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Abstract Given two arbitrary sequences (λj)j>1 and (µj)j>1 of real numbers satisfying

|λ1|> |µ1|> |λ2|> |µ2|> · · ·> |λj|> |µj| → 0,

we prove that there exists a unique sequence c = (cn)n∈Z+ , real valued, such that the Hankel operators
Γc and Γc̃ of symbols c = (cn)n>0 and c̃ = (cn+1)n>0, respectively, are selfadjoint compact operators on

`2(Z+) and have the sequences (λj)j>1 and (µj)j>1, respectively, as non-zero eigenvalues. Moreover, we
give an explicit formula for c and we describe the kernel of Γc and of Γc̃ in terms of the sequences
(λj)j>1 and (µj)j>1. More generally, given two arbitrary sequences (ρj)j>1 and (σj)j>1 of positive numbers

satisfying

ρ1 > σ1 > ρ2 > σ2 > · · ·> ρj > σj→ 0,

we describe the set of sequences c = (cn)n∈Z+ of complex numbers such that the Hankel operators Γc

and Γc̃ are compact on `2(Z+) and have sequences (ρj)j>1 and (σj)j>1, respectively, as non-zero singular
values.

Keywords: Hankel operators; inverse spectral problems; compressed shift operator;

action–angle variables
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1. Introduction

1.1. Eigenvalues of selfadjoint Hankel operators on `2(Z+)

Let c = (cn)n>0 be a sequence of complex numbers. The Hankel operator Γc of symbol c
is formally defined on `2(Z+) by

∀x= (xn)n>0 ∈ `
2(Z+), Γc(x)n =

∞∑
p=0

cn+pxp.
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These operators frequently appear in operator theory and in harmonic analysis, and
we refer to the books by Nikolskii [10] and Peller [13] for an introduction and their
basic properties. By a well-known theorem of Nehari [9], Γc is well defined and bounded
on `2(Z+) if and only if there exists a function f ∈ L∞(T) such that, ∀n > 0, f̂ (n) = cn,
or equivalently if the Fourier series uc =

∑
n>0 cneinx belongs to the space BMO(T) of

bounded mean oscillation functions. Moreover, by a well-known result of Hartman [4],
Γc is compact if and only if there exists a continuous function f on T such that,
∀n > 0, f̂ (n) = cn, or equivalently if uc belongs to the space VMO(T) of vanishing mean
oscillation functions. Assume moreover that the sequence c is real valued. Then Γc is
selfadjoint and compact, so it admits a sequence of non-zero real eigenvalues (λj)j>1,
tending to zero. A natural inverse spectral problem is the following: given any sequence
of real numbers (λj)j>1, tending to zero, does there exist a compact selfadjoint Hankel
operator Γc having this sequence as non-zero eigenvalues, repeated according to their
multiplicity?

A complete answer to this question can be found in the literature as a consequence of
a more general theorem by Megretskii et al. [8] characterizing selfadjoint operators which
are unitarily equivalent to bounded Hankel operators. Here, we state the part of their
result which concerns the compact operators.

Theorem 1 (Megretskii et al. [8]). Let Γ be a compact selfadjoint operator on a
separable Hilbert space. Then Γ is unitarily equivalent to a Hankel operator if and
only if the following conditions are satisfied.

(1) Either ker(Γ )= {0} or dim ker(Γ )=∞.
(2) For any λ ∈ R∗, |dim ker(Γ − λI)− dim ker(Γ + λI)|6 1.

As a consequence of this theorem, any sequence of real numbers with distinct absolute
values and converging to 0 is the sequence of non-zero eigenvalues of some compact
selfadjoint Hankel operator.

In this paper, we are interested in finding additional constraints on the operator Γc

which give rise to the uniqueness of c. With this aim in view, we introduce the shifted
Hankel operator Γc̃, where c̃n := cn+1 for all n ∈ Z+. If we denote by (λj)j>1 the sequence
of non-zero eigenvalues of Γc and by (µj)j>1 the sequence of non-zero eigenvalues of Γc̃,
one can check – see below – that

|λ1|> |µ1|> |λ2|> |µ2|> · · · → 0.

Our result reads as follows.

Theorem 2. Let (λj)j>1, (µj)j>1 be two sequences of real numbers tending to zero so
that

|λ1|> |µ1|> |λ2|> |µ2|> · · · → 0.

There exists a unique real valued sequence c = (cn) such that Γc and Γc̃ are compact
selfadjoint operators, the sequence of non-zero eigenvalues of Γc is (λj)j>1, and the
sequence of non-zero eigenvalues of Γc̃ is (µj)j>1.
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Furthermore, the kernel of Γc is reduced to zero if and only if the following conditions
hold:

∞∑
j=1

(
1−

µ2
j

λ2
j

)
=∞, sup

N

1
λ2

N+1

N∏
j=1

µ2
j

λ2
j
=∞. (1)

Moreover, in that case, the kernel of Γc̃ is also reduced to 0.

In complement to the above statement, let us mention that an explicit formula for c is
available, as well as an explicit description of the kernel of Γc when it is non-trivial; see
Theorems 3 and 4 below.

1.2. Singular values of Hankel operators on the Hardy space

Theorem 2 is in fact a consequence of a more general result concerning the singular
values of non-necessarily selfadjoint compact Hankel operators. Recall that the singular
values of a bounded operator T on a Hilbert space H are given by the following min–max
formula. For every m > 1, denote by Fm the set of linear subspaces of H of dimension at
most m. The mth singular value of T is given by

sm(T)= min
F∈Fm−1

max
f∈F⊥,‖f‖=1

‖T(f )‖. (2)

In this paper, we construct a homeomorphism between some set of symbols c and the
singular values of Γc and Γc̃ up to the choice of an element in an infinite-dimensional
torus.

In order to state this general result we complexify and reformulate the problem in the
Hardy space.

1.2.1. The setting. We identify `2(Z+) with

L2
+(T)=

{
u : u=

∞∑
n=0

û(n) einx,

∞∑
n=0

|û(n)|2 <+∞

}
,

and we denote by Π the orthogonal projector from L2(T) onto L2
+(T).

Here, and in the following, for any space of distributions E on T, the notation E+
stands for the subspace of E consisting of those elements u of E such that û(n) = 0 for
every n < 0, or equivalently which can be holomorphically extended to the unit disc. In
that case, we will still denote by u(z) the value of this holomorphic extension at the point
z of the unit disc.

We endow L2
+(T) with the scalar product

(u|v) :=
∫

T
uv

dx

2π
and with the associated symplectic form

ω(u, v)= Im(u|v).

For u sufficiently smooth, we define a C-antilinear operator on L2
+ by

Hu(h)=Π(uh), h ∈ L2
+.
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If u= uc,

Ĥu(h)(n)= Γc(x)n, xp := ĥ(p).

Because of this equality, Hu is called the Hankel operator of symbol u. Similarly, Γc̃

corresponds to the operator Ku = HuTz, where Tz denotes multiplication by z. Note that,
by definition, Hu = HΠ(u). In the following, we always consider holomorphic symbols
u=Π(u).

As stated before, by the Nehari theorem [9], Hu is well defined and bounded on
L2
+(T) if and only if u belongs to Π(L∞(T)) or to BMO+(T). Moreover, by the Hartman

theorem [4], it is a compact operator if and only if u is the projection of a continuous
function on the torus, or equivalently if and only if it belongs to VMO+(T) with
equivalent norms. Furthermore, note that this operator Hu is selfadjoint as an antilinear
operator in the sense that, for any h1, h2 ∈ L2

+,

(h1|Hu(h2))= (h2|Hu(h1)). (3)

A crucial property of Hankel operators is that

HuTz = T∗z Hu. (4)

As a consequence,

K2
u = HuTzT

∗
z Hu = Hu(I − (·|1))Hu,

hence

K2
u = H2

u − (·|u)u. (5)

Assume that u ∈ VMO+(T) and denote by (ρj)j>1 the sequence of singular values of
Hu labelled according to the min–max formula (2). Notice that, by identity (3), the
sequence (ρ2

j )j>1 is the sequence of eigenvalues of H2
u . Since, via the Fourier transform,

H2
u identifies to ΓcΓ

∗
c with c = û, (ρj)j>1 is also the sequence of singular values of Γû.

Similarly, Ku is compact, so it has a sequence (σj)j>1 of singular values tending to 0,
which are the singular values of Γc̃, since K2

u identifies to Γc̃Γ
∗

c̃ . From equality (5) and
the min–max formula (2), one obtains

ρ1 > σ1 > ρ2 > σ2 > · · · → 0.

1.2.2. Generic symbols. We denote by VMO+,gen the set of u ∈ VMO+(T) such that
Hu and Ku admit only simple singular values with strict inequalities, or equivalently such
that H2

u and K2
u := H2

u − (·|u)u admit only simple positive eigenvalues ρ2
1 > ρ

2
2 > · · · >

· · · → 0 and σ 2
1 > σ

2
2 > · · ·> · · · → 0 so that

ρ2
1 > σ

2
1 > ρ

2
2 > σ

2
2 > · · · → 0.

For any integer N, we denote by V(2N) the set of symbols u such that the rank of Hu

and the rank of Ku are both equal to N. By a theorem of Kronecker (see [5]), V(2N) is a
complex manifold of dimension 2N consisting of rational functions. One can consider as
well the set V(2N − 1) of symbols u such that Hu is of rank N and Ku is of rank N − 1. It
defines a complex manifold of rational functions of complex dimension 2N − 1.
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By the arguments developed in [2], it is straightforward to verify that VMO+,gen is
a dense Gδ subset of VMO+(T). Indeed, let us consider the set UN which consists of
functions u ∈ VMO+(T) such that the N first eigenvalues of H2

u and of K2
u are simple.

This set is obviously open in VMO+(T). Moreover, in Lemma 4 of [2], it is proved that
UN ∩ V(2N) := V(2N)gen is a dense open subset of V(2N). Now any element u in VMO+
may be approximated by an element in V(2N′), N′ > N, which can be itself approximated
by an element in V(2N′)gen ⊂ UN , since N′ > N. Eventually, VMO+,gen is the intersection
of the UN which are open and dense; hence VMO+,gen is a dense Gδ set.

1.2.3. Spectral data for generic symbols. Let u ∈ VMO+,gen. Denote by (ρj)j>1

the singular values of Hu and by (σj)j>1 the singular values of Ku. Denote by (ẽj) an
orthonormal family of corresponding eigenvectors,

H2
u ẽj = ρ

2
j ẽj.

It is clear that Huẽj is also an eigenvector of H2
u for the same eigenvalue ρ2

j ; hence, since
the eigenspace is assumed to be one dimensional due to the genericity assumption, we
infer that

Huẽj = ξjẽj,

with, by applying Hu to both sides and using the antilinearity,

|ξj|
2
= ρ2

j .

Consequently, one can write, for some ψj ∈ T,

ξj = ρj eiψj .

We now replace our orthonormal family (ẽj) by (ej) defined by

ej = eiψj/2ẽj,

so that

Hu(ej)= ρjej, j> 1. (6)

Notice that this orthonormal family is determined by u up to a change of sign on some
of the ej. We claim that (1|ej) 6= 0. Indeed, if (1|ej) = 0, then (u|ej) = ρj(ej|1) = 0 and,
in view of (5), ρ2

j would be an eigenvalue of K2
u , which contradicts the assumption.

Therefore we can define the angles

ϕj(u) := 2 arg(1|ej), j> 1. (7)

We do the same analysis with the operator Ku = HuTz. As before, by the antilinearity of
Ku there exists an orthonormal family (fj)j>1 of the range of Ku such that

Ku(fj)= σjfj, j> 1, (8)

and the family is determined by u up to a change of sign on some of the fj. One has also
(u|fj) 6= 0 because of the assumption on the ρj and the σj. We set

θj(u) := 2 arg(u|fj), j> 1. (9)
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1.2.4. The main result. We define

Ξ := {(ζj)j>1 ∈ CZ+ , |ζ1|> |ζ2|> |ζ3|> |ζ4|> · · · → 0},

endowed with the topology induced by the Banach space c0(Z+) of sequences of complex
numbers tending to 0.

Theorem 3. The mapping

χ : u ∈ VMO+,gen 7−→ ζ = ((ζ2j−1 = ρje−iϕj)j>1, (ζ2j = σje−iθj)j>1)

is a homeomorphism onto Ξ . Moreover, one has an explicit formula for the inverse
mapping. Namely, if ζ is given in Ξ , then the Fourier coefficients of u are given by

û(n)= X · AnY, (10)

where A= (Ajk)j,k>1 is the bounded operator on `2 defined by

Ajk =

∞∑
m=1

νjνkζ2k−1κ
2
mζ2m

(|ζ2j−1|
2 − |ζ2m|

2)(|ζ2k−1|
2 − |ζ2m|

2)
, j, k > 1, (11)

with

ν2
j :=

(
1−

σ 2
j

ρ2
j

)∏
k 6=j

(
ρ2

j − σ
2
k

ρ2
j − ρ

2
k

)
, (12)

κ2
m :=

(
ρ2

m − σ
2
m

)∏
`6=m

(
σ 2

m − ρ
2
`

σ 2
m − σ

2
`

)
, (13)

X = (νjζ2j−1)j>1, Y = (νj)j>1, (14)

and

V ·W :=
∞∑

j=1

vjwj if V = (vj)j>1,W = (wj)j>1.

Theorem 3 calls for several comments. First, it is not difficult to see that the first
part of Theorem 2 is a direct consequence of Theorem 3 (see the end of ğ 3 below).
More generally, as an immediate corollary of Theorem 3, one shows that, for any given
sequences (ρj)j>1 and (σj)j>1 satisfying

ρ1 > σ1 > ρ2 > σ2 > · · · → 0,

there exists an infinite-dimensional torus of symbols c such that the (ρj)j>1 are the
non-zero singular values of Γc, and the (σj)j>1 are the non-zero singular values of Γc̃.

Next, we make the connection with previous results. In a previous article [3], we have
obtained an analogue of Theorem 3 in the more restricted context of Hilbert–Schmidt
Hankel operators. This result arises in [3] as a by-product of the study of the dynamics
of some completely integrable Hamiltonian system called the cubic Szegő equation
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(see [2, 3]). In this setting, the phase space of this Hamiltonian system is the Sobolev
space

H1/2
+ =

{
u ∈ L2

+(T) :
∞∑

k=0

(1+ k)|û(k)|2 <∞

}
, (15)

which is the space of symbols of Hilbert–Schmidt Hankel operators, and the restriction
of the mapping χ to the phase space can be interpreted as an action–angle map. In the
present paper, we extend this result to compact Hankel operators, which is the natural
setting for an inverse spectral problem.

Finally, we would like to comment on the explicit formula above giving û(n). The
boundedness of the operator A defined by (11) is not trivial. In fact, it is a consequence
of the proof of the theorem. However, it is possible to give a direct proof of this
boundedness; see appendix B. Furthermore, from the complicated structure of formula
(10), it seems difficult to check directly that the corresponding Hankel operators have
the right sequences of singular values, namely that the map χ is onto. Our proof is in
fact completely different and is based on some compactness argument, while, as in [3],
the explicit formula is only used to establish the injectivity of χ .

1.2.5. Description of the kernel. We now state our last result, which describes the
kernel of Hu in terms of the ζ = χ(u).

Since ker Hu is invariant by the shift, the Beurling theorem – see e.g. [14] – provides
the existence of an inner function ϕ so that ker Hu = ϕL2

+. We use the notation of
Theorem 3 to describe ϕ. Denote by R the range of Hu.

Theorem 4. We keep the notation of Theorem 3. Let u ∈ VMO+,gen. The kernel of Hu

and the kernel of Ku are reduced to zero if and only if 1 ∈ R \ R or if and only if the
following conditions hold.

∞∑
j=1

(
1−

σ 2
j

ρ2
j

)
=∞, sup

N

1
ρ2

N+1

N∏
j=1

σ 2
j

ρ2
j
=∞. (16)

When these conditions are not satisfied, then ker Hu = ϕL2
+ with ϕ inner satisfying the

following.

(1) If 1 does not belong to the closure of the range of Hui.e.1 6∈ R, then

ϕ(z)=
(

1−
∑

ν2
j

)−1/2

1−
∑
n>0

αnzn

 ,
where

αn = Y · AnY. (17)

Furthermore, ker Ku = ker Hu = ϕL2
+.
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(2) If 1 belongs to the range of Hu, i.e. 1 ∈ R, then ϕ(z)= zψ(z) with

ψ(z)=

 ∞∑
j=1

ν2
j

ρ2
j

−1/2∑
n>0

βnzn,

where

βn =W · AnY, W = (νjζ2j−1ρ
−2
j )j>1. (18)

Furthermore, ker Ku = ker Hu ⊕ CH−1
u (1)= ϕL2

+ ⊕ Cψ.

1.3. Organization of the paper

We end this introduction by describing the organization of this paper. In ğ 2, we
start the proof of Theorem 3. We first recall from [3] a finite-dimensional analogue
to Theorem 3. Then we generalize from [3] an important trace formula to arbitrary
compact Hankel operators. We then use this formula and the Adamyan–Arov–Krein
theorem to derive a crucial compactness lemma about Hankel operators. Using this
compactness lemma, we prove Theorem 3 in ğ 3, and we infer the first part of Theorem 2.
ğ 4 is devoted to the proof of Theorem 4, from which the second part of Theorem 2
easily follows. Finally, for the convenience of the reader, we have gathered in appendix A
the main steps of the proof of the finite-dimensional analogue of Theorem 3, while
appendix B is devoted to a direct proof of the boundedness of operator A involved in
Theorem 3.

2. Preliminary results

The proof of Theorem 3 is based on a finite rank approximation of Hu. We first recall the
notation and a similar result obtained on finite rank operators in [3].

2.1. The finite rank result

By a theorem due to Kronecker [5], the Hankel operator Hu is of finite rank if and
only if u is a rational function, holomorphic in the unit disc. As in subsection 1.2.2, we
consider V(2N) the set of rational functions u, holomorphic in the unit disc, so that Hu

and Ku are of finite rank N. It is elementary to check that V(2N) is a 2N-dimensional
complex submanifold of L2

+ (we refer to [2] for a complete description of this set and
for an elementary proof of Kronecker’s Theorem). We denote by V(2N)gen the set of
functions u ∈ V(2N) such that H2

u and K2
u have simple distinct eigenvalues (ρ2

j )16j6N and
(σ 2

m)16m6N , respectively, with

ρ2
1 > σ

2
1 > ρ

2
2 > · · · ρ

2
N > σ

2
N > 0.

As in the introduction, we can define new variables on V(2N)gen and a corresponding
mapping χN . The following result has been proven in [3].

Theorem 5. The mapping

χN : u ∈ V(2N)gen 7−→ ζ = (ζ2j−1 = ρje−iϕj , ζ2j = σje−iθj)16j6N
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is a symplectic diffeomorphism onto

ΞN := {ζ ∈ C2N, |ζ1|> |ζ2|> |ζ3|> |ζ4|> · · ·> |ζ2N−1|> |ζ2N |> 0}

in the sense that the image of the symplectic form ω by χN satisfies

(χN)∗ω =
1
2i

∑
16j62N

dζj ∧ dζj. (19)

There is also an explicit formula for the inverse χN analogous to the one given in
Theorem 3, except that the sums in formulae (10) run over the integers 1, . . . ,N.

In order to prove the extension of Theorem 5 to VMO+,gen, we have to extend some
tools introduced in [3].

2.2. The functional J(x)

Let H be a compact selfadjoint antilinear operator on a Hilbert space H. Let A= H2 and
e ∈H so that ‖e‖ = 1. Notice that A is selfadjoint, positive, and compact. We define the
generating function of H for |x| small by

J(x)(A)= 1+
∞∑

n=1

xnJn,

where Jn = Jn(A)= (An(e)|e). Consider the operator

B := A− ( · |H(e))H(e),

which is also selfadjoint, positive, and compact. Denote by (aj)j>1 (respectively, (bj)j>1)
the non-zero eigenvalues of A (respectively, of B) labelled according to the min–max
principle:

a1 > b1 > a2 > · · · .

Notice that

J(x)(A)= ((I − xA)−1(e)|e),

which shows that J extends as an entire meromorphic function, with poles at
x= 1

aj
, j> 1.

Proposition 1.

J(x)(A)=
∞∏

j=1

1− bjx

1− ajx
, x 6∈

{
1
aj
, j> 1

}
. (20)

Proof. Assume first that A and B are in the trace class. In that case, we can compute
the trace of the rank 1 operator (I − xA)−1

− (I − xB)−1. We first write

[(I − xA)−1
− (I − xB)−1

](f )=
x

J(x)
(f |(I − xA)−1H(e)) · (I − xA)−1H(e).
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Consequently, taking the trace, we get

Tr[(I − xA)−1
− (I − xB)−1

] =
x

J(x)
‖(I − xA)−1H(e)‖2.

Since, on the one hand,

‖(I − xA)−1H(e)‖2 = ((I − xA)−2A(e)|e)= J′(x),

and on the other hand

Tr[(I − xA)−1
− (I − xB)−1

] = xTr[A(I − xA)−1
− B(I − xB)−1

]

= x
∞∑

j=1

(
aj

1− ajx
−

bj

1− bjx

)
,

we get

∞∑
j=1

(
aj

1− ajx
−

bj

1− bjx

)
=

J′(x)

J(x)
, x 6∈

{
1
aj
,

1
bj
, j> 1

}
. (21)

From this equation, one gets easily formula (20) for A and B in the trace class. To extend
it to compact operators, we first recall that

aj > bj > aj+1.

Hence,
∑

j(aj − bj) converges when A is compact since 06 aj − bj 6 aj − aj+1 and aj tends
to zero by compactness of A. Hence, the infinite product in formula (20) converges, and
the above computation makes sense for compact operators. �

Lemma 1. Let e ∈ H with ‖e‖ = 1. Let (Hp) be a sequence of compact selfadjoint
antilinear operators on a Hilbert space H which converges strongly to H, namely

∀h ∈H, Hph−−−→
p→∞

Hh. (22)

We assume that H is compact. Let Ap = H2
p , Bp = Ap − (·|Hp(e))Hp(e), and A = H2,

B= A − (·|H(e))H(e) be their strong limits. For every j> 1, denote by Fj the set of linear
subspaces of H of dimension at most j, and set

a(p)j = min
F∈Fj−1

max
h∈F⊥,‖h‖=1

(Ap(h)|h),

b(p)j = min
F∈Fj−1

max
h∈F⊥,‖h‖=1

(Bp(h)|h).

Assume that there exist (aj) and (bj) such that

sup
j>1
|a(p)j − aj| −−−→

p→∞
0, sup

j>1
|b(p)j − bj| −−−→

p→∞
0,

and that the non-zero aj, bm are pairwise distinct. Then the positive eigenvalues of A are
simple and are exactly the aj; similarly, the positive eigenvalues of B = A − (·|H(e))H(e)
are simple and are exactly the bm.
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Proof. Notice that, by the uniform boundedness principle, the norm of Hp is uniformly
bounded, and (22) holds uniformly for h in every compact subset of H. Consequently, for
every h ∈H, we have

∀n> 1, An
p(h)−−−→p→∞

An(h).

In particular, for every n> 1,

Jn(Ap) := (A
n
p(e)|e)−−−→p→∞

(An(e)|e) := Jn(A),

and there exists C > 0 such that

∀n> 1, sup
p

Jn(Ap)6 Cn.

Choose δ > 0 such that δC < 1. Then, for every real number x such that |x|< δ, we have,
by dominated convergence,

J(x)(Ap) := 1+
∞∑

n=1

xnJn(Ap)−−−→
p→∞

1+
∞∑

n=1

xnJn(A) := J(x)(A).

On the other hand, in view of the assumption about the convergence of (a(p)j )j>1 and

(b(p)j )j>1 and the convergence of the product in formula (20), we also have, for |x|< δ,

J(x)(Ap)=

∞∏
j=1

(
1− b

(p)
j x

1− a(p)j x

)
−−−→
p→∞

∞∏
j=1

(
1− bjx

1− ajx

)
. (23)

Hence, we obtain

J(x)(A)=
∞∏

j=1

(
1− bjx

1− ajx

)
. (24)

By assumption, the non-zero aj, bm are pairwise distinct, so no cancellation can occur
in the right-hand side of (20), and the poles are all distinct.

On the other hand, denote by (aj) the family of eigenvalues of A and by (bj) that of B.
By a classical result (see e.g. Lemma 1, § 2.2 of [3]),

{aj, j> 1} ⊂ {aj, j> 1}, {bj, j> 1} ⊂ {bj, j> 1},

and the multiplicity of positive eigenvalues is 1. Consequently, there is no cancellation in
the expression of J(x)(A), and all the poles are simple. We conclude that aj = aj, bj = bj

for every j> 1. �

2.3. A compactness result

From now on, we choose H = L2
+ and e = 1. As a first application of Proposition 1, we

obtain the following.
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Lemma 2. For any u ∈ VMO+(T), we have, for x 6∈

{
1

ρ2
j (u)

}
j>1

,

J(x) := J(x)(H2
u )=

∞∏
j=1

1− x σ 2
j (u)

1− xρ2
j (u)

= 1+ x
∞∑

j=1

ρ2
j (u) ν

2
j

1− xρ2
j (u)

. (25)

Here, νj := |(1|ej)|. In particular,

ν2
j =

(
1−

σ 2
j

ρ2
j

)∏
k 6=j

(
ρ2

j − σ
2
k

ρ2
j − ρ

2
k

)
.

The first equality in (25) is just a consequence of (20). For the second equality in (25),
we use the formula

J(x)= ((I − xH2
u )
−1(1)|1)= 1+ x((I − xH2

u )
−1(u)|u), (26)

and we expand u according to the decomposition

(ker Hu)
⊥
=⊕j>1Cej.

Finally, the expression of ν2
j is obtained by multiplying both expressions of J(x) in (25)

by (1− xρ2
j (u)), and by letting x go to 1/ρ2

j (u).
From Lemma 1, we infer the following compactness result, which can be interpreted as

a compensated compactness result.

Proposition 2. Let (up) be a sequence of VMO+(T) weakly convergent to u in
VMO+(T). We assume that, for some sequences (ρj) and (σ j),

sup
j>1
|ρj(up)− ρj| −−−→p→∞

0, sup
j>1
|σj(up)− σ j| −−−→

p→∞
0,

and the following simplicity assumption: all the non-zero ρj, σm are pairwise distinct.
Then, for every j > 1, ρj(u) = ρj, σj(u) = σ j, and up converges to u holds for the norm
convergence in VMO+(T).

Remark 1. Let us emphasize that this result specifically uses the structure of Hankel
operators. It is false in general for compact operators assumed to converge only strongly.
One also has to remark that the simplicity of the eigenvalues is a crucial hypothesis, as
the following example shows. Denote by (up), |p| < 1, p real, the sequence of functions
defined by

up(z)=
z− p

1− pz
.

Then, the selfadjoint Hankel operators Hup and Kup have eigenvalues λ1 = µ1 = 1 and
λ2 = −1, and µm = λm+1 = 0 for m > 2, independently of p. As p goes to 1, p < 1, up

tends weakly to the constant function −1; hence the convergence is not in the VMO
norm, or equivalently not in the operator norm for the corresponding Hankel operator.
Indeed, H−1 is the rank 1 operator given by H−1(h) = −(1|h); hence H2

−1 is a rank 1
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projector while H2
up

is a rank 2 projector. Therefore,

‖H2
up
− H2

−1‖> 1 since RanH2
up
∩ ker H2

−1 6= {0}.

Proof. We now start the proof of Proposition 2. Let us first recall the
Adamyan–Arov–Krein (AAK) theorem on approximation of Hankel operators by finite
rank Hankel operators.

Theorem 6 (Adamyan–Arov–Krein [1]). Let Γ be a bounded Hankel operator on L2
+(T).

Let (sm(Γ ))m>1 be the family of singular values of Γ labelled according to the min–max
principle. Then, for any m> 1, there exists a Hankel operator Γm of rank m− 1 such that

sm(Γ )= ‖Γ − Γm‖.

In other words, the AAK theorem states that the mth singular value of a Hankel
operator, as the distance of this operator to operators of rank m − 1, is exactly achieved
by some Hankel operator of rank m − 1, and hence, by some Hankel operator with a
rational symbol.

This result is crucial in order to obtain our compactness result. We want to apply
Lemma 1 with A = H2

u , B = K2
u , and e = 1. One has to prove that, for any h ∈ L2

+,
H2

up
(h)→ H2

u (h). By the AAK theorem, for any p and any j > 1, there exists a function
up,j ∈ V(2j) ∪ V(2j− 1) so that

‖Hup − Hup,j‖ = ρj+1(up).

In particular, we get

‖up − up,j‖L2 6 ρj+1(up).

On the other hand, one has

‖Hup,j‖>
1
√

j
(Tr(H2

up,j
))1/2 >

1
√

j
‖up,j‖H1/2

+

,

where H
1
2
+ has been defined in (15). Hence, for fixed j, the sequence (up,j)p is bounded

in H1/2
+ . We are going to prove that the sequence {up}p is precompact in L2

+. We
show that, for any ε > 0, there exists a finite sequence vk ∈ L2

+, 1 6 k 6 M, so that
{up}p ⊂ ∪

M
k=1BL2

+
(vk, ε). Let j be fixed so that supp ρj+1(up) 6 ε/2. Since the sequence

(up,j)p is uniformly bounded in H1/2
+ , there is a subsequence which converges weakly in

H1/2
+ . In particular, it is precompact in L2

+; hence, there exists vk ∈ L2
+, 16 k 6M so that

{up,j}p ⊂ ∪BL2
+
(vk, ε/2). Then, for every p, there exists a k such that

‖up − vk‖L2 6 ρj+1(up)+ ‖up,j − vk‖L2 6 ε.

Therefore {up} is precompact in L2
+ and, since L2 is complete, some subsequence of

(up) has a strong limit in L2
+. Since up converges weakly to u, this limit has to be u,

and we conclude that the whole sequence (up) is strongly convergent to u in L2
+. Since

‖Hup‖ ' ‖up‖BMO is bounded, we infer the strong convergence of operators:

∀h ∈ L2
+, Hup(h)−−−→p→∞

Hu(h).
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By Lemma 1, for every k we have ρk(u)= ρk and σk(u)= σ k. We now want to prove that

‖Hup − Hu‖→ 0.

Let us distinguish two cases.
First case: for every j > 1, ρj > 0. We come back to the AAK situation above. For every
j, we select up,j ∈ V(2j) ∪ V(2j− 1) so that

‖Hup − Hup,j‖ = ρj+1(up).

Since the operator norm is lower semicontinuous for the strong convergence of operators,
we infer that any limit point ũj of up,j in L2

+ as p→∞ satisfies

‖Hu − Hũj‖6 ρj+1.

In particular, |σ j − σj(ũj)| 6 ρj+1; hence σj(ũj) > 0, and thus ũj ∈ V(2j). Using the
following elementary lemma, the proof is then completed by the triangle inequality.

Lemma 3. Let N be a positive integer and wp ∈ V(2N) ∪ V(2N − 1) such that wp −−−→
p→∞

w

in L2
+. Assume that w ∈ V(2N) ∪ V(2N − 1). Then ‖Hwp − Hw‖ −−−→

p→∞
0.

Let us postpone the proof of Lemma 3 to the end of the argument.
Second case: there exists k > 1 such that ρk=0. We denote by j the greatest k > 1 such
that ρk > 0. Of course we may assume that there exists such a j, otherwise this would
mean that ‖Hup‖ tends to 0, a trivial case. For such a j, we again write

‖Hup − Hup,j‖ = ρj+1(up),

and, passing to the limit, we conclude that up,j is strongly convergent to u in L2
+.

Using again Lemma 3, we conclude that ‖Hup,j − Hu‖ tends to 0, and the proof is again
completed by the triangle inequality.

Finally, let us prove Lemma 3. Recall the explicit description of V(d); see e.g. [2].
Elements of V(2N) are rational functions of the following form,

w(z)=
A(z)

B(z)
,

where A, B have no common factors, B has no zeros in the closed unit disc, B(0)= 1, and
deg(A)6 N − 1, deg(B)= N. Elements of V(2N − 1) have the same form, except that the
last part is replaced by deg(A)= N − 1, deg(B)6 N − 1.

Write similarly

wp(z)=
Ap(z)

Bp(z)
.

By the Cauchy formula, we have, for every z in the unit disc,

wp(z)→ w(z).

Since

Bp(z)=
N∏

k=1

(1− bk,pz)
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with |bk,p|< 1, we may assume that, up to extracting a subsequence,

Bp(z)→ B̃(z)=
N∏

k=1

(1− b̃kz),

with |b̃k| 6 1. Multiplying by Bp(z) and passing to the limit, we get, for every z in the
unit disc,

Ap(z)→ B̃(z)
A(z)

B(z)
=: Ã(z).

Since B̃A is divisible by B, B̃ is divisible by B. On the other hand, we claim that
deg(B̃) 6 deg(B). Indeed, either w ∈ V(2N), and deg(B) = N > deg(B̃), or w ∈ V(2N − 1),
and deg(A) = N − 1 > deg(Ã). In both cases, we conclude that B̃ = B, which means
that the numbers bk,p stay away from the unit circle. Consequently, the convergence of
wp(z) to w(z) holds uniformly on a disc D(0, r) for some r > 1; thus, say, wp → w in
Hs(T) for every s > 0. Choosing s = 1

2 , we conclude that Hwp converges to Hw in the
Hilbert–Schmidt norm, and hence in the operator norm. �

3. Proof of Theorem 3 and of the first part of Theorem 2

3.1. The surjectivity of χ

Let (ζp)p>1 be an element in Ξ . We want to prove the existence of u ∈ VMO+,gen so that
χ(u)= (ζp)p>1. We are going to use the finite rank result. By Theorem 5, for every N we
construct uN ∈ V(2N) via the diffeomorphism χN by letting

χN(uN)= (ζp)16p62N .

The sequence (uN) satisfies ‖HuN‖ = ρ1(uN) = |ζ1|; hence it is bounded in VMO, and
therefore has a subsequence, still denoted by (uN), which is weakly convergent to u in
VMO+. We can then apply Proposition 2; hence u is the limit of (uN) in the VMO+(T)
norm, so that

ρj(u)= |ζ2j−1| := ρj, σj(u)= |ζ2j| := σj.

In particular, u ∈ VMO+,gen. It remains to consider the convergence of the angles and
hence of the eigenvectors. Let j be fixed. For N > j, denote by ej,N the normalized
eigenvector of H2

uN
related to the simple eigenvalue ρ2

j so that HuN (ej,N) = ρj ej,N . Since
(ej,N) is a sequence of unitary vectors, it has a weakly convergent subsequence to some
vector ẽj. We now show that the convergence is in fact strong. Let us consider the
operator

Pj,N =

∫
Cj

(zI − H2
uN
)−1 dz

2iπ
,

where Cj is a small circle around ρ2
j . If Cj is sufficiently small, then

Pj,N(h)= (h|ej,N)ej,N .
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By the convergence of HuN to Hu, we have, for any h ∈ L2,

Pj,N(h)→ Pj(h),

where Pj is the projector onto the eigenspace of H2
u corresponding to ρ2

j . Denoting by ej

a unitary vector of this eigenline, we get that, for any h ∈ L2,

(h|ej,N)ej,N→ (h|ej)ej.

Since (h|ej,N) converges to (h|ẽj) by weak convergence, and on the other hand
|Pj,N(ej,N)| = |(h|ej,N)| tends to ‖Pj(h)‖ = |(h|ej)|, we get that |(h|ẽj)| = |(h|ej)| for any h in
L2; hence ẽj = eiΨ ej is unitary. We conclude that the convergence of ej,N to ẽj is strong,
since the convergence is weak and the vectors are unitary. Hence HuN (ej,N) = ρj,Nej,N

converges to Hu(ẽj) = ρjẽj, and the angles arg(1|ej,N)
2 converge to arg(1|ẽj)

2. The same
holds for the eigenvectors of KuN . We conclude that there exists u ∈ VMO+,gen with
χ(u)= (ζp)p>1. The mapping χ is onto.

The second step is to prove that χ is one-to-one. It comes from an explicit formula
giving u in terms of χ(u).

3.2. An explicit formula via the compressed shift operator

We are going to use the well-known link between the shift operator and the Hankel
operators. Namely, if Tz denotes the shift operator, recall formula (4):

HuTz = T∗z Hu.

With the notation introduced in the introduction, it reads

Ku = T∗z Hu,

which, as we already observed in the introduction, leads to formula (5). We introduce
the compressed shift operator [10, 11, 13]

S := PuTz,

where Pu denotes the orthogonal projector onto the closure of the range of Hu. By
property (4), ker Hu = ker Pu is stable by Tz; hence

S= PuTzPu,

so that S is an operator from the closure of the range of Hu into itself, and

Sn
= PuTn

z Pu. (27)

In what follows, we shall always denote by S the induced operator on the closure of the
range of Hu, and by S∗ the adjoint of this operator.

Now observe that the operator S arises in the Fourier series decomposition of u,
namely

u(z)=
∞∑

n=0

û(n)zn,
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where, using (27),

û(n)= (u|zn)= (u|Tn
z (1))= (u|S

nPu(1)). (28)

As a consequence, we have, for |z|< 1,

u(z)= (u|(I − zS)−1Pu(1)), (29)

which makes sense since ‖S‖ 6 1. By studying the spectral properties of K2
u , one obtains

the following lemma.

Lemma 4. The sequence (gj)j>1 defined by gj = (H2
u − σjI)−1(u) is an orthogonal basis of

the closed range of Ku, on which the compressed shift operator acts as

S(gj)= σj eiθj hj, hj := (H
2
u − σ

2
j I)−1Pu(1).

Proof. For σ > 0, we solve the eigenvalue equation

K2
u g= σ 2g

by appealing to formula (5), which we reproduce here for the convenience of the reader:

K2
u = H2

u − (·|u)u.

This yields

(H2
u − σ

2I)g= (g|u)u,

and

g= (g|u)(H2
u − σ

2I)−1u.

The condition on σ is

((H2
u − σ

2I)−1u|u)= 1, (30)

which, in view of formula (26), is equivalent to

J

(
1
σ 2

)
= 0,

where J was defined in (25). This means that σ has to be one of the σj. The eigenvector
of K2

u is therefore given by

gj = (H
2
u − σjI)

−1(u).

As j varies, it gives rise to an orthogonal basis of the closed range of K2
u , which is also

the closed range of Ku. By the genericity assumption, gj is proportional to the unit
eigenvector fj introduced in § 1.2.3; see formula (8). This reads

gj = ‖gj‖eiψj fj.

289

https://doi.org/10.1017/S1474748013000121 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000121


P. Gérard and S. Grellier

Notice that, from (30),

(u|gj)= 1.

In view of (9), this implies that

θj = 2ψj,

and

Ku(gj)= ‖gj‖e−iψjKu(fj)= ‖gj‖e−iψjσjfj = σje−iθjgj.

Since

gj = Hu(hj), hj = (H
2
u − σ

2
j I)−1Pu(1) ∈ (ker Hu)

⊥,

and Ku = HuS, and since Hu is one-to-one on (ker Hu)
⊥, this completes the proof. �

To obtain an explicit formula from formula (29), it is sufficient to express the action of S
on a basis of the closure R of the range of Hu.

Hence, when the closure of the range of Hu and the closure of the range of Ku coincide,
one can conclude from this lemma, Lemma 2, and equation (29) to obtain the explicit
formula writing everything in the basis (ẽj)j>1 of R, where

ẽj := eiϕj/2 ej. (31)

More precisely, in the basis (ẽj), one easily checks that the components of u are (νjζ2j−1),
the components of Pu(1) are (νj), and the matrix of S is A.

If the range of Ku is strictly included in the range of Hu, there exists g in the range
of Hu so that Kug = 0 = T∗z Hug, and hence Hug is a non-zero constant; in particular,
1 belongs to the range of Hu. Let us write 1 = Hug0. In this case, an orthogonal
basis of the closure of the range of Hu is given by the sequence (gm)m>0 and, since
Ku(g0)= 0= HuS(g0), S(g0)= 0. So we obtain the same explicit formula for u in terms of
χ(u). This proves that the mapping χ is one-to-one.

To prove that χ is a homeomorphism, it remains to prove that χ−1 is continuous on
Ξ . One has to prove that, if χ(up) tends to χ(u), then (up) tends to u in VMO. It is
straightforward from Proposition 2 that (up) has a subsequence which converges to v in
the VMO norm. Since χ is continuous and one-to-one, we get v= u.

3.3. The case of real Fourier coefficients

Finally, let us infer the first part of Theorem 2 from Theorem 3. First, we claim that
the elements of VMO+,gen with real Fourier coefficients correspond via the map χ to
elements ζ ∈ Ξ which are real valued. Indeed, if ζ is real valued, the explicit formula
(10) clearly implies that û(n) is real for every n. Conversely, if u ∈ VMO+,gen has real
Fourier coefficients, then Hu and Ku are compact selfadjoint operators on the closed
real subspace of L2

+ consisting of functions with real Fourier coefficients. Consequently,
they admit orthonormal bases of eigenvectors in this space. Therefore we can
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write

Hu(ẽj)= λjẽj, λj =±ρj, Ku(f̃m)= µm f̃m, µm =±σm,

where ẽj and f̃m are unitary vectors with real Fourier coefficients. Since ρ2
j and σ 2

m are
simple eigenvalues of H2

u and K2
u , respectively, we conclude that ẽj is collinear to ej, and

similarly that f̃m is collinear to fm. More precisely, since Hu and Ku are antilinear,

ẽj =

±ej if λj = ρj

±iej if λj =−ρj;
f̃m =

±fm if µm = σm

±ifm if µm =−σm.

Since (1|ẽj) and (u|f̃m) are real, we conclude that

ϕj =

0 if λj = ρj

π if λj =−ρj;
θm =

0 if µm = σm

π if µm =−σm.

Therefore, ζ2j−1 = λj and ζ2j = µj. This completes the proof.

4. Proof of Theorem 4

Proof. We already observed that ker Hu ⊂ ker Ku and that the inclusion is strict if and
only if 1 ∈ R, and, in that case, ker Ku = ker Hu ⊕ CH−1

u (1). Hence, in the following, we
focus on the kernel of Hu.

We first prove that ker Hu = {0} if and only if 1 ∈ R \ R.
Since ker Hu = {0} is equivalent to R = L2

+, ker Hu = {0} implies that 1 ∈ R. If 1 ∈ R,
then there exists w ∈ L2

+ so that 1 = Hu(w). If we introduce the function ψ = zw, then
Hu(ψ) = T∗z Hu(w) = T∗z (1) = 0. This implies that ψ belongs to ker Hu and that ψ 6= 0.
Hence, ker Hu = {0} implies that 1 ∈ R \ R.

Let us prove the converse. Assume that ker Hu 6= {0} and that 1 ∈ R. Let us show that
1 ∈ R. By the Beurling theorem, we have ker Hu = ϕL2

+ for some inner function ϕ. Since
1 belongs to R, it is orthogonal to ker Hu; hence (1|ϕ) = 0. This implies that ϕ = zw for
some w and, since Hu(ϕ) = 0 = T∗z Hu(w), we get that Hu(w) is a non-zero constant (if
Hu(w)= 0, w should be divisible by ϕ, which is impossible, since ϕ = zw). Eventually, we
get that the constants are in R, and so is 1. Hence we proved that ker Hu 6= {0} if and
only if either 1 belongs to R or 1 does not belong to R.

It remains to prove that the property 1 ∈ R \ R is equivalent to formulae (16) that we
recall here:

∞∑
j=1

(
1−

σ 2
j

ρ2
j

)
=∞, sup

N

1
ρ2

N+1

N∏
j=1

σ 2
j

ρ2
j
=∞.

First, 1 ∈ R if and only if
∑
∞

j=1 ν
2
j = 1, where ν2

j = |(1|ej)|
2;, see Lemma 2. Letting x tend

to −∞ in formula (25), and using the monotone convergence theorem,
∞∏

j=1

σ 2
j

ρ2
j
= 1−

∞∑
j=1

2
ν
j
.
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This gives the first condition. We claim that 1 belongs to R if and only if

∞∑
j=1

ν2
j

ρ2
j
<∞.

Indeed, it is a necessary and sufficient condition to be able to define

w=
∞∑

j=1

νj

ρj
e−iϕj/2ej, (32)

where the ϕj were defined in (7), so that Hu(w)= 1.
We now show that this condition is equivalent to

sup
N

1
ρ2

N+1

N∏
j=1

σ 2
j

ρ2
j
<∞.

Let us denote by pN the quantity

pN :=
1

ρ2
N+1

N∏
j=1

σ 2
j

ρ2
j
,

and let us show that supN pN <∞. Indeed, the sequence (pN) is increasing, and

∞∑
j=1

ν2
j

ρ2
j
=− lim

x→∞
xJ(x)= lim

y→∞
F(y), F(y) := y

∞∏
j=1

1+ y σ 2
j

1+ yρ2
j
. (33)

Here we used Lemma 2 and the equality
∑
∞

j=1 ν
2
j = 1 so that J(x) =

∑
∞

j=1
ν2j

1−xρ2
j (u)

. Let

us define

FN(y)=
y

1+ yρ2
N+1

N∏
j=1

1+ yσ 2
j

1+ y ρ2
j
=

y

1+ yρ2
1

N∏
j=1

1+ yσ 2
j

1+ y ρ2
j+1

.

Then, this quantity is increasing with respect to N and to y; hence

sup
N

pN = sup
N

sup
y

FN(y)= sup
y

sup
N

FN(y)= sup
y

F(y) <∞.

Now, we prove the formulae (17) and (18), which give the generators of the kernels.
We first consider the case when 1 6∈ R. Since 1−Pu(1) belongs to ker Hu, 1−Pu(1)= ϕf

for some f ∈ L2
+. Let us remark that, for any h ∈ ker Hu, (1− Pu(1))h is holomorphic.

Indeed, for any k > 1, one has

((1− Pu(1))h|zk)= (zkh|1− Pu(1))= 0− (zkh|Pu(1))= 0,

the last equality coming from the fact that zkh ∈ ker Hu. In particular, picking h = ϕ in
ker Hu, the modulus of which is 1 almost everywhere, this implies that f is holomorphic;

292

https://doi.org/10.1017/S1474748013000121 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000121


Inverse spectral problems

hence it is a constant. We get that ϕ = 1−Pu(1)
‖1−Pu(1)‖

. One can write, as in formula (28),

1− Pu(1)= 1−
∑

(Pu(1)|SnPu(1))zn.

In order to get the explicit formula for ϕ, we write this equality in the orthonormal basis
(ẽj) defined by (31), keeping in mind that

‖1− Pu(1)‖2 = 1− ‖Pu(1)‖2 = 1−
∞∑

j=1

ν2
j ,

the components of Pu(1) are (νj), and the matrix of S is A.
It remains to consider the case 1 ∈ R. Then, one can choose w ∈ R so that Hu(w) = 1.

In particular, Hu(zw)= T∗z Hu(w)= 0 so that zw= ϕf for some f in L2
+. As before, one can

prove that, for any h ∈ ker Hu, zwh is holomorphic; hence f is holomorphic, and hence is
constant. Eventually, in this case, we obtain ϕ = z w

‖w‖ . The explicit formula follows from
direct computation as before, since

ŵ(n)= (w|SnPu(1)),

and since, by equation (32), the components of w in the basis (ẽj) are (νjζ2j−1/ρ
2
j ). �

Appendix A. The finite rank case

In this appendix, we give a sketch of the proof of Theorem 5, referring to [3] for details.
The mapping χN is of course well defined and smooth on V(2N)gen. The explicit formula
of u in terms of χN(u) is obtained as before thanks to the compressed shift operator, and
it proves that χN is one-to-one.

A.1. A local diffeomorphism

To prove that χN is a local diffeomorphism, we establish some identities on the Poisson
brackets. This set of identities implies that the differential of χN is of maximal rank so
that χN is a local diffeomorphism. As a consequence, it is an open mapping.

Let us first recall some basic definitions on Hamiltonian formalism. Given a
smooth real-valued function F on a finite-dimensional symplectic manifold (M, ω), the
Hamiltonian vector field of F is the vector field XF on M defined by

∀m ∈M,∀h ∈ Tm M, dF(m) · h= ω(h,XF(m)).

Given two smooth real valued functions F,G, the Poisson bracket of F and G is

{F,G} = dG.XF = ω(XF,XG).

The above identity is generalized to complex valued functions F,G by C-bilinearity.
To obtain that the image of the symplectic form ω by χN is given by formula (19), one

has to prove equivalently that

(χN)∗ω =
∑

j

ρjdρj ∧ dϕj + σjdσj ∧ dθj,

which includes the following identities.
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Proposition 3. For any j, k ∈ {1, . . . ,N}, one has

{ρj, ρk} = {ρj, σk} = {σj, σk} = 0

{ρj, ϕk} = ρ
−1
j δjk, {σj, ϕk} = 0,

{ρj, θk} = 0, {σj, θk} = σ
−1
j δjk.

In order to compute for instance {σj, θk}, one has for instance to differentiate θk

along the direction of Xσj . Since the expression of Xσj is fairly complicated, we use
the ‘Szegő hierarchy’ studied in [2]. More precisely, we use the generating function
J(x)= ((I − xH2

u )
−1(1)|1)= 1+

∑
∞

n=1 xnJ2n. In what follows, we shall restrict ourselves to
real values of x, so that J(x) is a real-valued function.

We proved in [2] that the Hamiltonian flow associated to J(x) as a function of u admits
a Lax pair involving the Hankel operator Hu. From this Lax pair, one can deduce easily a
second one involving the operator Ku.

Theorem 7 (The Szegő hierarchy, [2], Theorem 8.1 and Corollary 8). Let s > 1
2 .

The map u 7→ J(x) is smooth on Hs
+. Moreover, the equation ∂tu = XJ(x)(u) implies

that ∂tHu = [Bx
u,Hu], or ∂tKu = [Cx

u,Ku], where Bx
u and Cx

u are skew-adjoint if x is
real.

Remark 2. As a direct consequence, the spectrum of Hu as well as the spectrum of Ku

is conserved by the Hamiltonian flow of J(x). We infer that the Poisson brackets of J(x)
with ρj or σj are zero, which implies, in view of Lemma 2, that the brackets of ρk or σ`
with ρj or σm are zero; hence this gives the first set of commutation properties stated in
Proposition 3.

Using the Szegő hierarchy, we can also compute the Poisson brackets of J(x) with the
angles.

Lemma 5.

{J(x), ϕj} =
1
2

xJ(x)

1− ρ2
j x
{J(x), θj} = −

1
2

xJ(x)

1− σ 2
j x
.

Using again the expression of J(x), these commutation properties allow to obtain by
identification of the polar parts the last commutation properties of Proposition 3.

To conclude that the image of the symplectic form ω is given by formula (19), we need
to establish the following remaining commutation properties:

{ϕj, ϕk} = {ϕj, θk} = {θj, θk} = 0.

In [3], these identities are obtained as consequences of further calculations. Here we give
a simpler argument. By Lemma 3, one can write

(χN)∗ω =
∑

j

ρjdρj ∧ dϕj + σjdσj ∧ dθj + ω̃,
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where ω̃ is a closed form depending only on variables ρj, σm. Consider the following real
submanifold of V(2N)gen:

ΛN = {u ∈ V(2N)gen : ϕ1 = · · · = ϕN = θ1 = · · · = θN = 0}.

By formula (10), every element u of ΛN has real Fourier coefficients. Consequently, ω = 0
on ΛN . On the other hand, (χN)∗ω = ω̃ on χN(ΛN), and the ρj, σm are coordinates on
ΛN . We conclude that ω̃ = 0.

A.2. Surjectivity: a compactness result

Since ΞN is connected, it suffices to prove that χN is proper. Let us take a sequence
(ζ (p))p in ΞN which converges to ζ ∈ ΞN , and such that, for every p, there exists
up ∈ V(2N)gen with

χN(up)= ζ
(p).

Since

‖up‖VMO = ‖Hup‖ = max
16j6N

(ρ
(p)
j )= max

16j6N
(|ζ

(p)
2j−1|),

(up) is a bounded sequence in VMO+(T). Up to extracting a subsequence, we may
assume that (up)p∈Z+ converges weakly to some u in VMO+(T). At this stage we can
appeal to Proposition 2 and conclude that the convergence of up to u holds for the VMO
norm, and that

ρj(u)= |ζ2j−1|, σj(u)= |ζ2j|, j= 1, . . . ,N

with ρj(u)= 0, σj(u)= 0 if j> N. Therefore u ∈ V(2N)gen. This completes the proof of the
surjectivity of χN .

Appendix B. The boundedness of the operator A

In this appendix, we prove the boundedness of the operator A defined by (11) in
Theorem 3. Of course, this boundedness follows from the theorem itself, since it implies
that A is conjugated to the compressed shift operator. However, we found interesting to
give a self-contained proof of this fact. We need the following two lemmas.

Lemma 6. Let (ρj)j>1 and (σj)j>1 be two sequences such that

ρ2
1 > σ

2
1 > ρ

2
2 > · · · → 0.

Then, the following quantities are well defined and coincide respectively outside { 1
ρ2

j
}j>1

and { 1
σ2

j
}j>1:

∞∏
j=1

1− x σ 2
j

1− xρ2
j
= 1+ x

∞∑
j=1

ν2
j ρ

2
j

1− xρ2
j

(34)

∞∏
j=1

1− x ρ2
j

1− xσ 2
j
= 1− x

C +
∞∑

j=1

κ2
j

1− xσ 2
j

 , (35)
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where

C =


0 if

∞∑
j=1

ν2
j < 1 or

∞∑
j=1

ν2
j = 1 and

∞∑
j=1

ν2
j ρ
−2
j =∞ ∞∑

j=1

ν2
j ρ
−2
j

−1

if
∞∑

j=1

ν2
j = 1 and

∞∑
j=1

ν2
j ρ
−2
j <∞.

Here, the ν2
j are given by formula (12) and the κ2

j by formula (13).

Remark 3. Notice that formulae (34) and (35) can be interpreted in light of
Theorem 3, as we did in Lemma 2. More precisely, formula (34) gives the value of
J(x) = ((I − xH2

u )
−1(1)|1) = 1 + x((I − xH2

u )
−1u|u), while formula (35) gives the value of

1/J(x)= 1 − x((I − xK2
u )
−1u|u). This provides an interpretation of the constant C, as the

contribution of ker(Ku) ∩ RanHu) in the expansion.

Proof. We first consider finite sequences (ρj)16j6N and (σj)16j6N such that ρ2
1 > σ

2
1 >

ρ2
2 > · · ·> σ

2
N > 0. We claim that, for x 6∈ { 1

ρ2
j
}j>1,

N∏
j=1

1− xσ 2
j

1− xρ2
j
= 1+ x

N∑
j=1

(ν
(N)
j )2ρ2

j

1− xρ2
j
, (36)

where

(ν
(N)
j )2 =

(
1−

σ 2
j

ρ2
j

) ∏
k 6=j

16k6N

ρ2
j − σ

2
k

ρ2
j − ρ

2
k

.

Indeed, both functions have the same poles and the same residue; hence their difference
is a polynomial. Moreover, this polynomial function tends to a constant at infinity, and
hence is a constant. Since both terms coincide at x = 0, they coincide everywhere. It
remains to let N→∞. The left-hand side in (36) tends to

∞∏
j=1

1− xσ 2
j

1− xρ2
j
,

since this product converges in view of the assumption on the sequences (ρj) and (σj).
Let us consider the limit of the right-hand side in equality (36). Let x tend to −∞ in

equality (36). We get
N∏

j=1

σ 2
j

ρ2
j
= 1−

N∑
j=1

(ν
(N)
j )2.

In particular,
∑N

j=1(ν
(N)
j )2 is bounded by 1, so

∑
∞

j=1 ν
2
j converges by Fatou’s lemma. For

x6 0, ∑
N>j>M

ρ2
j (ν

(N)
j )2

1− xρ2
j
6 ρ2

M,
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and hence the series
∑

N>j>1
ρ2

j (ν
(N)
j )2

1−xρ2
j

is uniformly summable on R−, and we infer that

N∑
j=1

ρ2
j (ν

(N)
j )2

1− xρ2
j
→

∞∑
j=1

ρ2
j ν

2
j

1− xρ2
j
, x6 0.

This gives the first equality (34) for x6 0 and for x 6∈ { 1
ρ2

j
}j>1 by analytic continuation.

For equality (35), we do almost the same analysis. As before, as N tends to∞,
N∏

j=1

1− xρ2
j

1− xσ 2
j
→

∞∏
j=1

1− xρ2
j

1− xσ 2
j
, x 6∈

{
1
σ 2

j

}
j>1

.

On the other hand, for x 6∈ { 1
σ2

j
}j>1,

N∏
j=1

1− xρ2
j

1− xσ 2
j
= 1− x

N∑
j=1

(κ
(N)
j )2

1− xσ 2
j
,

where

(κ
(N)
j )2 = (ρ2

j − σ
2
j )

∏
k 6=j

16k6N

σ 2
j − ρ

2
k

σ 2
j − σ

2
k

.

Let HN be the function defined by

HN(x) :=
N∑

j=1

(κ
(N)
j )2

1− xσ 2
j

x 6= σ−2
j , 16 j6 N. (37)

The preceding equality reads

HN(x)=
1
x

1−
N∏

j=1

1− xρ2
j

1− xσ 2
j

 . (38)

Using formula (38), and the expansion of the infinite product at x = 0, we get that
HN(0)=

∑N
j=1(ρ

2
j − σ

2
j ). Since, by formula (37),

HN(0)=
N∑

j=1

(κ
(N)
j )2,

we obtain
N∑

j=1

(κ
(N)
j )2 =

N∑
j=1

(ρ2
j − σ

2
j ),

and this last sum is bounded independently of N, namely
N∑

j=1

(ρ2
j − σ

2
j )6

N∑
j=1

(ρ2
j − ρ

2
j+1)6 ρ

2
1 .
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Hence the sum
∑
κ2

j converges, by Fatou’s lemma. We use this property to justify the
convergence of H′N(x). Indeed, for x 6= σ−2

j , 16 j6 N,

H′N(x)=
N∑

j=1

(κ
(N)
j )2σ 2

j

(1− xσ 2
j )

2
.

So, a proof analogous to the one used before allows us to show that

H′N(x)→
∞∑

j=1

κ2
j σ

2
j

(1− xσ 2
j )

2
.

Furthermore, the convergence holds uniformly for x 6 0. Therefore, on the one hand, as
N tends to∞,

HN(x)=
1
x

1−
N∏

j=1

1− xρ2
j

1− xσ 2
j

→ 1
x

1−
∞∏

j=1

1− xρ2
j

1− xσ 2
j


and on the other hand, since

HN(x)=
∫ x

y
H′N(t)dt + HN(y),

we get that, at the limit as N goes to ∞, for x 6 0, and hence everywhere by analytic
continuation,

1
x

1−
∞∏

j=1

1− xρ2
j

1− xσ 2
j

= ∞∑
j=1

κ2
j

1− xσ 2
j
+ C.

It remains to compute C by taking the limit as x goes to −∞.

C =− lim
x→−∞

1
x

∞∏
j=1

1− xρ2
j

1− xσ 2
j
=− lim

x→−∞

1
xJ(x)

,

where

J(x) :=
∞∏

j=1

1− xσ 2
j

1− xρ2
j
.

This limit has been computed in (33) whenever
∞∑

j=1

ν2
j = 1 and

∞∑
j=1

ν2
j

ρ2
j
<∞,

and is equal to  ∞∑
j=1

ν2
j

ρ2
j

−1

.

298

https://doi.org/10.1017/S1474748013000121 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000121


Inverse spectral problems

This calculation easily extends to the other cases, writing, for x< 0,

J(x) = 1+ x
∞∑

j=1

ν2
j ρ

2
j

1− xρ2
j

= 1−
∞∑

j=1

2
ν
j
+

∞∑
j=1

ν2
j

1− xρ2
j
. �

Corollary 1. For any m> 1, we have∑
j

ρ2
j ν

2
j

ρ2
j − σ

2
m
= 1 (39)

∑
j

κ2
j

ρ2
m − σ

2
j
+

C

ρ2
m
= 1 (40)

∑
j

ρ2
j ν

2
j

(ρ2
j − σ

2
m)(ρ

2
j − σ

2
p )
=

1
κ2

m
δmp (41)

∑
j

σ 2
j κ

2
j

(σ 2
j − ρ

2
m)(σ

2
j − ρ

2
p )
=

1
ν2

m
δmp − 1. (42)

Proof. The first two equalities (39) and (40) are obtained by making x= 1
σ2

m
and x= 1

ρ2
m

,
respectively, in formula (34) and formula (35). For equality (41) in the case when m= p,
we first make the change of variable y= 1/x in formula (34), then differentiate both sides
with respect to y, and make y = σ 2

m. Equality (42) in the case when m = p follows by
differentiating equation (35) and making x = 1

ρ2
m

. Both equalities in the case when m 6= p

follow directly, respectively, from equality (39) and equality (40). �

Lemma 7. Let m be a fixed positive integer. Let (ϕj) and (θm) be two sequences of
elements of T. Denote by A(m) the rank 1 operator of matrix

A(m) =

(
νj

ρ2
j − σ

2
m

νkρke−iϕk

ρ2
k − σ

2
m
σmκ

2
me−iθm

)
jk

.

Then A :=
∑

m>1 A(m) defines a bounded operator on `2 with AA∗ 6 I.

Proof. First we notice that A(m) satisfies ‖A(m)‖ 6 1. This follows from the
Cauchy–Schwarz inequality, formula (41), and from the estimate∑

j

ν2
j

(ρ2
j − σ

2
m)

2
= −

1
σ 2

m

∑
j

ν2
j

ρ2
j − σ

2
m
+

1
σ 2

m

∑
j

ρ2
j ν

2
j

(ρ2
j − σ

2
m)

2

=
1
σ 2

m

(∑
j ν

2
j − 1

σ 2
m

+
1
κ2

m

)

6
1

σ 2
mκ

2
m
,
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so that, in view of formula (41),

‖A(m)‖2 6
∑

j

ν2
j

(ρ2
j − σ

2
m)

2

∑
k

ν2
k ρ

2
k

(ρ2
k − σ

2
m)

2
σ 2

mκ
4
m

6 1.

Let us consider the well-defined operator A(m)(A(p))∗. An elementary calculation gives

(A(m)(A(p))∗)jk =
∑
`

A(m)j` A(p)k`

=
νjνk

(ρ2
j − σ

2
m)(ρ

2
k − σ

2
m)
σ 2

mκ
2
mδmp.

Taking the sum of both sides over m and p, we get by (42) that the sum converges and
equals δjk−νjνk. Consequently, the sum of A(m)(A(p))∗ defines a bounded positive operator
estimated by I and coincides with the operator AA∗. This gives the boundedness of A and
completes the proof. �
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