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In the process of flux expulsion, a magnetic field is expelled from a region of closed
streamlines on a TR1/3

m time scale, for magnetic Reynolds number Rm� 1 (T being the
turnover time of the flow). This classic result applies in the kinematic regime where
the flow field is specified independently of the magnetic field. A weak magnetic ‘core’
is left at the centre of a closed region of streamlines, and this decays exponentially
on the TR1/2

m time scale. The present paper extends these results to the dynamical
regime, where there is competition between the process of flux expulsion and the
Lorentz force, which suppresses the differential rotation. This competition is studied
using a quasi-linear model in which the flow is constrained to be axisymmetric. The
magnetic Prandtl number Rm/Re is taken to be small, with Rm large, and a range of
initial field strengths b0 is considered. Two scaling laws are proposed and confirmed
numerically. For initial magnetic fields below the threshold bcore = O(UR−1/3

m ), flux
expulsion operates despite the Lorentz force, cutting through field lines to result in the
formation of a central core of magnetic field. Here U is a velocity scale of the flow
and magnetic fields are measured in Alfvén units. For larger initial fields the Lorentz
force is dominant and the flow creates Alfvén waves that propagate away. The second
threshold is bdynam=O(UR−3/4

m ), below which the field follows the kinematic evolution
and decays rapidly. Between these two thresholds the magnetic field is strong enough
to suppress differential rotation, leaving a magnetically controlled core spinning in
solid body motion, which then decays slowly on a time scale of order TRm.

Key words: MHD and electrohydrodynamics, turbulent flows, vortex flows

1. Introduction
Throughout the universe electrically conducting fluid flows interact with magnetic

fields. By the stretching and folding of magnetic field lines, initially weak fields
can grow, a process known as dynamo action (Moffatt 1978). As the magnetic field
increases in strength it then resists deformation through Lorentz forces exerted on
the flow. Eventually a state of fully developed MHD turbulence ensues, composed
of a superposition of coherent structures and random eddies interacting with
magnetic fields.

In order to understand the complex interactions of flows and magnetic fields over
a wide range of spatial and temporal scales it is valuable to investigate simplified

† Email address for correspondence: j.mason@exeter.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:j.mason@exeter.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2016.60&domain=pdf
https://doi.org/10.1017/jfm.2016.60


Flux expulsion with dynamics 569

models. In geophysical and astrophysical flows, coherent structures are believed to
play a key role in generating large-scale magnetic fields (Tobias & Cattaneo 2008).
Since these structures have correlation times much greater than the turnover time of
the turbulence, one of the most illuminating models of flow-field interaction is the
effect of a steady fluid flow with closed streamlines – a single closed eddy – on an
initially uniform magnetic field. Motivation for this approach comes from the study of
the coupling of magnetic fields and convection (Weiss & Proctor 2014); furthermore,
in rapidly rotating convection the dynamics may be dominated by long-lived coherent
structures taking the form of vortices (Julien et al. 2012). The problem has been ad-
dressed in a kinematic regime in which the magnetic field is presumed to be so weak
as not to affect the flow, which may then be specified and ceases to have any dynam-
ical attributes. This classic problem was first studied for a smooth flow in the pioneer-
ing numerical study of Weiss (1966), and by Parker (1966) for the case of a piecewise
smooth flow. These works led to identification of the fundamental process of flux ex-
pulsion, whereby the field is destroyed within regions of closed streamlines; in cellular
flows the resulting magnetic fluxes are then concentrated on bounding separatrices.

The mathematical theory of flux expulsion is elucidated for linear and axisymmetric,
smooth flow fields by Moffatt & Kamkar (1983) and for more general streamline
geometry by Rhines & Young (1983). The effect of a closed eddy on a weak
imposed field at high magnetic Reynolds number Rm (that is, UL/η where U is
the characteristic flow speed, L is a characteristic length and η is the magnetic
diffusivity) is to expel the field towards the cell boundaries on a time scale of
order TR1/3

m , where T = L/U is the turnover time scale. The key mechanism is the
effect of shear or differential rotation in reducing length scales and so accelerating
diffusion, be it of magnetic vector potential, passive scalar or vorticity: the useful
and general term ‘shear–diffuse mechanism’ was coined by Bernoff & Lingevitch
(1994). These studies are elaborated in Bajer (1998) and Bajer, Bassom & Gilbert
(2001), referred to as BBG in what follows. In BBG a further time scale is identified
at the eddy centre: here any differential rotation must vanish for a smooth flow, and
the shear–diffuse process is weaker. The flux expulsion time scale here increases to
order TR1/2

m and a weak remnant, which we will call a ‘magnetic core’, is created
and decays exponentially on this time scale.

Our goal in the present paper is to extend these kinematic studies into the dynamical
regime, in which the field affects the flow via the Lorentz force. While it is clear
that for sufficiently weak magnetic fields kinematic results are recovered, we address
the problem of determining the threshold for the field to have a dynamical effect
for the classic problem of flux expulsion in an axisymmetric flow. From another
viewpoint, the question becomes: for what field strengths (in a two-dimensional flow)
will a magnetic field have an impact on the material conservation of vorticity?
Many interesting dynamical effects in quasi-two-dimensional hydrodynamics in
rotating systems, such as zonal flow generation, have been ascribed to the material
conservation properties of potential vorticity (Dritschel & McIntyre 2008). It is
therefore critical for MHD studies to determine the effect of magnetic fields in
modifying these conservation properties. It is known that such dynamical effects
of the magnetic field can be subtle and depend sensitively on molecular values
of the transport coefficients. Perhaps the key study that highlights this is Cattaneo
& Vainshtein (1991): the authors consider transport in turbulent two-dimensional
fluid flows with a mean magnetic field b0 across the system. For field strengths b0
(in Alfvén or velocity units) of order UR−1/2

m , the mean field becomes dynamically
important in suppressing the stretching of Lagrangian parcels and so transport; see
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also Vainshtein & Cattaneo (1992), Cattaneo (1994) and more recently Kim (2006),
Keating & Diamond (2008) and Keating, Silvers & Diamond (2008). The reason
is that the stretching of the field leading to small scales (transverse to field lines)
is accompanied by increasing magnetic energy, which is only limited by the effect
of molecular (not turbulent or effective) diffusion. To put this more bluntly, in the
magnetic context a ‘cascade’ (turbulent or otherwise) of field to small scales is
far less passive than appears to be the case for energy or enstrophy in three- or
two-dimensional turbulence. Similar effects arise in magnetoconvection (Galloway,
Proctor & Weiss 1978; Weiss & Proctor 2014), in which flux expulsion drives
magnetic flux to the boundary of convective cells. In dynamical regimes, the resulting
peak fields are limited not by equipartition values b0=O(U) but can be substantially
larger, with dependence on the magnetic diffusivity and fluid viscosity.

To address the problem of dynamical effects and thresholds for flux expulsion, in
this paper we will work in the most straightforward setting of a flow with initially cir-
cular streamlines permeated by a uniform magnetic field of strength b0. The problem
is set up in § 2, parameterised by b0 and values of the magnetic Reynolds number Rm
and (fluid) Reynolds number Re. We will work in the quasi-linear approximation in
which we keep the fluid flow axisymmetric and truncate the Lorentz force feedback by
retaining only the mean azimuthal component. This is reasonable as we are examining
the onset of the importance of the Lorentz force in the dynamics. The approach can
be justified in some contexts such as dynamos in high-Reynolds-number rotating
flow (as we have here) (Bassom & Gilbert 1997) and transport and jet formation
in geophysical systems, for example see Tobias, Dagon & Marston (2011) and
Srinivasan & Young (2012). Note that in a rotating fluid flow, the axisymmetric
component of the Lorentz force can only be balanced against viscous terms, whereas
a non-axisymmetric component can be balanced against weak inflows and outflows
(cf. the Taylor (1963) constraint), and for this reason the response to the axisymmetric
component dominates at large Reynolds number, as in the quasi-linear model.

In § 3 of the paper we present numerical simulations of the evolution of field and
flow (within the quasi-linear model) for a range of initial magnetic field strengths.
Here we observe the key competition or race between the processes of flux expulsion
and Lorentz force feedback: will the Lorentz force act early enough to halt the
stretching in the flow and so defuse the dramatic effect of flux expulsion in destroying
the field? Or, will flux expulsion act first and cut elastic field lines so as to remove
the Lorentz force feedback and leave a magnetic core behind? We work in a regime
in which Re�Rm� 1 to highlight the transition between these effects without consid-
eration of viscosity, and this gives us our first threshold bcore(η) for b0, as discussed
below. However we also obtain a second, lower threshold bdynam(η), below which
the magnetic field has no discernible effect and the kinematic picture holds. In §§ 4
and 5 we develop the theory for the two thresholds identified in § 3, based both on
the classic asymptotics in Moffatt & Kamkar (1983) and Rhines & Young (1983) and
on the more elaborate picture in BBG, which we need to identify the lower threshold.
Finally § 6 offers some concluding comments and avenues for further research.

2. Governing equations
Our starting point is the equations for MHD, written in the form

∂tu+ u · ∇u= b · ∇b−∇p+ ν∇2u, (2.1)
∂tb+ u · ∇b= b · ∇u+ η∇2b, (2.2)

∇ · u=∇ · b= 0. (2.3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.60


Flux expulsion with dynamics 571

The two-dimensional flow and field (measured in velocity units) are confined to
the plane z = 0 in cylindrical polar coordinates (r, θ, z), and setting u = ∇ × (ψ ẑ),
b=∇× (aẑ) we obtain the equations in terms of the stream function ψ , vorticity ω,
flux function a and current j, all functions of (r, θ, t), as

∂tω= J(ψ, ω)− J(a, j)+ ν∇2ω, (2.4)

∂ta= J(ψ, a)+ η∇2a, (2.5)

ω=−∇2ψ, j=−∇2a. (2.6a,b)

Here the Jacobian is given by J(ψ, ω)= r−1[(∂rψ)(∂θω)− (∂θψ)(∂rω)].
Following the discussion in Moffatt & Kamkar (1983), we commence with an initial

uniform magnetic field in the x-direction and an axisymmetric flow field. Thus ψ and
ω are taken to be independent of θ and the fields a and j are represented using an
eimθ dependence with m= 1. Although our focus is always on m= 1, it is helpful in
the analytical development to leave a general, integer value of m > 0. We therefore
set for the flow

ω=ω(r, t)+ · · ·, ψ =ψ(r, t)+ · · ·, (2.7a,b)

and for the field

a= ã(r, t)eimθ + c.c.+ · · ·, j= j̃(r, t)eimθ + c.c.+ · · ·, b= b̃(r, t)eimθ + c.c.+ · · ·.
(2.8a−c)

The tildes denote the harmonic m> 0 in θ , but for readability we drop these in what
follows.

Now the Lorentz force feedback from the field to the flow will incorporate a
mean part, independent of θ , and harmonics e2imθ , which will then proliferate, giving
the trailing terms not written down explicitly in (2.7a,b) and (2.8a−c). We employ
a truncation by neglecting these higher-order harmonics, and retain only the terms
shown. This leaves the quasi-linear system for the field harmonic m and the mean
flow, written compactly as

∂ta+ imα a= η∆ma, (2.9)
∂tω= r−1∂rG+ ν∆0ω. (2.10)

The angular velocity is α(r, t)=−r−1∂rψ , and the current and vorticity satisfy

j=−∆ma, ω=−∆0ψ, (2.11a,b)

where ∆m= ∂2
r + r−1∂r −m2r−2. The Lorentz force term in (2.10) is G(r, t) given by

G= im(aj∗ − a∗j). (2.12)

We will use this quasi-linear approximation to gain an understanding of the essential
processes in the competition between flux expulsion and the Lorentz force, both
numerically and analytically.

For initial conditions, our focus is on the case of a uniform field in the x-direction
of strength b0, which has current j= 0. However we generalise to an arbitrary value of
m, and consider an initial multipole, current-free field given by the vector potential

a(r, 0)=− 1
2 ib0rm (2.13)
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FIGURE 1. (Colour online) The angular velocity profile α (solid) in (2.16a,b) and α′

(dashed), with the location of maximal differential rotation |α′| identified as r† ' 1.8.

(with b0 real). We also need an initial axisymmetric fluid flow u and have chosen a
Gaussian vortex with

ω(r, 0)= T−1(4π)−1e−r2/4L2
, α(r, 0)= T−1(2πr2/L2)−1(1− e−r2/4L2

), (2.14a,b)

where L is a length scale, T a time scale and below U = L/T . We will non-
dimensionalise the system using these scales and defining, for example,

r= Lr̂, t= Tt̂, u=Uû, b=Ub̂, ν =ULν̂, η=ULη̂, (2.15a−f )

with hats denoting non-dimensional quantities. With this we can also identify Rm≡ η̂−1

as a magnetic Reynolds number, Re ≡ ν̂−1 as a Reynolds number and M ≡ b̂−1
0 as

a magnetic Mach number. We will in what follows drop the hats and work with
dimensionless quantities, except when we refer to our results in the final discussion
section.

Our goal then is to solve the PDEs specified in (2.9)–(2.12), for the initial
conditions (2.13) and now

ω(r, 0)= (4π)−1e−r2/4, α(r, 0)= (2πr2)−1(1− e−r2/4). (2.16a,b)

The angular velocity α and differential rotation α′≡ ∂rα are depicted in figure 1, where
for convenience we often use a prime to denote a radial derivative. The radius r†

marks the location of maximal differential rotation |α′|, where we will see that flux
expulsion commences in a kinematic regime.

The parameter set comprises the three non-dimensional quantities {η, ν, b0}, and
we use this form as it is more convenient to place ‘η’ rather than the bulky term
‘R−1

m ’ in our calculations. We are interested in the regimes that are realised depending
on the strength of the initial field for different diffusive parameters. In this study
our primary interest is in the interaction of flux expulsion (depending on η) and the
Lorentz force (linked to b0), rather than viscous effects. We will thus take ν� η and
so work at a low value of the magnetic Prandtl number Pm≡Rm/Re= ν/η. (Note that
viscous damping would emerge on a time scale of order Re whereas the effects we
consider occur on time scales of order R1/3

m and R1/2
m , and thus our results are likely
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to be correct over a wider range of values of Pm including Pm = O(1).) In all the
simulations shown, we have simply taken Pm= 0.01, and tests confirm that our results
are insensitive to this precise value. Our parameter set is thus reduced to {η, b0} and
we are interested in thresholds for different types of behaviour, giving b0 as a function
of η with a power-law scaling: how strong must the initial field be for the Lorentz
force to modify the classic picture of flux expulsion?

Theory for these thresholds is developed in § 4. Before giving numerical results
in the next section it is worth outlining the origin of the classic approximation for
kinematic flux expulsion (for more detail see Moffatt & Kamkar 1983 and Rhines
& Young 1983). Consider when there is no dissipation; then the vector potential and
current are given by

a=− 1
2 ib0rme−imαt, j'− 1

2 ib0rmm2α′2t2e−imαt, (2.17a,b)

where we have retained in j just the terms that grow fastest, i.e. quadratically with
time t. For small η, the right-hand side η∆ma=−ηj in (2.9) grows quadratically from
small values and the accumulated effect of the dissipation gives a term cubic in t.
Incorporating this damping in the evolution of a then yields the approximate solution

a'− 1
2 ib0rme−imαt−(1/3)ηm2α′2t3, j'− 1

2 ib0rmm2α′2t2 e−imαt−(1/3)m2ηα′2t3 . (2.18a,b)

This gives dramatic suppression of the vector potential and so of the magnetic field,
which commences at the radius r† where |α′| is maximised, indicated on figure 1
for the Gaussian profile (2.16a,b), on a time scale t† = O(η−1/3). Naturally, in the
kinematic problem the flow profile is taken to be fixed for all t and not viscously
damped; only the magnetic field evolves via (2.9) in the given flow field with α(r, t)=
α(r, 0). Specifically r† and t† (up to an order-one constant) are given by

r† = arg max
r
|α′(r)|2, t† = [ 1

3 m2ηα′(r†)2
]−1/3

. (2.19a,b)

The dagger helpfully denotes the cutting of magnetic field lines caused by flux
expulsion.

For our purposes there are two problems with this approximation. The first is that
the Lorentz force term (2.12) vanishes identically to this order. The next-order terms
need to be taken into account, and we undertake this in a systematic development in
§ 4.2. The second issue is discussed in BBG and is that this approximation breaks
down near the origin where α′→ 0. In other words the approximation is predicated
on a shear α′=O(1) that makes the quadratic multiplier t2 in j in (2.18a,b) dominant;
towards the centre of a vortex another, inner approximation has to be used. Although
this may seem a technical issue, in fact it is key to understanding the dynamical
problem, and we develop this in § 4.1 following BBG. In preparation for this we note
here that the angular velocity in (2.16a,b) behaves as r→ 0 according to

α = α0 + α1r2 + α2r4 + · · ·, (2.20)

α0 = 1/8π, α1 =−1/64π. (2.21a,b)

From the point of view of the kinematic problem, with the axisymmetric flow
specified independent of the field, the form (2.20) gives the behaviour near the
origin. Smoothness considerations eliminate any odd powers of r and generically the
constant α1 is non-zero. This constant plays an important role in kinematic theory
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FIGURE 2. (Colour online) Kinematic magnetic field evolution. In (a,b) t = 104 and in
(c) t= 4× 104. In (a) −106 x, y6 10, while in (b,c) only the central region −26 x, y6 2
is depicted.

as it controls how the differential rotation α′ responsible for flux expulsion switches
off near the origin. Dynamically the magnetic field can change the form of the flow
near the origin, as we shall see. We also note that the numerical values of α0 and
particularly α1'−1/200 are rather low, meaning that the turnover time of the flow is
large in our non-dimensionalisation and making the corresponding time scales appear
long on our plots. For best comparison with simulations we will retain factors of α1
in our theoretical development.

3. Numerical simulations
3.1. Illustrative runs

Our goal in this section is to present numerical simulations of the model (2.9)–(2.12)
with the initial conditions (2.13) and (2.16a,b). This will motivate the theory in the
next section, but we will also refer ahead to results in that section. Our parameters
are only {η, b0} and we first show the various phenomena that occur when we fix
η= 10−7 (with m= 1, ν = 0.01η as always) and allow a range of values of b0.

Our starting point is the kinematic problem when the field b0 is sufficiently weak
that dynamical effects may be neglected. Although the Lorentz force feedback is easily
switched off in our simulations, one of our goals is to quantify just how weak the
initial field b0 needs to be for kinematic theory to apply, for η� 1. In any case we
integrate (2.9) in isolation. Figure 2 shows colour-scale plots of the vector potential
reconstructed from (2.8a−c), so that lines of constant colour give magnetic field lines,
from blue (low values of a in (2.8a−c)) to red (high values); zero or weak values
of a are green. The panels show different times, and in each panel the colour scale
is normalised separately on the maximum/minimum vector potential for that panel.
Panel (a) gives a wide view, showing spiral wind-up of field lines by the flow and
suppression of magnetic field by diffusion for moderate r. Panels (b,c) show a zoom
into the central region, where the onset of flux expulsion around r† can be seen in (b),
followed by further destruction of field leading to the final phase in (c), of a decaying,
remnant field structure localised at the origin.

Figure 3 shows a schematic of kinematic field evolution (adapted from BBG): at
t† = O(η−1/3) there is the onset of flux expulsion at a radius r†. This then spreads
outwards and inwards, as indicated in (2.18a,b). At late times t = O(T ) = O(η−1/2)
(see (4.1a−c)) this wave of destruction reaches the centre of the axisymmetric
flow and all that is left behind is a rotating, exponentially decaying remnant, an
eigenfunction of the scalar advection–diffusion equation, seen in figure 2(c).
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FIGURE 3. (Colour online) (a) Schematic of kinematic evolution of magnetic field for
η � 1, and (b) log–log plot of EM (upper solid) and EA (lower solid) as functions of
time t. In (b) the scaling laws t−7 (4.10) and t−6 (4.11) are depicted (dashed), and the
formulae (4.13) and (4.14) are shown (dotted).

For times greater than the flux expulsion onset time t†, we can identify the field
inside r† as the magnetic core and it is convenient to define the corresponding
magnetic energy and (half) the integrated square vector potential by

EM(t)=
∫ r†

0
2πr |b|2 dr, EA(t)=

∫ r†

0
2πr |a|2 dr. (3.1a,b)

These are shown as functions of time in the log–log plot figure 3(b): commencing
at t† ' 1.2 × 104 they rapidly adopt a t−7 (4.10) and t−6 (4.11) decay in time. At
time of order T ' 3.2× 104 (4.1a−c) the power-law decay is replaced by exponential
decay (4.13), (4.14). Note that there is no absolute definition of t†: instead for practical
purposes we check when |a(r, t)| < δ|a(0, t)| with a small number δ: the earliest
time at which this occurs determines t†, with r† as the corresponding radius. We have
chosen δ = 0.001 for results shown here: other values make minor changes to the
values of t† but do not affect r† ' 1.8 and make no visible difference to the curves
for EM or EA once a magnetic core is so defined.

We now leave the kinematic problem and report on runs for varying values of
the initial magnetic field b0. First figure 4 shows a run for a relatively strong field
b0 = 5 × 10−4. Here we see the process of spiral wind-up commence in (a), but
stretching of magnetic field lines saps energy from the flow field, reducing the
shear and stopping the flux expulsion process. In panels (b,c) we see the field in
the simulation start to unwind, reversing the direction of the original vortex. This
disturbance then propagates outwards to hit the numerical boundary and, unphysically,
bounces back and forth (not shown). In reality the original flow would turn into
Alfvén waves propagating to infinity along the field lines. For this reason we do
not spend further effort on the cases where the field is above the threshold for flux
expulsion to occur, even though one of our primary goals is to establish this threshold,
working from below.

We now reduce the initial field b0 in subsequent plots, starting with figure 5 which
shows magnetic field evolution for b0 = 2× 10−4. In this case flux expulsion occurs
to cut the field lines at approximately r†' 1.8; see panel (a). However, once the field
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FIGURE 4. (Colour online) Magnetic field evolution for b0 = 5× 10−4. The region
−10 6 x, y 6 10 is shown for (a) t= 104, (b) t= 2× 104 and (c) t= 2.5× 104.
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FIGURE 5. (Colour online) Magnetic field evolution for b0 = 2× 10−4. The central
region −2 6 x, y 6 2 is shown for (a) t= 104, (b) t= 2× 104 and (c) t= 5× 104.
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FIGURE 6. (Colour online) Final angular velocity profiles for (a) b0= 2× 10−4 in figure 5
and (b) b0 = 5× 10−5 in figure 7, for t= 5× 104. The function α(r, t) (solid) is plotted
against r, with the initial profile α(r, 0) shown dotted.

lines are cut to leave a magnetic core, the Lorentz force now acts to reduce field line
curvature and magnetic energy within the core, in panel (b). What remains is a core
consisting of two lobes of field relaxed to a state of low energy, and the flow field
is modified so that there is solid body rotation in the region occupied by the field,
shown in figure 6(a). We say that a dynamical core has been formed, dynamical as
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FIGURE 7. (Colour online) Magnetic field evolution for b0 = 5× 10−5. The central
region −2 6 x, y 6 2 is shown for (a) t= 104, (b) t= 2× 104 and (c) t= 5× 104.
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FIGURE 8. (Colour online) Plotted are (a) the magnetic energy EM and (b) EA as functions
of time t for varying field strength b0. The dashed curves are kinematic traces, while
b0 = 2 × 10−4, 10−4, 5 × 10−5, 2 × 10−5, 10−5, 5 × 10−6 and 2 × 10−6, going down the
curves on the right of the plots.

the Lorentz force has acted to control the flow. This core will then decay, but on a
longer Ohmic time scale (presumably O(η−1), though we will not try to verify this).

Finally figure 7 shows evolution of a yet weaker field b0 = 5 × 10−5. Here again
there is a process of flux expulsion leaving a core which shrinks as the field is
diffusively destroyed. The Lorentz force again acts to leave a flattened region in the
flow field, constant angular velocity seen in figure 6(b), and a dynamical core with
two lobes, albeit now smaller than in the previous case. For fields yet weaker than
this, we soon find results that become indistinguishable from the kinematic regime in
figure 2 and no dynamical core forms.

Another viewpoint is given in figure 8, which plots (a) EM and (b) EA against
time for a range of b0. In each panel the lowest, dashed curve gives the kinematic
time trace (from figure 2). For strong fields (highest, outermost curves), the onset t†

of flux expulsion is delayed and the field decays very slowly, noting that EM shows
oscillations (torsional oscillations) while the dynamical magnetic core relaxes. On
the other hand EA behaves monotonically, as it must since the quantity a obeys a
scalar advection–diffusion equation. As the initial field is reduced the traces follow
the kinematic curves for a period and then depart: this marks the formation of a
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FIGURE 9. (Colour online) (a) The onset of flux expulsion t† as a function of initial field
strength b0 using different thresholds δ = 10−4, 10−3 and 10−2, reading down the curves.
(b) EA plotted against b0 at times T /2, T and 2T , reading down the curves.

dynamically controlled core sitting in a region of solid body motion. Finally very
weak field follows the kinematic traces.

3.2. Thresholds and scaling laws
We can summarise the results of the previous section as the presence of two thresholds.
For a given flow field, the first is the threshold b0= bcore(η) above which the Lorentz
force is so strong that flux expulsion does not occur and so t†, EM and EA cannot be
defined. Figure 9(a) shows t† as measured numerically using several values of δ (see
below (3.1a,b)). There is a sharp transition from the onset of flux expulsion at a time
independent of initial field strength, to one that diverges rapidly with b0; at the same
time the radius r† increases from 1.8 to approximately 2.2 (not shown). This sharp
transition makes the threshold b0 = bcore(η) easy to measure, at least approximately.

The second, lower threshold is b0 = bdynam(η) above which the field is sufficiently
strong (i.e. sufficiently dynamical) to modify the flow field and suppress diffusive
decay. In this case the Lorentz force opposes differential rotation and results in solid
body motion in a region near the origin. In terms of the flow field, this has the effect
of turning off α1 in (2.20) and so removes the weak differential rotation at the origin
that otherwise controls the exponential decay of the core in the kinematic regime;
see figure 3(a) and § 4.1. Above the threshold we are left with a slowly decaying
dynamical core. To measure this threshold we have considered the quantity EA (unlike
EM this is free from torsional oscillations – see figure 8) at three times T /2, T and
2T and plot this against b0 in figure 9(b). Where the curves cluster together on the
right-hand side, the energy decays negligibly on the T time scale and we are in the
dynamical core regime. Where the curves are spread out on the left-hand side, the field
is so weak that the evolution is kinematic with a core decaying rapidly, that is, on
the T time scale. The somewhat broad transition between these marks the threshold
bdynam(η), for this value of η.

Neither of these thresholds is precisely defined, but in any case we are primarily
interested simply in how they scale with η. We select a representative transitional field
strength bdynam to be the initial value of b0 for which log[EA(2T )/EA(T )] is half of
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FIGURE 10. (Colour online) Thresholds bcore(η) (upper dataset) and bdynam(η) (lower
dataset) plotted against η. In each case the data points come from a series of runs with
varying b0. The solid lines give the scalings η1/3 (upper) and η3/4 (lower). The dotted lines
give the scalings from (5.4) and (5.7).

its kinematic value. We estimated bdynam using a series of runs with 10 values of b0 per
decade on the logarithmic scale. For example in figure 9 we obtain bdynam= 7.9× 10−6

for η= 10−7. Figure 10 shows bdynam estimated this way, in the lower dataset, showing
good agreement with the scaling law bdynam ∼ η3/4 (solid) from (5.5).

To estimate the threshold bcore(η) for core formation we adopt two methods and
these are shown in the upper dataset in figure 10. The first is obtained by selecting
the minimum field strength b0 for which the ratio EA(T )/EA(2T ) < 1.08 (asterisks),
and this shows a good fit to the scaling law bcore∼ η1/3 in (5.3), with bcore' 4× 10−4

at η = 10−7. For another method, we chose the largest b0 for which core formation,
i.e. the existence of a value of t†, was detected in our code (plus signs), giving bcore'
5×10−4 at η=10−7. This also confirms the scaling law, albeit with more scatter. Note
that alternatively we can use the scalings to rescale the vertical and the horizontal axes
in figure 9(a,b) for a set of values of η and so collapse the curves, which works well
but which we do not show here.

Finally we comment on the numerical methods used. Equations (2.9)–(2.12) were
written as a system of six first-order PDEs for the real and imaginary parts of a, ∂ra
and v, ∂rv. This system was then passed to the NAG solver d03pef, which employs a
Keller box method and integrates in time, with rlo 6 r 6 rhi for rlo= 0.05, rhi= 20 and
up to 2 × 104 radial grid points in typical runs. At the inner and outer boundaries,
the condition of behaviour as rm was imposed on the vector potential, namely
r∂ra − ma = 0. For the flow component v, the code similarly imposed behaviour
proportional to r at the inner boundary, and to r−1 at the outer. In the cases where
flux expulsion occurs and a magnetic core is formed, the outer boundary does not
play a role, as discussed above, and rhi = 20 is sufficiently large (at least over the
time scales shown here).

4. Calculation of the Lorentz force feedback
Our goal in this section is to derive the various scaling laws above, in particular

those in figure 10. It is evident from figure 8 that the kinematic evolution is key, in
that the dynamical curves typically follow the kinematic evolution, at least for a time.
We consider the kinematic regime, corresponding to the limit b0→ 0 and a fixed flow
field. We then assess the feedback on the flow through the Lorentz force.
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4.1. Flux expulsion: inner solution
We begin by recalling the classic flux expulsion calculation yielding (2.18a,b) as an
approximate outer solution to (2.9). This gives a and j at radii where α′(r) 6= 0 (fixed
as η→ 0) and is valid for a general smooth profile α(r). However, the approximation
breaks down at the centre of the flow field where α′(0)= 0 necessarily, and so another
approximation, the inner solution, is needed there. Generally we assume that α(r)
expands as (2.20) with α1 6= 0, working in a kinematic regime, but we note that in
a dynamical regime the Lorentz force acts to suppress differential rotation given by
α′(r). Note that the theoretical development in § 4 below is written as if α1 is positive
to follow BBG but the final results are dependent only on |α1| in any case. There are
also several inessential notational differences between the theory in the earlier paper
and in the self-contained development here. The kinematic theory is provided in BBG
and is most easily set out by defining a length scale L , time scale T , their inverses
and a velocity scale V by

k≡L −1 = (mα1/2η)1/4, p≡T −1 = (2ηmα1)
1/2, V =L /T = (8η3mα1)

1/4

(4.1a−c)

and new variables by

τ = pt, ρ = kr. (4.2a,b)

The exact solution to (2.9) may then be obtained with only the quadratic term retained
in α(r) in (2.20), that is, α ' α1r2 (where we also set α0 = 0 as solid body rotation
is irrelevant). The solution is

a=− 1
2 ib0k−mρmge−ifρ2

, (4.3)

j=− 1
2 ib0k2−mρmg [4i(m+ 1)f + 4f 2ρ2]e−ifρ2

, (4.4)

where f (τ ) and g(τ ) satisfy

∂τg=−2i(m+ 1)fg, ∂τ f − 1=−2if 2, (4.5a,b)

and so

f (τ )= (1+ i)−1 tanh[(1+ i)τ ], g(τ )= {cosh[(1+ i)τ ]}−m−1. (4.6a,b)

Now once a core has formed, for t> t†, undertaking the integrals in (3.1a,b) gives
straightforwardly

EM =π(m+ 1)! b2
0 k−2m|g|2|f |2 (−2fi)

−m−2, (4.7)

EA = 1
4π m! b2

0 k−2m−2|g|2 (−2fi)
−m−1, (4.8)

with f = fr + ifi for brevity.
This is all exact if α(r) is given by only the leading terms, in α0 and α1 in (2.20).

The solution combines two different processes, with a cross-over time T defined in
(4.1a−c). For t�T , the approximation captures a wave of flux expulsion, destruction
of a, in the locally quadratic angular velocity profile (2.20). In this regime, we have

f = τ − 2
3 iτ 3 + · · ·, g' 1, −2fi ' 4

3τ
3, (4.9a−c)
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giving

EM 'π
(

4
3

)−m−2
(m+ 1)! b2

0 k−2m τ−3m−4 =O(t−3m−4), (4.10)

EA ' 1
4π
(

4
3

)−m−1
m! b2

0 k−2m−2 τ−3m−3 =O(t−3m−3) (4.11)

and so algebraic behaviour of these quantities, with dependence as t−7 and t−6 in the
important case m= 1 of an initial uniform field, as seen in figure 4.

On the other hand for t�T the solution describes an exponentially decaying core
taking a Gaussian form near the origin, with

f ' (1+ i)−1, g' 2m+1e−(m+1)(1+i)τ , −2fi ' 1 (4.12a−c)

and

EM ' 22m+1 π (m+ 1)! b2
0 k−2me−2(m+1)τ , (4.13)

EA ' 22m π m! b2
0 k−2m−2e−2(m+1)τ . (4.14)

Again this is confirmed by the results shown in figure 4 for m= 1.

4.2. Lorentz force from the outer solution
We need to evaluate the Lorentz torque G in (2.12) from the outer solution; however,
there is a cancellation at leading order when we substitute a and j from (2.18a,b). To
compute G we need to expand the flux expulsion solution systematically. This is most
easily done by setting

a=− 1
2 ib0rme−imαt+χ , (4.15)

where the complex function χ , of space and time, gives the effect of flux expulsion.
The current and Lorentz force are then

j = − 1
2 ib0rm {m2α′2t2 + im[α′′ + (2m+ 1)α′r−1 + 2α′χ ′]t
− [χ ′′ + χ ′2 + (2m+ 1)χ ′r−1]}e−imαt+χ , (4.16)

G = 1
4 mb2

0r2m {2m[α′′ + (2m+ 1)α′r−1 + α′(χ ′ + χ ′∗)]t
+ i[(χ ′′ − χ ′′∗)+ (χ ′2 − χ ′∗2)+ (2m+ 1) (χ ′ − χ ′∗)r−1]}eχ+χ∗, (4.17)

without approximation.
Now to calculate χ we introduce T=η1/3t as the time scale on which flux expulsion

occurs, and set χ = χ(r, T). The exact equation for χ follows from (2.9) and is

∂Tχ = −m2α′2T2 − imη1/3[α′′ + (2m+ 1)α′r−1 + 2α′χ ′]T
+ η2/3[χ ′′ + χ ′2 + (2m+ 1)χ ′r−1], (4.18)

where as usual the prime denotes an r-derivative at constant T (or t). A series
approximation for χ can now be developed, with expansion parameter η1/3 � 1.
Explicitly

χ(r, t)= χ0(r, T)+ η1/3χ1(r, T)+ · · ·, (4.19)
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with

χ0 =− 1
3 m2α′2T3 =− 1

3 m2ηα′2t3, (4.20)

χ1 = − 1
2 im[α′′ + (2m+ 1)α′r−1]T2 + 4

15 im3α′2α′′T5 (4.21)

= − 1
2 im[α′′ + (2m+ 1)α′r−1]η2/3t2 + 4

15 im3η5/3α′2α′′t5. (4.22)

To obtain the Lorentz torque at leading order (first line of terms in G in (4.17)) we
need only χ0, which then gives

G' 1
2 m2b2

0r2m
{[α′′ + (2m+ 1)α′r−1]t− 4

3 m2ηα′2α′′t4
}

e−(2/3)m
2ηα′2t3 . (4.23)

Here we see that despite the initial quadratic growth with time t of the current j
in (2.18a,b), the Lorentz torque G grows only linearly via the first two terms (the
latter term being small for t = O(1), η� 1). However, at the time of flux expulsion
t=O(η−1/3) all the terms in G in (4.23) are of the same order, and so all are important
in computing the Lorentz force up to and during the destruction of field through flux
expulsion.

4.3. Feedback through the Lorentz force: outer solution
We now discuss the effects of the Lorentz force on the flow: this features in the
evolution of azimuthal velocity v,

∂tv = r−1G+ ν(∆0v − r−2v), (4.24)

which in turn gives the equation for the angular velocity gradient α′,

∂tα
′ = (r−2G)′ + ν[r−1(∆0v − r−2v)]′. (4.25)

It is this key quantity we shall use. Our working hypothesis is that the Lorentz
force has the effect of flattening the angular velocity at radius r if the term (r−2G)′,
evaluated kinematically and integrated over all time, is comparable to or bigger than
α′ at that radius. The threshold to consider is then when

α′(r)∼
∫ ∞

0
[r−2G(r, t)]′ dt. (4.26)

Bearing in mind that the right-hand side is quadratic in b0 and we are interested in
thresholds in terms of b0, we set the key function we need as

h(r)=−α′(r)−1 b−2
0

∫ ∞
0
[r−2G(r, t)]′ dt. (4.27)

The minus sign here arises as in (4.25) it is the integral on the right-hand side which
is being compared with reducing the angular velocity gradient from α′(r) at t= 0 to
zero at large times t. We will take up the discussion of the physics in § 5, but for the
moment just focus on calculating h(r) for the outer solution and then the inner one.

First we take G as given from (4.23) with m = 1 now (to avoid unnecessary
complexity) and obtain

[r−2G]′ = 1
2 b2

0[G0(r)t+G1(r)ηt4 +G2(r)η2t7]e−(2/3)ηα′2t3, (4.28)
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with

G0(r)= α′′′ + 3α′′r−1 − 3α′r−2, (4.29a)

G1(r)=−4α′α′′(α′′ + α′r−1)− 4
3α
′2α′′′, (4.29b)

G2(r)= 16
9 α
′3α′′2. (4.29c)

Next we integrate (4.28) from time zero to infinity using integration by parts and
by setting the constant c0 defined by

c0 =
∫ ∞

0
t exp(−t3) dt= 3−2/3πHi′(0)' 0.45137 (4.30)

(see Olver et al. 2010, § 9.12) to obtain

h(r)=−c1η
−2/3α′−7/3

[
G0(r)+ α′−2G1(r)+ 5

2α
′−4G2(r)

]
, c1 ≡ 2−5/332/3c0, (4.31)

or, with the formulae for the Gj(r) in (4.29) we obtain

h(r)= c1η
−2/3α′−7/3

[
1
3α
′′′ + α′′r−1 + 3α′r−2 − 4

9α
′′2α′−1

]
. (4.32)

This (implausible looking) expression is correct for any α(r). However, note that when
we approach the origin, α(r) expands as in (2.20) and then

h(r)' c2η
−2/3α

−4/3
1 r−10/3, c2 ≡ 223−4/3c0. (4.33a,b)

This is valid in the overlap region L � r� 1 where both inner and outer solutions
are valid (referring to figure 3). Before using this, we proceed to look at the feedback
in the inner solution.

4.4. Feedback through the Lorentz force: inner solution
Near the origin where the above formulation breaks down, we need to use the inner
solution (4.1a−c)–(4.6a,b) instead, which yields

G=mb2
0|g|2k2−2mρ2m( f + f ∗)[(m+ 1)− i( f − f ∗)ρ2]e−i( f−f ∗)ρ2

(4.34)

and hence (with m= 1) we find

(r−2G)′ = 2b2
0|g|2k3( f 2 − f ∗2)[−3iρ − ( f − f ∗)ρ3]e−i( f−f ∗)ρ2

. (4.35)

Now to obtain h(r) in (4.27) we divide by b2
0 and by α′= 2α1k−1ρ and integrate over

all time. With the use of (4.1a−c) we obtain

h(ρ)= V −2
∫ ∞

0
|g|2( f 2 − f ∗2)[3i+ ( f − f ∗)ρ2]e−i( f−f ∗)ρ2

dτ . (4.36)

We have taken the liberty of thinking of h now as a function of ρ = kr and taken the
integral over τ = pt. We cannot evaluate this analytically, except for large ρ when
the approximation (4.9a−c) is valid throughout the time range giving the leading
contribution to the integral, with

h(ρ)' c3V
−2ρ−10/3, c3 ≡ 28/33−4/3c0. (4.37a,b)

This is valid in the overlap region 1� ρ�L −1 and making use of the definitions of
p, k and ρ in (4.1a−c) we recover (4.33a,b) as we must. More generally we can plot
V 2h(ρ) in (4.36) against ρ as in figure 11 to give a universal curve for the Lorentz
feedback at the centre of a vortex with a general, smooth angular velocity profile (that
is, with α1 6= 0).
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FIGURE 11. (Colour online) Plot of V 2h(ρ) (solid) given in (4.36) against ρ with
(a) linear scales, (b) log–log scales. In (b) the approximation (4.37a,b) is shown dashed.

5. Scaling laws and related information

We can use the results in the last section to make a number of predictions for
scaling laws. We begin with crude estimates and then give more precise versions. Our
aim is to evaluate the accumulated effect of the Lorentz force at a given radius r in
a kinematic regime and compare this with α′(r) at that radius. We use & and . to
denote inequality up to a constant of order unity. Recall that we are comparing

α′(r) and
∫ ∞

0
[r−2G(r, t)]′ dt (5.1a,b)

at a given radius r or range of radii. From the definition of h(r) in (4.27) the
integrated effect of the Lorentz force at radius r is sufficient to suppress the
differential rotation if

b0 ∼ h(r)−1/2. (5.2)

Also to fix ideas we plot h(r) in figure 12 for the Gaussian vortex (2.16a,b) for a
range of η values using the outer expansion (4.32) and the inner expansion (4.36).

Core formation threshold: first consider b0 & bcore; then at all radii r the left-hand
side in (5.2) dominates. The Lorentz force (estimated by kinematic evolution) is
strong enough to modify the flow field and suppress differential rotation and so flux
expulsion. This represents the upper threshold for core formation. For greater fields,
elastic forces dominate and prevent the onset of flux expulsion.

First of all, consider a basic estimate. The location where flux expulsion would
commence is at the radius r† of order unity where the differential rotation α′ is
maximised, and it is here or nearby where the maximum in bcore will be realised. At
order-one values of radius we can use (4.32), which gives h(r)=O(η−2/3) and results
in the threshold

bcore =O(η1/3), (5.3)

as observed in figure 10 (upper dataset).
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FIGURE 12. (Colour online) Plot of η2/3h(r) (solid) given in (4.32) for the Gaussian
vortex against r with (a) linear scales, (b) log–log scales (taking the absolute value). In
(a) the approximation (4.33a,b) is shown dashed: it is also present in (b) but is somewhat
overlapped with dotted curves showing η2/3h(ρ) from (4.36) plotted against r for η= 106

to 109, reading up the curves.

To improve on this, it would make sense to minimise h(r) over all radii in view of
(5.2) so as to maximise the field for flux expulsion to take place. However, h(r) has
a zero crossing, and we should note that the threshold for core formation is linked to
Alfvén wave generation, a process very far from the kinematic model we are using
here. We do suggest instead a more precise estimate which brings in factors of α1,
taken by substituting r† in (4.33a,b) to give

bcore(η)= c−1/2
2 η1/3α

2/3
1 (r†)5/3. (5.4)

This is shown on figure 10 with good agreement, fortuitously good given that it is
only correct up to a constant of order unity.

Dynamical core threshold: now let us go to the other extreme. If b0 . bdynam then for
all radii the right-hand side of (5.2) dominates and the field will remain kinematic
at leading order. A core will form through flux expulsion and will shrink to an
exponentially decaying remnant at the origin following BBG. We thus need to look
at where the maximum of h(r) is realised. From (4.33a,b) (see also figures 11, 12),
from the point of view of the outer solution, we can increase h(r) by reducing r.
This represents the physical fact that the flow field is ‘naturally’ fairly flat near the
origin, the field is long-lived, and the Lorentz force required to flatten it completely
becomes vanishing small. However, this cannot continue indefinitely and we can
argue this in two ways. First of all it is clear that this increasing h(r) in (4.33a,b)
(in the overlap region) must be cut off at radii r ∼L = O(η1/4) in (4.1a−c) where
the overlap region ends and the inner solution really takes over. Substituting this in
(4.33a,b) gives the maximum of h(r) and the threshold estimated as

bdynam =O(η3/4), (5.5)

in agreement with figure 10 (lower dataset).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.60


586 A. D. Gilbert, J. Mason and S. M. Tobias

With more precision and elegance, we can move to the inner solution and
figure 11(a), which shows that V 2h is maximised at

c−2
4 ≡ h(0)=

∫ ∞
0

3i|g|2( f 2 − f ∗2) dτ ' 0.91732 (5.6)

(obtained numerically) to give

bdynam = c4V = c4(8η3mα1)
1/4, (5.7)

from (4.1a−c). Thus we link the threshold field to the velocity scale V based on
the inner solution, which has the crucial η3/4 dependence. This is plotted in figure 10
(lower dotted line), showing good agreement up to a modest constant.
Onset of Lorentz force: finally suppose that b0 lies in the range bdynam .b0 .bcore. Then
flux expulsion occurs at a radius r†, a core is formed and a wave of flux expulsion
spreads inwards. The Lorentz force does, however, become important at a radius r∗(b0)
and time t∗(b0) given by

b0 = h(r∗)−1/2, t∗ =
[

1
3ηα

′(r∗)2
]−1/3

. (5.8a,b)

These functions would depend on the original flow profile, but when r∗ � 1 the
approximation (4.33a,b) in the overlap region comes into play (also α′(r∗) ' 2α1r∗)
and we can estimate that

r∗ ' c3/10
2 b3/5

0 η−1/5α
−2/5
1 , t∗ ' c5η

−1/5b−2/5
0 α

−2/5
1 , c5 = 2−2/331/3c−1/5

2 . (5.9a−c)

For example for η = 10−7 and b0 = 10−5 we obtain r∗ ' 0.16 and t∗ ' 2.3 × 104,
in agreement with figure 8. Note that at the lower and upper limits of the range
bdynam . b0 . bcore, the core size is of order L in (4.1a−c) and r†, respectively.

6. Discussion
We have studied some of the effects of dynamical feedback on flux expulsion

using a quasi-linear model, using both numerical simulation and theory based on
the kinematic picture. We have identified two thresholds: returning to our original
dimensional formulation before (2.15a−f ) and measuring magnetic field in velocity
units, the first threshold is bcore ∼ UR−1/3

m below which flux expulsion still operates,
cutting field lines at the radius r† and leaving a magnetic core within. The second is
bdynam ∼ UR−3/4

m below which the field evolves as in the kinematic regime. Between
the two thresholds a magnetic core is formed in which the flow field near the
origin is modified to be solid body rotation at leading order, so halting the diffusive
decay of the core. In the range between bcore and bdynam the core radius scales as
L(b0/U)3/5R1/5

m . Recall that L is the spatial scale of the flow and U the velocity scale
of the flow. However, the actual key parameters at the lower threshold are the scale
L of the flow and the magnitude of α1 in dimensional units of (length2 × time)−1; in
other words it is appropriate to take U = L3α1.

In each case diffusive processes are key and the results depend sensitively on the
magnetic diffusivity – only the cutting of field lines by diffusion can halt the increase
of Lorentz force as the field reduces in scale. With this in mind, we have made
careful estimates based on the kinematic solutions, inner and outer, and we note that
cruder arguments could easily lead to incorrect conclusions. For example, although the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2016.60


Flux expulsion with dynamics 587

magnetic field grows linearly with time, the Lorentz force term also grows linearly
in (4.23) and not quadratically as might be suggested by a simplistic estimate
b · ∇b∼ b2/L, L being the scale of the eddy, this overestimating the variation of b
along field lines. Even worse would be to estimate the Lorentz force as jb = O(t3).
Likewise in (4.26) it is necessary to calculate the effect of G integrated from time zero
up to the time when flux expulsion occurs (similar remarks apply in the kinematic
regime, as discussed in Moffatt & Kamkar 1983). It is also important to look at the
effect on the differential rotation, not the velocity or angular velocity. Finally to pick
up the lower threshold bdynam the scaling structure of the inner solution from BBG
is needed, in particular relating the field magnitude to V =O(UR−3/4

m ). We also note
that any replacement of the true magnetic diffusion term involving the Laplacian, by
some hyperdiffusion or similar cutoff, would change these scaling laws. Any use of
hyperdiffusion in the induction equation must be treated with caution: although the
change may have a minor impact on small-scale fields at any moment, here it would
have a significant impact on the large-scale, long-time evolution.

Future directions of research could include generalising the geometry, for example
to an axisymmetric eddy localised in three dimensions and a magnetic field with
initially an arbitrary orientation with respect to the eddy. It would also be interesting
to study other regimes of the Reynolds numbers. We have taken only Re� Rm� 1,
although we expect our results to have wider applicability, we think at least up to
Re∼Rm. The ordering Re�Rm� 1 is relevant in typical astrophysical and geophysical
contexts, and so the modelling could be broadly relevant to the formation of magnetic
fields in the early life of some astrophysical objects, for example the relict magnetic
field likely to lie in the radiative zone of the Sun (e.g. Mestel & Weiss 1986). At least
it indicates the importance of taking into account small-scale reconnection processes
that depend on molecular transport coefficients, even in the formation of large-scale
fields, this also being the point originally stressed by Vainshtein & Cattaneo (1992)
in the context of dynamo theory.

A related problem would be to consider an initial two-dimensional turbulent flow
containing eddies or vortices, on a range of length scales: which of these would
develop dynamical magnetic cores, and what would be their distribution? For what
field threshold would the evolution over all length scales be entirely kinematic?
Finally, it would be valuable to study dynamical flux expulsion numerically by
means of full simulations in unbounded geometry and explore the limitations of the
quasi-linear approximation as set out here. Simulations with Re � Rm � 1 can be
undertaken efficiently using contour–spectral methods (Dritschel & Tobias 2012) while
regimes with Re ∼ Rm � 1 would be best simulated with standard pseudo-spectral
codes.
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