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SUMMARY

In this paper, we propose an approach for computing
suboptimal grasps of polyhedral objects. Assuming n

hard-finger contact with Coulomb friction model and based
on central axes of the grasp wrench, we develop a new
necessary and sufficient condition for n-finger grasps to
achieve force-closure property. Accordingly, we reformulate
the proposed force-closure test as a new linear programming
problem, which we solve using an interior point method.
Furthermore, we present an approach for finding appropriate
stable grasps for a robotic hand on arbitrary objects. We
use the simulated annealing technique for synthesizing
suboptimal grasps of 3D objects. Through numerical
simulations on arbitrary shaped objects, we show that the
proposed approach is able to compute good grasps for
multifingered hands within a reasonable computational time.

KEYWORDS: Force-closure; Grasp planning; Multifingered
robot hand.

Nomenclature

n: number of contacts
m: number of side facets linearizing a friction

cone
ci : position vector of the ith contact

(i = 1, 2, . . . , n)
sij : the j th vector of the polyhedral cone at the

ith contact (i = 1, 2, . . . , n, j = 1, 2, . . . , m)
fi : contact force applied by the ith finger at

contact point ci

ti/o: moment of the force fi reduced at the
origin o

tij : primitive moment reduced at the contact
point c1 (i = 2, . . . , n, j = 1, 2, . . . , m)

H (tij ): convex hull of the primitive contact
moments tij reduced at c1

wij : primitive contact wrench
(i = 1, 2, . . . , n, j = 1, 2, . . . , m).

wi : wrench induced on the object by the contact
force fi

wg: wrench applied by the hand on the grasped
object

* Corresponding author. E-mail: belkacem.bounab@laas.fr

�g: central axis of the grasp wrench wg

�∗
g: central axes that pass through a contact

point ci

(o, xo, yo, zo): coordinate system attached to the grasped
object

(oh, xh, yh, zh): coordinate system attached to the hand’s
palm

xsp: vector of the geometric parameters that
describe the starting posture of the hand

rball: radius of the largest ball inscribed inside
the convex hull of wij

QLP : optimal objective value of the proposed
linear formulation

1. Introduction

Multifingered hands are flexible and powerful mechanisms
that can provide industrial, service and humanoid robots
with a high capacity to perform both fine and complex
manipulation tasks. However, an appropriate grasp planner
is required to grasp and manipulate objects. Generally,
the grasped object has arbitrary shape and described by
a geometric model, transformed from modeler software
or derived from sensor data. A grasp planner computes
optimal contact locations while satisfying basic mechanical
properties. The force-closure (FC) property is specially used
in grasp analysis.1−4 We say that a given grasp achieves FC,
if the fingers can apply appropriate contact forces on the
object to produce wrenches in any direction and hence, they
compensate any external wrench (up to a certain magnitude).

Recall that several constraints must be satisfied in grasp
planning process.5 First, the contact forces applied on the ob-
ject’s surface must balance any external wrenches. This is ac-
complished by satisfying the FC condition. Second, the gen-
erated contact points must be reachable by the hand, which
is ensured by considering the kinematics’ structure of the ro-
botized hand. Third, the grasp must be planned without colli-
sions between the different solids involved (fingers, palm, ob-
ject and the environment). Finally, the generated grasps must
be optimized with respect to one or several quality criteria.

The main contributions of our paper are as follows:
� We show, using the polyhedral approximation of friction

cones, that the FC condition can be transformed into
a new formulation as a linear programming problem
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(LP). The proposed FC test is concluded from the
feasibility/unfeasibility of the linear program. Because of
its ability to discover LP unfeasibility,30 the interior point
method (IPM) is adopted. The algorithm we propose is
computationally efficient, and the optimal solution of the
LP defines a quantitative measure of FC grasps.

� We address the grasp optimization problem. Based on
the proposed FC test, we present a fast grasp planning
algorithm and use the simulated annealing (SA) technique
for synthesizing suboptimal grasps of polyhedral objects.
The proposed approach computes good grasps in very
acceptable time and can be applied to various objects and
robot hands.

� We implement the proposed grasp planner under the
GraspIt! public simulator,6 and we present some numerical
results that show the effectiveness of the proposed
approach.

The paper is organized as follows: In Section 2, we
review the most relevant works in grasp analysis and grasp
synthesis of 3D objects. Section 3 presents an overview of
the relevant pieces of grasping and central axis theories
and, illustrates the relationship between central axes and
FC property. In Section 4, we put forward a new necessary
and sufficient condition for n-finger equilibrium and FC
grasps and present the proposed FC algorithm. Section 5
introduces the proposed grasp planner. Section 6 discusses
the implementation of the proposed algorithms. Section 7
concludes the paper.

2. Previous Works

Many research efforts have been directed towards testing
the FC property of a given grasp. Salisbury and Roth7

characterized the FC property by the following geometric
condition: “the primitive contact wrenches of contact forces
positively span the entire wrench space”. This condition
is equivalent to saying that the origin of wrench space
lies strictly inside the convex hull of the primitive contact
wrenches.8 For spatial grasps, Ponce et al.9 illustrated that
four-finger FC grasps fall into three classes: concurrent,
pencil and regulus grasps, and developed techniques for
computing them. Jia-Wei Li et al.10 extended their work in11

and proposed a geometric algorithm for computing three-
finger FC grasps. Liu et al.12 assumed that n − 1 fingers do
not achieve FC and they proposed an algorithm for computing
all grasp points on the object for the nth finger to achieve FC
with these n − 1 fingers. Liu13 formalized a qualitative test
of 3D FC grasps as an LP problem based on the duality
between convex hulls and convex polytopes. Recently, Han
et al.14 pointed out that friction constraints have the form of
linear matrix inequalities (LMIs) and formulated the grasping
force optimization problem as a convex optimization problem
involving LMIs. For grasp quality, Kirkpatrick et al.15

defined the quantitative measure as the radius of the largest
sphere inscribed inside the convex hull of contact wrenches.
This measure has been proposed in several forms, but it is best
described by Ferrari and Canny.16 In this paper, we develop a
FC algorithm and give rigorous theoretical demonstrations.
Through numerical simulations, we confirm the real-time

efficiency of the proposed algorithm when compared with
the qualitative ray-shooting algorithm.13 The advantage of
the proposed FC test is its capability to give a good quality
measure of the FC grasp without computing the sphere in
six-dimensional wrench space,15 which efficiently reduces
the computational cost.

Computing optimal FC grasps has been investigated for
over two decades. Ponce and Faverjon17 proposed a method
for computing four-finger grasps on polyhedral objects.
Kirkpatrick et al.,15 Ferrari and Canny,16 Mishra et al.,8

Mirtich and Canny18 and Mantriota et al.19 addressed the
problem of computing and planning optimal grasps. Zhu
et al.20 introduced the Q-distance and used the radius of
the maximum volume Q-ball inscribed in the convex hull of
wrenches as a measure of FC quality. Liu et al.21 developed
an algorithm for searching FC grasp on a discretized
object. Based on polyhedral approximation of friction cones,
another algorithm was later proposed by Zhu et al.22 This
iterative algorithm performs better than that based on the
Q-distance. These mentioned approaches do not consider
the kinematic structure of the multifingered hand in grasps
synthesis.

Due to the large search space resulting from all possible
hand configurations, only few work in the literature aimed
at planning grasps without ignoring the kinematic structure
and the geometric configuration of the robot hand. Borst
et al.23 proposed a local method where they formulated the
problem as a set of unconstrained optimization problems
where the contact and kinematic constraints and the joint
limits are introduced as penalty terms in the cost function.
Another local method was proposed by Rosell et al.;24 they
presented an optimization method to iteratively compute joint
movements that reduce the distance between the fingertips
and the contact points. Rosales et al.5 presented a method
to identify all possible hand configurations reaching a given
set of grasping points. Recently, Miller et al.6 developed
a public simulation environment, called “GraspIt!” (used in
our implementation). They also proposed a grasp planner that
consists of two parts:25 firstly, it begins by generating a set of
starting grasp locations based on a simplified object model
(such as spheres, cylinders, cones and boxes). In the second
step, the grasp planner computes the six-dimensional convex
hull of the primitive contact wrenches. If the origin is not
within this convex hull, then the given grasp does not have
FC. Otherwise, the grasp achieves FC, and its quality is the
radius rball of the largest ball inscribed inside the convex hull.
Using the “GraspIt!” simulator, Goldfeder et al.26 presented
a grasp planner that can consider an arbitrary object by
decomposing it into superquadrics.

In contrast to some local methods,23,24 our paper proposes
a general approach for analyzing and synthesizing FC grasps.
We use the SA technique to optimize the starting grasp
locations, which define the initial configurations of the
hand with respect to (w.r.t.) the object coordinate frame.
The SA technique allows one to avoid local optima traps
since it explores globally the object’s surface, and generates
good grasps. Moreover, using the proposed approach, the
grasp planner generates feasible grasps without solving the
kinematics of the mechanical hand. At the same time, it
does require any transformation of the object’s model, which
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Fig. 1. Interpretation of the friction law: (a) Spatial-friction cone,
(b) Quadratic cone approximated by an m-sided polyhedral cone.

significantly reduces the computational cost of the grasp
planning process.

3. Background

This section includes basic grasping terminologies and
introduces the theory of the grasp wrench central-axis.

3.1. Contact model and grasp wrench
Consider that n hard fingers are grasping a rigid object in
a 3D workspace. A hard finger located at contact points ci

applies a force fi . A commonly used model of friction in
robotic grasping and manipulation is Coulomb’s law. Under
this model, fi is constrained to lie within the friction cone
whose centre is the internal normal to the surface at ci with
half-angle α (Fig. 1a). The static friction coefficient μ =
tan(α) depends on materials that are in contact. So, the grasp
forces fi must satisfy the following constraints:

√
f 2

ix + f 2
iy ≤ μfiz (i = 1, . . . , n) (1)

where (fix, fiy, fiz) denote the components of the grasp force
fi w.r.t. the ith coordinate frame (xi , yi , zi), zi is the internal
normal to the surface object at contact point ci .

The non-linear friction constraints given by (1) can
be relaxed using polyhedral approximation. Each cone is
linearized by an m-sided polyhedral convex cone (Fig. 1b).
Under this approximation, grasp force fi , expressed in the
object coordinate frame, is given by

fi =
m∑

j=1

aij vij ; vij = Tisij , aij ≥ 0. (2)

The matrix Ti specifies the location of the ith coordinate
frame w.r.t. the object coordinate frame. sij denotes the j th
edge vector of the polyhedral convex cone expressed in
the ith coordinate frame and satisfies sij · zi = 1. The sum∑m

j=1 aij specifies the amplitude of the normal component
of the contact force fi .

A hard finger at ci applies the moment ti/o = ci × fi w.r.t.
the origin o. The force and the corresponding moment are
stacked into a six-dimensional vector called wrench. The
wrench induced on the object by the grasp force fi , denoted

wi , applied at the origin o, is given by

wi = [
fi , ti/o

]T =
m∑

j=1

aij wij (3)

where wij denotes the primitive contact wrenches of the ith
finger. They are given, w.r.t. the object coordinate frame, by

wij = [
vij , ci × vij

]T
. (4)

The net wrench applied by the hand on the grasped object
is the sum of all primitive contact wrenches. It is given by

wg =
n∑

i=1

m∑
j=1

aij wij = [
fg, tg/o

]T
. (5)

The whole external wrench applied on the object is the sum
of the applied grasp wrench by the robotic hand wg and the
required wrench to achieve the desired task wt (perturbations
are included). It is given by

wext = wg + wt = [
fg , tg/o

]T + [
ft , tt/o

]T
. (6)

3.2. Central axes of the grasp wrench
Poinsot’s central-axis theorem states that every system of
wrenches is equivalent to a single force plus a single moment
acting on the same line.27 Therefore, assuming that the
resultant grasp force is not zero (fg �= 0), the central axis
�g of the grasp wrench wg is defined as follows:

�g = {
(fg × tg/o/ ‖ fg ‖2) + λfg : λ ∈ R

}
. (7)

�g is a directed line in the fg direction that passes through
point I = fg × tg/o/ ‖ fg ‖2. The moment about �g is

tg/I = fg · tg/o · fg/ ‖ fg ‖2 . (8)

Using an example, we illustrate the relationship between
the FC condition and the central axes of the grasp wrench.
We vary randomly the amplitudes and the orientations of
fingertip forces fi inside the corresponding friction cones
using Eq. (2). Grasp wrench central axes are computed from
(7). In Section 4, we will demonstrate that a necessary FC
condition is satisfied if the grasp wrenches can generate
central axes that positively span R

3 w.r.t. any arbitrary point.
The following examples show the central axes that pass
through the origin o.

3.2.1. Examples. We use the examples presented in ref. 28,
which are four-fingered grasps of a polyhedral object. The
contact points ci and the normal vectors zi are given by

c1 = (
2, 0, 0

)
; c2 = (

0, 1.5, 0
)
; c3 = (

0, 0, 2
)
;

c4 = (
1.2, −2, 0

)

z1 = (−1, 0, 0
)
; z2 = (

0, −1, 0
)
; z3 = (

0, 0, −1
)
;

z4 = (
0, 1, 0

)
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Fig. 2. The central axes that pass through the origin o.

This grasp is not FC when μ = 0.3. For the central axes,
Fig. 2(a) shows that they cannot entirely positively span R

3

at the origin o and consequently, the corresponding grasp
wrenches cannot generate all possible central axes. When
the friction coefficient reaches the value μ = 0.5, the given
grasp becomes FC. In Fig. 2(b), we can see that the central
axis positively spans R

3 at o.
Many simulations have been done on several planar and

spatial grasps. We have noticed that if a grasp is force-
closed, its wrench can generate any arbitrary central axis.
Accordingly, we will derive, in the next section, a FC test
based on the grasp wrench central axes independently of the
finger number.

4. Force-Closure Condition

In the present section, we rigorously prove the proposed
equilibrium and FC conditions.33 Therefore, we formulate
the FC condition as a new LP and we put forward the
proposed FC algorithm.

4.1. Necessary and sufficient equilibrium condition
In the equilibrium study, we consider only the grasp forces
applied by the n fingers of the hand. We split these forces
into two categories: force fi which is applied by the ith
finger at the contact point ci and forces fr applied by the
other n − 1 fingers. Thus, the object is under the action of
two wrenches wi = (fi , ti/ci

)T and wr = (fr , tr/ci
)T w.r.t. the

point ci . Torques ti/ci
produced by fi w.r.t. ci are zero because

fi pass through point ci . So, the equilibrium condition is

wg = wi + wr = 0 =⇒
{

fr = −fi

tr/ci
= 0.

(9)

According to Poinsot’s theorem, we subdivide the central
axes �g given by (7) into two classes: �i are the central
axes of the wrench wi and �r are the central axes of wr .
The second condition (tr/ci

= 0) in (9) defines a subclass of
central axis �∗

r with zero torques and passing through ci .
We denote as �∗

g the union of �i and �∗
r (�∗

g = �i ∪ �∗
r ).

Now, we put forward the following proposition for n-finger
equilibrium grasps.

Proposition 1: A grasp can achieve equilibrium iff the n − 1
first fingers can generate, at least, one central axis of class
�∗

r that is opposite to one central axis of class �i which is
generated by the last ith finger.

Proof: (i) Sufficiency: when the wrenches wr = (fr , tr/ci
)T

applied by the n − 1 fingers can generate one central axis �∗
r ,

the torque around this axis tr/ci
is zero. Hence, the second

condition in (9) is satisfied. The direction of the central axis
�∗

r is defined by that of fr and the direction of the central axis
�i is that of fi . So, if �∗

r and �i have opposite directions,
we can write fr = −δfi with δ > 0. Then, the wrenches wr

can produce forces that assure equilibrium.
(ii) Necessity: we now consider the case where the wrench
wr is unable to generate any central axis of class �∗

r that
passes through point ci . Thus, the forces fr produce a non-
zero torque tr/ci

w.r.t. ci . This torque cannot be balanced by
the ith finger because the torques ti/ci

produced by fi w.r.t.
ci are zero. Therefore, the grasp is not in equilibrium and the
condition of Proposition 1 is necessary. �

4.2. Necessary and sufficient force-closure condition
Force-closure is often used to characterize a grasp intended
to immobilize an object. This is equivalent to saying that the
grasp wrench wg can balance any task wrench wt .29 Using
this definition, we state a necessary and sufficient condition
on the grasp wrench wg to achieve FC.

Proposition 2: Given an arbitrary point (e.g. ci), an n-finger
grasp is force-closure iff
(i) all grasp-wrench central axes of class �∗

g can positively
span R

3 at ci , and
(ii) the torque applied by the n fingers, positively span R

3 at
ci .

Proof: (i) Sufficiency: at least four central axes are needed
to positively span R

3 at the point ci . So, we consider four
forces {f∗g1, f∗g2, f∗g3, f∗g4} that positively span the entire R

3

at ci (Fig. 3). We also consider that the torques tg/ci
, applied

by all contact forces w.r.t. ci , can positively span R
3 at ci .

Therefore, we have the following wrench w.r.t. ci :

w∗
g/ci

= [
f∗g , tg/ci

]T
(10)
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Fig. 3. Interpretation of the FC condition; if proposition 2 is satisfied
at ci , the grasp wrench can produce independent forces and torques
w.r.t. any point p.

where f∗g denotes grasp forces applied along central axes �∗
g ,

and tg/ci
is the torque applied by all contact forces w.r.t. ci . f∗g

and tg/ci
are independent entities because torques produced

by f∗g w.r.t. ci are zeros. Hence, if conditions (i) and (ii) are
satisfied, the wrench w∗

g/ci
can balance any task wrench wt/ci

applied at ci .
Obviously, if the n fingers can produce independent forces

and torques w.r.t. any point p, where the forces and the
moments positively span R

3 at ci , then the grasp is FC.
Hence, we will proove that if Proposition 2 is satisfied, the
grasp wrench can produce independent forces and torques
w.r.t. any point p.

The forces f∗g produce a torque t∗g/p = (ci − p) × f∗g w.r.t.
any p. This torque t∗g/p can balance any external torques
except those around the axis cip. An external torque around
cip can be balanced by the grasp torque tg/ci

because it
can positively span R

3 at ci . Then, the wrench w∗
g/p can

balance any task torques applied at any p. The torques tg/ci

can be expressed by several forces acting on the point p

(e.g. {f∗t1, f∗t2, f∗t3, f∗t4}). These forces can balance any task
forces except those along cip. Task forces along cip can be
balanced by f∗g because they can produce two central axes
along this direction ({f∗g11, f∗g12}). We conclude that, at any
p, w∗

g/p can balance any arbitrary task wrench wt/p and the
spatial grasp is FC.
(ii) Necessity: obviously, if condition (i) is not satisfied,
there exist task forces that cannot be balanced by f∗g . Further,
when the torques produced by the n fingers w.r.t. an arbitrary
point cannot have both signs (around any direction), the
grasp is non-FC. Hence, the two conditions of Proposition
2 are necessary. �

With Coulomb friction, if a given grasp is in equilibrium
and the central axis �∗

r is pointing strictly within the negative
ith friction cone, condition (i) is automatically satisfied.
According to (7), the central axes �i of wrenches wi/ci

=
(fi , 0)T are the contact forces in the ith friction cone. Hence,
if one central axis of class �∗

r that passes through ci pointing
strictly within the negative ith friction cone (cone pointing
outside the object) exists, the central axes �∗

g can positively
span R

3 at ci . Consequently, condition (i) can be formulated
by the following system:

{∑n
j=1 fj = −δzi∑n
j=1((cj − ci) × fj ) = 0

(δ > 0). (11)

4.3. Linear algorithm for testing FC grasps
The problem of computing n-finger FC grasps is simplified
by using Proposition 2. We start by verifying that all central
axes �∗

g produced by the grasp wrench can positively span
R

3 at c1. The second step consists of computing the resulting
torque applied by the n friction cones w.r.t. the first contact
point c1. If this torque can positively span R

3 then the grasp is
FC. We recall that the quadratic friction cone is approximated
by an m-sided polyhedral convex cone (Fig. 1b).

A set of vectors positively span R
3 if any vector in R

3 can
be written as a positive combination of the given vectors.17

Hence, �∗
g can positively span R

3 at c1 iff one central
axis of class �∗

r that passes through c1 and pointing inside
the negative first cone exists. Hence, we can formulate the
first condition in Proposition 2 as the following system of
equations:

{∑n
i=1

∑m
j=1 aij vij = −δz1∑n

i=2

∑m
j=1((ci − c1) × aij vij ) = 0

; aij ≥ 0 , δ > 0.

(12)
For spatial frictional grasps, �∗

g can positively span R
3 at

c1 iff their positive combination can produce vectors along
the axis −z1. We normalize the torques by r , the maximum
radius from the wrench space origin, often the centre of mass.
This ensures that the quality of a grasp will be independent
of the object scale.6 Dividing also by δ yields

{∑n
i=1

∑m
j=1 xij vij = −z1∑n

i=2

∑m
j=1 di × xij vij = 0

; xij ≥ 0 (13)

where di = 1
r
(ci − c1) and xij = aij

δ
.

In the grasp planning process, we have to quantify the FC
in order to optimize the generated grasps. So, we reformulate
(13) by the following linear program:

min
x=(x11,x12,···,x2m,···,xnm)T

{
f T x : Ax = −z1, x ≥ 0

}
. (14)

The matrix A of dimension (6 × mn) is given by

A =
(

v11 · · · v1m v21 · · · · · · vnm

0 · · · 0 t21 · · · · · · tnm

)
(15)

where tij = di × vij .
If a given grasp is FC and the first finger must participate

to generate resultant force along the negative direction of
the z1 axis (e.g. Fig. 7b) then the remaining n − 1 fingers
cannot produce resultant force along −z1 and the grasp will
be weak. In order to quantify this grasp, the coefficients of x1j

in the vector f must be greater than the remaining coefficients
(of xij with i �= 1). In this work, the coefficients of x1j are
arbitrary set to n, the other coefficients are set to 1.

The torque applied by the n friction cones w.r.t. c1 can
positively span R

3 if the contact point c1 lies strictly inside
the convex hull H (tij ) of tij . This can be verified using
matrix computations27 or by computing the sphere in three-
dimensional moment space. Hence, the following necessary
condition must be satisfied:

c1 ∈ H (tij ). (16)

https://doi.org/10.1017/S0263574709990889 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709990889


1026 Stochastic optimization-based approach for multifingered grasps synthesis

Algorithm 1 : QLP = FC Test(n, ci , zi , μ); (i = 1 . . . n)
Require: n ≥ 3
Ensure: QLP ;

1: if n < 3 then

2: QLP ← +∞ {the grasp is not FC}
return QLP

3: else

4: if (16) is not satisfied then

5: QLP ← +∞ {the grasp is not FC}
return QLP

6: else

7: if (14) is inconsistent then

8: QLP ← +∞ {the IPM returns the infeasibility of the LP}
return QLP

9: else

10: QLP ← fT x∗ {the grasp is FC and the IPM returns the optimal solution}
return QLP

11: end if

12: end if

13: end if

To solve the proposed linear program, we have
used the interior point method (IPM) which is very
effective in discovering linear program unfeasibility.30 This
characteristic is very suitable for a grasp planner in order to
rapidly test the FC property. If the linear program is consistent

then the optimal solution is fT x∗ = fT a∗
ij

δ∗ . The proposed FC
quality gives the minimal contact forces a∗

ij that contribute
to obtain δ∗, the maximum of the force along −z1.

In Algorithm 1, we describe the proposed n-finger FC test
(where n ≥ 3 contact points). Thus, if condition (16) is not
satisfied or if the LP given by (14) is inconsistent, then the
given grasp is not FC. Otherwise, the grasp achieves FC and
its quality QLP is equal to the optimal solution of (14).

5. Optimal FC Grasps Synthesis

Miller et al.25 have proposed a grasp planner that begins
by generating a set of starting grasp locations based on
a simplified object model (such as spheres, cylinders,
cones and boxes), and moving the preshaped hand along
predetermined directions towards the object in order to
generate automatic grasps. For each grasp, the grasp planner
computes the six-dimensional convex hull of the primitive
contact wrenches. If the origin is not contained within
this convex hull, then the given grasp does not have FC.
Otherwise, the grasp achieves FC, and its quality is the radius
rball of the largest ball inscribed inside the convex hull.

Inspired by the idea of this work,25 we synthesize stable
grasps by automatically generating the hand starting posture.
Our main idea rests on a stochastic technique to generate
these postures, for which the proposed FC qualitative
test is included. This new approach makes it possible to
obtain feasible grasps without solving the kinematics of the
mechanical hand and without simplifications of the object
model. The main differences between the proposed approach
and the one advanced in25 are as follows: first, the proposed
approach does not require simplifications in the model of

the grasped object, which reduce the required computational
time. Second, the starting postures of the hand are not fixed in
advance, but we use a stochastic technique to globally explore
the object’s surface. This technique offers more chance to
avoid local optima traps. Third, the test and the evaluation
of the FC grasps are based on the new FC test algorithm
described in Section 4. The proposed FC test algorithm is
computationally more efficient and the optimal solution of
the proposed LP defines a quantitative measure of the FC
grasp. Finally, we recall that the proposed approach can easily
adapt to various hand kinematic structures.

In this section, we begin by expressing the different
parameters defining the hand’s starting posture w.r.t.
the object’s coordinate frame. Secondly, we present the
formulation of the optimization problem, and finally, we
summarize the main steps of the proposed grasp planner.

5.1. Grasp generation
Kinematically speaking, a multifingered hand has a tree
topology.34 It has the structure of a palm generally attached
to a six degrees of freedom (DOF) manipulator, and a
set of fingers. A finger consists of a number (2–4) of
revolute coupled links playing the role of phalanges. In
many instances,34 the joints of a finger are not independently
actuated.

In this section, we have chosen (without loss of generality)
the Barrett hand to state our approach. This hand, produced
by Barrett Technology, is based on a design developed
at the University of Pennsylvania.35 It is a three-fingered
mechanical hand with each finger having two revolute joints
(Fig. 4). One finger is stationary and the two others can spread
synchronously about the palm by an angle θ3 ∈ [0, π] rad.
The Barrett hand has four actuated joints. Each of the three
fingers has one actuated proximal link θi1 (i = 1, . . . , 3),
and a coupled distal link which rotates at a fixed rate θi2

with the proximal link. A clutch mechanism allows the distal
link to continue its rotation if the proximal link’s motion
is obstructed. Therefore, the Barrett hand has four internal
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Fig. 4. The different parameters which define the starting posture
of the Barrett hand w.r.t. the object coordinate frame.

DOF: one for the spread angle of the fingers θ3, and three for
the angles of the proximal links θi1.

5.1.1. Starting posture. In Fig. 4, two right-hand rectangular
coordinate systems are given. The first coordinate system
(o, xo, yo, zo) is attached to the grasped object, the origin
o coincides with the object centre of mass (the point o is
also considered as the origin of the fixed reference frame).
The second coordinate system (oh, xh, yh, zh), is attached
to the palm of the Barrett hand with the coordinate axis zh

perpendicular to the palm’s surface. We define the position
of point oh w.r.t. the object’s coordinate frame as follows:

oh = ρh

[
sin θ2 cos θ1, sin θ2 sin θ1, cos θ2

]T

(17)

where ρh is selected sufficiently high to assure collision
avoidance between the Barrett hand and the grasped object.

The rotations of the hand’s reference frame w.r.t. the
object-attached frame is defined by the angle θ4 and the the
spherical coordinates of the starting point os . So, we get

os = ρs

[
sin q2 cos q1, sin q2 sin q1, cos q2

]T

(18)

where point os belongs to the grasped object. So, the positive
parameter ρs cannot exceed the maximal radius r of the
object from the origin o.

Thus, using the coordinates of points oh and os given in
(17) and (18) respectively, we define the components of the
vector zh as follows:

zh = os − oh

‖os − oh‖ (19)

Then, the two coordinate axes xh and yh are determined
using a basic rotation matrix for a rotation about the zh axis
with the θ4 angle.

We can notice that, with the variation of the two parameters
θ1 and θ2, the origin oh of the palm can sweep a sphere’s
surface of fixed radius ρh all around the object. Adding the
variation of starting point os locus and the rotation about
zh axis, we provide the mechanical hand with the ability to

explore the object’s geometry to look for grasps along all
possible directions.

For the internal DOF of the Barrett hand, the spread angle
θ3 is also considered as a decision variable. With θ3 ∈ [0, π]
rad, the starting posture of the Barrett hand can have different
preshapes. The three angles of the proximal links θi1 are
initially set to zero.

Finally, we denote xsp the vector of the geometric para-
meters that describe the starting posture of the mechanical
hand, w.r.t. the object-attached frame. For the Barrett hand,
we define the components of this vector as follows:

xsp =
[
θ1 θ2 θ3 θ4 q1 q2 ρs.

]T

(20)

5.1.2. Grasp testing and evaluation. To perform a grasp, the
Barrett hand is initially positioned at the starting posture.
The hand is then translated along the coordinate axis zh until
it is prevented from moving further by a contact. Third, the
fingers are closed around the object until contacts or joint
limits (θi1) prevent from further motion. If at least three
contacts between the hand and the object exist, the obtained
grasp is evaluated using the proposed FC test (Algorithm 1).
Otherwise, the grasp is not FC. Fourth, the angles of the
proximal links (θi1) are initialized, the hand is slightly backed
away from the object along the axis zh with a small distance
dback and the fingers are closed again. Finally, this backing
off iteration continues until the fingers reach the object and
the corresponding grasp can be evaluated. The back distance
dback can be selected according to the hand scale.

5.2. Grasp optimization
It is clear that using an arbitrary starting posture (Fig. 4), the
object can be grasped by the Barrett hand from any direction.
Thus, the hand can better explore the object in order to find
feasible grasps. However, the main problem is how to find the
best starting posture of the Barrett hand that may lead to an
optimal grasp. Therefore, we reformulate the grasp planning
as an optimization problem.

5.2.1. Problem statement. The optimization problem can be
stated as follows: let xsp denote the vector of the geometric
parameters which define the initial posture of the Barrett
hand w.r.t. the object’s coordinate system and, try to find the
optimal solution x∗

sp. This solution corresponds to the optimal
FC grasp according to a given performance criterion while
all constraints are respected.

5.2.2. Constraints. Generating feasible grasps with the
Barrett hand is restricted by numerous constraints that must
be satisfied. These constraints concern boundary conditions
and non-collision conditions between the mechanical hand
and the task environment.

� Boundary conditions: they allow the mechanical hand
to look for feasible grasps in the interior of a subspace
which includes the grasped object. Additional constraints
that may be considered represent the physical limitations
of the mechanical hand. Hence, the vector of the geometric
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parameters must satisfy the following constraints:

xsp ≤
[

2π π π 2π 2π π r
]T

(21)

where the components of xsp are non-negative real
numbers. Besides these constraints, the extrema of all joint
trajectories must be within the geometric limits of each
joint. The actuated-joint limits are given by

0 ≤ θi1 ≤ 0.8π (i = 1, . . . , 3) (22)

where the linear equations that give unactuated joints θi2

as a function of the actuated ones θi1 have the form

θi2 = θi1

3
+ π

4
(23)

� Collision conditions: in pick and place tasks, it is
required that the hand configuration at both the initial and
final locations must be specified before planning motion
trajectory. In this paper, we are focused on determining the
relative configuration of the hand w.r.t. the object’s frame,
while this latter is being grasped. Thus, when the hand is
grasping an object, if collisions between the hand’s bodies
and the environment are discovered, then the current grasp
is rejected and the planning procedure evolves towards the
search for other possible solutions.

5.2.3. Performance index. Many criteria can be chosen as the
performance index for the proposed optimization problem.
Different grasp parameters such as location of contact points,
hand configuration or limitation on finger forces, can be
involved in the quality measure. A global quality measure
obtained through the combination of several criteria can be
also considered. In this work, the optimal solution QLP

described in Section 4 is used as a cost function in the
optimization problem. The proposed FC quality gives the
minimal contact forces that contribute to force magni-
tude maximization along the negative direction of z1 axis (the
normal at the first contact point c1). From a physical point of
view, it means the minimal contact forces that contribute to
the obtention of stable grasps which are far from FC loss.

The proposed grasp planner returns the configuration of the
mechanical hand when it is grasping an object. The stochastic
optimization is performed to find a good global solution using

an annealing algorithm. For each initial configuration xsp,
many grasps are evaluated using backward iterations (Section
5.1.2). Algorithm 2 describes this backward mechanism,
and returns the best grasp obtained for a given initial
configuration xsp. This grasp is returned as a vector G∗

iter .
For the Barrett hand, the components of G∗

iter describe the
posture of the hand’s reference frame (oh, xh, yh, zh) w.r.t.
the object-attached frame and the value of the actuated joints
(θi1 and θ3) while the hand is grasping the object.

5.2.4. Stochastic optimization technique. The proposed
method is based on a stochastic optimization scheme. The
simulated annealing technique will control how each trial
grasp is being generated and will decide, via its built-in
Metropolis decision algorithm, if a candidate should be
accepted or rejected. It will also check for constraints and
will keep track, of course, of the best candidate. At each
iteration of the SA algorithm, a new grasp is randomly
generated. The distance of the new grasp from the current
one is based on a probability distribution. The algorithm
accepts all new grasps that decrease the objective function
Fobj , but also, with a certain probability, grasps that increase
it. Therefore, the algorithm avoids being trapped in local
minima, and it is able to explore the object surface globally
for more solutions. While the SA technique is unlikely to
find the optimal solution, it can often find a very good one.
Hence, calculated grasps are expected to be suboptimal.

6. Implementation and results

We now give numerical results obtained on a Pentium-M
laptop (processor 1.7 GHz, 1.5 Go of RAM, OS. Linux). This
section contains two parts: firstly, we compare the proposed
FC test to the algorithm advanced in ref. 28, and we give
a discussion about the proposed quality measure QLP . The
second part deals with the application of the proposed grasp
planner for computing FC grasps on polyhedral objects. The
approach has been tested on several complex objects and its
efficiency in testing and computing FC grasps is confirmed.

6.1. FC-test performances
The most known test, FC qualitative test, is proposed by
Liu.28 It is equivalent to the ray-shooting algorithm which
starts from linearizing friction cones by a polyhedral convex
cone with m sides, then computing mn primitive contact

Algorithm 2 : [Fobj ,G∗
iter ] = Cost Function(xsp)

Ensure: [Fobj ,G∗
iter ]

1: Set Initial Configuration(xsp) {setting the initial posture of the Barrett hand}
2: Translate Forward(zh) {translation along zh until contact}
3: Close Fingers() {close the fingers around the object}
4: while n > 2 do

5: Fobj =FC Test() {test and evaluate the grasp}
6: Update Quality() {save the best grasp [Fobj ,G∗

iter ]}
7: Open Fingers() {the actuated joints (θi1 and θ3) are initialized}
8: Translate Backward(zh,dback) {translation along −zh with a distance dback}
9: Close Fingers()

10: end while

11: return [Fobj ,G∗
iter ]
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Fig. 5. (a) The difference between the time costs �T versus the number of segments linearizing the friction cones m. (b) Operation of
grasping a glass with the Schunk hand (n = 18, μ = 1).

wrenches. Finally, it solves a linear programming problem
(with six decision variables and nm inequalities) to conclude
the FC test. Our proposed LP has mn decision variables and
six equalities. It also starts by computing the grasp primitive
contact wrenches. If the LP (14) is inconsistent then the
grasp is non-FC. Otherwise, we check (16) to conclude the
test. We have adopted the IPM because of its effectiveness in
discovering linear program unfeasibility30 while the Simplex
method is used to solve the ray-shooting algorithm28 which
is suitable for medium-scale problems. The optimization
toolbox of MATLAB was used for the implementation.

We also show that our FC quality measure QLP = fT x∗
can be considered as better index from a practical point of
view. Further, we give a comparison between QLP and the
radius rball of the largest ball inscribed inside the convex
hull of the primitive contact wrenches, often cited in the
literature.15,16

6.1.1. Computation cost. The first example is from ref. 28;
the contact points and the normal vectors were given above
(Section 3.2.1).

For a friction coefficient μ = 0.3, the grasp is not FC.
Figure 5(a) depicts the runtime of the two algorithms versus
the number m of facets used for the linearization of the
friction cones. In Fig. 5(a) (dashed curve), we show that the
ray-shooting algorithm requires more time to check non-FC
grasps.28,31 The qualitative check is performed efficiently
when we use our algorithm. Since the IPM returns the
unfeasibility of the LP (14), the runtime is reduced by about
61% in average when m ∈ [8, 50] sides.

The grasp achieves FC for μ = 0.5. Fig. 5(a) (doted
curve) plots the runtime of the two algorithms versus m.
The proposed qualitative check is performed efficiently and
the runtime is reduced by about 43% in average. It should
be noted that when the grasp achieves FC, the runtime in
our case is the sum of the required time for checking the
qualitative test and the time necessary to compute the optimal
solution of (14). So, if we use the proposed algorithm only
as a qualitative test, the corresponding runtime will be much
lower than the values shown on Fig. 5(a) (doted curve).

Table I. Optimal solution versus the reduction point ci .

Point c1 c2 c3 c4 Average rball

Grasp 1 7.758 12.443 8.562 3.109 7.968 0.063
Grasp 2 1.0385 1.0382 1.098 1.100 1.068 0.308

It should be noted that m ∈ [8, 20] sides leads to acceptable
practical results. Figure 5(a) shows that for m varying in this
interval, the ray-shooting algorithm requires more runtime.
The increase of the number of contacts n is also a parameter
which must be considered. In Fig. 5(b), we show the Schunk
hand grasping a glass with 18 contacts (μ = 1). Figure 5(a)
(solid curve) plots the runtime of the two algorithms versus
m. We can notice that the runtime is reduced by about 56% in
average when m ∈ [8, 20] sides. Therefore, the ray-shooting
algorithm requires higher computational time if n increases.

6.1.2. Quality measure. The proposed metric QLP = fT x∗
is independent of the chosen point ci . Table I summarizes
the quality QLP versus the reduction point ci . Grasp 1 was
described in Section 3.2.1 and, grasp 2 is shown on Fig. 5(b).
Indeed, we notice that the second grasp is better than the first
one whatever the chosen point ci . In the last column of Table I,
we compute the radius rball of the largest ball inscribed inside
the convex hull, which is considered as the most popular
criterion.15,16 We use the qhull library32 to compute the six-
dimensional convex hull of the primitive contact wrenches. A
quality of rball ≥ 0.1 corresponds to acceptable grasps.26 The
quality criterion rball indicates that the second grasp is better
than the first one, which is also confirmed by QLP without
need to geometric computations on convex hulls. For grasp 2
(Fig. 5b), the quality QLP is computed w.r.t. four points but
the results are similar for the remainder points.

In the following, we recapitulate the main advantages of
the proposed LP test:

� The qualitative FC test advanced in28 is based on the
optimal solution of the ray-shooting algorithm. Using our
linear formulation, the FC qualitative test is based only on
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Fig. 6. Suboptimal grasps produced by the proposed planner for basic 3D objects.

Fig. 7. Best quality versus number of iterations for grasps of Fig. 6.

the examination of the LP feasibility and the checking of
(17). Hence, the proposed LP has less computational cost
compared with the ray-shooting algorithm.

� If (14) is consistent and (16) satisfied then the grasp is FC.
Furthermore, the optimal solution of (14) gives a quality
measure of the FC grasp. Through several numerical
simulations, we have noticed that the FC quality criterion
QLP < 2 corresponds to acceptable grasps.

� The optimal solution of the LP advanced in28 is used to
test if the origin of wrench space lies strictly inside the
convex hull of the primitive contact wrenches. Hence, it
cannot give enough information about the quality of the
FC grasp. The proposed FC test can also be considered as
a quantitative FC test.

6.2. Grasp planning results
To test the proposed approach, we planned grasps on
various objects. We have used the three-fingered Barrett
hand, but our generic method can easily be adapted to any
mechanical hand. Our simulations were performed under
the public simulator GraspIt!. The proposed FC test is

Fig. 9. Best quality versus number of iterations for grasps of Fig. 8.

Table II. Parameters for SA run.

Maximum number of iterations 70
Maximum trying points before stepping 15
Maximum number of iterations for each temperature 5
Damping factor for temperature 1.01
Boltzmann constant 1.0

implemented in GraspIt! using the Gnu Linear Programming
Kit (GLPK) package. For the grasps optimization, we used
Gnu Scientific Library (GSL) routines for the implementation
of the SA technique. Parameters of this technique have been
set as indicated in Table II. Starting from a random initial
configuration of the Barrett hand, 70 iterations are performed
for each simulation. It is found that this number was sufficient
to reach good solutions. In the implementations, the back
distance, defined in Section 5.1.2, is set to dback = 5 mm.
The friction coefficient is set to 1.0 in all simulations.

We begin by presenting the results of some planned grasps
on basic 3D objects. The optimal grasp configurations are
shown in Fig. 6. For each grasped object, the evolution of

Fig. 8. Suboptimal grasps produced by the proposed planner on real objects’ models.
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Fig. 10. Quality versus number of iterations for the grasp of
Fig. 8(e).

the best quality versus the number of iterations is plotted in
Fig. 7. We notice that, for different objects, various acceptable
FC grasps are found in few iterations (typically less then 40
iterations).

Our grasp planner is also tested to generate optimal grasps
on real objects models. In Fig. 8, we present the obtained
grasps after 70 iterations. As shown in Fig. 9, we can see
that 20 iterations are sufficient to generate good grasps on
different object’s geometries. For the example shown in
Fig. 8(e), we plot the quality position in each iteration for
grasping the airplane model (Fig. 10). For the first three
iterations, the generated grasps are non-FC, but a suboptimal
grasp is obtained at the sixth iteration. In Fig. 11, the grasped
objects were placed on environments with other obstacles.
For these examples, we notice that the number of feasible
grasps is reduced which reduce also the planning times
(Table III).

Table III summarizes the performances of the proposed
approach. For each generated suboptimal grasp, we present
the best quality QLP , the corresponding rball quality measure
and the total runtime required for performing 70 iterations.
The number of tested grasps and the FC ones are depicted in
the last two columns respectively.

7. Conclusion

This paper was focused on grasp analysis and grasp synthesis.
We were primarily concerned with the proposition of a new
FC test, for which a rigorous proof was provided for the 3D
case. Based on the central-axis theory and using friction cone

Table III. Performance of the proposed grasp planner.

Time Tested FC
Objects QLP rball (s) grasps grasps

Cube 0.740 0.490 111 4505 2582
Cylinder 0.744 0.457 132 4519 2446
Cone 0.717 0.169 92 2558 1204
Sphere 0.727 0.398 226 5374 3533
Polyhedron 0.740 0.286 132 4547 2718

Flask 0.759 0.177 152 3294 1843
Glass 0.724 0.226 136 3439 2085
Mug 0.721 0.427 209 4622 2956
Pipe 0.772 0.189 70 1203 409
Plane 0.777 0.083 68 936 167

Horse on table 0.714 0.171 78 816 686
Glass with obstacles 0.711 0.324 91 425 351

linearization, we have reformulated the proposed FC condi-
tion as a new linear programming problem solved using an
IPM. Through numerical results, we have confirmed the effi-
ciency of the proposed algorithm in testing the FC property.

Moreover, we have proposed an approach for finding
appropriate stable grasps for a robotic hand on arbitrary
3D objects. The presented method is based on a stochastic
optimization scheme. We use the SA technique for
synthesizing suboptimal grasps. Our algorithm can compute
good grasps for multifingered hands on arbitrary objects
within a reasonable runtime. The SA technique often prevents
being trapped in local minima, and it is able to explore
the object surface globally for more solutions. In addition,
the proposed approach makes it possible to obtain feasible
grasps without solving the kinematics of the mechanical
hand and without further simplifications of the object model.
Consequently, the computational cost of the grasp planning
process is significantly reduced.

As generated grasps must preform different tasks in the
environment, our future works will be concentrated on
the development of oriented task qualities and on objects’
manipulation.
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