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Wave dispersion in a pulsar plasma is discussed emphasizing the relevance of different
inertial frames, notably the plasma rest frame K and the pulsar frame K′ in which
the plasma is streaming with speed βs. The effect of a Lorentz transformation
on both subluminal, |z| < 1, and superluminal, |z| > 1, waves is discussed. It is
argued that the preferred choice for a relativistically streaming distribution should
be a Lorentz-transformed Jüttner distribution; such a distribution is compared with
other choices including a relativistically streaming Gaussian distribution. A Lorentz
transformation of the dielectric tensor is written down, and used to derive an explicit
relation between the relativistic plasma dispersion functions in K and K′. It is shown
that the dispersion equation can be written in an invariant form, implying a one-to-one
correspondence between wave modes in any two inertial frames. Although there are
only three modes in the plasma rest frame, it is possible for backward-propagating
or negative-frequency solutions in K to transform into additional forward-propagating,
positive-frequency solutions in K′ that may be regarded as additional modes.
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1. Introduction
In an accompanying paper (Rafat, Melrose & Mastrano 2019a, hereinafter Part 1)

we discuss wave dispersion in the rest frame, denoted K, of a pulsar plasma
emphasizing the importance of the intrinsic spread in electron (and positron) energies,
〈γ 〉 & 1, with 〈γ 〉 � 1 in a highly relativistic plasma. In this paper we discuss
aspects of the plasma physics that involve Lorentz transforming between frames.
In particular, we consider the effects of the Lorentz transformation between K
and the pulsar frame, K′, in which the plasma is streaming outwards at speed βs,
where we use ‘speed’ to refer to a velocity component along the direction of the
magnetic field relative to the speed of light. Our ultimate objective (Rafat, Melrose
& Mastrano 2019b, hereinafter Part 3) is to discuss possible wave growth leading
to pulsar radio emission. Identification of the wave properties in K (Part 1) is one
important ingredient needed for such a discussion. However, the relevant frame when
treating the wave growth, the emission process and the escape of radiation is K′.
The transformation of the wave properties between the two frames includes the
transformation of the relativistic plasma dispersion function (RPDF) W(z) in K to
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W ′(z′) in K′. As in Part 1, we describe the wave dispersion in terms of the frequency
ω, phase speed z = ω/k‖c and angle θ of propagation. The Lorentz transformation
relates ω, z and θ in K to ω′, z′ and θ ′ in K′. Another important aspect concerns the
choice of distribution function. As in Part 1 we suggest that the default choice for
a relativistic distribution of particles in K should be a one-dimensional (1-D) Jüttner
distribution. Here we argue that the default choice for the distribution function for a
beam is that obtained by applying a Lorentz transform to a 1-D Jüttner distribution
in K. Alternative choices for a relativistic distribution function in K include power
law (Kaplan & Tsytovich 1973, § 17), relativistic Gaussian (Lominadze & Pataraya
1982; Asseo & Melikidze 1998) and water-bag (Arons & Barnard 1986) and bell
(Gedalin, Melrose & Gruman 1998) distributions. For non-streaming distributions
the effects of the different choices is primarily on the form of the RPDF, and these
effects are relatively minor (Gedalin et al. 1998). However, different choices have a
much larger effect for streaming distributions. We find that the Lorentz-transformed
distribution function is very much broader than the streaming Gaussian distribution
usually assumed. This has major implications for beam-driven instabilities discussed
in Part 3. One example that we discuss in detail concerns the ‘separation’ condition,
that is, the condition for two relatively streaming distributions to be separated (in
4-speed u = γβ), rather than overlapping, so that one can be identified as a beam
propagating through the other (the background).1

Wave dispersion in K′ may be treated using three different (but equivalent)
approaches. One approach is to treat the wave dispersion in K and Lorentz transform
the wave solutions to K′. Two effects of the Lorentz transformation on a wave are well
known in the context of escaping pulsar radio emission: the effect (Lorentz boost)
on the frequency (Lesch et al. 1998) and the effect (aberration) on the direction
of propagation (Cordes 1978; Gupta & Gangadhara 2003). The transformation of
the phase speed is a trivial application of the relativistic addition of velocities,
z′ = (z+ βs)/(1+ zβs), but some care is needed in the application to wave dispersion
because either ω′ or z′ may be opposite in sign to ω or z. Formally, ω′ < 0 may be
treated by using the symmetry of the dispersion equation under ω′, k′→−ω′,−k′ to
relate the positive- and negative-frequency solutions, by requiring that the physical
solution of the dispersion relation (in any frame) correspond to a positive frequency
in that frame. Other approaches involve deriving the wave dispersion directly in K′,
with two alternatives relating to the way the dielectric tensor is identified in K′.
One way is to Lorentz transform the distribution function and use the transformed
distribution function in calculating the dielectric tensor in K′. The other way is to
Lorentz transform the dielectric tensor from K to K′. The latter approach involves
transforming the relativistic plasma dispersion function (RPDF) z2W(z) in K to
z′2W ′(z′) in K′. We establish the equivalence of these approaches in general, by
showing that the dispersion equation may be written in invariant form. We also
illustrate the equivalence for specific wave modes.

The equivalence of the two ways of relating wave dispersion in K and K′ implies
there are the same number (three modes) in both K (Part 1) and K′. However,
in principle (up to three) additional modes can arise in K′ from a reinterpretation
of backward-propagating or negative-frequency solutions in K transforming into

1We remark that a distribution of highly relativistic particles may also be present, but we neglect this
here because the growth rate due to such particles is known to be too small to be relevant. Similarly we
neglect any non-thermal high-energy tail on the background (Lorentz-transformed Jüttner) distribution on the
grounds that it cannot dominate in determining the growth rate, unlike the non-relativistic case, for example,
modelled as a kappa distribution in treating solar radio bursts (e.g. Cairns, Li & Schmidt 2017).
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Wave dispersion in pulsar plasma 2 3

a forward-propagating, positive-frequency solution in K′. Other authors identified a
fourth mode (Beskin, Gurevich & Istomin 1993; Istomin 2001; Lyne & Graham-Smith
2006) in K′, and we argue that this is partly the result of such an interpretation.
However, this point is confused by what we suggest is an inappropriate approximation
made effectively in evaluating the RPDF in K′.

In § 2 we write down the Lorentz transformation between K and K′ for a wave and
also for a 1-D distribution function. In § 3 we argue that a beam should be modelled
as a Lorentz-transformed Jüttner distribution, and we introduce a multi-beam model
composed of several such distributions. In § 4 we estimate the separation condition
for two such (relatively streaming) distributions to be regarded as non-overlapping,
and point out that this condition is more restrictive than might be anticipated. We
write down the Lorentz transformation of the dielectric tensor and of the dispersion
equation in § 5 and derive an explicit relation between the RPDFs in K and in K′.
We discuss the transformed dispersion equation and dispersion relations in § 6. In § 7
we show how each of the three modes in K splits into two branches in K′ and we
comment on the suggested fourth mode in K′. We discuss our results and summarize
our conclusions in § 8.

2. Lorentz transformation between rest and pulsar frames
In this section we write down the Lorentz transformation between the rest frame K

of the plasma and the pulsar frame K′ in which the plasma is streaming at speed βs
away from the star (positive direction). We also discuss the transformation of a 1-D
Jüttner distribution between K and K′.

2.1. Lorentz transformation to the pulsar frame
The Lorentz transformation from the unprimed frame K to the primed frame K′
moving along the magnetic field at speed βs applied to a wave, described by frequency
ω and components k‖ and k⊥, parallel and perpendicular, respectively, to the relative
velocity, gives

ω′ = γs(ω+ k‖cβs), k′
‖
c= γs(k‖c+ωβs), k′

⊥
= k⊥, (2.1a−c)

with γs = (1 − β2
s )
−1/2. In terms of the variables z = ω/k‖c and θ in the unprimed

frame, K, and z′ = ω′/k′
‖
c and θ ′ in the primed frames, K′, equations (2.1) and the

inverse transforms imply

z′ =
z+ βs

1+ βsz
, z=

z′ − βs

1− βsz′
, tan θ ′ =

tan θ
γs(1+ βsz)

, tan θ =
tan θ ′

γs(1− βsz′)
. (2.2a−d)

The relation between z′ and z is illustrated (for βs = 0.9) in figure 1. The relation
separates into two branches. One branch includes the subluminal range, −1 < z < 1
with −1 < z′ < 1, and two superluminal ranges, one where both z, z′ are negative,
−1/βs < z < −1 with −∞ < z′ < −1, and another where both z, z′ are positive,
1 < z <∞ with 1 < z′ < 1/βs. The other branch is for superluminal negative z and
superluminal positive z′, −∞< z<−1/βs with 1/βs < z′<∞, respectively. Assuming
a source on the near side of the pulsar, only waves with z′> 0 can reach the observer;
these include not only forward-propagating waves, z > 0, in K but also backward-
propagating waves with −βs < z< 0 in K, which become forward-propagating waves,
z′ > 0, in K′.
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FIGURE 1. The relation (2.2) between z′ and z is plotted for βs = 0.9; the box enclosed
by the dashed lines at z, z′ =±1 is the subluminal range.

2.2. Subluminal waves
The subluminal range −1 < z < +1 in K maps onto the subluminal range −1 <
z′ < +1 in K′. However, z′ and z can have opposite signs. The phase speed z = 0
(z′ = 0) that separates forward- and backward-propagating waves in K (in K′) maps
onto z′ = βs (z = −βs) in K′ (in K). Forward-propagating waves with 0 < z′ < βs
in K′ correspond to backward-propagating waves −βs < z < 0 in K. However, this
interpretation requires further comment. Note that the inverse of the transformation
given by (2.1), specifically ω= γsω

′(z′ − βs)/z′ and k‖c= γsk′‖c(1− z′βs), implies that
z has the opposite sign to z′ due to ω < 0, k‖ > 0. The negative frequency requires
interpretation.

It is conventional to describe a wave in terms of a positive frequency, and
it is always possible to do so because the dispersion equation is unchanged
under ω, k‖ → −ω, −k‖ and hence is an even function of z with positive- and
negative-frequency solutions ω =±ωM(z), for some wave mode M. Confusion arises
because negative z can be due to either ω or k‖ being negative. A formal way of
allowing for the change in sign of the frequency under a Lorentz transformation is to
distinguish between forward- and backward-propagating wave modes with dispersion
relations ω=ωM±(z) > 0. One then requires that if the Lorentz transformation causes
the frequency to change sign, one reinterprets this as a change in mode, from forward
propagating, M+, to backward propagating, M−.

The mapping z→ z′ for {1− |z|, 1− |z′|}� 1 becomes strongly distorted for γs� 1.
Important features of the wave dispersion discussed in Part 1 occur for γφ = (1 −
z2)−1/2

� 1, and an approximate form for the Lorentz transformation is desirable for
this case. The relations (2.2) for {1− |z|, θ}� 1 may be approximated by

ω′ ≈ 2γsω, γ ′φ ≈ 2γφγs, θ ′ ≈ θ/2γs, (2.3a−c)
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where we assume {γφ, γs}�1. Thus phase speeds z≈1 near the speed of light, γφ�1,
in K transform into phase speeds much closer to the speed of light, γ ′φ ≈ 2γsγφ� γφ ,
in K′.

The approximation (2.3) applies to the forward-propagating, z> 0, parallel Alfvén
(or A) mode, with the dispersion relation z= zA≈ 1+ 1/2β2

A transforming into z′= z′A,
z′A = (zA + βs)/(1 + zAβs) ≈ 1 + 1/2β ′2A , with β ′A ≈ 2γsβA. Similarly, the maximum
frequency of the L mode is determined by the maximum of the RPDF, at z= zm with
γφ = γm in K, and at z′ = z′m = (zm + βs)/(1 + zmβs), with γ ′φ = γ

′

m ≈ 2γsγm in K′.
The features of the wave dispersion in the small range of 0< 1− z� 1, with z> 0,
discussed in Part 1 are squeezed into an extremely narrow range (smaller by a factor
1/2γs) of phase speeds 0< 1− z′� 1 in K′.

2.3. Superluminal waves
The superluminal ranges in K and K′ also map into each other, but in a less obvious
way than for subluminal waves. In this case changes in sign between z and z′ occur
at (z, z′) = (±∞, 1/βs), or at (z, z′) = (−1/βs, ±∞). The frequency cannot change
sign, and the introduction of ± modes is not relevant. In this case, k′

‖
changes sign,

relative to k‖, at z=−1/βs causing backward-propagating waves in K with z<−1/βs
to become forward propagating in K′.

In the application to pulsars, superluminal waves are relevant to oscillations that are
primarily in time. Purely temporal oscillation correspond to k‖ = 0, or z=±∞, in K
and to k′

‖
= 0, or z′ =±∞, in K′, and these may be identified as the conditions for

the cutoff frequencies in the two frames. However, the cutoff frequencies in the two
frames are not the same (in any meaningful sense) and the relation between them is
not obvious. Specifically, assuming k‖ = 0 in K and k′

‖
= 0 in K′ implies frequencies

that are related by ω = γsω
′ and ω′ = γsω, respectively. In a pulsar plasma the only

cutoff (in the radio range) is in the L mode at ω=ωx =ωp〈1/γ 3
〉

1/2
≈ωp/〈γ 〉

1/2, for
〈γ 〉� 1, in K, and this corresponds to ω′=ωx/γs in K′. On the other hand, k′

‖
= 0 in

K′ corresponds to z=−1/βs in K, and to a frequency ω=ωL(−1/βs)≈ωL(−1)=ω1,
for γs� 1, in K, and hence to ω′≈ γsω1 in K′. We remark that the relation ω≈ γsω

′

applies for nearly temporal oscillations (large z) in K and the relation ω′≈ γsω applies
for nearly temporal oscillations (large z′) in K′. There is a rapid transition between
these relations near z=−z′, with |z|= |z′|= 1+ 1/γs. This rapid transition near z.−1,
z′ & 1 is evident (for βs = 0.9) in the upper-left branch in figure 1.

2.4. Distribution function in the pulsar frame
The distribution g(u) in the rest frame may be rewritten in the pulsar frame by noting
that it is invariant under Lorentz transformations along the direction of the magnetic
field. In a 4-tensor notation, let uµ = (u0, u) denote a 4-velocity, with u0

= γ , u =
γβb, where b is the unit vector along the magnetic field. We denote the invariant
constructed from two 4-vectors vµ and wµ by vw = v0w0

− v · w. The 4-velocity
corresponding to a system at rest is uµ0 = (1, 0) and the 4-velocity of a system moving
at speed βs is uµs = (γs, γsβsb). The parameters γ , β and γ ′, β ′ are related by the
Lorentz transformation:

γ ′ = γ γs(1+ ββs), β ′ =
β + βs

1+ ββs
; γ = γ ′γs(1− β ′βs), β =

β ′ − βs

1− β ′βs
. (2.4a−d)

For any distribution function in K that depends only on the energy, it is convenient
to write this dependence in terms of γ = u0u. We note the invariant usu′ = u0u
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constructed from the 4-velocity uµ= (γ , γβb) and from the 4-velocity u′µ= (γ ′, γ ′β ′b).
It is convenient to write the distribution function g(u) in K as g(γ ), when it depends
only on the energy, and to rewrite this as g(u0u). The distribution function g′(u′) in
K′ becomes g(usu′), with usu′ = γsγ

′(1− βsβ
′). The normalization of g(u) is fixed to

the number density,
∫

dug(u)= n, in K. The number density in K′ is n′ =
∫

du′g′(u′).
As in Part 1, we choose a 1-D Jüttner distribution, g(u)=n exp(−ργ )/2K1(ρ) where

ρ=mc2/T is the inverse temperature in units of the electron rest energy. Transforming
to K′ gives

g′(u′)=
ne−ργsγ

′(1−βsβ
′)

2K1(ρ)
,

∫
∞

−∞

du′g′(u′)= n′ = γsn. (2.5a,b)

This result follows, for g(−u) = g(u), from du′ = d(β ′γ ′) = γ ′3dβ ′, du = γ 3dβ and
dβ ′/dβ = γ 2/γ ′2 implying du′/du= γ ′/γ , with γ ′ and β ′ given in terms of γ and β
by (2.4).

3. Streaming Jüttner distribution
In this section we reinterpret the Lorentz-transformed Jüttner distribution (2.5) as

a streaming Jüttner distribution and argue that this should be the preferred choice
to model streaming particles in a pulsar plasma. We start by writing down a multi-
beam model that consists of a sum of such transformed Jüttner distributions with
different streaming speeds. We then discuss the properties of a single such streaming
distribution and compare it with a relativistically streaming Gaussian model that has
been used in the pulsar literature.

3.1. Multi-beam model
A multi-beam model for the total distribution function of particles is assumed to
consist of a number of components that are streaming relative to each other. Such
a model applies in a specific frame, which we leave undefined, with each streaming
speed relative to a point at rest in this frame. Let a specific distribution function,
gα(u), correspond to a streaming Jüttner distribution with a streaming speed βα,
inverse temperature ρα and number density nα. The contribution of species α to the
total distribution function is obtained by Lorentz transforming the Jüttner distribution
in the rest frame to the frame in which it is streaming with speed βα. Using (2.5),
this gives

gα(u)=
nα
γα

e−ραγαγ (1−βαβ)

2K1(ρα)
, (3.1)

where nα/γα is the number density in the rest frame of species α. The multi-beam
model corresponds to a sum of such distributions,

g(u)=
∑
α

gα(u) with
∫
∞

−∞

du g(u)= n=
∑
α

nα. (3.2)

We discuss specific examples involving two such distributions in the next section.

3.2. Relativistically streaming distributions
In discussing choices for the distribution function of a relativistic beam in a pulsar
plasma, it is helpful to start from non-relativistic counterparts. In the absence of
streaming the default choice in the non-relativistic case is a Maxwellian distribution,
∝ exp(−ρβ2/2) in the notation used in this paper. The corresponding model for a

https://doi.org/10.1017/S0022377819000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000448


Wave dispersion in pulsar plasma 2 7

beam is a distribution streaming with speed βα; this is ∝ exp[−ρ(β − βα)2/2], which
is obtained by applying a Galilean transformation to the Maxwellian distribution.
We discuss several different choices of relativistic (non-streaming and streaming)
distributions that are generalization of the Maxwellian case.

The standard relativistic generalization in the non-streaming case is a Jüttner
distribution, which is obtained from the non-relativistic Maxwellian distribution by
replacing β2/2 by γ − 1, noting the expansion γ = 1 + β2/2 + · · · for β2

� 1.
This is equivalent to writing the Maxwellian distribution in the form ∝ exp(−ε/T)
and replacing the non-relativistic energy, ε = mc2β2/2, by its relativistic counterpart,
ε = γmc2. Our choice for a relativistically streaming distribution is obtained by
applying a Lorentz transformation to the resulting Jüttner distribution. A relativistically
streaming Jüttner distribution is qualitatively different from its non-relativistic
counterpart, notably in the absence of any approximate symmetry. Specifically,
a streaming 1-D Maxwellian distribution, ∝ exp[−ρα(β − βα)

2/2], is symmetric
about β = βα, but there is no such symmetry for a relativistically streaming Jüttner
distribution, ∝ exp[−ραγαγ (1− βαβ)].

Another choice of relativistic generalization of a Maxwellian distribution involves
replacing the 3-speed β by the 4-speed u = γβ. In the absence of streaming this
gives a Gaussian distribution ∝ exp(−u2/2u2

th), with u2
th = 1/ρα regarded as a free

parameter in the model. This generalization applied to a streaming Maxwellian
gives a streaming Gaussian, which is a favoured choice in the pulsar literature (e.g.
Lominadze & Pataraya 1982; Asseo & Melikidze 1998),

gα(u)=
nα

(2π)1/2uth
exp

[
−
(u− uα)2

2u2
th

]
. (3.3)

The parameter u2
th may also be interpreted as the average 〈(u − uα)2〉 over this

distribution function. Note that the form (3.3) is obtained by two sequential
replacements: including the streaming through β→ β − βα and including relativistic
effects through {β, βα} → {u, uα}. A different result is obtained if one makes these
generalizations in the opposite order, cf. equation (3.4).

We note two differences between the relativistically streaming Gaussian (3.3)
and a streaming Jüttner distribution. First, like its non-relativistic counterpart, a
relativistically streaming Gaussian is symmetric about u=uα, whereas there is no such
symmetry for a streaming Jüttner distribution. Second, a streaming Jüttner distribution
is related to its non-streaming counterpart by a Lorentz transformation, but there is no
such relation for a relativistic Gaussian. Specifically, the Lorentz-transformed Gaussian
is obtained by replacing its dependence on u= γβ in terms of primed quantities using
γ = γαγ

′(1 − β ′βα) and β = (β ′ − βα)/(1 − β ′βα), where a prime denotes quantities
in the frame in which the distribution is streaming. The Gaussian distribution, ∝
exp(−u2/2u2

th), does not transform into the streaming Gaussian distribution (3.3). The
Lorentz transform of any given distribution gα(u) is not gα(u− uα), but rather gα(u′α)
with u′α = γ γα(β − βα). A relativistic Gaussian in its rest frame transforms into

gα(u)∝ exp[−γ 2γ 2
α (β − βα)

2/2u2
th] ∝ exp[−(γ 2

− γ 2
α )

2/8γ 2γ 2
α u2

th], (3.4)

where the final form applies for {γ 2, γ 2
α } � 1. A distribution of the form (3.4) has

some similarities to the streaming Jüttner distribution (3.1). However, we see no
reason to prefer the distribution (3.4) over the streaming Jüttner distribution (3.1).

In figure 2 we plot the Gaussian (solid and dashed) and Jüttner (dotted) distributions
for ρα = 0.1. In (a) we choose uα = 0 for which the two expressions for the Gaussian
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8 M. Z. Rafat, D. B. Melrose and A. Mastrano

(a) (b)

FIGURE 2. Plots of Gaussian distribution as given by (3.3) (solid) and as given by (3.4)
(dashed), and Jüttner distribution as given by (3.1) (dotted) as a function of u= γβ for
ρα = 0.1. (a) uα = γαβα = 0, with u2

th= 1/ρα (solid) and u2
th= 1/ρ2

α (dashed). (b) u2
th= 1/ρα

with uα = 100 (black) and 200 (blue). The amplitude is in each case normalized to unity;
the number density in each distribution is proportional to the area under the curve.

distribution given by equations (3.3) and (3.4) coincide: u2
th = 1/ρα (solid) and

u2
th = 1/ρ2

α (dashed); and the Jüttner distribution (3.1) is given by the dotted curve.
Comparison of the three cases shows that for small |u| the width of the Jüttner
distribution is intermediate between a Gaussian with u2

thα = 1/ρα and a Gaussian
with u2

thα = 1/ρ2
α, with the Jüttner distribution having much broader wings at larger

|u|. The number density is proportional to the area under the curve, ∝ γα. The
change when streaming is included is shown in (b) for u2

th = 1/ρα with uα = 100
(black curves) and 200 (blue curves). The solid curves show plots of the Gaussian
distribution as given by (3.3) and the dashed curves show the form given by (3.4).
The corresponding plots for the Jüttner distribution are given by the dotted curves. It
is clear that the Lorentz-transformed Gaussian distribution (3.4) is much broader, with
its width increasing as uα increases, whereas the width of the shifted Gaussian (3.3)
is independent of uα. Below the peak at u = uα, the positive slope of the Jüttner
distribution is much smaller than for either Gaussian, and above the peak the Jüttner
distribution decreases much more slowly with u than for either Gaussian. The width
of the Lorentz-transformed Gaussian remains comparable to that of the Jüttner
distribution when plotted as a function of the logarithm of u= γβ.

The streaming Gaussian distribution (3.3) is a poor approximation to a streaming
Jüttner distribution for ρα � 1. In particular the slope of the distribution, dgα(u)/du,
for either Gaussian distribution is a poor approximation to the slope for the Jüttner
distribution. This slope is directly relevant to a beam-driven instability, suggesting
that the growth rate for a Jüttner distribution is poorly approximated by a streaming
Gaussian model.

We suggest that the choice of a relativistically streaming Gaussian distribution
(3.3) is made primarily for mathematical convenience. The choice (3.3) applies only
in a specific frame, in the sense that it does not retain its form under a Lorentz
transformation.

Another choice of (non-streaming) distribution function, made primarily for
mathematical convenience, is of the form g(u)∝ (u2

1 − u2)N , for u2 < u2
1 and g(u)= 0

for u2 > u2
1, where u1 is a constant, with the cases n= 0, 1, 2 referred to as water-bag

(Arons & Barnard 1986), hard-bell and soft-bell (Gedalin et al. 1998; Melrose &
Gedalin 1999) distributions, respectively. Applying a Lorentz transformation gives
g′(u′) = g(u) with u = γαγ ′(β ′ − βα). The range −u1 < u < u1 in K transforms into
u′1− < u′ < u′1+ in K′, with u′1± = γαγ1(±β1 + βα) implying that the range 2u1 in K
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(a) (b)

FIGURE 3. A non-streaming and streaming Jüttner distributions are plotted as a function
of u = γβ for ρα = 0.1. (a) uα = γαβα = 0 (solid), 3 (dashed), 10 (dotted). (b) uα = 10
(solid), 30 (dashed), 100 (dotted). The amplitude is in each case normalized to unity; the
number density in each distribution is proportional to the area under the curve.

broadens to u′1+ − u′1− = γα2u1 in K′. In the highly relativistic case, γα � γ1 � 1,
these limits become u′1− ≈−(γ

2
1 − γ

2
α )/2γ1γα, u′1+ ≈ γαγ1. This much larger range in

K′ implies that the number density in K′ is higher than that in K, by the same factor,
n′/n= γα, as is obvious in the case N = 0, where g′(u′)= g(u) is a constant, and is
easily shown for N > 0. The parameter γ1 may be interpreted in terms of 〈γ 〉α, with
γ1 = 2〈γ 〉α for N = 0 and γ1 = 8〈γ 〉α/3 for N = 1.

We adopt the view that the default choice for a relativistic distribution is a
Jüttner distribution in the rest frame of the plasma, and that the default choice
for a relativistically streaming distribution is that obtained by applying a Lorentz
transformation to the distribution function in the rest frame. The fact that the resulting
streaming distribution is very much broader than the rest-frame distribution is a
characteristic feature, which applies to but is not restricted to a Jüttner distribution.

3.3. Examples of relativistically streaming distributions
In figure 3 we plot the distribution function (3.1) for ρα = 0.1, and for several values
of uα = γαβα. In (a) is shown a non-streaming distribution, βα = 0 (solid), and two
streaming distributions, γαβα = 3 (dashed) and γαβα = 10 (dotted). The non-streaming
distribution is symmetric about the origin, u = 0; a slight asymmetry develops for a
small streaming speed, and for γαβα ≈ 1/ρα ≈ 〈γ 〉α, for ρα � 1, the asymmetry is
substantial. In the case uα ≈ 〈γ 〉α ≈ 10 the distribution function is almost negligible
for u< 0, and increases with increasing u> 0 to a maximum near u= uα ≈ 10, and
then decreases slowly for u� uα. In figure 3(b) we show the cases uα = 10 (solid),
30 (dashed), 100 (dotted) on a larger scale. In each case the distribution function has
a maximum at u= uα. Note that the normalization in figure 3 is chosen to show the
relative shapes of the distributions: each is normalized so that its maximum is unity.
The number density in each case is proportional to the area under the curve, which is
∝ γα for a streaming Jüttner distribution; with normalization to a fixed number density
the maxima would be ∝ 1/γα.2

3.4. Highly relativistically streaming Jüttner distribution
An analytic approximation to a highly relativistically streaming Jüttner distribution,
with ρα� 1 and ραγα� 1, may be found by expanding the exponential factor in (3.1)

2This result applies to any distribution that satisfies g(−u)= g(u) in its rest frame.
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FIGURE 4. Comparison of the approximate forms (3.7) and the exact form (3.1) of
a Jüttner distribution with ρα = 0.1 and uα = 100. The solid curve is the exact
distribution, the dashed curve is the approximation for γ � γα and the dotted curve is
the approximation for γ � γα . Normalization as in figures 2 and 3.

in powers of 1/γα� 1 and 1/γ � 1,

exp[−ραγαγ (1− βαβ)] ≈

exp
[
−ρα

(γ − γα)
2

2γαγ
− ρα

]
for β > 0,

0 for β < 0.
(3.5)

This gives

gα(u)=
1
2

nαρα exp
[
−ρα

(γ − γα)
2

2γ γα

]
H(u), (3.6)

where H(u) = 1 for u > 0 and H(u) = 0 for u < 0 is the step function, and we use
1/K1(ρα)= ρα +O(ρ3

α) for ρα� 1.
The approximation (3.5) gives approximate forms for the highly relativistically

streaming Jüttner distribution function below and above the peak of the distribution
at γ = γα:

gα(u)≈
1
2

nαρα

{
exp(−ραγα/2γ ) for γ � γα,

exp(−ραγ /2γα) for γ � γα.
(3.7)

The exact form and the two approximate forms (3.7) are compared in figure 4. The
approximation for γ � γα implies a positive slope dgα(u)/du≈ (ραγα/2γ 2)gα(u). The
approximation for γ � γα implies that a relativistically streaming Jüttner distribution
asymptotes to the same form as a non-streaming Jüttner distribution, with ρα replaced
by ρα/2γα in the exponent.

For comparison we consider the same highly relativistic approximation to the
Lorentz-transformed Gaussian distribution (3.4). In place of (3.7), this gives

gα(u)∝

{
exp(−γ 2

α /8γ
2u2

th) for γ 2
� γ 2

α ,

exp(−γ 2/8γ 2
α u2

th) for γ 2
� γ 2

α .
(3.8)

The distribution (3.8) is very much broader than the conventional form (3.3) for a
relativistically streaming Gaussian distribution, as is evident by the way in which
they fall off for γ 2

� γ 2
α : specifically ∝ exp(−γ 2/2u2

th) and ∝ exp(−γ 2/8γ 2
α u2

th),
respectively.
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(a) (b)

FIGURE 5. The sum of two counter-streaming Jüttner distributions is plotted as a function
of u=γβ for ρ=0.1. (a) For ū= γ̄ β̄=0 (black solid), 3 (black dashed), 10 (black dotted),
30 (red solid), 100 (red dashed). (b) For ū = 8 (solid), 9 (dashed), 10 (dotted) showing
the disappearance of the peak at u= 0. The normalization of both distributions is chosen
such that its maximum, at u=±ū, is unity.

4. ‘Separation’ of relatively streaming distributions

In the familiar bump-in-tail instability, in which Langmuir waves grow due to a
beam of fast electrons in a non-relativistic plasma, growth requires a minimum in the
total distribution function between the thermal background and the fast beam. In this
section we discuss the generalization of this ‘separation’ condition to the relativistic
case for Jüttner distributions. We first estimate the condition for separation between
two counter-streaming distributions.

4.1. Counter-streaming distributions
An idealized counter-streaming distribution consists of two streaming Jüttner
distributions, α = ±, with n̄± = n̄/2, |β±| = β̄, and the same temperature ρ± =

ρ ≈ 1/〈γ 〉� 1. The resulting distribution function is

gcs(u)=
n̄F(u)

2γ̄K1(ρ)
, F(u)= exp[−ργ̄ γ (1− ββ̄)] + exp[−ργ̄ γ (1+ ββ̄)]. (4.1a,b)

We first discuss how the distribution changes as the speed ū= γ̄ β̄ increases from zero
to γ̄ & 1/ρ� 1. We then transform to the frame where one of the distributions is at
rest and consider the highly relativistic case.

For ū = 0 the two distributions are identical, and their sum is a single Jüttner
distribution, corresponding to the solid black curve in figure 5(a). As shown in
figure 5, the curves move apart with increasing ū, becoming almost completely
separated for ū � 10. This ‘separation condition’ is important in estimating the
conditions under which the combined distribution can be interpreted as a beam
propagating through a background distribution. The separation condition was discussed
by Lazar, Stockem & Schlickeiser (2010), who considered the 3-D counterpart, but
this difference is unimportant here. Separation occurs for γ̄ β̄2 > 1/ρ, as shown in
figure 5(b). For {ū, 〈γ 〉}� 1 we may write this separation condition as ū/〈γ 〉& 1.

4.1.1. Transformation to rest frame of one beam
The properties of the counter-streaming distribution are useful in discussing the

weak-beam model. The idea is that by transforming to the frame in which the
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backward-propagating distribution is at rest, the backward-propagating distribution is
reinterpreted as the background distribution, with the forward-propagating distribution
being regarded as the beam. The weak-beam case follows by multiplying the latter
distribution by the ratio of the beam to background densities. The relative speed
between the two distributions becomes the beam speed

βb =
2β̄

1+ β̄2
, γb = (1+ β̄2)γ̄ 2, ub = γbβb = 2β̄γ̄ 2. (4.2a−c)

Let a quantity in the frame in which the backward-propagating beam is at rest be
denoted by a prime. Then in (4.1) one has

γ γ̄ (1+ ββ̄)= γ ′, γ γ̄ (1− ββ̄)= γ ′γb(1− β ′βb). (4.3a,b)

Let n0 be the number density of either beam in the rest frame of that beam. Using the
fact that g′cs(u

′)= gcs(u) is an invariant, in the primed frame equation (4.1) becomes

g′cs(u
′)=

n0

2K1(ρ)

{
exp(−ργ ′)+

nb

γbn0
exp[−ργ ′γb(1− β ′βb)]

}
, (4.4)

with nb=γbn0 in this case. Equation (4.4), with primes omitted, becomes a weak-beam
model for nb/γbn0� 1.

4.2. Separation condition
The condition ū ≈ γ̄ & 〈γ 〉 for two identical counter-streaming Jüttner distributions
to become well separated, transforms into γb & 2〈γ 〉2 in the frame in which one
of the beams is at rest. The Lorentz transformation to the new frame makes this
separation condition appear to be more extreme than in the counter-streaming frame.
This separation condition is a direct result of the Lorentz transformation, and is not
specific to Jüttner distributions, as may be seen by considering counter-streaming
distributions that are Gaussian in their respective rest frames.

In contrast, for counter-streaming Gaussian distributions of the form given by
(3.3), with α = ±, u± = ±ū, n± = n̄/2 and the same uth, the separation condition
is closely analogous to that for the corresponding non-relativistic counterpart, in
which a Gaussian distribution is equivalent to a Maxwellian distribution. The two
distributions become well separated when the streaming speeds exceed the thermal
spreads, corresponding to ū & uth. This condition transforms into γb & 2u2

th, which is
equivalent to γb & 2〈γ 〉2 for Jüttner distributions.

4.3. Weak-beam model
In a weak-beam model there are only two components, which we denote by α= 0, b,
where α = 0 refers to the background and α = b refers to the beam. The frame of
interest is identified as the rest frame of the background in this case. The distribution
function is then g(u)= g0(u)+ gb(u),

g(u)= n0

[
e−ρ0γ

2K1(ρ0)
+ εn

e−ρbγbγ (1−ββb)

2K1(ρb)

]
, (4.5)

with εn= nb/γbn0� 1, where the first term is g0(u) and the second term is gb(u). For
ρ0 = ρb = ρ, this result also follows from (4.4) by omitting the primes and allowing
arbitrary nb/γbn0� 1.
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(a) (b)

FIGURE 6. Weak-beam distribution functions with ρ = 0.1 for (a) εn = 0.1 and (b) εn =

0.01, and for ub= 200 (black curves). In the inset we show a zoomed version of each plot
and also include a plot for ub = 100 (red curves). The solid curve corresponds to g(u)=
g0(u) + gb(u), the dashed and dotted curves are the background and beam distributions,
respectively.

A conventional approach to treating wave dispersion in this case is based on
an expansion in εn � 1. To zeroth order the beam is ignored, such that the wave
dispersion is determined by the background plasma alone. To first order the beam
contributes a correction to the frequency, which includes both imaginary and real parts,
with the former determining the growth rate of any beam-driven instability. In the
case of a maser instability, due to negative absorption, growth requires dg(u)/du> 0
at the resonant frequency, determined by u= γβ = γφz.

In figure 6 we plot the weak-beam distribution function (4.5) for ρ = 0.1, for two
values of εn= 0.1 on the left and 0.01 on the right, and for ub= 100, 200. For εn= 0.1
the minimum and maximum (at u=ub) in g(u) that would be present in the absence of
the background have almost disappeared for ub=100, but are still present for ub=200.
For εn = 0.01 the minimum and maximum for ub = 100 are nearly smoothed out.

For εn 6= 1 the separation condition γb & 2〈γ 〉20 is modified, where 〈· · ·〉0 indicates
average over the background distribution. In figure 7 we show contour plots of
dg(u)/dβ|β=z = 0 over γφ and γb for various values of ρ0 and εn. (a) For ρ0 = 0.1,
ερ = ρb/ρ0 = 1 and εn sampled logarithmically from 10−5 (thick dotted) to 1 (thin
solid). The thin solid curve corresponding to εn = 1 is a separatrix with the solution
γφ ≈ 2〈γ 〉20 denoting a saddle point at (γφ, γb) ≈ (10, 200), for 〈γ 〉0 ≈ 1/ρ0 = 10.
Solutions of dg(u)/dβ|β=z = 0 lie in the two regions shown when εn < 1 and lie
outside these regions for εn > 1 (which is not of interest here). For 3ρ0 . εn 6 1 the
derivative of the distribution function has three peaks (and two troughs) for each γb
over the range γb,min . γb . 2〈γ 〉20, where

γb,min ≈ 7.8(1/εnερεK)
0.076(1/ρ0)

1.07 (4.6)

is obtained numerically, with εK = K1(ρ0)/K1(ρb)≈ ερ for {ρ0, ρb} � 1. For εn . 3ρ0,
for each γb the derivative always has a maximum at γφ ≈ 1 (near the peak of the
background) which lies on the vertical axis in figure 7(a), and for γb & γb,min a second
peak is at γφ ≈ γb (near the peak of the beam) which follows the lower branch of
the separatrix: γb ≈ γφ . The solution corresponding to the trough between these two
peaks deviates from the lower branch of the separatrix at γb ≈ γb,min, rises sharply
and then asymptotically approaches the upper branch of the separatrix: γb≈ (2/ερ)γ 2

φ .
(b) For ερ = 1, ρ0 = 0.1 (thick), 0.032 (medium), 0.01 (thin) with εn = 10−5 (dotted),
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(a)

(b)

FIGURE 7. Contour plots of dg(u)/dβ|β=z = 0 over γφ and γb. (a) For ρ0 = 0.1, ερ = 1,
with εn sampled logarithmically from 10−5 (thick dotted) to 1 (thin solid). (b) For ερ = 1,
ρ0 = 0.1 (thick), 0.032 (medium), 0.01 (thin) with εn = 10−5 (dotted), 10−4 (solid) and
10−3 (dashed).

10−4 (solid) and 10−3 (dashed). The asymptotic behaviour discussed is more readily
evident here where we increase the range of γb and focus on the peak at γφ ≈ γb and
the trough of dg(u)/dβ|β=z. The lower branch of the separatrix and the contour of the
trough are given by

γb = γφ +
γ 3
φ e−ρ0γφ

εnερεK
≈ γφ and 1−

εnερεKγb

2γ 2
φ

exp
[
γφ

〈γ 〉0

(
1−

εργb

2γ 2
φ

)]
= 0, (4.7a,b)

respectively, where we assume {γφ, γb} � 1. The background and the beam may be
considered as separated if for εn� 1 we have γb & γb,min with γb,min given by (4.6).
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5. Lorentz transformation of the dielectric tensor
The dielectric tensor in the unprimed and primed frames may be written as

Kij(ω, k)= δij +
Πij(ω, k)
ω2

, K ′i′j′(ω
′, k′)= δi′j′ +

Πi′j′(ω
′, k′)

ω′2
, (5.1a,b)

which has the advantage that the components Πij(ω, k) are the space components of
a 4-tensor3 (Melrose 1973, 2008, 2013) and hence have known properties under a
Lorentz transformation.

5.1. Transformation of Πij

The specific forms for the non-zero components of Πij found in Part 1 are

Π11 =Π22 =
ω2

p

Ω2
e

ω2

z2
〈γ (z− β)2〉, Π13 =Π31 =

ω2
p

Ω2
e

ω2 tan θ
z2
〈γβ(z− β)〉,

Π33 =−ω
2
pz2

〈
1

γ 3(z− β)2

〉
+
ω2

p

Ω2
e

ω2 tan2 θ

z2
〈γβ2
〉.

 (5.2)

The average over any function Q of u in the plasma frame, or a function Q of u′ in
the pulsar frame is written as

n〈Q〉 =
∫

duQg(u), and n′〈Q〉′ =
∫

du′Qg′(u′). (5.3a,b)

The Lorentz transformation of (5.2) gives (Melrose 1973)

Π1′1′ =Π11 =Π2′2′ =Π22 =
ω′2p0

Ω2
e

ω′2

z′2
〈γ ′(z′ − β ′)2〉′,

Π1′3′ =Π3′1′ = γs

[
Π13

z+ βs

z
+Π11

βs tan θ
z

]
= γs

ω2
p

Ω2
e

ω2 tan θ
z2
〈γ (z− β)(βs + β)〉 =

ω′2p0

Ω2
e

ω′2 tan θ ′

z′2
〈γ ′β ′(z′ − β ′)〉′,

Π3′3′ = γ
2
s

[
Π33

(
z+ βs

z

)2

+ 2Π13
z+ βs

z
βs tan θ

z
+Π11

(
βs tan θ

z

)2
]

=−ω2
pγ

2
s (z+ βs)

2

〈
1

γ 3(z− β)2

〉
+
ω2

p

Ω2
e

γ 2
s
ω2 tan2 θ

z2
〈γ (βs + β)

2
〉

=−ω′2p0z′2
〈

1
γ ′3(z′ − β ′)2

〉′
+
ω′2p0

Ω2
e

ω′2 tan2 θ ′

z′2
〈γ ′β ′2〉′.



(5.4)

We provide explanation for the derivation of the above in § 5.2. The frequency
Ωe is unchanged by the Lorentz transformation, and ω′p0 is the plasma frequency
corresponding to the Goldreich–Julian number density,

ω′p0 ≈ 3.2× 108

[( κ

105

)( Ṗ/P3

10−15 s−3

)1/2 (
r/rL

0.1

)−3 (1 s
P

)2
]1/2

rad s−1, (5.5)

3This is the reason why there is no prime on the kernel symbol Π in the primed frame.
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where P is the pulsar period, Ṗ is its period derivative, κ is the multiplicity, rL is the
light cylinder radius and r is radial distance. The plasma frequency in the plasma rest
frame, ωp, is related to ω′p0 through the relation n′= γsn between the number densities
in the two frames, implying ω′2p = γsω

2
p. To make the dependence on γs explicit, we

make the replacement ω2
p =ω

′2
p0/γs with ω′p0 independent of γs.

5.2. Evaluation of the response tensor in the pulsar frame
The average of a quantity Q in the plasma rest frame, 〈Q〉, may be related to its
average value in the pulsar frame, 〈Q〉′, using (5.3) as

n′
〈

Q
γ ′

〉′
= n

〈
Q
γ

〉
, (5.6)

with the number density in K′ related to that in K by n′ = γsn. The relation (5.6) is
equivalent to the relation

〈Q̃〉′ = 〈Q̃(1+ ββs)〉, 〈Q̃〉 = γ 2
s 〈Q̃(1− β

′βs)〉
′ (5.7a,b)

for any quantity Q̃. Examples include

〈β ′〉′ = βs, 〈γ
′
〉
′
= γs[〈γ 〉 + 〈γβ

2
〉β2

s ], 〈1/γ
′
〉
′
= 〈1/γ 〉/γs. (5.8a−c)

In transforming the particle distribution between frames we assume that ρ and n
are parameters, defined by their physical interpretation in K.4 With n and ρ regarded
as parameters in the Lorentz transformation, g′(u′) = g(u) implies that the ratio of
du′g′(u′) to du g(u) is du′/du= γ ′/γ .

In deriving (5.2), (5.4), (6.3) and related results we use (5.6) with the following
identities

γs(z+ βs)

z
=

z′

γs(z′ − βs)
, γs(1+ zβs)=

1
γs(1− z′βs)

,
βs tan θ

z
=

βs tan θ ′

γs(z′ − βs)
,

ω′2γ ′2β ′2 tan2 θ ′

z′2
= γ 2

s
ω2γ 2(β + βs)

2 tan2 θ

z2
,

ω′2γ ′2(z′ − β ′)2

z′2
=
ω2γ 2(z− β)2

z2
,

ω′2

ω2
=

(
z′

γs(z′ − βs)

)2

,
ω′2γ ′2(z′ − β ′)β ′ tan θ ′

z′2
= γs

ω2γ 2(z− β)(β + βs) tan θ
z2

.


(5.9)

In particular using γ ′2(z′− β ′)2= γ 2(z− β)2/γ 2
s (1+ zβs)

2 we may relate the RPDF
W ′(z′) in the pulsar frame to that in plasma rest frame, W(z), as

W ′(z′)=
〈

1
γ ′3(z′ − β ′)2

〉′
= γs(1+ zβs)

2

〈
1

γ 3(z− β)2

〉
= γs(1+ zβs)

2W(z). (5.10)

It follows that the RPDFs in the two frames are related by

W ′(z′)=
1

γ 3
s (1− z′βs)2

W
(

z′ − βs

1− z′βs

)
, W(z)=

1
γs(1+ zβs)2

W ′
(

z+ βs

1+ zβs

)
.

(5.11a,b)
We also note the relation

z′2W ′(z′)
ω′2

=
1
γs

z2W(z)
ω2

. (5.12)

4Some authors choose to write the exponent in the streaming distribution (2.5) as −ρ′γ ′(1− β ′βs) with
ρ′ = γsρ implying that the temperature in K′ is T ′ = T/ρs (Lazar et al. 2010).

https://doi.org/10.1017/S0022377819000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000448


Wave dispersion in pulsar plasma 2 17

6. Wave modes in the pulsar frame
Wave dispersion in the pulsar frame, K′, may be treated in several different ways.

One approach is to perform the calculations in K, where the distribution function
is g(u), and Lorentz transform the wave properties to K′. A second approach is to
perform the calculations entirely in K′ where the distribution function is g′(u′). A
third approach is to Lorentz transform the dielectric tensor, evaluated in K, to K′.
These three approaches are formally equivalent, and comparison of them facilitates
identifying the relation between the RPDFs in the two frames.

6.1. Transformed dispersion equation

Treating wave dispersion in K′ involves evaluating the tensor K ′i′j′(ω
′, k′), constructing

the tensor Λ′i′j′(ω
′, k′), where

Λ′i′j′(ω
′, k′)=

c2(ki′kj′ − |k′|2δi′j′)

ω′2
+K ′i′j′(ω

′, k′), (6.1)

and setting its determinant to zero to obtain the dispersion equation, which is

Λ′2′2′(Λ
′

1′1′Λ
′

3′3′ −Λ
′2
1′3′)= 0. (6.2)

The explicit expressions for the non-zero components of Λ′i′j′ are

Λ′1′1′ = 1−
1
z′2
+
ω′2p0

Ω2
e

1
z′2
〈γ ′(z′ − β ′)2〉′,

Λ′2′2′ = 1−
1

z′2 cos2 θ ′
+
ω′2p0

Ω2
e

1
z′2
〈γ ′(z′ − β ′)2〉′ =Λ′1′1′ −

tan2 θ ′

z′2
,

Λ′1′3′ =
tan θ ′

z′2

[
1+

ω′2p0

Ω2
e

〈γ ′β ′(z′ − β ′)〉′
]
,

Λ′3′3′ = 1−
ω′2p0

ω′2
z′2
〈

1
γ ′3(z′ − β ′)2

〉′
−

tan2 θ ′

z′2

[
1−

ω′2p0

Ω2
e

〈γ ′β ′2〉′

]
.



(6.3)

These are of the same form as those in the plasma rest frame (Part 1). A detailed
comparison shows

ω′2Λ′2′2′ =ω
2Λ22 ω′4(Λ′1′1′Λ

′

3′3′ −Λ
′2
1′3′)=ω

4(Λ11Λ33 −Λ
2
13). (6.4a,b)

It follows that the dispersion equations in the two frames are proportional to each
other.

A wave mode is a specific solution of the dispersion equation, and the transformation
of the dispersion equation implies that there is a one-to-one correspondence between
the solutions for wave modes in the two frames. One is free to identify the wave
modes in K and use this one-to-one correspondence to identify the modes in K′.
However, the identification of specific modes is not uniquely defined, and this is only
one possible prescription for identifying the modes in K′. For example, waves in an
arbitrary wave mode labelled M with ω=ωM(z) > 0 in K may transform into ω′ < 0
for some range of z′ in K′ and be interpreted as defining a separate mode in K′; we
illustrate such a case below for the L mode.
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6.2. Transformed dispersion relations
We illustrate here the transformation of the dispersion relations from the rest frame
K to the pulsar frame K′. We first consider the X mode, and the A mode which is
degenerate with the X mode for parallel propagation; we then consider the L mode
and its generalization to the oblique propagation.

The dispersion relations for parallel propagation (θ = 0) in K are z=±zA for the
forward- and backward-propagating A and X mode waves, and ω = ±ωL(z) for the
forward- and backward-propagating L mode waves (Part 1). Similarly, for parallel
propagation in K′ it is convenient to solve the dispersion equation for z′ when
considering the A and X modes, and for ω′ when considering the L mode.

The dispersion equation (6.2) in K′ factorizes into Λ′2′2′ = 0 for the X mode and
Λ′1′1′Λ

′

3′3′ −Λ
′2
1′3′ = 0 for the O and Alfvén modes for oblique propagating waves. For

parallel propagation the dispersion equation is Λ′1′1′ = Λ
′

2′2′ = 0 for the A mode and
the X mode, and Λ′3′3′ = 0 for the L mode.

For oblique propagation, θ ′ 6= 0, the X mode is given by the dispersion equation
Λ′2′2′ = 0 which is a quadratic equation in z′ with solutions z′ = z′

±
where

z′
±
=
ω′2p0〈γ

′β ′〉′/Ω2
e ±∆

′1/2

1+ω′2p0〈γ
′〉′/Ω2

e

,

∆′ = (1+ω′2p0〈γ
′
〉
′/Ω2

e )(sec2 θ ′ −ω′2p0〈γ
′β ′2〉′/Ω2

e )+ (ω
′2
p0〈γ

′β ′〉′/Ω2
e )

2.

 (6.5)

For γs� 1 the averages in (6.5) are approximately equal, where we use (5.12) to find
〈γ ′β ′2〉′ ≈ 〈γ ′β ′〉′ ≈ 〈γ ′〉′ ≈ 2γs〈γ 〉. It is convenient to write a = 2γs〈γ 〉ω

′2
p0/Ω

2
e , such

that one has ∆′ ≈ (1+ a) sec2 θ ′ − a, and then sec2 θ ′ > 1 implies ∆′ > 0 and that the
solutions z′

±
are always real. The solution z′

+
is always positive, and z′

−
is positive for

sec2 θ ′ < a and negative for sec2 θ ′ > a. We note that

1
ω′2p0/Ω

2
e

≈ 2.6× 105

(
Ṗ/P3

10−15 s−3

)1/2 (
r/rL

0.1

)−3 (105

κ

)
, (6.6)

and for γs = 102–103 and 〈γ 〉 = 1−102 the condition a > sec2 θ ′ or γs〈γ 〉 &
sec2 θ ′/(2ω′2p0/Ω

2
e ) cannot be satisfied. Therefore the X mode always exists with

z′
+

corresponding to the forward-propagating mode, and z′
−

corresponding to the
backward-propagating mode except for γs〈γ 〉 & sec2 θ ′/(2ω′2p0/Ω

2
e ). The solution for

the X mode in the plasma frame K is obtained by omitting the primes in (6.5),
making the replacement ω′2p0→ω2

p and noting that g(u) is an even function of β in K
implying 〈Q〉= 0 if Q is an odd function of β. It follows that in K one has z+=−z−,
and the solutions are interpreted as forward-propagating and backward-propagating
X mode waves, respectively. For parallel-propagating X mode and for the A mode
these solutions correspond to z± =±zA in K.

For the purpose of comparison of the X mode in the two frames it is convenient to
write sec2 θ ′ in terms of tan2 θ using (2.2). Then in (6.5) one makes the replacements
sec2 θ ′→ 1+ γ 2

s tan2 θ ,

ω′2p0

Ω2
e

〈γ ′〉′→
ω′2p0

Ω2
e

〈γ ′〉′ − γ 2
s β

2
s tan2 θ,

ω′2p0

Ω2
e

〈γ ′β ′〉′→
ω′2p0

Ω2
e

〈γ ′β ′〉′ − γ 2
s βs tan2 θ. (6.7a,b)

The dispersion equation for the A mode for parallel propagation in K′ is Λ′1′1′ = 0.
The solution of Λ′1′1′ = 0 is obtained by setting cos2 θ ′= 1 in the solution of Λ′2′2′ = 0,

https://doi.org/10.1017/S0022377819000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377819000448


Wave dispersion in pulsar plasma 2 19

with the X mode and A mode degenerate for parallel propagation, as in K.
Specifically, the A mode (and also the parallel X mode) is given by

z′1 = z+|θ ′=0, z′2 = z−|θ ′=0. (6.8a,b)

The solutions obtained from z′
±

remain forward-/backward-propagating except for
a > 1, that is for γs〈γ 〉 & 1/(2ω′2p0/Ω

2
e ), in which case the backward-propagating

mode becomes forward propagating. This may be interpreted in terms of z = −zA
transforming into z′ = (−zA + βs)/(1− zAβs) > 0.

The dispersion equation for the transformed L mode (for parallel propagation) is
Λ′3′3′ = 0 which, using (6.3), may be written as

ω′2 =ω′2L (z
′), ω′2L (z

′)=ω′2p0z′2W ′(z′). (6.9a,b)

The solution in K, ω2
=ω2

L(z), includes both positive and negative frequencies which
may be chosen to be ω = ±ωL(±z), with ω2

L(−z) = ω2
L(z). The negative-frequency

solution for z> 0 may be interpreted as a positive-frequency solution for z< 0, that is,
for a backward-propagating wave. The dispersion equation in K then has symmetric
peaks at z = ±zm and zeroes at z = ±z0, with a region −z0 < z < z0 of evanescence
where there are no propagating waves. The Lorentz-transformed dispersion equation in
K′ may be interpreted as a shifted, distorted version of this dispersion equation in K:
the peak at z= zm is enhanced and shifted nearer to z= 1, the region of evanescence
centred on z= 0 is shifted to large z, and the peak at z=−zm is diminished and also
shifted to larger z. If z = −z0 transforms to z′ > 0 the negative-ω solution becomes
a positive-ω′ solution of the L mode, which includes the diminished peak if z=−zm
transforms to z′ > 0. One may either interpret this in terms of two branches of the
L mode, both with ω′ > 0 and z′ > 0. Alternatively one may interpret these as two
separate L modes in K′.

6.3. Oblique modes in K′

For oblique propagation in K′, the solution of Λ′1′1′Λ
′

3′3′ −Λ
′2
1′3′ = 0 is given by

ω′2 =
(z′ − z′1)(z

′
− z′2)ω

′2
L(z
′)

(z′ − z′1)(z′ − z′2)− b′ tan2 θ ′
, (6.10)

where z′1 and z′2 are roots of Λ′1′1′ = 0 given by (6.8) and ω′2L (z
′) is given by (6.9),

and

b′ = 1+
ω′2p0

Ω2
e

〈1/γ ′〉′ +
ω′

4
p0

Ω4
e

[〈γ ′β ′〉′2 − 〈γ ′〉′〈γ ′β ′2〉′]

= 1+
ω′2p0

Ω2
e

〈1/γ 〉
γs
−
ω′

4
p0

Ω4
e

[〈γ 〉2 − 〈γ 〉〈1/γ 〉], (6.11)

with b′ ≈ 1 for 〈γ 〉 � 1/(ω′2p0/Ω
2
e ), which is well satisfied for pulsar parameters.

For comparison in the plasma frame we may drop the primes in (6.2) and
make the replacement b′ → b = 1 − ω2

p〈γβ
2
〉/Ω2

e ≈ 1, and |z′1,2| → zA with
z2

A = (1−ω
2
p〈γβ

2
〉/Ω2

e )/(1+ω
2
p〈γ 〉/Ω

2
e ).

With ω′2L(z
′)>0, the numerator of (6.2) is greater than zero for z′> z′1 and for z′< z′2,

and the denominator is greater than zero for z′ > z̄′
+

and for z′ < z̄′
−

, with

z̄′
±
=

1
2
(z′1 + z′2)±

1
2
[(z′1 − z′2)

2
+ 4b′ tan2 θ ′]1/2 ≈

(
z′1
z′2

)
±

b′ tan2 θ ′

(z′1 − z′2)
, (6.12)
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where the approximation applies for b′ tan2 θ ′ � (z′1 − z′2)
2. As discussed in Part 1,

the solutions ω2
= ω2

L(z) are real except for −z0 < z < z0, with z0 ≈ 1 − 0.14ρ2 for
ρ� 1 and z0≈ 0.9 for ρ= 1, and they are weakly damped for z.−zm, z& zm, where
z=±zm, with zm≈ 1− 0.013ρ2 for ρ� 1 and zm≈ 1− 0.0124 for ρ = 1, corresponds
to symmetric maxima in the RPDF. In the pulsar frame one has ω′2L(z

′)> 0 for z′< z′0−
and z′ > z′0+ where

z′0± =
βs ± z0

1± βsz0
, z′m± =

βs ± zm

1± βszm
. (6.13a,b)

It follows that for ω′2L(z
′) > 0 a solution of (6.2) exists over domain D′1 and for

ω′
2
L(z
′) < 0 a solution exists over domain D′2 where

D′1 = {(−∞, z̄′
−
)∪ (z′2, z′1)∪ (z̄

′

+
,∞)} ∩ {(−∞, z′0−)∪ (z

′

0+,∞)}, (6.14)
D′2 = {(z̄

′

−
, z′2)∪ (z

′

1, z̄′
+
)} ∩ (z′0−, z′0+). (6.15)

As discussed in Part 1 the solution of the counterpart of (6.2) in the plasma frame
is heavily damped except for |z| & zm. This is also the case in the pulsar frame for
solutions over domain D′2 and as such we do not discuss it here. Explicitly, for domain
D′1 we have an L mode over z′ > z′0+ and z′ 6 z′0−, A modes at z′ = z′1 and at z′ = z′2,
X modes at z′= z′

+
and at z′= z′

−
, an Alfvén mode over z′0+6 z′< z′1 and z′2 < z′6 z′0−

and O modes for z′ > z̄′
+

and z′ < z̄′
−

.
From (6.13) we see that z′0+ > 0 always and that z′0− < 0 except for βs > z0 which

corresponds to γs > γ0 where γ0 ≈ 1.9〈γ 〉 for ρ � 1 and γ0 ≈ 2.3 for ρ = 1. This
implies that for γs > γ0 part of the backward-propagating wave in the plasma frame
becomes forward propagating in the pulsar frame.

Figure 8 shows plots of the plasma dispersion in the plasma rest frame (a) and
the pulsar frame (b) for ρ = 1, γs = 10 and θ = 7.5× 10−4. (a) shows a plot of the
L mode ωL(z)/ω′p0 (dash-dotted), O mode and Alfvén mode ω/ω′p0 (solid) as given by
the counterpart of (6.2) in Part 1, X mode for z = ±zA/ cos θ (dotted) and A mode
for z=±zA (dashed). (b) (pulsar frame) shows the corresponding Lorentz-transformed
L mode ω′L(z)/ω

′

p0 (dash-dotted), O mode and Alfvén mode ω′/ω′p0 (solid) as given
by (6.2), X mode z′ = z′

±
(dotted) given by (6.5) and A mode z′ = z′1,2 (dashed)

obtained from the X mode by setting θ = 0. Corresponding curves in the two frames
are related through a Lorentz transformation.

In the pulsar frame the portion of the O mode asymptotic to z = z̄′
±

may be
approximated as

z′ ≈
(

z′1
z′2

)
±

b′ tan2 θ ′

(z′1 − z′2)

(
1+

ω′2L (z
′)

ω′2

)
, (6.16)

where we assume ω′2� ω′2L (z
′), (z′1 − z′2)

2
� b′ tan2 θ ′, and treat ω′2L (z

′) as a constant
over this narrow range.

The forward- (backward-) propagating O mode is to the right (left) of the
forward- (backward-) propagating X mode.5 The forward- (backward-) propagating
Alfvén mode is between the forward- (backward-) propagating A mode and z′0+ (z′0−).
In figure 8 the backward-propagating L and Alfvén modes in the plasma rest frame
are transformed partially to positive z′ values, specifically to the loop immediately
to the right of zero on the horizontal axis, with the top of the loop at z′ = z′m− > 0,

5Strictly to the right and left of z̄′+ and z̄′− respectively, however, z′± ≈ z̄′± for most parameter values.
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(a)

(b)

FIGURE 8. (a) (plasma frame): plot of ωL(z)/ω′p0 (dash-dotted), ω/ω′p0 (solid) as given
by counterpart of (6.2) in Part 1, z = ±zA/ cos θ (dotted) and z = ±zA (dashed). (b)
(pulsar frame): plot of ω′L(z)/ω

′

p0 (dash-dotted), ω′/ω′p0 (solid) as given by (6.2), z′ = z′
±

(dotted) and z′ = z′1,2 (dashed). For all plots we use ρ = 1, γs = 10 and θ = 7.5× 10−4. In
both figures, forward- and backward-propagating waves are to the right and left of zero,
respectively. Only subluminal waves are included in these figures.

given by (6.13). As already remarked, one could consider this branch as an additional
mode in K′, but we prefer to regard it as a transformed part of the Alfvén or
O modes in K. A more extreme case is shown in figure 9 where we show the
L mode ω′L(z

′)/ω′p0 (dash-dotted), O and Alfvén modes (solid) and the X mode
(dotted) for ρ = 0.1, γs = 105 and θ = 5 × 10−6. We only show the portion that
is backward propagating in the plasma rest frame. For these parameter values the
backward-propagating Alfvén mode in the plasma frame is transformed completely to
positive z′ in the pulsar frame. Additionally the backward-propagating X mode and
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FIGURE 9. Plot of Lorentz boosted L mode ω′L(z
′)/ω′p0 (dash-dotted), O and Alfvén modes

(solid) and the X mode (dotted) for ρ = 0.1, γs= 105 and θ = 5× 10−6. These modes are
backward propagating in the plasma rest frame.

O mode are transformed to positive z′. In this case one could say that there are six
modes with positive z′ in K′: Lorentz-transformed O, Alfvén, X-modes with z > 0
plus Lorentz-transformed O, Alfvén, X modes with z< 0.

We show how the single L mode in K can seemingly split into two separate
L modes in K′. The existence of two longitudinal modes in K′ was identified by
Beskin et al. (1993). However, we argue in § 7 that approximations made by Beskin
et al. (1993) in effectively evaluating the RPDF in K′ are misleading concerning the
specific forms for the two dispersion relations. The identification of an additional
mode in K′ is a matter of convention. We prefer the convention in which the (three)
modes are defined in K, with the L mode appearing to split into two modes in K′.

6.4. Approximate dispersion relation for the O mode
The approximate dispersion relation given by equation (5.8) of Part 1 for the O mode
in K needs to be transformed to K′ when treating ray tracing in K′. The transformed
approximate dispersion relation may be written

N ′2O ≈ 1−
ω2

p

〈γ 〉ω′2
[sin2 θ(1+ 3 cos2 θ)], (6.17)

with the expression in square brackets to be re-expressed in terms of primed variables.
For N2

O ≈ 1, implying N ′2O ≈ 1, the transformation of the angles may be approximated
by the familiar aberration formulae, for example, cos θ = (cos θ ′ − βs)/(1− βs cos θ ′).

7. Splitting of the modes in the pulsar frame
In § 6.3 we demonstrate how the X, Alfvén and O modes in K each transform

into two branches in K′, such that each branch may be reinterpreted as an additional
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FIGURE 10. Plot of the exact RPDF W ′(z′) (solid) and the approximation (7.1) (dotted)
in the subluminal region. We use ρ = 20 and γs = 102.

mode in K′. The suggestion that there is a fourth longitudinal mode in the pulsar
frame (Beskin et al. 1993; Lyne & Graham-Smith 2006) is an example of this effect.
However, this specific suggestion is complicated by the analysis leading to a fourth
mode being based on an approximation, effectively to the RPDF in the pulsar frame
K′, that is misleading when applied to wave dispersion for |1− z′|� 1. We comment
on this approximation below.

7.1. Approximation to the RPDF in K′

In the pulsar frame the bulk velocity of the plasma is relativistic, γs � 1, implying
that for ρ� 1 nearly all the particles have γ ′ of order γs and hence 1− β ′ of order
1/2γ 2

s . It seems plausible that the denominator β ′ − z′ in the RPDF (5.10) may be
approximated by making the replacement β ′→ 1 to lowest order in an expansion in
1/γ 2

s . This gives

W ′(z′)=
〈

1
γ ′3(β ′ − z′)2

〉′
≈
〈1/γ ′3〉′

(1− z′)2
. (7.1)

This approximation is misleading in several ways. First, it is singular at z′=1, whereas
the actual RPDF is always finite. Second, it is symmetric about z′ = 1, whereas the
actual RPDF is asymmetric and sharply peaked, at z′ = z′m±, with 1− z′m+� 1. These
peaks in the RPDF play a dominant role in determining the properties of the L mode
(and the Alfvén and O modes for small θ ′) for 1− z′� 1.

We show plots of the exact RPDF W ′(z′) (solid) and the approximation (7.1)
(dotted) in the subluminal region in figure 10. We use ρ = 20 and γs = 102. The
portion of the graph to the left of γ ′φ = γs = 102 corresponds to subluminal waves
that are backward propagating in the plasma rest frame. From the symmetry of
the approximation about z′ = 1 we conclude that the approximation does not apply
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when |1− z′|. 1/2γs in both the subluminal and superluminal regions. In particular,
the approximation does not hold near the peaks of W ′(z′).

The plasma modes given by Beskin et al. (1993) follow from the dispersion
equation (6.2), Λ′2′2′(Λ

′

1′1′Λ
′

3′3′ −Λ
′2
1′3′)= 0, by making the approximations

b′ ≈ 1, z′2
±
≈ sec2 θ ′, z′21,2 ≈ 1, (7.2a−c)

assuming γs〈γ 〉�1/(2ω′2p0/Ω
2
e ), and expressing z′ in terms of the refractive index N ′=

1/z′ cos θ ′. This gives (Beskin et al. 1993)

(1−N ′2)

(
1−N ′2 − (1−N ′2 cos2 θ ′)

ω′2p0

ω′2

〈
1

γ ′3(1− β ′N ′ cos θ ′)2

〉′)
= 0. (7.3)

The solution N ′2 = 1 corresponds to the X mode in this approximation. We are
concerned with the modes described by the other factor in (7.3), which implies the
dispersion equation

N ′2 = 1− (1−N ′2 cos2 θ ′)
ω′2p0

ω′2

〈
1

γ ′3(1− β ′N ′ cos θ ′)2

〉′
. (7.4)

The approximation (7.1) corresponds to setting β ′N ′ cos θ ′ = N ′ cos θ ′. Beskin et al.
(1993) considered two cases: |1−N ′|� 1/γ ′2 and 1�|1−N ′|� 1/γ ′2, and it is the
latter case that corresponds to the approximation (7.1). We discuss only this case.

The dispersion equation (6.10) with approximations (7.2) corresponds to (7.4) and
using (7.1) may be written as

ω′2

ω′2p0
≈

z′2〈1/γ ′3〉′

(z′ − 1)(z′ − sec θ ′)
, (7.5)

which applies only for |1− z′| � 1. The solutions of interest for θ ′2� 1 are

N ′ = 1+
θ ′2

4
±

[
ω′2p0

ω′2
〈1/γ ′3〉′ +

θ ′4

16

]1/2

, (7.6)

only one of which is subluminal. We comment on these two solutions in the
discussion following figure 11.

In figure 11 we show plots of the exact X mode (dashed), Alfvén mode (solid
curves between the dashed lines) and O mode (remaining solid curves) in K′ for
ρ = 20, γs = 102 and θ = 1.5× 10−4. Waves to the left of log10 γ

′

φ = 0 are backward
propagating in both K and K′, waves in the range 0< log10 γ

′

φ < 2 (i.e. 1< γ ′φ < γs)
are backward propagating in K and forward propagating in K′ and waves to the right
of log10 γ

′

φ = 2 are forward propagating in both K and K′. In the subluminal range
(we do not consider the superluminal range in figure 11) it is apparent that all three
modes split into separate branches, depending on pulsar parameters and whether they
are forward or backward propagating in K.

The dotted curve in figure 11 is one of the solutions derived by Beskin et al. (1993)
using the approximation to the RPDF that we criticize in § 7; specifically, the dotted
curve corresponds to the subluminal Alfvén mode in this approximation. It is apparent
that the dispersion relation corresponding to the dotted curve is a good approximation
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FIGURE 11. Plot of the exact X mode (dashed), Alfvén mode (solid curves between the
dashed lines) and O mode (remaining solid curves). The dotted curve corresponds to the
approximation (7.5) of Beskin et al. (1993). We use ρ = 20, γs= 102 and θ = 1.5× 10−4.

to the actual dispersion relation only for γ ′φ� γs, but not for γ ′φ & γ
1/2
s . In particular,

it ignores the gap (around γ ′φ = γs) between the two branches of the Alfvén mode,
and it leads to a singularity at γ ′φ →∞ (z′ → 1). Another (superluminal) solution,
cf. (7.6), is misleading for similar reasons, notably the singularity at z′ = 1 whereas
the Alfvén mode is well behaved at z = z′ = 1. More specifically, the misleading
approximation is that the RPDF may be approximated by a dependence ∝ 1/(z′− 1)2
near z′ = 1; this is an inappropriate approximation to the actual RPDF for z′ ≈ 1.

8. Discussion and conclusions
In this paper we extend the discussion in Part 1 of waves in the rest frame of

a pulsar plasma to treat several problems that involve Lorentz transforming between
frames. In § 2 we discuss the transformation between the rest frame, K, and the pulsar
frame, K′, in detail, emphasizing the transformation of the phase speed of the waves.

In § 3 we apply a Lorentz transformation to an arbitrary 1-D distribution (including
a 1-D Jüttner distribution), g(u), in the rest frame to derive the corresponding
streaming distribution, g′(u′) = g(u) in K′. We argue that relativistic streaming
should be included in this way, that is, by applying a Lorentz transformation to a
rest-frame distribution. A surprising implication is that such a Lorentz-transformed
distribution is much broader (in K′) than the original distribution (in K). Specifically,
a distribution confined to a range of u of order 〈γ 〉� 1 in K is spread over a range
of u′ of order γs〈γ 〉 in K′. In Part 1 we emphasize the importance of including the
relativistic spread in Lorentz factors, 〈γ 〉, in the properties of wave dispersion, and
in this paper we show that the effects of 〈γ 〉 � 1 can be surprisingly large in the
distribution function when the streaming is included. In particular, the transformed
Jüttner distribution, g(u) ∝ exp(−ργ ) transforms into the much broader distribution
∝ exp[−ρ(γ 2

s − γ
2)/2γsγ ].
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A conventional choice of a relativistically streaming distribution is a Gaussian
distribution of the form (3.3), that is, g(u) ∝ exp[−(u − uα)2/2u2

th]. We emphasize
that this distribution is not the result of applying a Lorentz transformation to a
Gaussian distribution ∝ exp[−u2/2u2

th] in the rest frame; the result of doing so is the
distribution (3.8), which is much broader than the assumed relativistically streaming
distribution. There is no obvious physical justification for such a relativistically
streaming distribution, in preference to a distribution obtained by Lorentz transforming
a rest-frame distribution. We adopt the view that a Lorentz-transformed Jüttner
distribution should be the preferred choice for a relativistically streaming distribution.

In § 4 we discuss one effect of the broadness of a streaming distribution obtained
by applying a Lorentz transformation to a Jüttner distribution in the rest frame. The
background and streaming distributions need to be well separated (in 4-speed) for the
relativistic counterpart of the bump-in-tail instability to apply, and the broadness of
the streaming distribution makes this separation condition much more restrictive than
for say a relativistically streaming distribution ∝ exp[−(u− uα)2/2u2

th]. An important
implication is that the condition for waves to grow is much more restrictive than the
conventional choice ∝ exp[−(u− uα)2/2u2

th] would imply.
In § 5 we apply a Lorentz transformation to the dielectric tensor and derive the

relation between the RPDF W(z) in K and the transformed RPDF W ′(z′) in K′.
In § 6 we show that the dispersion equations in K and in K′ are proportional to each

other. This allows us to adopt the convention that the wave modes are defined in the
plasma rest frame, where there are only three wave modes (Part 1). The wave modes
in K′ are Lorentz-transformed version of the corresponding modes in K, and with our
convention there are only three modes in K′. However, as we show in § 7, each of
these modes in K′ may split into two branches; such splitting occurs when a positive-
frequency, forward-propagating solution in K transforms into a negative-frequency or
backward-propagating solution in K′. An alternative convention would be to interpret
each such split branch as two separate modes. The identification by Beskin et al.
(1993) of four modes (rather than our three) in the pulsar frame may be interpreted
as the longitudinal mode splitting into two. While we acknowledge that the number
of modes is a matter of convention, in this case we argue that the specific forms of
the dispersion relations derived by Beskin et al. (1993) (near z′ = 1) are based on an
inappropriate approximation, effectively to the RPDF.
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