in (24a).

(24)

Let us now turn to the inequality in the consequent of the FICcomp. If the left-
hand side of the inequality is zero, the inequality trivially holds. Thus, let us
suppose that the left-hand side is larger than zero, namely that the composition
candidate (a, c, ρa,bρb,c) does violate MAX. For instance, assume that the last of
the three consonants of the string a is deleted in c according to the composition
correspondence relation ρa,bρb,c, as represented in (24b). If the consonant /r/ of
a had a correspondent [s] or [t] in b according to ρa,b, then it would also have
a correspondent in c according to ρa,bρb,c, because both segments /s/ and /t/ of
b have a correspondent in c relative to ρb,c. Thus, the correspondence relation
ρa,b must fail to provide a surface correspondent of /r/ in b, as represented in
(24c). This says in turn that the candidate (a, b, ρa,b) which figures in the right-
hand side of the FICcomp inequality violates MAX as well, so that the inequality
holds in this case.

This reasoning suggests that the FICcomp (21) holds because the assumption
that no segment of b is deleted in c (the antecedent of the FICcomp) entails that
any segment of a that is deleted in c (as quantified by the left-hand side of the
inequality in the consequent) is also deleted in b (as quantified by the right-hand
side of the inequality). Lemma 2 thus obtained will be refined in Section 5 and
proved in Appendix A.1.

Lemma 2 (provisional). The faithfulness constraint MAX satisfies the FICcomp
(21) under no additional assumptions. �

4.2 DEP

The faithfulness constraint DEP assigns to a candidate (a, b, ρa,b) one violation
for each epenthetic surface segment, namely for each segment of the surface string
b that has no corresponding segments in the underlying string a according to ρa,b
(McCarthy & Prince 1995, Hall 2011, and references therein). To illustrate, DEP
assigns two violations to the candidate (a, b, ρa,b) in (25), because of its two
epenthetic vowels [@] and [e] (from Temiar; Itô 1989).

(25)
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Let us consider two candidates (a, b, ρa,b) and (b, c, ρb,c) together with their
composition candidate (a, c, ρa,bρb,c). Does the faithfulness constraint DEP
satisfy the FICcomp (21)?

We can reason exactly as in the preceding Section 4.1. We assume that the
antecedent of the FICcomp holds, namely that the candidate (b, c, ρb,c) does
not violate DEP, as in (26a). Moreover, we assume that the left-hand side of
the inequality in the consequent of the FICcomp is larger than zero, namely that
the composition candidate (a, c, ρa,bρb,c) does violate DEP, say because of the
surface [@] with no underlying correspondents in (26b).

(26)

By definition of the composition correspondence relation ρa,bρb,c, it follows that
the vowel [@] of b cannot have a correspondent relative to ρa,b, as represented in
(26c). This says in turn that the candidate (a, b, ρa,b) that figures in the right-hand
side of the FICcomp inequality violates DEP as well, so that the inequality holds in
this case.

In order to secure the FICcomp for DEP, some additional care is needed,
though: the correspondence relation ρb,c must be prevented from breaking any
underlying segments into two or more surface segments, as shown by the counter-
example (27).

(27)

The antecedent of the FICcomp holds, as shown in (27a): the candidate (b, c, ρb,c)

does not violate DEP, because every segment of c has a correspondent, although
the two surface vowels [e] and [i] share the underlying correspondent /@/. The
right-hand side of the FICcomp inequality is equal to 1, as shown in (27c): the
candidate (a, b, ρa,b) violates DEP once, because it has a unique epenthetic
vowel [@]. The FICcomp inequality fails because its left-hand side is instead equal
to 2, as shown in (27b): the composition candidate (a, c, ρa,bρb,c) violates DEP
twice, because both [e] and [i] are epenthetic.

These considerations lead to Lemma 3, which will be refined in Section 5 and
proved in Appendix A.2.
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Lemma 3 (provisional). The faithfulness constraint DEP satisfies the FICcomp
(21) provided that no correspondence relation in the candidate set breaks any
underlying segment. �

Lemmas 2 and 3 highlight a difference between MAX and DEP: the former
satisfies the FICcomp without additional assumptions; the latter instead requires
the correspondence relation ρb,c not to break any underlying segments, forbidding
scenarios such as (27a). The reason behind this difference can be intuitively
appreciated as follows. DEP quantifies over epenthetic surface segments, and the
two candidates (a, c, ρa,bρb,c) and (a, b, ρa,b) compared by the inequality in the
consequent of the FICcomp have different surface strings b and c. In order to make
these two strings ‘commensurate’, the correspondence relation ρb,c that links
them cannot break underlying segments. MAX instead quantifies over deleted
underlying segments, and the two candidates (a, c, ρa,bρb,c) and (a, b, ρa,b)

compared by the FICcomp inequality share the underlying form a, so that no
additional ‘commensurability’ assumptions are needed.

4.3 IDENT

A phonological feature ϕ takes a segment a and returns a feature value. A feature
is called binary if it takes only two values; otherwise, it is called multi-valued.
For instance, the feature [nasal] is binary while the feature [place] could be
construed as distinguishing between three major places of articulation, making
it multi-valued (de Lacy 2006: Section 2.3.2.1.1). A feature ϕ is called total
(relative to the candidate set) provided that there is no underlying or surface
string that contains a segment for which the feature ϕ is undefined. The identity
faithfulness constraint IDENTϕ corresponding to a total feature ϕ assigns to a
candidate (a, b, ρa,b) one violation for each pair (a, b) of an underlying segment
a and a surface segment b that are put in correspondence by ρa,b despite the fact
that they are assigned different values by the feature ϕ (McCarthy & Prince 1995).
To illustrate, IDENT[nasal] assigns two violations to the candidate (a, b, ρa,b) in
(28), because of the two corresponding pairs (/n/, [t]) and (/k/, [N]).

(28)

Let us consider two candidates (a, b, ρa,b) and (b, c, ρb,c) together with
their composition candidate (a, c, ρa,bρb,c). Does the identity faithfulness con-
straint IDENT[nasal] satisfy the FICcomp (21)?

We can reason exactly as in the two preceding Sections 4.1 and 4.2. We assume
that the antecedent of the FICcomp holds, namely that the candidate (b, c, ρb,c)

does not violate IDENT[nasal], as in (29a).
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(29)

Moreover, we assume that the left-hand side of the inequality in the consequent
of the FICcomp is larger than zero, namely that the composition candidate
(a, c, ρa,bρb,c) does violate IDENT[nasal], as in (29b). By definition of the com-
position correspondence relation ρa,bρb,c, ρa,b must put in correspondence the
underlying nasal /N/ of a with the surface oral [g] of b, as represented in (29c).
This says in turn that the candidate (a, b, ρa,b) that figures in the right-hand side
of the FICcomp inequality violates IDENT[nasal] as well, so that the inequality holds.

Also for IDENT[nasal], as for DEP, the FICcomp requires no underlying segment
to be broken by the correspondence relation ρb,c, as shown by the counterexample
(30), analogous to (27).

(30)

The antecedent of the FICcomp holds: gemination preserves nasality in the
candidate in (30a) (which could correspond, for instance, to the Japanese loan
[fu.róg.gu] of English frog; Kubozono, Ito & Mester 2008). However, the
inequality in the consequent of the FICcomp fails: the composition candidate (30b)
violates IDENT[nasal] twice because of the gemination while the candidate (30c)
violates it only once, so that the left-hand side of the inequality exceeds the right-
hand side.

These considerations extend from IDENT[nasal] to the identity faithfulness
constraint IDENTϕ corresponding to any feature ϕ, independently of whether it
is binary or multi-valued, as long as it is total. The case of partial features is
indeed more delicate. Assume that the identity faithfulness constraint IDENTϕ
corresponding to a partial feature ϕ assigns to a candidate (a, b, ρa,b) one
violation for each pair (a, b) ∈ ρa,b of corresponding segments such that the
feature ϕ is defined for both segments and assigns them a different value. Thus,
IDENTϕ is not violated when the feature ϕ is undefined for at least one of the
two segments.10 To illustrate, suppose that the feature [strident] is only defined

[10] Another option is to let IDENTϕ assign one violation also when the feature ϕ is undefined
for one and only one of the two segments in the corresponding pair (a, b). This definition of
IDENTϕ effectively treats ϕ as a total but multi-valued feature. Under this approach, feature
partiality raises no additional complications for the FICcomp.
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for coronals (Hayes 2009). The corresponding constraint IDENT[strident] does not
satisfy the FICcomp (21), as shown by the counterexample (31).

(31)

The antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (31a) does not
violate IDENT[strident], because the underlying /f/ of b is not coronal and is thus
undefined for stridency. The right-hand side of the FICcomp inequality is equal
to 0: the candidate (a, b, ρa,b) in (31c) does not violate IDENT[strident], because
again [f] is undefined for stridency. The FICcomp inequality fails because its left-
hand side is equal to 1: the composition candidate (a, c, ρa,bρb,c) in (31b) does
violate IDENT[strident], because of the two corresponding coronal segments /T/
and [s].

These considerations lead to Lemma 4, which will be refined in Section 5 and
proved in Appendix A.3.

Lemma 4 (provisional). The identity faithfulness constraint IDENTϕ relative
to a phonological feature ϕ satisfies the FICcomp (21) provided that no cor-
respondence relation in the candidate set breaks any underlying segment and
furthermore the feature ϕ is total relative to the candidate set. �

5. ESTABLISHING THE FICCOMP : RESTRICTED CONSTRAINTS

The phonological literature has made use of restricted variants of MAX, DEP, and
IDENT which are only offended when the deleted, epenthetic, or mismatching
segments belong to a privileged segment set. Privilege can be determined by
segmental quality or position in the string. This section investigates how these
restricted constraints fare with respect to the FICcomp.

5.1 MAXR

A restriction R pairs a string a with a subset R(a) of its segments. A segment
of the string a satisfies the restriction provided that it belongs to R(a). The
faithfulness constraint MAXR assigns to a candidate (a, b, ρa,b) one violation
for each segment of the underlying string a that satisfies the restriction R and is
deleted. Deletion of underlying segments that do not satisfy the restriction is not
penalized. To illustrate, consider the restriction R which pairs a string a with the
set R(a) of its consonants. The corresponding constraint MAXR is the constraint
MAX-C which militates against consonant deletion, but is not offended by vowel
deletion (it thus assigns only one violation to the candidate (23), while unrestricted
MAX assigns two violations).
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While we have seen that unrestricted MAX satisfies the FICcomp, its restricted
counterpart MAXR can fail at the FICcomp, as shown by the counterexample (32)
for MAXR = MAX-C.

(32)

The antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (32a) does not
violate MAX-C, because the deleted segment is a vowel. The right-hand side of
the FICcomp inequality is equal to zero: the candidate (a, b, ρa,b) in (32c) does
not violate MAX-C, because it involves no deletion. The FICcomp inequality thus
fails, because its left-hand side is instead equal to 1: the composition candidate
(a, c, ρa,bρb,c) in (32b) does violate MAX-C, because it deletes a consonant.

In order for MAXR to fail at the FICcomp in (32), it is crucial that ρa,b
establishes a correspondence between the consonant /s/ and the vowel [e], namely
between a segment that satisfies the restriction R and a segment that does not
satisfy it. Given a candidate (a, b, ρa,b), the correspondence relation ρa,b is said
to exit from the restriction R if it puts some underlying segment a that satisfies
the restriction R in correspondence with some surface segment b that does not
satisfy it, as in (33). The top and bottom rectangles represent the sets of segments
of a and b, with the subsets selected by the restriction R highlighted in gray.

(33)

The following lemma ensures that MAXR satisfies the FICcomp provided that
no correspondence relation in the candidate set exits from the restriction R. To
illustrate, the lemma guarantees that MAX-C satisfies the FICcomp provided that
no underlying consonant is in correspondence with a surface vowel. The lemma
will be further extended in Section 5.3.

Lemma 2 (provisional). Assume that the candidate set contains no candidate
(a, b, ρa,b) whose correspondence relation exits from the restriction R, so that
condition (33) is impossible relative to the candidate set. The faithfulness con-
straint MAXR then satisfies the FICcomp (21). �

A restriction is trivial provided that it pairs every string with the totality of its
segments. The case of unrestricted MAX discussed in Section 4.1 follows as a
special case of MAXR with a trivial restriction R: no correspondence relation can
exit from R in this case and (33) is thus contradictory.
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5.2 DEPS

The reasoning in Section 5.1 extends straightforwardly from MAX to DEP.
Given a restriction S, the corresponding faithfulness constraint DEPS assigns
to a candidate (a, b, ρa,b) one violation for each segment of the surface string
b that satisfies the restriction S and is epenthetic.11 To illustrate, consider the
restriction S which pairs a string with the set of its vowels. The corresponding
constraint DEPS is the constraint DEP-V which militates against vowel epenthesis,
but is not offended by consonant epenthesis. Given a candidate (a, b, ρa,b), the
correspondence relation ρa,b is said to enter into S provided that it puts some
underlying segment a that does not satisfy the restriction S in correspondence with
some surface segment b that does satisfy it, as in (34). Condition (34) is analogous
to (33), only with the roles of underlying and surface segments switched.

(34)

In the case of MAXR , the no-exiting assumption that (33) is impossible suffices to
establish the FICcomp. In the case of DEPS , the no-entering assumption that (34)
is impossible needs to be coupled with the no-breaking condition, as expected
based on the discussion in Section 4.2. The following lemma guarantees that
it suffices to require the no-breaking condition among the segments that satisfy
the restriction S, intuitively because DEPS only cares about those segments. To
illustrate, the lemma guarantees that DEP-V satisfies the FICcomp provided that no
surface vowel is in correspondence with an underlying consonant and furthermore
no underlying vowel is diphthongized.12 The lemma will be further extended
in Section 5.4.

Lemma 3 (provisional). Assume that no underlying segment that satisfies the
restriction S is broken into two surface segments that both satisfy the restriction
S, in the sense that the candidate set contains no candidate (a, b, ρa,b) with
two different corresponding pairs (a, b1), (a, b2) ∈ ρa,b for the same underlying
segment a such that a ∈ S(a) and b1, b2 ∈ S(b). Assume furthermore that the
candidate set contains no candidate (a, b, ρa,b) whose correspondence relation
enters into the restriction S, so that condition (34) is impossible relative to the
candidate set. The faithfulness constraint DEPS then satisfies the FICcomp (21).�

[11] Throughout this section, a restriction on the underlying segments is denoted by R and appears
as a subscript on the constraint name (as in MAXR ) while a restriction on the surface segments
is denoted by S and appears as a superscript (as in DEPS ).

[12] Assuming a breaking analysis of vowel diphthongization.
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5.3 MAXS
R

The doubly restricted constraint MAXS
R assigns to a candidate (a, b, ρa,b) one

violation for each segment of the underlying string a that satisfies the restriction
R (namely, it belongs to R(a)) and has no correspondent segment in the surface
string b that satisfies the restriction S (namely, it belongs to S(b)), although
it might have surface correspondents that do not satisfy the restriction S. To
illustrate, consider the restriction R which pairs a string with the set of its
consonants and the restriction S which pairs a string with the set of the segments
in its initial syllable. MAXS

R is Beckman’s (1999) constraint MAX-C-σ1, which
mandates that every consonant has a correspondent in the initial syllable. The
following lemma extends the analysis of the singly restricted MAXR to the
doubly restricted MAXS

R . This lemma concludes the analysis of segmental MAX
constraints. The proof is a straightforward verification, as shown in Appendix A.1.

Lemma 2. Assume that the candidate set contains no candidate (a, b, ρa,b) that
satisfies condition (35), which is therefore impossible relative to the candidate set.

(35) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), b ∈ S(b)

The faithfulness constraint MAXS
R then satisfies the FICcomp (21). �

Condition (35) for MAXS
R and condition (33) considered in Section 5.1 for

MAXR differ only in that the former has the additional fourth clause b ∈ S(b).
Because of this additional clause, the assumption that (35) is impossible required
for MAXS

R to satisfy the FICcomp is weaker than the assumption that (33) is
impossible required for MAXR . To illustrate, the lemma says that the doubly
restricted MAX-C-σ1 satisfies the FICcomp provided that no consonant is in
correspondence with the vowel of the initial syllable, while the singly restricted
MAX-C was shown in Section 5.1 to require the stronger assumption that no
consonant is in correspondence with any vowel.

The case of MAXR follows as a special case of MAXS
R with a trivial restriction

S: the additional clause b ∈ S(b) is trivially satisfied in this case and the two
conditions (33) and (35) thus coincide. Furthermore, the constraint MAXS always
satisfies the FICcomp because it coincides with MAXS

R with a trivial restriction
R, whereby the clause b 6∈ R(b) is impossible. As yet another interesting special
case, suppose that the two restrictions R and S coincide. Condition (35) is then
contradictory, because it cannot be the case that b 6∈ R(b) and b ∈ S(b). The
constraint MAXS

R thus satisfies the FICcomp without additional assumptions when
S = R. This observation will be used in Section 6.1 to establish the FICcomp for
featural MAX constraints.

5.4 DEPS
R

The reasoning in Section 5.3 extends straightforwardly from MAXS
R to DEPS

R .
The doubly restricted constraint DEPS

R assigns to a candidate (a, b, ρa,b) one
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violation for each segment of the surface string b that satisfies the restriction S
(namely, it belongs to S(b)) and has no correspondent segment in the underlying
string a that satisfies the restriction R (namely, it belongs to R(a)), although it
might have underlying correspondents that do not satisfy the restriction R. The
following lemma extends the analysis of the singly restricted DEPS to the doubly
restricted DEPS

R and thus concludes the analysis of segmental DEP constraints.
The assumption that (36) is impossible is weaker than the assumption that (34) is
impossible, because of the additional clause a ∈ R(a). The proof of the lemma is
a straightforward verification, as shown in Appendix A.2.

Lemma 3. Assume that no underlying segment that satisfies the restriction S is
broken into two surface segments that both satisfy the restriction S, in the sense
that the candidate set contains no candidate (a, b, ρa,b) with two different cor-
responding pairs (a, b1), (a, b2) ∈ ρa,b for the same underlying segment a such
that a ∈ S(a) and b1, b2 ∈ S(b). Assume furthermore that the candidate set
contains no candidate (a, b, ρa,b) that satisfies condition (36), which is therefore
impossible relative to the candidate set.

(36) (a, b) ∈ ρa,b, b ∈ S(b), a 6∈ S(a), a ∈ R(a)

The faithfulness constraint DEPS
R then satisfies the FICcomp (21). �

5.5 IDENTϕ,R

The faithfulness constraint IDENTϕ,R corresponding to a total feature ϕ and a
restriction R assigns to a candidate (a, b, ρa,b) one violation for each corre-
sponding pair (a, b) ∈ ρa,b of segments that differ in the value of the feature ϕ
such that the underlying segment a satisfies the restriction R (namely, it belongs
to R(a)). To illustrate, consider the restriction R which pairs a string with the
set of its nasal segments. The corresponding constraint IDENT[nasal],R is the
constraint IDENTI→O[+nasal] of Pater (1999), which penalizes de-nasalization
(i.e., an underlying nasal segment with an oral surface correspondent), but not
nasalization. Lemma 4/A guarantees that IDENTϕ,R satisfies the FICcomp provided
that the candidate set makes (37) impossible (and furthermore satisfies the usual
no-breaking assumption).

Lemma 4/A. Assume that no correspondence relation in the candidate set
breaks any underlying segment. Consider a feature ϕ that is total relative to the
candidate set. Assume furthermore that the candidate set contains no candidate
(a, b, ρa,b) that satisfies condition (37), which is therefore impossible relative to
the candidate set.

(37) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), ϕ(a)= ϕ(b)

The faithfulness constraint IDENTϕ,R then satisfies the FICcomp (21). �

Condition (37) coincides with condition (33) used above in the analysis of
MAXR , apart from the additional clause ϕ(a)= ϕ(b) that the two segments a and
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b are assigned the same value by the feature ϕ. The assumption that (37) is impos-
sible thus means that the correspondence relation ρa,b cannot exit from R without
changing the value of the feature ϕ. The assumption that (37) is impossible is thus
weaker than the assumption that (33) is impossible, which was needed above for
MAXR . To illustrate, consider again the feature ϕ = [nasal] and the restriction R
which pairs a string with the set of its nasals. Condition (37) is contradictory in
this case, because the three clauses a ∈ R(a), b 6∈ R(b), and ϕ(a)= ϕ(b) cannot
hold simultaneously. Pater’s constraint IDENTI→O[+nasal] = IDENT[nasal],R thus
satisfies the FICcomp (provided there is no breaking).

5.6 IDENTS
ϕ

The faithfulness constraint IDENTS
ϕ is defined analogously, the only difference

being that the restriction is applied to surface rather than underlying segments. To
illustrate, consider the restriction S which pairs a string with the set of segments
that belong to its initial syllable. The corresponding constraint IDENTS

[high] is the
constraint IDENT

σ1
[high] of Beckman (1997, 1999), which is violated by a surface

vowel in the initial syllable in correspondence with an underlying vowel that dif-
fers with respect to the feature [high]. As another example, consider the restriction
S which pairs a string with the set of its nasal segments. The corresponding
constraint IDENTS

[nasal] is the constraint IDENTO → I[+nasal] of Pater (1999),
which penalizes nasalization (i.e., an underlying oral segment with a nasal surface
correspondent), but not de-nasalization. Lemma 4/B guarantees that IDENTS

ϕ

satisfies the FICcomp provided that condition (38) is impossible. This assumption
means that the correspondence relation ρa,b cannot exit from R without changing
the value of the feature ϕ. The only difference between Lemmas 4/A and 4/B is
that the no-breaking assumption in the latter lemma is restricted to the segments
that satisfy the restriction (as underlined). The proof of both lemmas is a
straightforward verification, as shown in Appendix A.3.

Lemma 4/B. Assume that no underlying segment that satisfies the restriction S
can be broken into two surface segments that both satisfy the restriction S, in the
sense that the candidate set contains no candidate (a, b, ρa,b) with two different
candidate pairs (a, b1), (a, b2) ∈ ρa,b for the same underlying segment a such
that a ∈ S(a) and b1, b2 ∈ S(b). Consider a feature ϕ that is total relative to the
candidate set. Assume furthermore that the candidate set contains no candidate
(a, b, ρa,b) that satisfies condition (38), which is therefore impossible relative to
the candidate set.

(38) (a, b) ∈ ρa,b, b ∈ S(b), a 6∈ S(a), ϕ(a)= ϕ(b)

The faithfulness constraint IDENTS
ϕ then satisfies the FICcomp (21). �
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5.7 IDENTS
ϕ,R

For completeness, let us also consider the faithfulness constraint IDENTS
ϕ,R

corresponding to a total feature ϕ and two restrictions R, S, which assigns to a
candidate (a, b, ρa,b) one violation for each pair (a, b) ∈ ρa,b of an underlying
segment a that satisfies the restriction R (namely, it belongs to R(a)) and a
surface segment b that satisfies the restriction S (namely, it belongs to S(b))
such that ϕ(a) 6= ϕ(b). To illustrate, consider the constraint *REPLACE (coronal,
labial) proposed in Boersma (1998): it is violated by an underlying coronal
consonant with a labial surface correspondent. It can be reinterpreted as the
constraint IDENTS

[place],R corresponding to a tri-valued feature [place] where the
restrictions R and S pair a string with the set of its coronal segments and
the set of its labial segments, respectively. As another example, consider the
*MAP constraint in (39), proposed by White (2013) and Hayes & White (to
appear) building on Zuraw (2007, 2013): it is violated by an underlying voiceless
stop which is in correspondence with a surface voiced fricative. This constraint
can be reinterpreted as the constraint IDENTS

[voice],R or IDENTS
[cont],R where the

restrictions R and S pair a string with the set of its voiceless stops and the set of
its voiced fricatives, respectively.13

(39) *MAP

([
−voice
−cont

]
,
[

+voice
+cont

])
No simple conditions on the correspondence relations and the restrictions R, S

seem to suffice to ensure that the doubly restricted constraint IDENTS
ϕ,R satisfies

the FICcomp. In particular, it does not suffice to simply assume that the two
conditions (37) and (38) for IDENTS

ϕ and IDENTϕ,R are both impossible. Here
is a counterexample. Consider a feature ϕ that is partial and binary. Consider the
corresponding feature ϕ̂ that is total and ternary, in the sense that ϕ̂ coincides
with ϕ for any segment that ϕ is defined for, while ϕ̂ assigns the dummy value
‘0’ to the segments that ϕ is undefined for. Consider the identity faithfulness
constraint IDENTϕ relative to the partial feature ϕ, which only penalizes an
underlying and a corresponding surface segment when the feature is defined for
both and assigns them a different value (IDENTϕ does not assign a violation
when the feature is defined for exactly one of the two corresponding segments).
This constraint IDENTϕ is identical to the doubly restricted identity faithfulness
constraint IDENTS

ϕ̂,R relative to the total three-valued feature ϕ̂ and the restrictions
R = S which pair a string with the set of its segments for which the feature ϕ
is defined (namely the set of segments to which the corresponding total feature
ϕ̂ assigns values ± and not the dummy value). Since the identity constraint
IDENTϕ corresponding to the partial feature ϕ has been shown not to satisfy the
FICcomp in Section 4.3, the doubly restricted constraint IDENTS

ϕ̂,R cannot satisfy

[13] Zuraw (2013) actually assumes that *MAP applies to corresponding output segments. Output–
output correspondence falls outside the scope of this paper.
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the FICcomp either. Yet, conditions (37) and (38) are both contradictory, because
the restrictions R, S are defined in terms of the values of the feature ϕ̂.

6. ESTABLISHING THE FICCOMP : OTHER CONSTRAINTS

This section completes the analysis of the FICcomp within Correspondence
Theory, by looking at a variety of other faithfulness constraints that naturally
arise within that framework. For simplicity, only the unrestricted versions of these
constraints are considered.

6.1 MAX[+ϕ], DEP[+ϕ]

Let ‘+’ be a designated value of a feature ϕ, either partial or total, either binary
or multi-valued. The faithfulness constraint MAX[+ϕ] assigns to a candidate
(a, b, ρa,b) one violation for each segment of the underlying string a that has
the designated value + for the feature ϕ but has no correspondent in the surface
string b that shares the value + for the feature ϕ (Casali 1997, 1998; Walker
1999; Lombardi 2001).14 To illustrate, MAX[+voice] assigns two violations to the
candidate (40), because both /b/ and /d/ lose their voicing (through devoicing and
deletion, respectively).

(40)

The featural constraint MAX[+ϕ] coincides with the doubly restricted segmental
constraint MAXS

R when the two restrictions R and S both pair up a string with
the set of its segments that have the value + for the feature ϕ. Since, in particular,
R = S, condition (35) of Lemma 2 is impossible, because its last two clauses
b 6∈ R(b) and b ∈ S(b) are contradictory. The following result thus follows as a
special case of Lemma 2.

Lemma 5. Let ‘+’ be a designated value of a feature ϕ (either binary or multi-
valued, either partial or total). The faithfulness constraint MAX[+ϕ] satisfies the
FICcomp (21) under no additional assumptions. �

Analogous considerations hold for the constraint DEP[+ϕ], which assigns to a
candidate (a, b, ρa,b) one violation for each segment of the surface string b that
has the designated value + for the feature ϕ but has no correspondent in the
underlying string a that shares the value +.

[14] This paper assumes correspondence relations to be defined among segments. Correspondence
relations among feature values are then defined indirectly: two feature values are in corre-
spondence provided that their segmental carriers are in correspondence. The investigation
of idempotency in an auto-segmental framework where correspondence relations are defined
directly among feature values is left for future research.

164

https://doi.org/10.1017/S0022226717000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0022226717000019


I D E M P OT E N C Y I N O P T I M A L I T Y T H E O RY

Lemma 6. Let ‘+’ be a designated value of a feature ϕ (either binary or multi-
valued, either partial or total). Assume that no underlying segment with value + is
broken into two surface segments that both have value +. The faithfulness
constraint DEP[+ϕ] then satisfies the FICcomp (21). �

The featural constraints MAX[+ϕ]/DEP[+ϕ] differ subtly from the restricted
segmental constraints MAXR /DEPS , where R and S both pair a string with
the set of its segments that have the value ‘+’ for the feature ϕ. In fact,
MAXR /DEPS are violated by an underlying/surface segment that has the value ‘+’
and is deleted/epenthesized, while MAX[+ϕ]/DEP[+ϕ] are violated by an underly-
ing/surface segment that has the value ‘+’ and is deleted/epenthesized or put in
correspondence with segments with a different value for feature ϕ. This subtle
difference is computationally substantial: MAX[+ϕ]/DEP[+ϕ] satisfy the FICcomp
under no additional assumptions, but MAXR /DEPS require the additional no-
entering and no-exiting assumptions that (33) and (34) are impossible, as seen in
Sections 5.1–5.2. Formally, this difference is due to the fact that MAX[+ϕ]/DEP[+ϕ]
coincide not with MAXR /DEPS but with MAXS

R /DEPS
R with S = R.

6.2 UNIFORMITY and INTEGRITY

The faithfulness constraint UNIFORMITY assigns to a candidate (a, b, ρa,b) one
violation for each surface coalescence, namely for each segment of the surface
string b that has two or more correspondents in the underlying string a according
to ρa,b (McCarthy & Prince 1995). To illustrate, UNIFORMITY assigns two
violations to the candidate (a, b, ρa,b) in (41), because of its two surface coa-
lescences [b] and [f]. The constraint thus defined is coarse (Wheeler 2005): it does
not distinguish between a coalescence of just two segments (such as [f] below)
and a coalescence of more than two segments (such as [b]). This distinction can
be captured through the following alternative gradient definition: the faithfulness
constraint UNIFORMITYgrad assigns k violations for each coalescence of k > 2
underlying segments.

(41)

While DEP penalizes surface segments that have no underlying correspondents,
UNIFORMITY penalizes surface segments that have too many. The analysis of
DEP in Section 4.2 extends to UNIFORMITY, yielding the following lemma 7,
whose simple verification is omitted for brevity.

Lemma 7. The faithfulness constraints UNIFORMITY and UNIFORMITYgrad

satisfy the FICcomp (21) provided that no correspondence relation in the candidate
set breaks any underlying segment. �
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Analogous considerations hold for the faithfulness constraint INTEGRITY,
which assigns to a candidate (a, b, ρa,b) one violation for each broken underlying
segment, namely for each segment of the underlying string a that has two or more
correspondents in the surface string b according to ρa,b (see McCarthy & Prince
1995 and Staroverov 2014 for discussion). The corresponding gradient constraint
INTEGRITYgrad assigns instead k violations for each underlying segment that is
broken into k > 2 surface segments. While MAX penalizes underlying segments
that have no surface correspondents, INTEGRITY penalizes underlying segments
that have too many. The analysis of MAX in Section 4.1 extends to INTEGRITY,
yielding the following Lemma 8.

Lemma 8. The faithfulness constraints INTEGRITY and INTEGRITYgrad satisfy
the FICcomp (21) under no additional assumptions. �

6.3 CONTIGUITY

The faithfulness constraint I-CONTIGUITY assigns to a candidate (a, b, ρa,b) one
violation for each skipped underlying segment, namely for each segment of the
underlying string a that has no correspondents in the surface string b according
to ρa,b and furthermore is flanked both on the left and on the right by under-
lying segments that instead do admit surface correspondents.15 The faithfulness
constraint I-CONTIGUITY fails at the FICcomp, as shown by the counterexample
(42). The antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (42a)
does not violate I-CONTIGUITY because it has no skipped segments (the deleted
coda /k/ does not count as skipped because it is string-final). The right-hand side of
the FICcomp inequality is small, namely equal to zero: the candidate (a, b, ρa,b)
in (42c) (modeled on metathesis in Rotuman; Carpenter 2002) does not violate
I-CONTIGUITY, because it has no skipped segments (because no underlying
segment is deleted). The FICcomp inequality fails because its left-hand side is
large, namely equal to 1: the composition candidate (a, c, ρa,bρb,c) in (42b)
violates I-CONTIGUITY because /k/ is skipped.

(42)

[15] McCarthy & Prince (1995) consider a slightly different definition, whereby I-CONTIGUITY
assigns to a candidate (a, b, ρa,b) a number of violations that is equal to 1 (equal to 0) if the
candidate has at least one (does not have any) skipped segments. The choice between the two
alternative definitions of I-CONTIGUITY is irrelevant to the point made in this subsection that
it does not satisfy the FICcomp, since the candidates in the counterexample (42) have no more
than one skipped segment, so that the two definitions collapse.
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As McCarthy & Prince (1995) note, I-CONTIGUITY can in most applications
be re-defined as penalizing the deletion of internal segments, namely underlying
segments that are flanked on both sides by other underlying segments, no matter
whether these flankers have correspondents. The counterexample (42) shows that
the constraint thus re-defined fails at the FICcomp as well. This is not surprising,
because the constraint thus redefined coincides with MAXR , where the restriction
R pairs a string with the set of its internal segments. As seen in Section 5.1, MAXR
fails at the FICcomp when the correspondence relations can exit from the restriction
R. That is precisely the case in the counterexample (42), as the correspondence
relation ρa,b establishes a correspondence between underlying /k/ (which satisfies
the restriction R because it is internal to a) and surface [k] (which does not satisfy
the restriction R because it is not internal to b). Analogous considerations hold
for O-CONTIGUITY.

6.4 ADJACENCY

Carpenter (2002) argues that the faithfulness constraint I-CONTIGUITY should
be replaced with O-ADJACENCY. The latter assigns to a candidate (a, b, ρa,b)

one violation for any two pairs (a1, b1), (a2, b2) of underlying segments a1, a2
and surface segments b1, b2 that are in correspondence according to ρa,b despite
the fact that b1, b2 are adjacent in the surface string b while a1, a2 are not
adjacent in the underlying string a. The faithfulness constraint I-ADJACENCY is
defined analogously, by looking at adjacency relative to the underlying string. To
appreciate the difference between I-CONTIGUITY and O-ADJACENCY, consider
again the counterexample (42) used to show that I-CONTIGUITY fails at the
FICcomp. This counterexample raises no problems for O-ADJACENCY. The
crucial difference is that O-ADJACENCY assigns one violation to the candidate
(a, b, ρa,b) in (42c), because of the two pairs of corresponding segments (/t/, [t])
and (/a/, [a]). Indeed, despite the fact that O-ADJACENCY and I-CONTIGUITY are
shown by Carpenter to do much of the same work, they differ with respect to the
FICcomp: I-CONTIGUITY fails at the FICcomp, as seen in the preceding subsection;
O-ADJACENCY instead satisfies the FICcomp, as stated by the following lemma,
whose simple verification is omitted for brevity.

Lemma 9. The faithfulness constraints O-ADJACENCY and I-ADJACENCY
satisfy the FICcomp (21) provided that no correspondence relation in the candidate
set breaks any underlying segment. �

6.5 LINEARITY

The faithfulness constraint LINEARITY penalizes metathesis. McCarthy (2008:
198) defines this constraint as follows: LINEARITYMcCarthy assigns to a candidate
(a, b, ρa,b) one violation for each pair of underlying segments a1 and a2 that
admit two swapped surface correspondents, namely there exist two surface seg-
ments b1 and b2 such that a1 corresponds through ρa,b to b1, a2 corresponds to

167

https://doi.org/10.1017/S0022226717000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0022226717000019


G I O R G I O M AG R I

b2, and yet a1 precedes a2 while b1 follows b2. Heinz (2005) offers the following
alternative definition: LINEARITYHeinz assigns to a candidate (a, b, ρa,b) one
violation for each pair of underlying segments a1 and a2 that admit no non-
swapped surface correspondents, namely there exist no two surface segments
b1 and b2 such that a1 corresponds through ρa,b to b1, a2 corresponds to
b2, and both a1 precedes a2 and b1 precedes b2.16,17 The faithfulness con-
straint LINEARITYMcCarthy fails at the FICcomp when the candidate set allows
both coalescence and breaking, as shown by the counterexample (43). The
antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (43a) does not
violate LINEARITYMcCarthy because it has a unique underlying segment. The
right-hand side of the FICcomp inequality is small, namely equal to zero: the
candidate (a, b, ρa,b) in (43c) does not violate LINEARITYMcCarthy, because it has
a unique surface segment. The FICcomp inequality fails because its left-hand side
is large, namely equal to 1: the composition candidate (a, c, ρa,bρb,c) in (43b)
violates LINEARITYMcCarthy because the two underlying segments /a/ and /i/ are in
correspondence with the two surface segments [e] and [i] which have the opposite
linear order.18

(43)

This counterexample does not threaten LINEARITYHeinz. Although the compo-
sition candidate (43b) violates LINEARITYMcCarthy, because the two underlying
segments admit swapped surface segments, it does not violate LINEARITYHeinz,
because the two underlying segments also admit non-swapped correspondents.
These considerations lead to the following lemma, whose proof is a simple
verification which is omitted for brevity.

[16] Heinz suggests a further departure from McCarthy’s formulation, namely the replacement of
precedence with immediate precedence. The difference has implications for the comparison
between short and long distance metathesis (Hume 1998: Section 4; Heinz 2005). Yet, the
difference between precedence and immediate precedence has no implications for establishing
the FICcomp, and I thus ignore it here.

[17] McCarthy’s formulation of LINEARITY counts over pairs of underlying segments a1, a2 that
admit swapped surface correspondents. I am thus comparing it here with what Heinz calls
MAXCONTIGUITY. Heinz also considers a constraint DEPCONTIGUITY, which is defined
analogously by counting over pairs of surface segments with no non-swapped underlying
correspondents.

[18] LINEARITYMcCarthy counts over underlying segments, just like MAX. Based on the discussion
in Section 4, one might thus have expected LINEARITYMcCarthy to satisfy the FICcomp without
requiring additional assumptions on the correspondence relations, just as MAX. The difference
lies in the fact that MAX counts over single segments while LINEARITYMcCarthy counts over
pairs of segments.
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Lemma 10. The faithfulness constraint LINEARITYHeinz satisfies the FICcomp
(21) under no additional assumptions on the correspondence relations. The faith-
fulness constraint LINEARITYMcCarthy satisfies the FICcomp (21) provided that no
correspondence relation in the candidate set breaks any underlying segment into
multiple surface segments or else no correspondence relation coalesces multiple
underlying segments into a single surface segment. �

McCarthy & Prince’s (1995) CONTIGUITY and Carpenter’s (2002) ADJA-
CENCY are closely related constraints meant to serve the same purpose. The same
holds for McCarthy’s (2008) and Heinz’s (2005) slightly different implementa-
tions of LINEARITY constraints. The discussion in the last two subsections has
shown that these small differences in the definition of the constraints can have
substantial formal consequences for idempotency.

6.6 Constraint conjunction and disjunction

The OT literature has made use of constraints defined as boolean combinations
of other constraints (Crowhurst & Hewitt 1997, Wolf 2007). Two boolean opera-
tions that have figured prominently are constraint conjunction (Smolensky 1995,
Moreton & Smolensky 2002) and disjunction (Downing 1998, 2000). Constraint
conjunction fails at the FICcomp, as shown by the counterexample in (44). The
conjoined constraint IDENT[low] ∧ IDENT[high] assigns one violation for each pair
of corresponding segments that differ for both features [low] and [high]. The
antecedent of the FICcomp holds: the candidate (b, c, ρb,c) in (44a) does not vio-
late the conjoined constraint, because /e/ and [i] only differ for the feature [high].
The right-hand side of the FICcomp inequality is small, namely equal to zero:
the candidate (a, b, ρa,b) in (44c) does not violate the conjoined constraint,
because /a/ and [e] only differ for the feature [low]. The FICcomp inequality fails
because its left-hand side is large, namely equal to 1: the composition candidate
(a, c, ρa,bρb,c) in (44b) violates the conjoined constraint, because /a/ and [i] differ
for both features [low] and [high].

(44)

The case of constraint disjunction is different. For concreteness, consider the
disjunction IDENTϕ ∨ IDENTψ of two identity faithfulness constraints IDENTϕ
and IDENTψ corresponding to two (total) features ϕ andψ . This constraint assigns
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one violation for each pair of corresponding segments that differ for either feature
ϕ or ψ (possibly both). Lemma 11 ensures that it satisfies the FICcomp. The proof
is a straightforward verification, which is omitted for brevity. This conclusion
easily extends to the disjunction of other (disjoinable) faithfulness constraints:
conditions on the FICcomp-compliance of the constraint disjunction follow by
combining conditions on the FICcomp-compliance of the faithfulness constraints
being combined in the disjunction.19

Lemma 11. Assume that the features ϕ andψ are total and that correspondence
relations are not allowed to break any underlying segment. The disjunctive
faithfulness constraint IDENTϕ ∨ IDENTψ then satisfies the FICcomp (21). �

The difference between constraint conjunction and disjunction with respect to
the FICcomp can be appreciated as follows. Suppose that the antecedent of the
FICcomp holds for the disjunction IDENT[low] ∨ IDENT[high]. This means that the
candidate (b, c, ρb,c) does not violate it. This entails in turn that the candidate
violates neither IDENT[low] nor IDENT[high]. The FICcomp for the disjunction thus
follows from the FICcomp previously established for the individual disjuncts. The
case of conjunction is different: even if the candidate (b, c, ρb,c) does not violate
the conjunction IDENT[low] ∧ IDENT[high] as required by the antecedent of the
FICcomp, it could nonetheless violate one of the two conjuncts IDENT[low] or
IDENT[high]. The fact that the conjuncts satisfy the FICcomp thus provides no
guarantees that their conjunction satisfies it as well.

7. IMPLICATIONS OF IDEMPOTENCY FOR PHONOLOGY

A grammar is idempotent provided that it displays no chain shifts, as explained
in Section 2.4. Chain shifts have been widely documented in adult phonology
(Moreton & Smolensky 2002, Moreton 2004a, Łubowicz 2011), child phonology
(Velten 1943; Smith 1973; Macken 1980; Dinnsen & Barlow 1998; Cho &
Lee 2000, 2003; Dinnsen, O’Connor & Gierut 2001; Jesney 2007), second
language acquisition (Lee 2000, Jesney 2007), and delayed phonological acqui-
sition (Dinnsen & Barlow 1998, Dinnsen, Green, Gierut & Morrisette 2011).
Various approaches to chain shifts within Optimality Theory can be sorted into
two groups. Some approaches trade some of the assumptions of (classical) OT,
reviewed in Section 3.2. Such approaches include sympathy theory (McCarthy
1999), output–output correspondence (Burzio 1998, Benua 2000), targeted con-
straints (Wilson 2001), turbidity (Goldrick 2001), anti-faithfulness constraints
(Alderete 2001, 2008), comparative markedness (McCarthy 2003a), candidate

[19] The situation is rather different for the disjunction of a faithfulness and a markedness constraint.
Such a disjunction can yield a constraint that is neither a faithfulness nor a markedness
constraint (see Wolf 2007 for broader discussion), contrary to what is required by the classical
implementation of OT defined in Section 3.2.
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chains (McCarthy 2007), stratal OT (Bermúdez-Otero 2007), and contrast preser-
vation constraints (Łubowicz 2012). Other OT approaches to chain shifts are
instead framed squarely within the classical architecture. This section provides
an overview of the latter approaches from the formal perspective of the results
established in Sections 3–6.

7.1 Only a sufficient condition?

Consider an arbitrary (reflexive and transitive) candidate set, an arbitrary con-
straint set, and an arbitrary constraint ranking. Section 3 has established that the
FICcomp is a sufficient condition for the idempotency of the corresponding OT
grammar. This statement contains three universal quantifications: over candidate
sets, over constraint sets, and over rankings. At this level of generality, the
FICcomp is not only a sufficient but also a necessary condition for idempotency, in
the following sense. Consider a faithfulness constraint F that does not satisfy
the FICcomp (21). This means that there exist two candidates (a, b, ρa,b) and
(b, c, ρb,c) such that F assigns no violations to the candidate (b, c, ρb,c), so
that the antecedent of the FICcomp holds; yet, F assigns more violations to the
candidate (a, c, ρa,bρb,c) than to the candidate (a, b, ρa,b), so that the consequent
fails. Suppose that the constraint set also contains a markedness constraint M
that assigns more violations to the surface form b than to the surface form c.20

The OT grammar corresponding to the ranking F � M displays the chain shift
a→ b→ c and thus fails at idempotency: the string b is phonotactically licit,
because the underlying form a is mapped to the candidate (a, b, ρa,b), as shown
in the left-hand side tableau in (45); yet, the string b does not surface faithfully,
because the underlying form b is not mapped to the identity candidate (b, b, Ib,b),
as shown in the right-hand side tableau.

(45) a F M
+ (a, b, ρa,b) ∗ · · · ∗ ∗

(a, c, ρa,bρb,c) ∗ · · · ∗ ∗!

b F M
(b, b, Ib,b) ∗

+ (b, c, ρb,c)

The rest of this section shows how various approaches to chain shifts in the clas-
sical OT literature fit within the schema (45), where F is one of the faithfulness
constraints shown in Sections 4–6 to fail the FICcomp.

7.2 Chain shifts through constraint conjunction

As noted in Section 6.6, constraint conjunction yields faithfulness constraints that
fail the FICcomp. The use of constraint conjunction to model chain shifts within

[20] Furthermore, assume that there exists a markedness constraint (either M or a different marked-
ness constraint ranked above M) that assigns more violations to the surface form a than to
the surface form b. The latter markedness constraint is responsible for ruling out the candidate
(a, a, Ia,a), which is therefore ignored in the rest of this section.
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classical OT has been pioneered by Kirchner (1996) and systematized by Moreton
& Smolensky (2002). To illustrate, consider the chain shift in the Lena dialect of
Spanish in (46) (data from Hualde 1989 and Gnanadesikan 1997: Section 5.4.3):
because of the high final vowel in the masculine form, the underlying low and
mid vowels (as revealed by the feminine form) raise to mid and high vowels,
respectively.

(46) /a/→[e] gáta ‘cat-FEM’ gétu ‘cat-MAS’
sánta ‘saint-FEM’ séntu ‘saint-MAS’

/e/→[i] néna ‘child-FEM’ nínu ‘child-MAS’
séks ‘dry-FEM’ síku ‘dry-MAS’

The markedness constraint RAISE favors higher vowels before a high vowel.
The conjunction of the two faithfulness constraints IDENT[high] and IDENT[low]
penalizes underlying low vowels mapped to surface high vowels. The analysis
(47) is an instance of the scheme (45), with the conjoined constraint playing the
role of the non-FICcomp-complying faithfulness constraint.

(47)

Other approaches proposed in the literature are equivalent to the approach based
on the conjunction of identity faithfulness constraints (see also the discussion
of V-HEIGHTDISTANCE in Kirchner 1995). For instance, Gnanadesikan (1997:
chapter 3) accounts for the chain shift p→ b→m (in post-nasal position)
through the faithfulness constraint IDENT-ADJ, which is violated by a voiceless
obstruent and a corresponding sonorant because they are separated by a distance
larger than 2 on the inherent voicing scale. This constraint is thus equivalent
to the conjunction IDENT[voice] ∧ IDENT[son]. Analogously, Dinnsen & Barlow
(1998) account for the chain shift s→ T→ f through the faithfulness constraint
DISTFAITH, which is violated when the underlying and surface forms differ by
more than 1 on the scale f= 1, T= 2, and s= 3 and is thus equivalent to the
conjunction IDENT[coronal] ∧ IDENT[strident].

Yet, the approach based on constraint conjunction is more general than the latter
approaches based on ‘scales’, as the former but not the latter extends to chain
shifts that involve deletion (Moreton & Smolensky 2002). To illustrate, consider
the Sea Dayak chain shift in (48) (data from Kenstowicz & Kisseberth 1979).

(48) /Nga/→ [Na]: /naNga/ [nãNaP] ‘set up a ladder’
/Na/→ [Nã]: /naNa/ [nãNãP] ‘straighten’

The analysis based on constraint conjunction extends as in (47) (based on
Łubowicz 2011), which is another instance of the scheme (45).
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(49) /naNga/ ID[nas] ∧MAX *NV
+ [nãNaP] ∗

[nãNãP] ∗!

/naNa/ ID[nas] ∧MAX *NV
[nãNaP] ∗!

+ [nãNãP]

7.3 Chain shifts through constraint restrictions

As noted in Section 5, constraint restriction yields faithfulness constraints that
fail the FICcomp when the correspondence relations are allowed to ‘cross’ the
restriction. This observation systematizes various approaches to chain shifts
proposed in the classical OT literature. For instance, Orgun (1995) considers the
chain shift in (50) from Bedouin Hijazi Arabic: /a/ is raised to [i] but /i/ is deleted
(both processes are restricted to short vowels in non-final open syllables; the data
come from McCarthy 1993).

(50) /a/→ [i]: /katab/ [kitab] ‘he wrote’
/rafaagah/ [rifaagah] ‘companions’

/i/→∅: /Qarif+at/ [Qarfat] ‘she knew’
/kitil/ [ktil] ‘he was killed’

Orgun’s analysis is summarized in (51), plus a markedness constraint [*a] which
is omitted here. It relies on his constraint CORRESPOND(/a/), which mandates that
‘every input /a/ has an output correspondent’. This constraint can be re-interpreted
as MAXR , where the restriction R pairs a string with the set of its a’s. As
shown in Section 5.1, MAXR fails at the FICcomp when correspondence relations
are allowed to exit from the restriction R, namely to put in correspondence an
underlying segment that satisfies the restriction with a surface segment that does
not, as described in (33). That is precisely the case in (51), as the underlying /a/
(which satisfies the restriction R) corresponds to the surface [i] (which does not
satisfy the restriction). Orgun’s analysis (51) is thus an instance of the scheme
(45), with the restricted constraint MAXR playing the role of the non-FICcomp-
complying faithfulness constraint.

(51) /a/ CORR(/a/) *V
+ [i] ∗

∅ ∗!

/i/ CORR(/a/) *V
[i] ∗!

+ ∅

As another example, Jesney (2005, 2007) considers the classical child chain
shift in (52): coronal stridents are realized as coronal stops across the board, but
coronal stops are velarized when followed by a lateral (data from Amahl age 2;2-
2;11, as described in Smith 1973).

(52) /s, z, S, Z, tS, dZ/→ [t, d]: [p2d@l] ‘puzzle’ [pa:tli:] ‘parsley’
[pEt@l] ‘special’ [ænd@l@] ‘Angela’

/t, d, n/→ [k, g, N]: [p2g@l] ‘puddle’ [b2kl@] ‘butler’
[tæNg@l] ‘sandal’ [bOk@l] ‘bottle’
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Jesney’s analysis is summarized in (53). It relies on her ‘specific’ faithfulness con-
straint IDENTCORONAL/[+strident], which mandates that input stridents preserve
their coronality. This constraint can be re-interpreted as IDENTϕ,R , where ϕ is the
feature [coronal] and the restriction R pairs a string with the set of its stridents.
As shown in Section 5.5, IDENTϕ,R fails at the FICcomp when correspondence
relations are allowed to exit from the restriction R without changing the value
of the feature ϕ, namely to put in correspondence an underlying segment that
satisfies the restriction with a surface segment that does not and yet has the
same value for the feature ϕ, as described in (37). That is precisely the case
in (53), as the underlying /s/ (which satisfies the restriction R) corresponds to
the surface [t] (which does not satisfy the restriction) and yet they are both
coronals. Jesney’s analysis (53) is thus an instance of the scheme (45), with the
restricted constraint IDENT[cor],R playing the role of the non-FICcomp-complying
faithfulness constraint.21

(53) /s/ IDCOR/[+strid] *TL
+ [t] ∗

[k] ∗!

/t/ IDCOR/[+strid] *TL
[t] ∗!

+ [k]

7.4 Chain shifts through breaking

Let me close this section by discussing a fictional example. Kubozono et al.
(2008) report that English frog is imported as [fu.róg.gu] into Japanese: the velar
stop geminates (despite being voiced) because of a requirement on the placement
of stress, captured here through a place-holder constraint STRESS. Assume an
analysis of consonant gemination in terms of breaking of a single underlying
consonant into two surface copies, as indicated by the correspondence relations
in (54). Section 4.3 has shown that plain identity faithfulness constraints fail at
the FICcomp when the correspondence relations are allowed to break underlying
segments. This fact could be used to derive a fictional chain shift such as N→ g
→ gg through the analysis (54), which is an instance of the scheme (45) with the
identity constraint playing the role of the non-FICcomp faithfulness constraint.

(54)

[21] Assume that only coronals can be [+strident], while all non-coronals are [-strident]. Jesney’s
constraint IDENTCORONAL/[+strident] is then provably equivalent to the conjoined constraint
IDENT[strident] ∧ IDENT[coronal].
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This example is fictional because I have not been able to find a realistic case
of chain shift that involves an underlying segment broken into two surface
segments.

7.5 Summary

Section 3 has shown that chain shifts require the FICcomp to fail. Based on
Sections 4–6, there are three major ways for the FICcomp to fail. One option
is to use a faithfulness constraint that flouts the FICcomp, such as a faithfulness
constraint obtained through constraint conjunction. A second option is to use
the restriction of a faithfulness constraint that would otherwise comply with the
FICcomp. The third option is to let the correspondence relations break underlying
segments. The former two options have been exploited in the literature on chain
shifts.

8. CONCLUSIONS AND EXTENSIONS

A grammar is idempotent provided that it faithfully maps to itself any phonotac-
tically licit phonological form. Equivalently, a grammar fails at idempotency pro-
vided that it displays at least one chain shift. Within constraint-based phonology,
the typology of grammars is defined through a constraint set and a candidate set.
Formal grammatical conditions such as idempotency must therefore be derivable
from assumptions on the constraint and the candidate sets. This paper has pursued
this idea within the (classical) OT implementation of constraint-based phonology.
Building on Tesar’s (2013) theory of output-drivenness, the theory of idempotency
has been developed in this paper through two steps. First, Lemma 1 has distilled
the FICcomp as a general condition on the faithfulness constraints which suffices
to ensure idempotency. Second, Lemmas 2–11 have established the FICcomp for a
number of faithfulness constraints that naturally arise within McCarthy & Prince’s
(1995) Correspondence Theory, under various assumptions on the correspondence
relations in the candidate set. The overall picture obtained by combining these
lemmas is summarized in the following theorem, which is the main result of this
paper.

Theorem 1. Consider a candidate set that consists of triplets (a, b, ρa,b) of
an underlying segment string a and a surface segment string b together with a
correspondence relation ρa,b between the segments of a and those of b. Assume
that this candidate set satisfies the reflexivity axiom (6) and the transitivity axiom
(20), repeated below in (55) and (56).

(55) If the candidate set contains a candidate (a, b, ρa,b) with a surface form
b, it also contains the corresponding identity candidate (b, b, Ib,b), where
Ib,b is the identity correspondence relation among the segments of b.
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(56) If the candidate set contains two candidates (a, b, ρa,b) and (b, c, ρb,c)

that share b as the surface and underlying forms, it also contains the
composition candidate (a, c, ρa,bρb,c) whose correspondence relation
ρa,bρb,c is the composition of ρa,b and ρb,c.

Assume that no correspondence relation breaks any underlying segment, namely
puts it in correspondence with two or more surface segments. Assume furthermore
that the constraint set only contains faithfulness constraints drawn from the
following list:

(57) (a) IDENTϕ (when the feature ϕ is total, not necessarily binary);
(b) segmental MAX and DEP;
(c) featural MAX[±ϕ] and DEP[±ϕ] (for any feature ϕ);
(d) UNIFORMITY, LINEARITY, and ADJACENCY.

The OT grammar corresponding to any ranking of this constraint set is idem-
potent. This conclusion extends to the case where the constraint set contains
restricted variants of these constraints (such as MAXR , DEPS , IDENTϕ,R , or
IDENTS

ϕ), as long as no correspondence relation crosses the restrictions, namely
puts in correspondence a segment that satisfies the restrictions with a segment
that does not satisfy them. �

Theorem 1 provides the basis for further developments of the theory of
idempotency in Magri (to appear, 2015), briefly sketched in the rest of this section.

8.1 The FICcomp and the metrical nature of the faithfulness constraints

Theorem 1 places no restrictions on the markedness constraints and only looks
at the faithfulness constraints. This result thus motivates a deeper look into the
formal underpinning of the Correspondence Theory of faithfulness. Intuitively,
faithfulness constraints measure the ‘distance’ between underlying and surface
forms along various phonologically relevant dimensions. It thus makes sense to
investigate whether faithfulness constraints satisfy formal properties of distances
(or metrics). One such important property is the triangle inequality (58): it
captures the intuition that the distance between any two points a and c is shorter
than the distance between a and b plus the distance between b and c, for any
choice of the intermediate point b (Rudin 1953).

(58)

A faithfulness constraint F is thus said to satisfy the faithfulness triangle
inequality provided that condition (59) holds for any two candidates (a, b, ρa,b)
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and (b, c, ρb,c) that share the string b as the underlying and the surface form,
respectively.

(59) F
(
a, c, ρa,bρb,c

)
6 F

(
a, b, ρa,b

)
+ F

(
b, c, ρb,c

)
Magri (to appear) establishes an equivalence result between the triangle inequality
(59) and the condition FICcomp, which was established in this paper to be
sufficient for idempotency. This equivalence thus provides an intuitive metric
interpretation of the apparently very technical FICcomp. This equivalence requires
two assumptions: first, that the correspondence relations in the candidate set are
one-to-one (no breaking nor coalescence); second, that the faithfulness constraints
are categorical, in the sense of McCarthy (2003b). Building on Lemmas 2–11
established in this paper, this equivalence between the FICcomp and the triangle
inequality yields a straightforward characterization of the faithfulness constraints
that satisfy the triangle inequality and thus admit a metric interpretation.

8.2 Idempotency in Harmonic Grammar

This paper has focused on idempotency within the OT implementation of
constraint-based phonology. Magri (to appear) extends the theory of idempotency
to Harmonic Grammar (HG; Legendre et al. 1990a, b; Smolensky & Legendre
2006). Also in HG, idempotency is guaranteed by a condition on the faithfulness
constraints, which can be referred to as the FICHG

comp, to distinguish it from the OT
condition obtained in this paper, which I will now refer to as the FICOT

comp. In the
general case, the FICHG

comp asymmetrically entails the FICOT
comp. This makes sense:

HG typologies properly contain OT typologies22, so that a stronger condition is
needed in order to discipline a larger typology of grammars to all comply with
idempotency. The asymmetric relationship between the FICHG

comp and the FICOT
comp

is revealed, for instance, by the following fact: while the no-breaking assumption
on correspondence relations suffices to ensure that basic faithfulness constraints
(such as DEP and IDENT) satisfy the FICOT

comp, the FICHG
comp also requires no coa-

lescence, effectively restricting all correspondence relations in the candidate set
to be one-to-one. Yet, when correspondence relations are one-to-one, the FICHG

comp
and the FICOT

comp can be shown to be equivalent for faithfulness constraints that
are categorical in the sense of McCarthy (2003b), because both conditions are
equivalent to the triangle inequality. McCarthy’s categoricity conjecture thus
entails that, although HG idempotency requires additional conditions on the
correspondence relations relative to OT idempotency (the former requires neither
breaking nor coalescence; the latter only requires no breaking), it effectively
places no additional restrictions on the faithfulness constraints.

[22] For any set of constraints with bounded violations.
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8.3 Idempotency and output-drivenness

Tesar (2013) investigates another structural condition on phonological grammars,
which he calls output-drivenness. It formalizes the intuition that any discrepancy
between an underlying and a surface (or output) form is driven exclusively
by the goal of making the surface form fit the phonotactics. Tesar shows that
output-drivenness holds provided that the faithfulness constraints satisfy two
implications which generalize the FIC and are called the faithfulness output-
drivenness condition (FODC). He then investigates which faithfulness constraints
satisfy the FODC in the special case where all correspondence relations are one-
to-one. The answer to this question is non-trivial. For instance, two pages of
Tesar’s book suffice to establish the FODC as a sufficient condition for OT output-
drivenness, while the entire chapter 3 is devoted to verifying the FODC for just
the three constraints MAX, DEP, and IDENT.

The results established in this paper on the FIC afford a substantial simpli-
fication of Tesar’s theory. In fact, Magri (to appear) looks at the relationship
between idempotency and output-drivenness and between the two corresponding
sufficient conditions, the FIC and the FODC. In the general case, the FODC
is stronger than the FIC, matching the fact that output-drivenness is a stronger
condition than idempotency, as shown by derived environment effects or saltations
(Łubowicz 2002, White 2013), which are idempotent but not output-driven. Yet,
the FODC and the FIC are shown to be equivalent when the correspondence
relations are all one-to-one (as assumed by Tesar) and the faithfulness constraints
are all categorical (as conjectured in McCarthy 2003b), because both conditions
are equivalent to the triangle inequality mentioned in Section 8.1. Crucially,
all of the faithfulness constraints analyzed in this paper are categorical. The
equivalence result between the FIC and the FODC thus allows the results obtained
here concerning the faithfulness constraints that satisfy the FIC to be translated
straightforwardly into results concerning the faithfulness constraints that satisfy
the FODC. A measure of the improvement obtained is provided by the fact that
a large array of faithfulness constraints (beyond the three faithfulness constraints
considered by Tesar) are shown in a snap to satisfy the FODC.

8.4 Benign chain shifts

Magri (2015) explores the implications of the theory of idempotency developed
in this paper for OT learnability. The literature on the early acquisition of
phonotactics usually assumes that the child posits a fully faithful underlying
form for each phonotactically licit training surface form (Gnanadesikan 2004,
Hayes 2004, Prince & Tesar 2004). Is this assumption of faithful underlying
forms computationally sound? Suppose that the target grammar is not idempotent
because it displays the chain shift (60a). The form b is phonotactically licit
(because it is the surface realization of a) and yet it is not faithfully mapped to
itself. The assumption that every instance of b in the training set is the surface
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realization of a faithful underlying form could thus mislead the learner into
positing a set of mappings that is not consistent with any grammar in the typology.

(60)

Yet, the chain shift (60a) raises no issues for the learner’s assumption of fully
faithful underlying forms as long as the chain shift happens to be benign, in
the sense that the typology entertained by the learner happens to contain the
companion grammar (60b), which is idempotent (there is no chain shift) and yet
makes the same phonotactic distinctions (a is illicit while b and c are licit for
both grammars). Under which conditions are chain shifts benign?

The theory of idempotency developed in this paper and summarized above as
Theorem 1 says that basic faithfulness constraints all satisfy the FICcomp, thus
explaining the well-known difficulty in modeling chain shifts within (classical)
OT. In order to flout the FICcomp and thus be able to derive chain shifts, we need
to look at derived faithfulness constraints. As seen in Section 7, there are two
main strategies to construct these derived constraints: through the restriction of
some basic and thus FICcomp-complying faithfulness constraint (such as MAXR)
or through the conjunction of two basic and thus individually FICcomp-complying
faithfulness constraints (such as the conjunction IDENT[high] ∧ IDENT[low]).
Magri (2015) then formulates the conjecture that, whenever a chain shift (60a)
is obtained through a ranking where one of these derived constraints occu-
pies a prominent position, the ranking with the derived faithfulness constraint
replaced by the corresponding basic one (say, MAXR replaced by MAX, or
IDENT[high] ∧ IDENT[low] replaced by either IDENT[high] or IDENT[low]) yields
the idempotent and phonotactically equivalent companion grammar (60b). The
exploration of this conjecture would provide a solid foundation for a variety of
models of the acquisition of phonotactics that share the assumption of completely
faithful underlying forms.

APPENDIX

Proofs

Throughout this appendix, I consider three strings a, b, and c, whose generic
segments are denoted by a, b, and c. I use statements such as ‘for every/some
segment a’ as a shorthand for ‘for every/some segment a of the string a’, thus
leaving the domain of the quantifiers implicit.
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A.1 Proof of Lemma 2

A segment a violates the constraint MAXS
R relative to a candidate (a, b, ρa,b)

provided that a belongs to R(a) and it has no ρa,b-correspondent in the surface
string b that belongs to S(b). MAXS

R assigns one violation for each underlying
segment that violates it. This appendix proves Lemma 2 repeated below, which
establishes the FICcomp for MAXS

R .

Lemma A.1. The faithfulness constraint MAXS
R satisfies the FICcomp

(61) If: MAXS
R
(
b, c, ρb,c

)
= 0

Then: MAXS
R
(
a, c, ρa,bρb,c

)
6MAXS

R
(
a, b, ρa,b

)
for any two candidates (a, b, ρa,b) and (b, c, ρb,c) such that the former candidate
(a, b, ρa,b) has no underlying segment a and no surface segment b such that

(62) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), b ∈ S(b) �

Proof. Assume that the antecedent of the implication (61) holds, namely that
the candidate (b, c, ρb,c) does not violate MAXS

R . The following chain of
implications (63) then holds for any segment a of the string a. In step (63a),
I have used the definition of MAXS

R . In step (63b), I have used the definition
of the composition correspondence relation ρa,bρb,c. In step (63c), I have used
the antecedent of the implication (61), which guarantees that (*) entails (**). In
fact, suppose by contradiction that (*) is true but (**) is false. This means that
b ∈ R(b), and furthermore b has no surface correspondent c that belongs to S(c).
In other words, the candidate (b, c, ρb,c) incurs at least one violation of MAXS

R ,
contradicting the antecedent of the implication (61). In step (63d), I have replaced
(**) with (***) because of the assumption that (62) is impossible. In step (63e), I
have used again the definition of MAXS

R .

(63) a violates MAXS
R relative to (a, c, ρa,bρb,c)

(a)
⇐⇒ a ∈ R(a) and ∀c[(a, c) ∈ ρa,bρb,c → c 6∈ S(c)]
(b)
⇐⇒ a ∈ R(a) and ∀b

[
(a, b) ∈ ρa,b → ∀c

[
(b, c) ∈ ρb,c→ c 6∈ S(c)

]
︸ ︷︷ ︸

(∗)

]
(c)
H⇒ a ∈ R(a) and ∀b

[
(a, b) ∈ ρa,b → b 6∈ R(b)︸ ︷︷ ︸

(∗∗)

]
(d)
⇐⇒ a ∈ R(a) and ∀b

[
(a, b) ∈ ρa,b → b 6∈ S(b)︸ ︷︷ ︸

(∗∗∗)

]
(e)
⇐⇒ a violates MAXS

R relative to (a, b, ρa,b)

The chain of implications (63) says that, if an underlying segment a violates
MAXS

R relative to the composition candidate (a, c, ρa,bρb,c), then a also violates
MAXS

R relative to the candidate (a, b, ρa,b). This conclusion establishes the
inequality in the consequent of the FICcomp (61). �
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By (63), if a violates MAXS
R relative to (a, c, ρa,bρb,c), then a also violates

MAXS
R relative to (a, b, ρa,b). Suppose that the restriction S is trivial, namely

S pairs any string a with the complete set S(a) of its segments. In this case,
the reverse implication trivially holds as well: if a violates MAXR relative to
(a, b, ρa,b), then a has no ρa,b-correspondents in b and therefore a cannot have
any ρa,bρb,c-correspondents in c either, thus violating MAXR also relative to
(a, c, ρa,bρb,c). In conclusion, the inequality in the consequent of the FICcomp
(61) holds as an identity in the case where S is the trivial restriction.

A.2 Proof of Lemma 3

A segment b violates the constraint DEPS
R relative to a candidate (a, b, ρa,b)

provided that b belongs to S(b) and has no ρa,b-correspondent in the underlying
string a that belongs to R(a). DEPS

R assigns one violation for each surface
segment that violates it. This appendix proves Lemma 3 repeated below, which
establishes the FICcomp for DEPS

R .

Lemma A.2. The faithfulness constraint DEPS
R satisfies the FICcomp

(64) If: DEPS
R
(
b, c, ρb,c

)
= 0

Then: DEPS
R
(
a, c, ρa,bρb,c

)
6 DEPS

R
(
a, b, ρa,b

)
for any two candidates (a, b, ρa,b) and (b, c, ρb,c) such that the latter candidate
(b, c, ρb,c) has no underlying segment b and no surface segment c such that

(65) (b, c) ∈ ρb,c, c ∈ S(c), b 6∈ S(b), b ∈ R(b)

and furthermore it enforces no breaking among the segments that satisfy the
restriction S, namely there exist no underlying segment b and no surface segments
c1, c2 such that

(66) b ∈ S(b), c1, c2 ∈ S(c), (b, c1) ∈ ρb,c, (b, c2) ∈ ρb,c, c1 6= c2. �

Proof. Assume that the antecedent of the implication (64) holds, namely that the
candidate (b, c, ρb,c) does not violate DEPS

R . The following chain of implications
(67) then holds for any segment c of the string c. In step (67a), I have used the
definition of DEPS

R . In step (67b), I have used the definition of the composition
correspondence relation ρa,bρb,c. In step (67c), I have used the antecedent of the
implication (64), which guarantees that the surface segment c ∈ S(c) admits a
correspondent underlying segment b ∈ R(b) according to ρb,c. In step (67d), I
have replaced (*) with (**) because of the assumption that (65) is impossible.
In step (67e), I have used again the definition of DEPS

R . I note that the chain
of implications (67) makes no use of the no-breaking assumption that (66) is
impossible.
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(67) c violates DEPS
R relative to (a, c, ρa,bρb,c)

(a)
⇐⇒ c ∈ S(c) and ∀a[(a, c) ∈ ρa,bρb,c → a 6∈ R(a)]
(b)
⇐⇒ c ∈ S(c) and ∀b[(b, c) ∈ ρb,c → ∀a[(a, b) ∈ ρa,b → a 6∈ R(a)]]
(c)
H⇒ c ∈ S(c) and ∃b

[
(b, c) ∈ ρb,c and b ∈ R(b)︸ ︷︷ ︸

(∗)

and

∀a
[
(a, b) ∈ ρa,b → a 6∈ R(a)

]]
(d)
H⇒ c ∈ S(c) and ∃b

[
(b, c) ∈ ρb,c and b ∈ S(b)︸ ︷︷ ︸

(∗∗)

and

∀a
[
(a, b) ∈ ρa,b → a 6∈ R(a)

]]
(e)
⇐⇒ c ∈ S(c) and ∃b

[
(b, c) ∈ ρb,c and b violates DEPS

R

relative to (a, b, ρa,b)
]

By (67), for each segment c that violates DEPS
R relative to (a, c, ρa,bρb,c),

there exists a segment b that violates DEPS
R relative to (a, b, ρa,b) such that

(b, c) ∈ ρb,c. This is not sufficient to secure the inequality in the consequent
of (64). In fact, it could still be the case that two different segments c1 and
c2 that violate DEPS

R relative to (a, c, ρa,bρb,c) both correspond to the same
segment b that violates DEPS

R relative to (a, b, ρa,b). In this case, (a, c, ρa,bρb,c)

could have more epenthetic segments than (a, b, ρa,b), and the inequality in the
consequent of (64) would fail.23 In order to secure the inequality in the consequent
of (64), I need to make sure that the mapping from the segments c1, c2, . . . that
violate DEPS

R relative to (a, c, ρa,bρb,c) to the segments b1, b2, . . . that violate
DEPS

R relative to (a, b, ρa,b) defined by (67) is injective: if two violating segments
c1, c2 are different, the two corresponding violating segments b1, b2 are different
as well.

The no-breaking assumption (66) serves precisely this purpose. Indeed, con-
sider two different segments c1 and c2 that both violate the constraint DEPS

R
relative to (a, c, ρa,bρb,c) and thus both belong to S(c). By (67), there exist
segments b1, b2 such that (b1, c1), (b2, c2) ∈ ρb,c and furthermore b1, b2 violate
DEPS

R relative to (a, b, ρa,b) and thus belong to S(b). If it were b1 = b2 =

b, it would be (b, c1) ∈ ρb,c and (b, c2) ∈ ρb,c, contradicting the no-breaking
assumption (66). In conclusion, (67) establishes an injective mapping from the
segments c1, c2, . . . that violate DEPS

R relative to (a, c, ρa,bρb,c) to the segments

[23] That is precisely what happens in the counterexample (27): the two segments c1 = [e] and c2 =
[i] are both epenthetic relative to (a, c, ρa,bρb,c); they both correspond to the same segment
b = [@] which is indeed epenthetic relative to (a, b, ρa,b). The candidate (a, c, ρa,bρb,c)
thus has more epenthetic segments than the candidate (a, b, ρa,b), and the inequality in the
consequent of the FICcomp thus fails.
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b1, b2, . . . that violate DEPS
R relative to (a, b, ρa,b). This conclusion establishes

the inequality in the consequent of the FICcomp (64). �

The two chains of implications (63) and (67) in the proofs of the two Lemmas 2
and 3 for MAXS

R and DEPS
R are completely analogous. Yet, the no-crossing

assumptions (62) and (65) target different correspondence relations: the former
targets the correspondence relation ρa,b; the latter targets the correspondence
relation ρb,c.

A.3 Proof of Lemma 4

A pair (a, b) of an underlying segment a and a surface segment b violates the
faithfulness constraint IDENTϕ,R relative to a candidate (a, b, ρa,b) provided that
the following three conditions hold. First, the two segments a and b are in corre-
spondence: (a, b) ∈ ρa,b. Second, the two segments a and b differ with respect to
feature ϕ: ϕ(a) 6= ϕ(b). Third, the underlying segment a satisfies the restriction
R: a ∈ R(a). IDENTϕ,R assigns one violation for each underlying/surface segment
pair (a, b) that violates it. This appendix proves Lemma 4/A repeated below,
which establishes the FICcomp for IDENTϕ,R . The proof of Lemma 4/B for IDENTS

ϕ

is analogous.

Lemma A.3. Consider a total feature ϕ. The identity faithfulness constraint
IDENTϕ,R satisfies the FICcomp

(68) If: IDENTϕ,R
(
b, c, ρb,c

)
= 0

Then: IDENTϕ,R
(
a, c, ρa,bρb,c

)
6 IDENTϕ,R

(
a, b, ρa,b

)
for any two candidates (a, b, ρa,b) and (b, c, ρb,c) such that the former candidate
(a, b, ρa,b) has no underlying segment a and no surface segment b such that

(69) (a, b) ∈ ρa,b, a ∈ R(a), b 6∈ R(b), ϕ(a)= ϕ(b)

and furthermore the correspondence relation ρb,c does not break any underlying
segment into two or more surface segments, namely there exist no underlying
segment b and no surface segments c1, c2 such that

(70) (b, c1) ∈ ρb,c, (b, c2) ∈ ρb,c, c1 6= c2. �

Proof. Assume that the antecedent of the implication (68) holds, namely that
the candidate (b, c, ρb,c) does not violate IDENTϕ,R . The following chain of
implications (71) then holds for any segment a of the string a and any segment c of
the string c. In step (71a), I have used the definition of the constraint IDENTϕ,R . In
step (71b), I have used the definition of the composition correspondence relation
ρa,bρb,c. In step (71c), I have added the conjunct (*). This is licit because the
antecedent of (68) guarantees that the pair of segments (b, c) does not violate
the constraint IDENTϕ,R relative to (b, c, ρb,c). Since they are in correspondence
through ρb,c, this means that either ϕ(b) 6∈ R(b) or else ϕ(b)= ϕ(c). In step
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(71d), I have replaced (*) with the equivalent (**). In fact, if it is the first
condition ϕ(b)= ϕ(c) of the disjunction (*) that holds, then it must be ϕ(a) 6=
ϕ(b), because ϕ(a) 6= ϕ(c). If it is instead the second condition b 6∈ R(b) of the
disjunction (*) that holds, then it must be ϕ(a) 6= ϕ(b), because (69) is impossible.
Finally, in step (71e), I have used again the definition of IDENTϕ,R relative to
(a, b, ρa,b). It should be noted that the chain of implications (71) does not make
use of the no-breaking assumption (??).

(71) (a, c) violates IDENTϕ,R relative to (a, c, ρa,bρb,c)

(a)
⇐⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), (a, c) ∈ ρa,bρb,c
(b)
⇐⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), ∃b

[
(a, b) ∈ ρa,b, (b, c) ∈ ρb,c

]
(c)
⇐⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), ∃b

[
(a, b) ∈ ρa,b, (b, c) ∈ ρb,c,[
ϕ(b)= ϕ(c) or b 6∈ R(b)

]︸ ︷︷ ︸
(∗)

]
(d)
H⇒ ϕ(a) ∈ R(a), ϕ(a) 6= ϕ(c), ∃b

[
(a, b) ∈ ρa,b, (b, c) ∈ ρb,c,

ϕ(a) 6= ϕ(b)︸ ︷︷ ︸
(∗∗)

]
(e)
⇐⇒ ∃b

[
(b, c) ∈ ρb,c and (a, b) violates IDENTϕ,R relative to (a, b, ρa,b)

]
Consider two different pairs (a1, c1) and (a2, c2) that both violate the faithful-

ness constraint IDENTϕ,R relative to (a, c, ρa,bρb,c). The chain of implications
(71) guarantees that there exist b1, b2 such that the two pairs (a1, b1) and
(a2, b2) violate the faithfulness constraint IDENTϕ,R relative to (a, b, ρa,b) and
furthermore (b1, c1) ∈ ρb,c and (b2, c2) ∈ ρb,c. If a1 6= a2, also the two pairs
(a1, b1) and (a2, b2) are different. Thus, assume that a1 = a2 = a, whereby
c1 6= c2. If it were b1 = b2 = b, then the latter two conditions would say that
(b, c1) ∈ ρb,c and (b, c2) ∈ ρb,c, contradicting the no-breaking assumption that
(70) is impossible. In conclusion, (71) defines an injective mapping from the
pairs (a, c) that violate the constraint IDENTϕ,R relative to (a, c, ρa,bρb,c) to the
pairs (a, b) that violate it relative to (a, b, ρa,b). This conclusion establishes the
inequality in the consequent of the implication (68). �
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