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Abstract

In the first part of this paper we consider a general stationary subcritical cluster model
in Rd . The associated pair-connectedness function can be defined in terms of two-point
Palm probabilities of the underlying point process. Using Palm calculus and Fourier
theory we solve the Ornstein–Zernike equation (OZE) under quite general distributional
assumptions. In the second part of the paper we discuss the analytic and combinatorial
properties of the OZE solution in the special case of a Poisson-driven random connection
model.
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1. Introduction

In their seminal paper, Ornstein and Zernike [11] proposed to split the interaction between
molecules in a liquid into a direct and an indirect part. While the resulting spatial convolution
equation is of great importance in physics, it seems to be hardly known among mathematicians.
The aim of this paper is to bridge this gap and to lay a rigorous mathematical foundation for
further studies.

We start with a simple example of a stationary cluster process, which is also a special case of
the random connection model studied later. Let ηt be a stationary Poisson process on Rd with
intensity t ≥ 0. LetB ⊂ Rd be a gauge body, that is, a compact set containing the origin 0 ∈ Rd

in its interior. We define a random geometric graph G(ηt ) (or Gilbert graph) with vertex set ηt
as follows. Two distinct points x, y ∈ ηt are adjacent in G(ηt )whenever (B+x)∩(B+y) �= ∅,
where B + x := {x + z : z ∈ B}; see [14]. For x ∈ ηt , let C(x, ηt ) ⊂ ηt denote the cluster of
x, that is, the connected component of G(ηt ) containing x. These definitions apply to any point
process η and, in particular, to deterministic locally finite subsets of Rd . For each point process
η on Rd and x, y ∈ Rd , we write ηx := η ∪ {x} and ηx,y := η ∪ {x, y}; see also Appendix A.
We wish to study the pair-connectedness function (see [17])

Pt(x, y) := P(y ∈ C(x, ηx,yt )), x, y ∈ Rd .

By Corollary 4.15 of [4], there is a percolation threshold tc ∈ (0,∞) such that P(|C(0, η0
t )| =

∞) > 0 for t > tc and P(|C(0, η0
t )| = ∞) = 0 for t < tc. We seek a functionQt(x, y) solving

Received 20 July 2016; revision received 25 August 2017.
∗ Postal address: Institute of Stochastics, Karlsruhe Institute of Technology, Englerstr. 2, D-76131 Karlsruhe, Germany.
∗∗ Email address: guenter.last@kit.edu
∗∗∗ Email address: sebastian.ziesche@kit.edu

1260

https://doi.org/10.1017/apr.2017.41 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:guenter.last@kit.edu?subject=Adv. Appl. Prob.%20paper%2016337
mailto:sebastian.ziesche@kit.edu?subject=Adv. Appl. Prob.%20paper%2016337
https://doi.org/10.1017/apr.2017.41


The Ornstein–Zernike equation 1261

the Ornstein–Zernike equation (OZE)

Pt(x, y) = Qt(x, y)+ t

∫
Rd
Qt (x, z)Pt (z, y) dz, x, y ∈ Rd , t < tc. (1.1)

We shall formulate and solve (1.1) in the following much more general setting. Let η be a
stationary point process on Rd with finite intensity γη. The points are partitioned into clusters
(sets of points of η) according to a translation-invariant rule. This rule might be very general
and can incorporate additional randomness (e.g. in the random connection model). The point
process η is assumed to be jointly stationary with the cluster process. The pair-connectedness
function P(x, y) is then informally defined as the conditional probability that x, y ∈ Rd belong
to the same cluster, given that x and y are points of η (suitably weighted by the pair-correlation
function). Then the OZE (1.1) takes the form

P(x, y) = Q(x, y)+ γη

∫
Rd
Q(x, z)P (z, y) dz, x, y ∈ Rd . (1.2)

Our Theorem 3.1 shows under rather weak assumptions that (1.2) has a unique solution. The
proof of this result is based on Palm calculus for stationary point processes (see Appendix A)
and a classical theorem by Wiener on the inversion of Fourier transforms.

In Sections 4–6 we shall consider the (Poisson driven) random connection model (RCM)
(see [9]), a significant generalization of the Gilbert graph introduced above. The RCM with
parameters t ≥ 0 and ϕ : Rd → [0, 1] is a random graph G where the set of vertices is a Poisson
process ηt with intensity t . Any two distinct vertices x, y ∈ ηt are adjacent with probability
ϕ(x − y) independently of all other pairs and of ηt . We call ϕ the connection function of the
RCM. The clusters in this model are just the connected components of G. In Section 4 we shall
give a detailed description of this model along with formulas on degree distributions (that are
basically well known) and a Margulis–Russo-type formula. The latter result might be of some
independent interest. In Section 5 we shall first show that the RCM satisfies the assumptions of
Theorem 3.1, so that a solutionQt ≡ Q of (1.1) (with Pt ≡ P denoting the pair-connectedness
function) exists in the whole subcritical regime. Then we prove that Pt is an analytic function
of t on the interval [0, t∗), where t∗ is the smallest number such that for t < t∗ the typical
cluster has an exponentially decreasing tail. In the Gilbert graph with fixed gauge body B
(mentioned above), the arguments from [14] can be extended to show that t∗ is equal to the
percolation threshold tc. In fact, Theorem 5.2 shows that this result holds for general integrable
functions of the typical cluster. We then proceed with deriving similar properties for Qt ; see
Proposition 5.2. We are not aware of a direct probabilistic interpretation of Qt . However, for
small intensities t , there is a simple combinatorial relationship between the coefficients in the
expansions of Pt and Qt ; see Theorem 6.1.

In writing this paper we strongly benefited from the large physics literature on the topic.
In particular, the combinatorial formulas in the final section are well known, although not in
a mathematically rigorous form. Two key references are [1] and [2]. However, we have not
been able to find a justification of the existence of a solution of the OZE, not even in the very
special case of a Poisson-driven Gilbert graph. Moreover, the analytic properties of Pt and
Qt (often taken as granted) have not been proved either. In our opinion it is one of the main
contributions of the present paper to apply modern point process methods (Palm calculus and
Margulis–Russo-type formulas for Poisson driven systems) to the OZE. The original motivation
for our work came from [18], where the author used the OZE to derive putative lower bounds
for the percolation threshold in the Gilbert graph. This is one of the potential applications of
the present paper.
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1262 G. LAST AND S. ZIESCHE

2. Preliminaries on stationary point processes

In this paper all random elements are defined on a measurable space (�,A) equipped with
a measurable flow θx : � → �, x ∈ Rd . This is a family of measurable mappings such that
(ω, x) �→ θxω is measurable, θ0 is the identity on �, and

θx ◦ θy = θx+y, x, y ∈ Rd ,

where ‘◦’ denotes composition. We may think of θxω as ω shifted by the vector −x. We fix a
probability measure P on (�,A) and assume that it is stationary, that is,

P ◦ θx = P, x ∈ Rd ,

where θx is interpreted as a mapping from A to A in the usual way:

θxA := {θxω : ω ∈ A}, A ∈ A, x ∈ Rd .

Let N(Rd) denote the space of all locally finite subsets μ of Rd . Hence, μ ∈ N(Rd) if and
only if μ ∩ B is finite for each bounded set. For each μ ∈ N(Rd) and each B ⊂ Rd , we write
μ(B) := |μ∩B| for the number of points of μ lying in B. As usual, we equip N(Rd) with the
smallest σ -field N making the mappings μ �→ μ(B) measurable for all B in the Borel σ -field
Bd on Rd .

A point process on Rd is a measurable mapping η : � → N(Rd). It is called invariant (or
stationary) if

η(ω,B + x) = η(θxω,B), ω ∈ �, x ∈ Rd , B ∈ Bd .

Let η be an invariant point process. The intensity of η is the number γη := Eη([0, 1]d). If the
latter is positive and finite, we can define the probability measure

P0
η(A) := γ−1

η

∫ ∑
x∈η(ω)

1{θxω ∈ A, x ∈ [0, 1]d}P(dω), A ∈ A.

This Palm probability measure of η satisfies the refined Campbell formula∫ ∑
x∈η(ω)

f (θxω, x)P(dω) = γη

∫∫
f (ω, x) dxP0

η(dω) (2.1)

for all measurable f : � × Rd → [0,∞), where dx refers to integration with respect to the
Lebesgue measure on Rd . Using standard conventions we write this as

E
∑
x∈η

f (θx, x) = γηE
0
η

∫
f (θ0, x) dx,

where E0
η denotes integration with respect to P0

η. The measure P0
η is concentrated on the

measurable set �0 of all ω ∈ � such that the origin 0 is in η(ω). The Palm distribution
of η is the distribution P0

η(η ∈ ·) of η under P0
η. It is concentrated on the measurable set of

all μ ∈ N(Rd) such that 0 ∈ μ. The number P0
η(A) can be interpreted as the conditional

probability of A ∈ A given that η has a point at the origin.
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Let η be a point process on Rd and n ∈ N. The nth factorial moment measure α(n) of η is
the measure on (Rd)n defined by

α(n) := E
∑ �=

x1,...,xn∈η
1{(x1, . . . , xn) ∈ ·}, (2.2)

where the superscript ‘�=’ indicates summation over all ordered n-tuples of distinct elements
of η (a notation that is also used for multiindices). Assume now that η is an invariant point
process with a positive and finite intensity. Assume also that α(2) is locally finite (finite on
bounded Borel sets) and absolutely continuous with respect to the Lebesgue measure, that is
(using also stationarity),

α(2)(d(x, y)) = γ 2
η ρ(y − x) d(x, y)

for a locally integrable measurable ρ : Rd → R. The latter is the pair correlation function of η.
The two-point Palm probability measures of η is a family {Px,yη : x, y ∈ Rd} of probability
measures on (�,A) such that (x, y) �→ P

x,y
η (A) is measurable for all A ∈ A and

E
∑�=

x,y∈η
f (θ0, x, y) = γ 2

η

∫
Ex,yη f (θ0, x, y)ρ(y − x) d(x, y) (2.3)

for all measurable f : �× Rd × Rd → [0,∞), where E
x,y
η denotes expectation with respect

to P
x,y
η . The number P

x,y
η (A) can be interpreted as the probability of A ∈ A given that η has

points at x and y. Under a Borel assumption on (�,A), we will show, in Appendix A, that the
two-point Palm probability measures can be chosen so as to satisfy

Ex,yη F = E0,y−x
η F ◦ θ−x, x, y ∈ Rd , (2.4)

for all measurable F : � → [0,∞). More details on Palm calculus for stationary point
processes can, e.g. be found in [6], [16], and in Appendix A.

3. The OZE

In this section we establish (1.2) for general stationary cluster processes defined on a
probability space (�,A,P). We let η be an invariant (and, therefore, stationary) point process
on Rd with finite intensity γη := Eη([0, 1]d). We also assume that P(η �= ∅) = 1. To describe
the clusters, we consider a measurable mapping (ω, x) �→ τ(ω, x) from �× Rd into Rd with
the covariance property

τ(θyω, x − y) = τ(ω, x)− y, ω ∈ �, x, y ∈ Rd . (3.1)

(For convenience we also assume that τ(x) = x, x ∈ Rd , whenever η(Rd) = 0.) The points
of the random set

ξ := {τ(x) : x ∈ η}
are interpreted as locations (or centers) of the clusters of η. Note that τ need not be a determin-
istic function of η like in the Gilbert graph, but might incorporate additional randomness; see
Section 4. The refined Campbell formula (2.1) and the covariance property (3.1) imply that

E|ξ ∩ B| = γηλd(B)P
0
η(τ (0) ∈ B), B ∈ Bd ,
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where λd is the Lebesgue measure on Rd and P0
η is the Palm probability measure of η.

In particular, E|ξ ∩ B| < ∞ for all bounded Borel sets B, so that it is no restriction of
generality to assume that ξ is locally finite everywhere on �. It follows that ξ is an invariant
point process with finite intensity γξ = γη P0

η(τ (0) ∈ [0, 1]d). The clusters can formally be
defined as those points of η which have the same image under τ . Hence, x, y ∈ η belong
to the same cluster if and only if τ(x) = τ(y) and the cluster of x ∈ η(ω) is given by
C(ω, x) := {y ∈ η(ω) : τ(ω, y) = τ(ω, x)} or, more succinctly,

C(x) := {y ∈ η : τ(y) = τ(x)}, x ∈ η. (3.2)

(It is convenient to use this definition for all x ∈ Rd .) In the random connection model, for
instance, the mapping τ is defined so as to ensure that (3.2) is consistent with the definition of
the clusters given in the introduction.

It follows from (3.1) that

C(θyω, x) = C(ω, x + y)− y, ω ∈ �, x, y ∈ Rd . (3.3)

The distribution of C(0) under the Palm probability measure P0
η can be interpreted as the

distribution of the cluster containing the typical point of η. We make the crucial assumption
that the size of this cluster has a finite expectation, that is,

E0
η|C(0)| < ∞. (3.4)

The cluster with location z ∈ ξ(ω) is defined by D(ω, z) := {x ∈ η(ω) : τ(ω, x) = z} or

D(z) := {x ∈ η : τ(x) = z}, z ∈ ξ.
(Again we use this notation for all z ∈ Rd .)

As we are interested in the second-order properties of η, we need to assume that the second-
order factorial moment measure of η is locally finite and absolutely continuous. We then denote
by ρ the pair correlation function and by P

x,y
η , x, y ∈ Rd , the two-point Palm distributions of η;

see (2.3). Our interest in this paper focuses on the weighted pair-connectedness function

P(x, y) := ρ(x − y)Px,yη (y ∈ C(x)), x, y ∈ Rd .

In view of (2.4) and (3.3), we have P(x, y) = P(y − x) and we define the (even) function
P : Rd → R by P(x) := P(0, x). Choosing f := 1{0 ∈ C(x)} in (A.2) yields

E0
η|C(0)| = 1 + γη

∫
P(x) dx. (3.5)

Hence, (3.4) implies that P is in the space L1 of all measurable functions f : Rd → R with
‖f ‖1 := ∫ |f (x)| dx < ∞.

The convolution of f, g ∈ L1 is defined as

(f ∗ g)(x) :=
∫
f (x − y)g(y) dy, x ∈ Rd .

In the same way, we define the convolution for functions f ∈ L1 and g ∈ L∞, where L∞ is
the space of bounded functions equipped with the supremum norm ‖ · ‖∞. Both definitions
make sense due to the basic inequalities

‖f ∗ g‖∞ ≤ ‖f ‖1‖g‖∞, f ∈ L1, g ∈ L∞, (3.6)

‖f ∗ g‖1 ≤ ‖f ‖1‖g‖1, f ∈ L1, g ∈ L∞. (3.7)
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We can now formulate and prove the OZE (1.1) in the present very general stationary setting.
We need the regularity assumption

P0
η

( ∑
x∈C(0)

eiwx �= 0

)
> 0, w ∈ Rd , (3.8)

where wx is the Euclidean scalar product of x,w ∈ Rd and ‘i’ is the imaginary unit.

Theorem 3.1. Assume that (3.4) and (3.8) hold. Then there is a unique Q ∈ L1 ∩ L∞ such
that

P = Q+ γηQ ∗ P. (3.9)

Remark 3.1. Assumption (3.8) is rather weak. It holds, for instance, if P0
η(|C(0)| = 1) > 0.

Indeed, if |C(0)| = 1 then the sum in (3.8) reduces to the single term 1. Another sufficient
condition can be formulated in terms of the factorial moment measures α(n), n ∈ N, of η
defined by (2.2). If these measures are locally finite and absolutely continuous then

P0
η

( ∑
x∈C(0)

eiwx = 0

)
= 0, w ∈ Rd ,

so that (3.8) holds. To see this, we note that

P0
η

( ∑
x∈C(0)

eiwx = 0

)
≤ E

∞∑
n=2

1

n!
∑�=

x1,...,xn∈η
1{e−iwx1fn(x2, . . . , xn) = 1}

=
∞∑
n=2

1

n!E
∫

1{fn(x2, . . . , xn) = eiwx1}α(n)(d(x1, . . . , xn)),

where fn(x2, . . . , xn) := ∑n
k=2eiwxk .

We prepare the proof of Theorem 3.1 with some results of independent interest. We start
with providing the connection between the typical cluster and the cluster of a typical point.
This is an example of size biasing; see, e.g. [16, Chapter 9] and [6, Section 3.9] for the case of
volume biasing and debiasing. In the following, we interpretC(x) andD(x) as point processes
on Rd , that is, as measurable mappings from � to N(Rd).

Proposition 3.1. For any measurable f : N(Rd) → [0,∞),

γη E0
ηf (C(0)− τ(0)) = γξ E0

ξ |D(0)|f (D(0)). (3.10)

Proof. Using Proposition A.1 with (ω, x) �→ f (D(ω, 0))1{τ(ω, x) = 0}, we obtain

γξE
0
ξ |D(0)|f (D(0)) = γξ E0

ξ

∑
x∈η

f (D(0))1{τ(x) = 0}

= γηE
0
η

∑
x∈ξ

f (D(θx, 0))1{τ(θx,−x) = 0}

= γηE
0
η

∑
x∈ξ

f (D(θx, 0))1{τ(θ0, 0) = x},

where we have used (3.1) to obtain the third identity. Using (3.1) again, it can be easily checked
that D(θxω, 0) = C(ω, 0)− x whenever x ∈ ξ(ω) and τ(ω, 0) = x. �
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1266 G. LAST AND S. ZIESCHE

Proposition 3.1 implies, in particular, that

γξE
0
ξ |D(0)|2 = γηE

0
η|C(0)|, (3.11)

which is finite by (3.4). Another consequence of Proposition 3.1 is

γξ = γηE
0
η|C(0)|−1.

The number E0
η|C(0)|−1 might be called the number of clusters per vertex in percolation theory;

see, e.g. [3].
We also need the following consequence of Proposition 3.1.

Lemma 3.1. The relationship (3.8) is equivalent to

P0
ξ

( ∑
x∈D(0)

eiwx �= 0

)
> 0, w ∈ Rd . (3.12)

Proof. The relationship (3.12) holds if and only if

E0
ξ

∣∣∣∣ ∑
x∈D(0)

eiwx
∣∣∣∣ �= 0.

By (3.10), this is equivalent to

0 �= E0
η

∣∣∣∣ ∑
x∈C(0)−τ(0)

eiwx
∣∣∣∣ = E0

η

∣∣∣∣e−iwτ(0)
∑
x∈C(0)

eiwx
∣∣∣∣ = E0

η

∣∣∣∣ ∑
x∈C(0)

eiwx
∣∣∣∣.

This implies the assertion. �
The Fourier transform of P is the function P̂ : Rd → C given by

P̂ (w) :=
∫
P(x)eiwx dx, w ∈ Rd .

This transform can be expressed in terms of the typical cluster as follows.

Proposition 3.2. For any w ∈ Rd ,

γη + γ 2
η P̂ (w) = γξ E0

ξ

∣∣∣∣ ∑
x∈D(0)

eiwx
∣∣∣∣2

. (3.13)

Proof. First we apply (A.2) with f (ω, x) := 1{x ∈ C(ω, 0)}eiwy to obtain

γη + γ 2
η P̂ (w) = γη + γ 2

η

∫
P0,x(x ∈ C(0))eiwxρ(x) dx = γηE

0
η

∑
x∈C(0)

eiwx,

where we recall the integrability assumption (3.4).
Since the clusters exhaust the points of η, we obtain

γη + γ 2
η P̂ (w) = γηE

0
η

∑
x∈ξ

∑
y∈C(0)

eiwy1{τ(y) = x}.
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Using the exchange formula (A.1) (to be justified below), we have

γη + γ 2
η P̂ (w) = γξE

0
ξ

∑
x∈η

∑
y∈C(θx,0)

eiwy1{τ(θx, y) = −x}

= γξE
0
ξ

∑
x∈η

∑
y∈η

1{y − x ∈ C(θx, 0)}eiw(y−x)1{τ(θx, y − x) = −x}

= γξE
0
ξ

∑
x∈η

∑
y∈C(x)

e−iwxeiwy1{τ(y) = 0},

where we have used the invariance properties (3.1) and (3.3). For 0 ∈ ξ and x, y ∈ η, the
relations y ∈ C(x) and τ(y) = 0 are equivalent to x, y ∈ D(0). Hence,

γη + γ 2
η P̂ (w) = γξE

0
ξ

∑
x∈D(0)

e−iwx
∑

y∈D(0)
eiwy,

implying (by Fubini’s theorem) the asserted formula (3.13). The use of both the exchange
formula and Fubini’s theorem is justified by E0

ξ |D(0)|2 < ∞, a consequence of (3.11) and
assumption (3.4). �

Proof of Theorem 3.1. We shall use a classical theorem by Wiener on the inversion of Fourier
transforms. Recall that a finite signed measureμ on Rd is the difference of two finite measures.
The Fourier transform of such a μ is defined by

μ̂(w) :=
∫

eiwxμ(dx), w ∈ Rd .

The convolutionμ∗ν of two finite signed measuresμ and ν is the finite signed measure defined
by

μ ∗ ν(B) :=
∫∫

1{x + y ∈ B}μ(dx)ν(dy), B ∈ Bd .

Note that μ ∗ δ0 = μ, where δ0(B) := 1{0 ∈ B}, B ∈ Bd . Also note that μ̂ ∗ ν = μ̂ν̂. Each
f ∈ L1 defines a finite signed measureμf := ∫

1{x ∈ ·}f (x) dx. (Later we will abuse notation
and write f instead of μf .) For f, g ∈ L1 we have μf ∗ μg = μf ∗g .

Let M1 denote the vector space of all finite signed measures of the form rδ0 + μf , where
r ∈ R and f ∈ L1. The OZE (3.9) can be written as

μP = tμQ ∗ ν, (3.14)

where t := γη and ν := t−1δ0 + μP ∈ M1. Proposition 3.2, (3.8), and Lemma 3.1 imply that
ν̂(w) �= 0 for all w ∈ Rd . A theorem of Wiener (see Theorem 13.2 of [5]) says that ν can be
inverted within the convolution algebra M1. This means that there is an f ∈ L1 such that

ν ∗ (tδ0 + t2μf ) = δ0.

The function Q := P + tP ∗ f is in L1. Moreover,

tμQ∗ν = tν∗(μP+tμP∗f ) = ν∗(tμP+t2μP ∗μf ) = ν∗μP ∗(tδ0+t2μf ) = μP ∗δ0 = μP ,

as required by (3.14).
To show that Q is bounded, we apply (3.6) to obtain

‖Q‖∞ = ‖P ‖∞ + γη‖Q ∗ P ‖∞ ≤ ‖P ‖∞ + γη‖Q‖1‖P ‖∞ < ∞. �
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The solutionQ of the OZE (3.9) has good integrability properties and can be used to express
the mean size of the cluster containing a typical point.

Proposition 3.3. Under the assumption of Theorem 3.1, we have

0 ≤
∫
Q(x) dx < γ−1

η

and

E0
η|C(0)| =

(
1 − γη

∫
Q(x) dx

)−1

. (3.15)

Proof. Equation (3.5) and the OZE (3.9) imply that

E0
η|C(0)| = 1 + γη

∫
Q(x) dx + γ 2

η

∫
P(x) dx

∫
Q(x) dx

= 1 + γη

∫
Q(x) dx + γη(E

0
η|C(0)| − 1)

∫
Q(x) dx.

It follows that

E0
η|C(0)| = 1 + γηE

0
η|C(0)|

∫
Q(x) dx.

Since E0
η|C(0)| ≥ 1 we conclude that

∫
Q(x) dx ≥ 0. Moreover, since E0

η|C(0)| < ∞ we
have γη

∫
Q(x) dx < 1 and, hence, (3.15). �

4. The random connection model

In this section we consider a stationary Poisson process ηt on Rd with intensity t ≥ 0
together with a measurable function ϕ : Rd → [0, 1] satisfying

ϕ(x) = ϕ(−x), x ∈ Rd , (4.1)

and ∫
ϕ(x) dx < ∞.

Suppose that any two distinct points x, y ∈ ηt are adjacent with probability ϕ(y − x) ind-
ependently of all other pairs and independently of ηt . This yields the RCM, an undirected
random graph G with vertex set ηt . Each x ∈ ηt belongs to a uniquely defined connected
component C′(x). The mapping τ from Section 3 is defined as follows. If x ∈ ηt and
|C′(x)| < ∞ then we let τ(x) be the lexicographic minimum of C′(x). (For all other x ∈ Rd

we let τ(x) := x.) Hence, if all connected components of G are finite, the set of clusters consists
exactly of these connected components.

The Gilbert graph (briefly discussed in the introduction) based on ηt and a gauge body
B ⊂ Rd , that is, a compact and connected set containing the origin 0 ∈ Rd , is a special case of
the RCM. It is obtained by choosing

ϕ(x) = 1{(B + x) ∩ B �= ∅}.
In contrast to the RCM, the Gilbert graph contains no additional randomness. Two points
x, y ∈ ηt are adjacent if the shifted gauge bodies B + x and B + y overlap.
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In the next sections we shall study the properties of the pair-connectedness function Pt of
the RCM and the solutionQt of the associated OZE. In particular, we shall show that Pt andQt

are analytic and relate the coefficients of their series representation at 0. To do this properly
we need to introduce the model in a more formal way. If the intensity t is positive then ηt can
be (almost surely) represented as

ηt = {Xi : i ∈ N},
where the Xi , i ∈ N, are almost sure distinct random elements in Rd . For t = 0, the Poisson
process ηt has (almost surely) no points. Let R[2d] denote the space of all sets e ⊂ Rd containing
exactly two elements. Any e ∈ R[2d] is a potential edge of the RCM. When equipped with the
Hausdorff metric (see [15]) this space is a Borel subset of a complete separable metric space.
Let ‘<’denote the strict lexicographic ordering on Rd . Introduce independent random variables
Ui,j , i, j ∈ N, uniformly distributed on the unit interval [0, 1] such that the double sequence
(Ui,j ) is independent of ηt . For t > 0,

χt := {({Xi,Xj }, Ui,j ) : Xi < Xj , i, j ∈ N} (4.2)

is a point process on R[2d] × [0, 1]. For t = 0, we let χt equal the zero measure. Note that ηt
can be recovered from χt . For t > 0, we can define the RCM as a deterministic functional
of χt by taking, for i �= j and Xi < Xj , the set {Xi,Xj } as an edge of G if and only if
Ui,j ≤ ϕ(Xi −Xj).

Justified by assumption (4.1), we can introduce a measurable function ϕ∗ : R[2d] → [0, 1]
by

ϕ∗(e) := ϕ(y − x), e = {x, y} ∈ R[2d].
If χ̃ is a point process on R[2d] × [0, 1], we can define a graph G(χ̃) := G(χ̃) = (V (χ̃), E(χ̃))

as follows. The vertex set is given by

V (χ̃) := {e−, e+ : e ∈ R[2d], χ̃({e} × [0, 1]) = 1},
where e− and e+ are the points of e ∈ R[2d]. A set e ∈ R[2d] belongs to the edge set E(χ̃)
of this graph if and only if χ̃({(e, u)}) = 1 for some u ∈ [0, 1] with u ≤ ϕ∗(e). In this
notation our RCM is given as G(χt ). (For t = 0 this is the empty graph.) For x ∈ V (χ̃), we
denote the cluster of x (the connected component of G(χ̃)) by C(x, χ̃). (For convenience we
set C(x, χ̃) := {x} for all other x ∈ Rd .)

In the remaining part of this section we state a few fundamental results on the RCM that
will be needed later but cannot be found in the literature. We extend the (double) sequence
(Ui,j )

∞
i,j=1 featuring in (4.2) to a sequence (Ui,j )∞i,j=0 of independent random variables uni-

formly distributed on [0, 1], independent of the Poisson process ηt . For t > 0, we then define
a point process χ0

t on R[2d] × [0, 1] by

χ0
t := {({Xi,Xj }, Ui,j ) : Xi < Xj , i, j ∈ N0}, (4.3)

where N0 := N ∪ {0} and X0 := 0. The graph G(χ0
t ) can be interpreted as the RCM as seen

from a typical vertex positioned at the origin. For x ∈ Rd , we define

χ
0,x
t := {({Xi,Xj }, Ui,j ) : Xi < Xj , i, j ∈ N−1}, (4.4)

where N−1 := N0 ∪ {−1}, X−1 := x, and (Ui,j )∞i,j=−1 has similar properties as (Ui,j )∞i,j=0.
In the t = 0 case, the point processes χ0

t and χ0,x
t are defined to be the empty set.
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For k ∈ N, we let [k] := {1, 2, . . . , k}. For any x1, . . . , xk ∈ Rd , we introduce a random
graph �(x1, . . . , xk) with vertex set {x1, . . . , xk} by taking independent random variables Ui,j ,
i, j ∈ [k], with the uniform distribution on [0, 1] and by taking {xi, xj } as an edge if xi < xj
and Ui,j ≤ ϕ(xi − xj ). This is just the RCM with a finite deterministic vertex set. The next
result is a version of Proposition 6.2 of [9]. For the convenience of the reader we give a short
proof.

Proposition 4.1. Let n ∈ N0 and set x0 := 0. Then

P(|C(0, χ0
t )| = n+ 1)

= tn

n!
∫

P(�(x0, . . . , xn) is connected)

× exp

[
−t

∫ (
1 −

n∏
i=0

(1 − ϕ(y − xi))

)
dy

]
d(x1, . . . , xn). (4.5)

In the n = 0 case, the right-hand side has to be read as exp(−t∫ ϕ(y) dy).

Proof. We assume that n ≥ 1. (The n = 0 case is trivial.) We have |C(0, χ0
t )| =

n + 1 if and only if there are n distinct points x1, . . . , xn ∈ ηt such that G(χ0
t ) restricted

to those points is connected and none of the xi is connected to a point in ηt \ {x1, . . . , xn}.
Given ηt , these two events are (conditionally) independent and have respective probabilities
P(�(x0, . . . , xn) is connected) and

∏
y∈ηt\{x1,...,xn}

n∏
i=0

(1 − ϕ(y − xi)).

After conditioning, we obtain, from the multivariate Mecke equation (A.3),

P(|C(0, χ0
t )| = n+ 1)

= tn

n!
∫

P(�(x0, . . . , xn) is connected)E
∏
y∈ηt

n∏
i=0

(1 − ϕ(y − xi)) d(x1, . . . , xn).

Using the well-known formula for the characteristic functional of ηt (see, e.g. [8, Chapter 3]),
we obtain the asserted formula (4.5). �

Next we need to discuss a Margulis–Russo-type formula for χ0,x
t . This formula provides

a power series expansion of expectations of functions of χ0,x
t . Adding just two points 0, x is

enough for our purposes. It would be no problem to extend the result to a random connection
model with any fixed number of points added. Let n ∈ N and N−n−1 := N∪{0,−1, . . . ,−n−
1}. Extend the (double) sequence (Ui,j )∞i,j=1 featuring in (3.2) to a sequence (Ui,j )i,j∈N−n−1

of independent random variables uniformly distributed on [0, 1], independent of the Poisson
process ηt . Let x0, xn+1 ∈ Rd and x = (x1, . . . , xn) ∈ (Rd)n. For J ⊂ [n], we define
xJ := (xi)i∈J and

χ
x0,xJ ,xn+1
t := {({Xi,Xj }, Ui,j ) : vXi < Xj , i, j ∈ NJ }, (4.6)

where NJ := N ∪ {0,−n − 1} ∪ {−i : i ∈ J } and (X0, . . . , X−n−1) := (x0, . . . , xn+1).
In the t = 0 case, the indices i, j are restricted to {−i : i ∈ J }. Similarly, we define the
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point process χx0,xJ
t . For J = ∅, we set χx0

t := χ
x0,x∅

t . For xn+1 := x and J = ∅, the point
process χ0,x∅,x

t has the same distribution as χ0,x
t given by (4.4). Let f : N(R[2d]×[0, 1]) → R

be measurable and fix some x ∈ Rd . Define Ft := f (χ
0,x
t ) and

�nxFt :=
∑
J⊂[n]

(−1)n−|J |f (χ0,xJ ,x
t ), x ∈ (Rd)n. (4.7)

We say that f : N(R[2d] × [0, 1]) → R is determined by a compact subset W ⊂ Rd if
f (μ) = f (μW) for all μ ∈ N(R[2d] × [0, 1]), where

μW := {(e, u) ∈ μ : e ⊂ W }, (4.8)

that is, if the value of f only depends on the edges with endpoints in W .

Theorem 4.1. Let f : N(R[2d] × [0, 1]) → R be measurable and let x ∈ Rd . Assume that f
is determined by a compact set W ⊂ Rd with {0, x} ⊂ W . Let s ≥ 0 and t ≥ −s be such that
E|Fs+|t || < ∞, where Ft := f (χ

0,x
t ). Then

EFs+t = EFs +
∞∑
n=1

tn

n!
∫
Wn

E�nxFs dx. (4.9)

Proof. First we recall the Poisson process analogue of the Margulis–Russo formula to be
found in [10] and for a general phase space and more general integrability assumptions in [7]
and [8]. Let f : N(Rd) → R be measurable, n ∈ N, and x = (x1, . . . , xn) ∈ (Rd)n. Then we
define a measurable function Dnxf : N(Rd) → R by

Dnxf (μ) :=
∑
J⊂[n]

(−1)n−|J |f (μ ∪ {xj : j ∈ J }).

Assume now that there is a compact setW ⊂ Rd such that f (μ) depends for each μ ∈ N(Rd)

only on the restriction of μ to W . Then we have, for all s ≥ 0 and t ≥ −s,

Ef (ηs+t ) = Ef (ηs)+
∞∑
n=1

tn

n!
∫
Wn

(EDnxf (ηs)) dx, (4.10)

provided that E|f (ηs+|t |)| < ∞.
Forμ ∈ N(Rd) and x1, . . . , xk ∈ Rd , k ∈ N, we defineμx1,...,xk := μ∪{x1, . . . , xk}. There

is a probability kernel K from N(Rd) to N(R[2d] × [0, 1]) such that, for all r ≥ 0,

P((ηr , χr) ∈ ·) = E

∫
1{(ηr , ψ) ∈ ·}K(ηr, dψ), (4.11)

and, for any x0 ∈ Rd , n ≥ 0, and x = (x1, . . . , xn) ∈ (Rd)n,

P((η
x0,x
t , χ

x0,x
t ) ∈ ·) = E

∫
1{(ηx0,x

t , ψ) ∈ ·}K(ηx0,x
t , dψ). (4.12)

Define a measurable function f ∗ : N(Rd) → R by

f ∗(μ) :=
∫
f (ψ)K(μ0,x, dψ).
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By the triangle inequality and (4.12) for n = 0,

E|f ∗(ηs+|t |)| ≤ E

∫
|f (ψ)|K(η0,x

s+|t |, dψ) = E|Fs+|t || < ∞.

The properties of the kernel K imply that

f ∗(μW ) =
∫
f (ψW)K(μ

0,x
W , dψ)

=
∫
f (ψW)K(μ

0,x, dψ)

=
∫
f (ψ)K(μ0,x, dψ)

= f ∗(μ).

We can now apply (4.10) with f ∗ to obtain

Ef ∗(ηs+t ) = Ef ∗(ηs)+
∞∑
n=1

tn

n!
∫
Wn

EDnxf
∗(ηs) dx.

By (4.12), we have Ef ∗(ηs+t ) = EFs+t and Ef ∗(ηs) = EFs . Furthermore,

EDnxf
∗(ηs) =

∑
J⊂[n]

(−1)n−|J |Ef ∗(ηs ∪ {xj : j ∈ J })

=
∑
J⊂[n]

(−1)n−|J |E
∫
f (ψ)K(η0,x

s ∪ {xj : j ∈ J }, dψ)

=
∑
J⊂[n]

(−1)n−|J |Ef (χ0,xJ ,x
s ).

In view of definition (4.7), we obtain the assertion. �
We also need the following version of Proposition 4.1. The proof is omitted.

Proposition 4.2. Let n ∈ N0 and x ∈ Rd . Then

P(x ∈ C(0, χ0,x
t ), |C(0, χ0,x

t )| = n+ 2)

= tn

n!
∫

P(�(x0, . . . , xn+1) is connected)

× exp

[
−t

∫ (
1 −

n+1∏
i=0

(1 − ϕ(y − xi))

)
dy

]
d(x1, . . . , xn),

where x0 := 0 and xn+1 := x.

5. The OZE for the random connection model

In this section we consider Poisson processes ηt with intensity t ≥ 0 and the associated
RCM G(χt ) as introduced in the previous section. We assume that

0 < mϕ < ∞,

where mϕ := ∫
ϕ(x) dx.

https://doi.org/10.1017/apr.2017.41 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.41


The Ornstein–Zernike equation 1273

The critical intensity is given by

tc := sup{t ≥ 0 : P(|C(0, χ0
t )| < ∞) = 0}.

For the Gilbert graph (in fact for general Boolean models) it was proved in [4] that 0 < tc < ∞.
The same is true for the more general RCM; see [9, Theorem 6.1]. By [9, Theorem 6.2], we
have

tc = sup{t ≥ 0 : E|C(0, χ0
t )| < ∞}. (5.1)

We need to consider another critical intensity, namely

t∗ := sup{t ≥ 0 : E exp(z|C(0, χ0
t )|) < ∞ for some z > 0}.

Clearly, we have t∗ ≤ tc. For the Gilbert graph it is well known that t∗ = tc. (While an early
proof for fixed convex and symmetric gauge bodies can be found in [14], [19] covers the case
of a random but deterministically bounded gauge body.) We are not aware of a similar result
for the RCM. However, one can show that

t∗ ≥ m−1
ϕ .

This is due to the fact that, for t < m−1
ϕ , the number of points in the cluster of the origin can be

dominated by the total progeny of a subcritical Galton–Watson process with a Poisson offspring
distribution with mean tmϕ < 1; see the proof of Theorem 6.1 of [9]. It is well known that this
progeny has exponential moments; see [12].

By (A.3), the pair correlation function ρt of ηt satisfies ρt ≡ 1, so that the two-point Palm
probability measures P

x,y
ηt of ηt are well defined. They are given by the following lemma.

Recall the definition (4.3) of χ0
t and the definition (4.6) of χx,yt .

Lemma 5.1. We have P0
ηt
(χt ∈ ·) = P(χ0

t ∈ ·). Moreover, the Palm probability P
x,y
ηt can be

chosen such that
Px,yηt (χt ∈ ·) = P(χ

x,y
t ∈ ·), x, y ∈ Rd . (5.2)

Proof. We prove the second formula. Let f : N(R[2d] × [0, 1]) × Rd × Rd → [0,∞) be
measurable. Then, from (4.11) and the Mecke equation (A.3), we obtain

E
∑�=

x,y∈ηt
f (χt , x, y) = E

∑�=

x,y∈ηt

∫
f (ψ, x, y)K(ηt , dψ)

= t2E

∫∫
f (ψ, x, y)K(η

x,y
t , dψ) d(x, y)

= t2E

∫
f (χ

x,y
t , x, y) d(x, y),

where we have used (4.12) to obtain the final identity. Comparing this with (2.3) (and using
the fact that the pair correlation function ρt of ηt satisfies ρt ≡ 1), shows that (5.2) holds for
almost every (x, y) (with respect to Lebesgue measure on Rd × Rd ). �

By Lemma 5.1, the pair-connectedness functionPt of the RCM G(χt ) is given byPt(x, y) =
Pt(y − x), where

Pt(x) := P(x ∈ C(0, χ0,x
t )).
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Theorem 5.1. Let t < tc. Then there is a unique Qt ∈ L1 ∩ L∞ such that

Pt = Qt + tQt ∗ Pt .
Proof. We wish to apply Theorem 3.1. For any x ∈ Rd , we define τ(x) := x if x is not a

member of a finite cluster in G(χt ). Otherwise, we define τ(x) as the lexicographic minimum of
the cluster C(x, χt ). Then we have, almost surely, C(x) = C(x, χt ) for all x ∈ ηt , where C(x)
is given by (3.2). Since t < tc, the integrability assumption (3.4) follows from (5.1). Since
the factorial moment measures of ηt coincide with Lebesgue measure (see (A.3)), assumption
(3.8) follows from Remark 3.1. �
Proposition 5.1. We have

0 ≤
∫
Qt(x) dx < t−1, 0 < t < tc,

and

E|C(0, χ0
t )| =

(
1 − t

∫
Qt(x) dx

)−1

. (5.3)

Proof. The two assertions follow from Proposition 3.3 and Lemma 5.1. �
Remark 5.1. It is a fair conjecture that limt↑tc E|C(0, χ0

t )| = ∞, but we have not found this
in the literature. Under this hypothesis, (5.3) would show that

tc lim
t→tc−

∫
Qt(x) dx = 1.

In what follows, we consider a measurable function g : N(Rd) → R and fix some x ∈ Rd .
We study the function t �→ Eg(C(0, χ0,x

t )). The results will imply that t �→ Pt(x) and
t �→ Qt(x) are analytic functions on [0, t∗). We assume that, for all ε > 0, there is an
n1 = n1(ε) ∈ N such that

|g(μ)| ≤ exp(εmax{μ(Rd), n1}). (5.4)

Theorem 5.2. Suppose that g : N(Rd) → R satisfies (5.4) and let x ∈ Rd . Then the function
t �→ Eg(C(0, χ0,x

t )) is analytic on [0, t∗). The expansion at s ∈ [0, t∗) is given by (4.9) with
Ft := g(C(0, χ0,x

t )).

For the proof of Theorem 5.2, we derive some preliminary results that might be of indepen-
dent interest. Let t ∈ [0, t∗) and define

G(x, t) := Eg(C(0, χ0,x
t )).

We take a compact set W ⊂ Rd with {0, x} ⊂ W and approximate the function G with

GW(x, t) := Eg(C(0, χ0,x
t,W )),

where χ0,x
t,W := (χ

0,x
t )W ; see (4.8). Note that μ �→ g(C(0, μW )) is determined by W . Let

z > 0 be such that E exp(2z|C(0, χ0
t )|) < ∞. Since

|C(0, χ0,x
t )| ≤ |C(0, χ0

t )| + |C(x, χxt )| (5.5)
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and C(x, χxt )
d=C(0, χ0

t )+ x, we have

E exp(z|C(0, χ0,x
t )|) < ∞.

Choosing ε = z in assumption (5.4), we obtain

E|g(C(0, χ0,x
t,W ))| ≤ E exp(zmax{|C(0, χ0,x

t,W )|, n1}) ≤ E exp(zmax{|C(0, χ0,x
t )|, n1}) < ∞.

Therefore, we can apply Theorem 4.1 to obtain

GW(x, t) = Eg(C(0, χ0,x
s,W ))+

∞∑
n=1

(t − s)ngW,n(x, s), s, t < t∗, (5.6)

where

gW,n(x, s) := 1

n!
∫
Wn

E

[ ∑
J⊂[n]

(−1)n−|J |g(C(0, χ0,xJ ,x
s,W ))

]
dx,

and χ0,xJ ,x
s,W := (χ

0,xJ ,x
s )W . We use this definition for all Borel sets W ⊂ Rd .

To bound the coefficients gW,n(x, t), we use the following integral inequality. Recall that
�(0, x1, . . . , xn) denotes an RCM with vertex set {0, x1, . . . , xn}.
Lemma 5.2. Let n ∈ N. Then∫

P(�(0, x1, . . . , xn) is connected) d(x1, . . . , xn) ≤ n!mnϕen+1.

Furthermore, we have, for any x ∈ Rd ,∫
P(�(0, x1, . . . , xn, x) is connected) d(x1, . . . , xn) ≤ n!mnϕen+2.

Proof. We prove the second inequality only. For all a0, . . . , an+1 ∈ [0, 1], we have the
inequality

1 −
n+1∏
i=0

(1 − ai) ≤
n+1∑
i=0

ai.

Taking t > 0 and defining x0 := 0, we therefore obtain, from Proposition 4.2,

1 ≥ tn

n!
∫

P(�(x0, . . . , xn, x) is connected) exp

(
−t

n+1∑
i=0

∫
ϕ(y − xi) dy

)
d(x1, . . . , xn)

≥ tn

n!
∫

P(�(x0, . . . , xn, x) is connected) exp(−t (n+ 2)mϕ) d(x1, . . . , xn).

Choosing t = m−1
ϕ yields the asserted inequality. �

There is a qualitative difference between the study of analyticity of G at s = 0 and s > 0.
In fact, condition (5.4) can be relaxed slightly for s = 0.
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Lemma 5.3. Let n ∈ N and assume that there is a constant c ≥ 1 such that

|g(μ)| ≤ cμ(R
d ), μ ∈ N(Rd), μ(Rd) ≤ n+ 1. (5.7)

Let x ∈ Rd and W ⊂ Rd be a Borel set such that {0, x} ⊂ W . Then

|gW,n(0, x)| ≤ c(c + 1)(1 + e)((1 + c)mϕe)
n.

Proof. Let x0 := 0 and xn+1 := x. Take x = (x1, . . . , xn) ∈ Wn. We recall that, for s = 0,
the point process ηs is the zero measure and �(x0, . . . , xn+1) = G(χ

x0,x,xn+1
0 ) is the RCM with

vertex set {x0, . . . , xn+1}. Let i ∈ [n] be such that x0 and xi are not connected by a path in
�(x0, . . . , xn+1). Then we have, for any J ⊂ [n] \ {i},

(−1)n−|J |g(C(0, χx0,xJ ,xn+1
0 ))+ (−1)n−|J∪{i}|g(C(0, χx0,xJ∪{i},xn+1

0 )) = 0,

since the cluster of 0 is the same in both summands. If, on the other hand, x0 and xi are
connected in �(x0, . . . , xn+1) for each i ∈ [n], then either �(x0, . . . , xn) is connected (and x
is not connected to any of the points x0, . . . , xn) or �(x0, . . . , xn+1) is connected. Hence, we
have

|gW,n(0, x)| ≤ 1

n!E
∫
h(x1, . . . , xn, x)

∑
J⊂[n]

|g(C(0, χx0,xJ ,xn
0 ))| dx,

where

h(x1, . . . , xn, x) := 1{�(x0, . . . , xn) is connected} + 1{�(x0, . . . , xn+1) is connected}.
Our assumption (5.7) and the binomial formula imply that

|gW,n(0, x)| ≤ c(c + 1)n

n!
∫
h(x1, . . . , xn, x) d(x1, . . . , xn).

An application of Lemma 5.2 concludes the proof. �
In the following it is convenient to introduce a function cV : [0,∞) → [0,∞)with cV (t) > 0

for t < t∗ satisfying

P(|C(0, χ0,x
t )| = n) ≤ e−cV (t)n, n ∈ N, x ∈ Rd , t < t∗. (5.8)

By the definition of t∗ and (5.5), such a function exists. Next, we bound gn(t,W) for t > 0.

Lemma 5.4. Let t ∈ (0, t∗) and x ∈ Rd . Assume that (5.4) holds. Then there is an n1(t) ∈ N

such that, for all n > n1(t) and all Borel sets W ⊂ Rd with {0, x} ⊂ W ,

|gW,n(x, t)| ≤ e−cV (t)/2

1 − e−cV (t)/2

(
2e−cV (t)/2

t (1 − e−cV (t)/2)

)n
.

Proof. As before, we set x0 := 0 and xn+1 := x. Let n ∈ N. With the same argument as in
the proof of Lemma 5.3, we conclude that

|gW,n(x, t)| ≤ 1

n!
∫
Wn

E

[
1{xi ∈ C(0, χx0,x,xn+1

t,W ) for all i ∈ [n]}

×
∑
J⊂[n]

|g(C(0, χx0,xJ ,xn+1
t,W ))|

]
dx. (5.9)
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Setting ε := cV (t)/2 and using (5.4), we find an n1 ∈ N such that

∑
J⊂[n]

|g(C(0, χx0,xJ ,xn+1
t,W ))| ≤

∑
J⊂[n]

exp

(
cV (t)

2
max{n1, |C(0, χx0,xJ ,xn+1

t,W )|}
)

≤ 2n exp

(
cV (t)

2
max{n1, |C(0, χx0,x,xn+1

t,W )|}
)
.

Inserting this in (5.9) and using (4.12) yields

|gW,n(x, t)| ≤ 2n

n! E

∫∫
1{xi ∈ C(0, ψW ) for all i ∈ [n]}

× exp

(
cV (t)

2
max{n1, |C(0, ψW )|}

)
K(η

x0,x,xn+1
t , dψ) dx.

The Mecke equation (A.3) yields

|gW,n(x, t)| ≤ 2n

tnn!E
∑ �=

x1,...,xn∈ηt

∫
1{xi ∈ C(0, ψW ) for all i ∈ [n]}

× exp

(
cV (t)

2
max{n1, |C(0, ψW )|}

)
K(η

0,x
t , dψ)

= 2n

tnn!E
∑ �=

x1,...,xn∈ηt
1{xi ∈ C(0, χ0,x

t,W ) for all i ∈ [n]}

× exp

(
cV (t)

2
max{n1, |C(0, χ0,x

t,W )|}
)
,

where we have used (4.12) to achieve the final identity. Therefore,

|gW,n(x, t)| ≤ 2n

tnn!
∞∑
k=1

E1{|C(0, χ0,x
t )| = k} exp

(
cV (t)

2
max{n1, |C(0, χ0,x

t,W )|}
)

×
∑�=

x1,...,xn∈ηt
1{xi ∈ C(0, χ0,x

t ) for all i ∈ [n]}.

On the event {|C(0, χ0,x
t )| = k}, the above integral simplifies to (k − 1) · · · (k − n). Hence,

|gW,n(x, t)| ≤ 2n

tnn!
∞∑

k=n+1

exp

(
cV (t)

2
max{n1, k}

)
(k − 1) · · · (k − n)P(|C(0, χ0,x

t )| = k).

Finally, we apply (5.8) and use the well-known formula for the factorial moment of the geometric
distribution to obtain, for n > n1,

|gW,n(x, t)| ≤ 2n

tnn!
∞∑

k=n+1

exp

(
−cV (t)

2
k

)
(k − 1) · · · (k − n)

= e−cV (t)/2

1 − e−cV (t)/2

(
2e−cV (t)/2

t (1 − e−cV (t)/2)

)n
,

as asserted. �
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Proof of Theorem 5.2. LetWk, k ∈ N, be a sequence of compact sets with union Rd . Since
P(|C(0, χ0,x

t )| < ∞) = 1, we have

lim
k→∞ g(C(0, χ

0,x
t,Wk

)) = g(C(0, χ0,x
t )), P-almost surely.

By (5.4),

|g(C(0, χ0,x
t,Wk

))| ≤ exp(cV (t)max{|C(0, χ0,x
t,Wk

)|, n1}) exp(cV (t)max{|C(0, χ0,x
t , )|, n1}).

From (5.8), it follows that
E exp(cV (t)|C(0, χ0,x

t )|) < ∞.

Dominated convergence implies that

lim
k→∞GWk(x, t) = lim

k→∞ Eg(C(0, χ0,x
t,Wk

)) = Eg(C(0, χ0,x
t )) = G(x, t).

Similarly, dominated convergence implies that, for any n ∈ N,

lim
k→∞ gWk,n(x, s) = gRd ,n(x, s).

Now we use the series representation (5.6) for W = Wk . Using Lemmas 5.3 and 5.4, we can
apply dominated convergence to show that

lim
k→∞GWk(t) = G(s)+

∞∑
n=1

(t − s)n lim
k→∞ gWk,n(x, s) = G(s)+

∞∑
n=1

(t − s)ngRd ,n(x, s)

holds for all t in some open neighborhood of s ∈ [0, tc). This completes the proof. �
Note that, due to the relaxed growth bound of Lemma 5.3 in comparison to (5.4), any

functional that grows exponentially in the size of the cluster of the origin is analytic at least in
s = 0. Lemmas 5.3 and 5.4 also yield a lower bound on the radius of convergence of the series
representation of G(t), which is rather small though.

Theorem 5.2 shows that the pair-connectedness function and the expected cluster size are
analytic functions on the whole interval [0, t∗). In particular, given x ∈ Rd , every s ∈ [0, t∗)
has a neighborhood U(s) such that

Pt(x) =
∞∑
n=0

(t − s)npn(x, s), t ∈ U(s),

where p0(x, s) := Ps(x) and, for n ∈ N,

pn(x, s) := 1

n!
∫

E
∑
J⊂[n]

(−1)n−|J |1{x ∈ C(0, χ0,xJ ,x
s )} dx. (5.10)

We summarize the integrability properties of the coefficients pn in the following corollary.

Corollary 5.1. For any n ∈ N0 and t ∈ [0, t∗), there are constants c1(t), c2(t) such that

‖pn(·, t)‖∞ ≤ c1(t)c2(t)
n, ‖pn(·, t)‖1 ≤ c1(t)c2(t)

n.
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Moreover, for any s ∈ [0, t∗), there is a neighborhood U(s) such that

Pt(·) =
∞∑
n=0

(t − s)npn(·, t), t ∈ U(s), (5.11)

where the convergence holds in L1 and L∞.

Proof. In the proofs of Lemma 5.3 and 5.4, we observed that the bounds on gn only depend
on the growth bound (5.4), which immediately yields the bound of ‖pn(·, t)‖∞.

From the arguments in the proof of Lemma 5.3, we have∫
Rd

|pn(x, 0)| dx ≤ 2n

n!
∫
(Rd )n+1

1{�(0, x1, . . . , xn, x} is connected} d(x1, . . . , xn, x),

which can be bounded using Lemma 5.2. The bound on ‖pn(·, t)‖1 with t > 0 can be derived
in a similar way. It is clear that these bounds imply the L1 and L∞ convergence of the sum in
(5.11) for t in a neighborhood U(s) of s. �

With a good understanding of the analyticity of Pt , we are now able to show similar results
for the solution Qt of the OZE. We will write f ∗n for an n-fold convolution of the function f
with itself, that is, f ∗(n+1) := f ∗n ∗ f for n ∈ N and f ∗1 := f . In the same spirit, we define
∗bk=afk := fb ∗ (∗b−1

k=afk) and ∗ak=afk := fa for a < b ∈ Z and functions fa, . . . , fb.

Proposition 5.2. If t ≥ 0 is such that E|C(0, χ0
t )| < 2 then

Qt =
∞∑
n=0

(−t)nP ∗(n+1)
t (5.12)

in L1 and L∞. Moreover, for any s ∈ [0, t∗), there is a neighborhood U(s) and functions
qn(·, t∗) such that

Qt(·) =
∞∑
n=0

(t − s)nqn(·, s), t ∈ U(s) (5.13)

in L1 and L∞. The coefficients can be recursively determined by the solvable equations

q0(·, s)+ sp0(·, s) ∗ q0(·, s) = p0(·, s), (5.14)

qn(·, s)+ sqn(·, s) ∗ p0(·, s) = pn(·, s)−
n∑
k=1

qn−k(·, s) ∗ (pk−1(·, s)+ spk(·, s)). (5.15)

Proof. From E|C(0, χ0
t )| < 2 and (3.5), we obtain t‖Pt‖1 < 1. By (3.6) and (3.7), we have

‖P ∗k+1
t ‖∞ ≤ ‖Pt‖k1‖Pt‖∞, k ∈ N, ‖P ∗k+1

t ‖1 ≤ ‖Pt‖k+1
1 , k ∈ N,

and, hence, the convergence of the right-hand side of (5.12) inL1 andL∞. A simple calculation
shows that (5.12) solves the OZE.

To prove the second part of the claim, we start by solving (5.14) and (5.15) for q0(·, s) and
qn(·, s), respectively. From the proof of Theorem 3.1, we know that there is a function f ∈ L1
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such that (δ0 + sp0(·, s)) ∗ (δ0 + sf ) = δ0. Hence, (5.14) and (5.15) are equivalent to

q0(·, s) = (δ0 + sf ) ∗ p0(·, s),

qn(·, s) = (δ0 + sf ) ∗
(
pn(·, s)−

n∑
k=1

qn−k(·, s) ∗ (pk−1(·, s)+ spk(·, s))
)
. (5.16)

This implies that the qn can be recursively determined.
In the next step, we show that the series in (5.13) converges. We fix s and write pn for

pn(·, s) and qn for qn(·, s). We choose p, c ∈ R such that max{‖pn‖1, ‖pn‖∞} ≤ pn for all
n ∈ N as well as max{‖p0‖1, ‖q0‖1, ‖δ0 + sf ‖1} ≤ c. This is possible due to Corollary 5.1
and Theorem 3.1. Moreover, we choose q such that

q > p, q > c(p + c2 + scp), c

(
p

q
+ 2c

q
+ p

q(q − p)
+ scp

q
+ sp

q − p

)
≤ 1.

By (3.7) and (5.16), we have

‖q1‖1 = ‖(δ0 + sf ) ∗ (p1 − q0 ∗ p0 − sq0 ∗ p1)‖1 ≤ c(p + c2 + scp) < q.

By induction over n, we obtain

‖qn+1‖1 =
∥∥∥∥(δ0 + sf ) ∗

(
pn+1 −

n∑
k=0

pk ∗ qn−k − s

n+1∑
k=1

pk ∗ qn+1−k
)∥∥∥∥

1

≤ c

(
pn+1 + pnc + cqn + pnq − pqn

p − q
+ spn+1c + s

pn+1q − pqn+1

p − q

)

= qn+1c

((
p

q

)n+1

+
(
p

q

)n
c

q
+ c

q
+ 1

q − p

((
p

q

)
−

(
p

q

)n)

+ sc

(
p

q

)n+1

+ s
p

q − p

(
1 −

(
p

q

)n))

≤ qn+1c

(
p

q
+ 2c

q
+ p

q(q − p)
+ scp

q
+ sp

q − p

)
≤ qn+1.

If we use (3.6) instead of (3.7), we obtain the same bound on ‖qn‖∞, which implies the
convergence of the sum in (5.13).

It remains to show that the sum in (5.13) solves the OZE. This is achieved by rewriting the
OZE in the form

Pt = Qt + (t − s)Pt ∗Qt + sPt ∗Qt.

Substituting for Pt and Qt , the series expansion at s yields that the equation holds if, for all
n ∈ N0,

pn = qn +
n∑
k=1

pk−1 ∗ qn−k + s

n∑
k=0

pk ∗ qn−k,

which is equivalent to (5.14) and (5.15). �
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6. Combinatorics for small intensities

The coefficients pn in (5.11) (given by (5.10)) are quite complex probabilistic objects.
In the expansion of Pt(x) around s = 0, however, ηs vanishes and the only random objects that
remain are the random connections between the points 0, x1, . . . , xn, x. This leads to an almost
combinatorial interpretation of the pn(x, 0). (In the Gilbert graph with a fixed gauge body all
randomness disappears.) Moreover, this interpretation provides a simple combinatorial way to
determine the coefficients qn(x, 0) in (5.13).

For n ∈ N0, let Gn be the set of connected graphs with n+ 2 vertices {0, . . . , n+ 1}. For a
graph G = (V (G),E(G)) ∈ Gn with vertex set V (G) and edge set E(G), we call 0 the start
vertex and n + 1 the end vertex. For i, j ∈ V (G) and I ⊂ [n], we write ‘i ↔ j in G | I ’ if
there is a path from i to j in G that uses only vertices in I ∪ {i, j}. For n ∈ N0, we define the
combinatorial functionals πn : Gn → Z by

πn(G) :=
∑
I⊂[n]

(−1)n−|I | 1{0 ↔ n+ 1 in G|I }.

By a slight abuse of notation, we write G = G(χ
x0,...,xn+1
0 ) for G ∈ Gn if the two graphs are

equal after changing the labels in G from i to xi .
It was shown in Lemma 5.3 that the integrand in (5.10) vanishes if G(χ

x0,x,xn+1
0 ) is not

connected. Hence, (5.10) is equivalent to

pn(x, s) = 1

n!
∫

E
∑
G∈Gn

∑
J⊂[n]

(−1)n−|J | 1{x ∈ C(0, χ0,x,x
0 )} 1{G(χ0,x,x

0 ) = G} dx

= 1

n!
∫ ∑

G∈Gn

πn(G)E 1{G(χ0,x,x
0 ) = G} dx

= 1

n!
∑
G∈Gn

πn(G)In(G, x), (6.1)

where In : Gn × Rd → [0,∞) is defined by

In(G, x) :=
∫

P(G(χ0,x,x
0 ) = G) dx

=
∫

E
∏

{i,j}∈E(G)
1{{xi, xj } ∈ E(χx0,x,xn+1

0 )}

×
∏

{i,j}/∈E(G)
1{{xi, xj } /∈ E(χx0,x,xn+1

0 )} dx

=
∫ ∏

{i,j}∈E(G)
ϕ(xi − xj )

∏
{i,j}/∈E(G)

(1 − ϕ(xi − xj )) d(x1, . . . , xn),

where again x0 := 0 and xn+1 := x. By (6.1) we have found a representation of pn(x) as a
sum over the graphs in Gn where each summand consists of a purely combinatorial factor and
an integral-geometric factor. This representation looks rather natural, but is not well suited for
the convolution. Therefore, we will derive a second representation that convolutes in a very
simple way. This will also enable us to give a very simple representation of the qn(x).
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Let Jn : Gn × Rd → [0,∞) be defined by

Jn(G, x) :=
∫
(Rd )n

∏
{i,j}∈E(G)

ϕ(xi − xj ) d(x1, . . . , xn).

By multiplying the integrand with a 1 = ϕ(xi − xj ) + (1 − ϕ(xi − xj )) for each edge {i, j}
which is not contained in E(G), we obtain

Jn(G, x) =
∑

H∈Gn, E(H)⊃E(G)
In(H, x).

For example,

J2

( 1

0

2

3

)
= I2

( 1

0

2

3

)
+ I2

( 1

0

2

3

)
+ I2

( 1

0

2

3

)
+ I2

( 1

0

2

3

)
.

By a Möbius inversion (see, e.g. [13]), we have

In(G, x) =
∑

H∈Gn, E(H)⊃E(G)
(−1)|E(H)|−|E(G)|Jn(H, x), G ∈ Gn.

This leads to the announced second representation for pn(x), namely

pn(x) = 1

n!
∑
G∈Gn

πn(G)In(G, x)

= 1

n!
∑
G∈Gn

∑
H∈Gn

1{E(H) ⊃ E(G)}πn(G)(−1)|E(H)|−|E(G)|Jn(H, x)

= 1

n!
∑
H∈Gn

Jn(H, x)
∑
G∈Gn

1{E(G) ⊂ E(H)}πn(G)(−1)|E(H)|−|E(G)|.

In particular,

pn(x) = 1

n!
∑
H∈Gn

κn(H)Jn(H, x), n ∈ N, (6.2)

where
κn(H) :=

∑
G∈Gn

1{E(G) ⊂ E(H)}πn(G)(−1)|E(H)|−|E(G)|.

A vertex i ∈ [n] of a graph G ∈ Gn is called pivotal if any path from 0 to n+ 1 contains i.
The subset G0

n ⊂ Gn of graphs which contain no pivotal vertex plays a significant role for
determining the coefficients qn(x) from pn(x) as the next theorem shows.

Theorem 6.1. The coefficients qn(x) := qn(x, 0) of the series representation of Qt at t0 = 0
satisfy

qn(x) = 1

n!
∑
H∈G0

n

κn(H)Jn(H, x), x ∈ Rd .

This means that qn(x) differs from pn(x) only by the sum over the graphs with pivotal
vertices. The proof of Theorem 6.1 is based on the following three lemmas.
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At first we define the concatenation of two graphs. Forn,m ∈ N0, letG1 ∈ Gn andG2 ∈ Gm.
The concatenationG1 �G2 ∈ Gn+m+1 ofG1 andG2 is constructed in the following way.

• Relabel all nodes in G2 with labels {n+ 1, . . . , n+m+ 2} without changing the order.

• Define V (G1 �G2) := V (G1) ∪ V (G2).

• Define E(G1 �G2) := E(G1) ∪ E(G2).

For example,

0

1

2

�
0

1

2

=
0

1

2

3

4

.

In other words, we only combine the end vertex ofG1 and the start vertex ofG2 to a new vertex
and adjust the labels.

Lemma 6.1. For n,m ∈ N0 and G1 ∈ Gn, G2 ∈ Gm, we have

πn+m+1(G1 �G2) = πn(G1)πm(G2).

Proof. The vertex with labeln+1 is by construction pivotal. If 0 ↔ n+m+2 in (G1�G2)|I
then n+ 1 ∈ I . Hence,

πn+m+1(G1 �G2) =
∑

I⊂[n+m+1]
(−1)n+m+1−|I | 1{0 ↔ n+m+ 2 in (G1 �G2) | I }

=
∑
I1⊂[n]

∑
I2⊂[m]+n+1

(−1)n+m−|I1|−|I2| 1{0 ↔ n+ 1 in (G1 �G2) | I1}

× 1{n+ 1 ↔ n+m+ 2 in (G1 �G2) | I2}
=

∑
I1⊂[n]

∑
I2⊂[m]

(−1)n+m−|I1|−|I2| 1{0 ↔ n+ 1 in G1 | I1}

× 1{0 ↔ m+ 1 in G2 | I2}
= πn(G1)πm(G2). �

Lemma 6.2. For n,m ∈ N0 and G1 ∈ Gn, G2 ∈ Gm, we have

κn+m+1(G1 �G2) = κn(G1)κm(G2).

Proof. In every graphH ∈ Gn+m+1 with E(H) ⊂ E(G1 �G2) the vertex n+ 1 is pivotal.
Hence, there are uniquely determined graphsH1 ∈ Gn andH2 ∈ Gm such thatH = H1 �H2.
The graph H1 consists of 0, n + 1 and all vertices lying ‘in front’ of n + 1, whereas H2 is a
relabeled version of the subgraph of H which consists of n + 1, n + m + 2, and all vertices
lying ‘behind’ n+ 1. Hence, by Lemma 6.1,

κn+m+1(G1 �G2) =
∑

H∈Gn+m+1

1{E(H) ⊂ E(G1 �G2)}πn+m+1(H)(−1)|E(H)|−|E(G1�G2)|

=
∑
H1∈Gn

∑
H2∈Gm

1{E(H1 �H2) ⊂ E(G1 �G2)}πn+m+1(H1 �H2)

× (−1)|E(H1�H2)|−|E(G1�G2)|
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=
∑
H1∈Gn

∑
H2∈Gm

1{E(H1) ⊂ E(G1)} 1{E(H2) ⊂ E(G2)}

× πn(H1)πm(H2)(−1)|E(H1)|+|E(H2)|−|E(G1)|−|E(G2)|

= κn(G1)κm(G2). �

Lemma 6.3. For n,m ∈ N0 and G1 ∈ Gn, G2 ∈ Gm, we have

Jn(G1) ∗ Jm(G2) = Jn+m+1(G1 �G2).

Proof. For all x ∈ Rd , we have

(Jn(G1) ∗ Jm(G2))(x) =
∫

Rd

∫
(Rd )n

∏
{i,j}∈E(G1)

ϕ(xi − xj ) d(x1, . . . , xn)

×
∫
(Rd )m

∏
{i,j}∈E(G2)

ϕ(yi − yj ) d(y1, . . . , ym) dxn+1,

where x0 := 0 and y0 := 0, ym+1 := x−xn+1. By translation invariance, nothing changes if we
redefine y0 := xn+1 and ym+1 := x. If we apply Fubinis theorem and rename the integration
variables in the same way as we renamed the vertex labels in the definition of ‘concatenation’,
we obtain

(Jn(G1) ∗ Jm(G2))(x) =
∫

Rd

∫
(Rd )n

∫
(Rd )m

∏
{i,j}∈E(G1�G2)

ϕ(xi − xj ) d(x1, . . . , xn)

× d(xn+2, . . . , xn+m+1) dxn+1

= Jn+m+1(G1 �G2)(x). �

We are now in a position to prove Theorem 6.1.

Proof of Theorem 6.1. For t0 = 0, (5.14) and (5.15) simplify to q0 = p0 and

qn+1 = pn+1 −
n∑
k=0

qn−k ∗ pk, n ∈ N0. (6.3)

We will use this for an induction over n. First, we observe that trivially G0 = G0
0 as the

graph G0 that connects 0 and 1 with a single bond is the only element of G0. Hence,

1

0!
∑
G∈G

0
0

κ0(G)J0(G, x) = J0(G0, x) = p0 = q0.

For the induction step, we define G>0
n := Gn \ G0

n. From (6.2), it follows that

pn+1 = 1

(n+ 1)!
∑

G∈G
0
n+1

κn+1(G)Jn+1(G)+ 1

(n+ 1)!
∑

G∈G
>0
n+1

κn+1(G)Jn+1(G).

Hence, by (6.3), it is enough to show

1

(n+ 1)!
∑

G∈G
>0
n+1

κn+1(G)Jn+1(G) =
n∑
k=0

pk ∗ qn−k. (6.4)
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We use the induction hypothesis, (6.2), and Lemmas 6.2 and 6.3 to obtain

n∑
k=0

pk ∗ qn−k =
n∑
k=0

(
1

k!
∑
G1∈Gk

κk(G1)Jk(G1)

)
∗

(
1

(n− k)!
∑

G2∈G
0
n−k

κn−k(G2)Jn−k(G2)

)

=
n∑
k=0

1

k! (n− k)!
∑
G1∈Gk

∑
G2∈G

0
n−k

κn+1(G1 �G2)Jn+1(G1 �G2). (6.5)

Finally, we have a look at the left-hand side of (6.4). LetG ∈ G0
n+1. Each path from 0 to n+ 2

runs through the pivotal vertices of G in the same order. Let v ∈ [n + 1] be the last of these
pivotal vertices. We define the set of graphs Hk ⊂ G0

n+1, k ∈ {0, . . . , n}, with the following
properties.

• Each H ∈ Hk contains at least one pivotal vertex.

• The vertex with label k + 1 is the last pivotal vertex in each H ∈ Hk .

• The k vertices {1, . . . , k} lie in front of the vertex k + 1.

• The n− k vertices {k + 2, . . . , n+ 1} lie behind the vertex k + 1.

We partition the set [n + 1] of vertices in each G ∈ G0
n+1 into three sets M1, M2, and M3.

The set M1 contains all vertices that lie in front of the last pivotal vertex of G. The set M2
contains only the last pivotal vertex and M3 contains the remaining vertices. Now we relabel
the vertices in G to obtain a graph G̃ in the following way: the vertices in M1 are labeled with
the numbers 1, . . . , |M1| without changing the order. The vertex inM2 is labeled |M1| + 1 and
the vertices in M3 are labeled with the numbers |M1| + 2, . . . , n+ 1, again without changing
the order. By construction, we have G̃ ∈ H|M|1 but κ(G) = κ(G̃) and Jn+1(G) = Jn+1(G̃).
There are exactly (

n+ 1

k, n− k, 1

)

graphs in G0
n+1, which become the same G̃ by this relabeling procedure. Hence, we have, for

the left-hand side of (6.4),

1

(n+ 1)!
∑

G∈G
>0
n+1

κn+1(G)Jn+1(G) = 1

(n+ 1)!
n∑
k=0

∑
H∈Hk

(
n+ 1

k, n− k, 1

)
κn+1(H)Jn+1(H)

=
n∑
k=0

∑
H∈Hk

1

k! (n− k)!κn+1(H)Jn+1(H),

which is equal to (6.5) due to the definition of the concatenation. �

Appendix A. Palm distributions

In this appendix we work in the setting of Section 2. The following result (Neveu’s exchange
formula; see, e.g. [6]) is a versatile tool of Palm theory.
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Proposition A.1. Letη, η′ be two invariant point processes with finite intensities and letf : �×
Rd → [0,∞) be measurable. Then

γηE
0
η

∑
x∈η′

f (θ0, x) = γη′E0
η′

∑
x∈η

f (θx,−x). (A.1)

This remains true for any measurable f : �× Rd → R with E0
η

∑
x∈η′ |f (θ0, x)| < ∞.

Let η be an invariant point process with a positive and finite intensity and assume that its
second factorial moment measure α(2) is locally finite and absolutely continuous. We explain
one possible construction of the two-point Palm probability measures of η. An easy calculation
shows that, for any B ∈ Bd ,

E0
η

∑
x∈η\{0}

1{x ∈ B} = γ 2
η

∫
1{x ∈ B}ρ(x) dx.

We now assume that (�,A) is a Borel space. This very weak assumption can be made without
restricting generality. By a standard disintegration technique, we can then find a (measurable)
family {P0,x

η : x ∈ Rd} of probability measures on (�,A) such that

E0
η

∫
f (θ0, x)η(dx) = E0

ηf (θ0, 0)+ γη

∫
E0,x
η f (θ0, x)ρ(x) dx (A.2)

for all measurable f : �× Rd → [0,∞). We can then define

Px,yη (A) := P0,y−x(θxA), x, y ∈ Rd , A ∈ A,

so that (2.4) holds. Using the refined Campbell theorem (2.1) and (A.2), it is then not difficult to
check that (2.3) holds. It is also easy to see that P

x,y
η (x, y ∈ η) = 1 for α(2)-almost everywhere,

(x, y) ∈ Rd × Rd .
Let us now assume that η ≡ ηt is a stationary Poisson process of intensity t > 0. The

multivariate Mecke equation (see, e.g. [15, Corollary 3.2.3] or [8, Theorem 4.4]) states that, for
any n ∈ N and any measurable function f : N(Rd)× (Rd)n → [0,∞),

E
∑�=

x1,...,xn∈η
f (ηt , x1, . . . , xn) = tn

∫
Ef (ηt ∪{x1, . . . , xn}, x1, . . . , xn) d(x1, . . . , xn). (A.3)

The n = 1 case easily implies (together with stationarity of ηt ) that the Palm distribution of ηt
is given by

P0
ηt
(ηt ∈ ·) = P(ηt ∪ {0} ∈ ·).

For n = 2, we obtain from (A.3) that the pair correlation function ρt of ηt satisfies ρt ≡ 1 and
that, moreover,

Px,yηt (ηt ∈ ·) = P(ηt ∪ {x, y} ∈ ·)
for almost every (x, y) with respect to Lebesgue measure on (Rd)2.

In this paper we work also with point processes on a metric space X different from Rd .
These are random elements of the space N(X) of all integer-valued locally finite measuresμ on
X equipped with the smallest σ -field making the mappings μ �→ μ(B)measurable for all B in
the Borel σ -field on X. For more details on point processes we refer the reader to [8] and [15].
A survey of Palm theory can be found in [6].
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