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SUMMARY

This is an extension of previous work which used an
artificial neural nctwork with a back-propagation
algorithm and a lookup table to find the inverse
kincmatics for a manipulator arm moving along
pre-defined trajectories. The work now described shows
that the performance of this technique can be improved
il the back-propagation is made to be adaptive. Also,
further improvement is obtained by using the whole
workspace to train the neural network rather than just a
pre-defined path. For the inverse kinematics of the whole
workspace, a comparison has also been done between
the adaptive back-propagation algorithm and radial basis
function.

KEYWORDS: Artificial ncural network:; Radial basis function,
Adaptive back-propagation algorithm; Inverse  kinematics;
Lookup table; Two link planar manipulator arm; Three link
manipulator arm.

1. Introduction

Calculation of the inverse kinematics for manipulator
arms is time consuming and pronc to crror due to the
many variables involved. The ecquations are not
complicated but much elfort is involved in finding
solutions, which are complicated by the cxistence of
multiple solutions due to redundancy.

In a papcr published in 1997' we reviewed the
solutions previously proposed for inverse kinematics
computation and proposed a new technique. This
involved a hidden layer perceptron  with  back-
propagation algorithm which used lookup tables to cater
for the redundancies of the arm. The lookup tables
contain ncuron wcights that represent the different
configurations of thc arm. The neural nectwork was
trained using patterns from a predefined trajectory.

This work can also be applicd to finding the inverse
kinematics solutions of flexible manipulators. Instead of
using patterns from a rigid manipulator, the co-ordinates
of the end-clfector of the flexible manipulator arm and
its corresponding joint angle value can be used as the
pattern for training the artificial neural network. Using
this method avoids applying complex mathematics®™ to
solve the problem of inverse kinematics, and it may even
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be more accurate because the flexible manipulator could
not be exactly modelled mathematically.

Section two describes the work with subscctions
dctailing the manipulator arm with its kinematics
cquations and artificial neural networks, section three arc
the results obtained from the simulation run and section
four is the discussion and conclusion of the report. The
final section gives the references.

2. Outline of work

There are two parts in this work. The first is finding the
solutions of the inverse kinematics for a threc-link
manipulator arm along a predefined trajectory in 3D
workspace. A two hidden layer perceptron with adaptive
back-propagation algorithm was used during the training
session. As the path considered is the same as in previous
work the same patterns were also used for the training of
the ncural network (Table 1).

The sccond was donc by training the artificial neural
network on patterns taken from the workspace of the
manipulator arm, i.c. the area that the end-effector can
reach. For a two link planar manipulator arm this
workspace will be a semicircle with its centre being at the
base ol the arm. For this work though, only half of the
workspace was considered. Points were taken from the
whole workspace rather than limiting it to just a
prescribed path. This has the advantage that the use of
the lookup tables are not limited to a single predefined
path but rather it can be used for any points or paths in
that workspace. Two types of artificial ncural nctworks
were used, a multi-layered perceptron with adaptive
back-propagation algorithm and a radial basis {unction.
For comparison, conventional calculation of the inverse
kincmatics was also applied.

2.1. Two link planar manipulator arm

Figure 2.1 shows the two link planar manipulator arm. It
can move its end-cffector within a semicircle work space
as shown with a radius of 2 units. Joint 1 can rotates 18()
degrees and joint 2 rotates 360 degrees. Both joints 2 and
3 turn about their own horizontal axes. Using
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Table I. The normalised training data used for the three link manipulator
First configuration Second configuration
X y zZ 6, 0, 6, X y z 6, 9, 0.
0.05 0.00 0.950 0.00000 0.93060 0.42227 0.05 0.00 0.950 (.00000 0.81852  0.42227
0.10 0.05 0.950 (.23182 0.91293 0.41850 0.10 0.05 0.950 (1.46365 0.79874  0.41850
0.15 0.10 0.948 (.29400 0.89260 0.41223 0.15 0.10 0.948 0.58800 0.77791  0.41223
(.20 0.15 0.946 (1.32175 0.87158 0.40499 0.20 0.15 0.946 0.64350 0.75712  0.40499
(.25 0.20 0.942 (.33737 0.85065 (0.39840 0.25 0.20 0.942 0.67474 0.73580  (.39840
0.30 0.25 0.936 0.34737 0.83040 (.39408 0.30 0.25 0.936 0.69474 0.71312  0.39408
0.35 0.30 0.929 0.35431 0.81135 (0.39361 0.35 0.30 (.929 0.70863 0.68819  0.39361
0.40 0.35 0.918 0.35941 0.79390 0.39839 0.40 (.35 (0.918 0.71883 0.66014  0.39839
0.45 (.40 0.904 0.36332 0.77828 0.40943 0.45 0.40 0.904 0.72664 0.62827  0.40943
0.50 0.45 (0.887 0.36641 (.76450 0.42726 0.50 0.45 0.887 0.73282 0.59207  0.42726
0.55 (.50 (.867 0.36891 0.75231 0.45184 (.55 0.50 0.867 0.73782 0.55124  0.45184
0.60 0.55 (0.842 0.37097 (.74128 0.48265 (.60 0.55 0.842 (.74195 0.50572  0.48265
0.65 0.60 0.813 0.37271 0.73075 0.51881 0.65 0.60 0.813 (0.74542 0.45552  0.51881
0.70 0.65 0.778 (.37419 0.71994 0.55918 0.70 0.65 0.778 0.74838 0.40074  0.55918
0.75 0.70 0.739 (1.37546 0.70797 0.60249 0.75 0.70 0.739 0.75093 0.34146  0.60249
(.80 0.75 0.694 0.37658 0.69381 0.64729 0.80 0.75 0.694 0.75315 0.27779  0.64729
(.85 0.80 0.643 0.37755 0.67634 0.69197 0.85 0.80 0.643 0.75510 (.20982  0.69197
(.90 0.85 0.585 0.37842 0.65429 (1.73462 0.90 0.85 (.585 0.75683 0.13777  0.73462
0.95 0.90 0.521 0.37919 0.62625 (.77301 0.95 (.90 0.521 0.75838 0.06199  0.77301

Denavit-Hartenberg notation and applying transforma-
tion matrix on thc manipulator? gives:
()7‘*2 —
cos(0, + 6,) —sin(6,+8,) 0 cos(@, + 0,) + cos 6,
sin(@, + 6,)  cos(6,+6,) 0 sin(0, + 6,) +sin 6,
0 0 1 0
0 0 0 1

2.1)

From cquation (2.1), the forward kincmatics of the
manipulator arm is given as:

x=cos(0, +6,)+cosB, and y=sin(@; + 6,)+sin 6,
(2.2)

Joint { a; o di 0;

1 Li=1 0 0 )

2 L=1 0 0 8,

The inverse kinematics of the manipulator arm is then
obtained by solving equation (2.2) giving:

0, = atan 2(y, x) — atan 2(k,, k;)
and (2.3)
6, = atan 2(sin 8., cos 6-)

sin 8, = £ V1 — cos® 65,

where  cos 0= (x” + y* —2)/2,
ki =1+ cos 6, and k, = sin 6.

2.2. Three link manipulator arm

Figure 2.2 shows the three link manipulator arm as
defined for this work. It can move its end-cffector in a
3D work space. The link lengths are assumed to be 1 unit
and thus the radius of its work space is 2 units. Joint 1
can rotates 360 degrees about the vertical axis and joint 2
and 3 can rotate 180 degrees and 360 decgrees
respectlively. Both joints 2 and joint 3 rotate about their
own horizontal axes. The work spacc of the end-cffector
is thus a semi-hemisphere.

Joint ¢ a; oy d; 9,‘
1 0 90 0 8
2 Li=1 0 0 0,
3 Lo=1 0 0 0,

Fig. 2.1. A diagram of thc two link planar manipulator arm.
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Fig. 2.2. A three link planar manipulator arm having a 3D work
space.
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The inverse kinematics of the three link manipulator
arm is:
6, = atan 2(y, x)
6, = atan 2(—z, x/cos 6,) — atan 2(k,, k,)

6; = atan 2(sin 05, cos 05) (2.4)
where
cos 0; = (x* + y* + 72— 2)/2,
sin 0; = +V1 — cos” 6,
and
ki =1++cos 6,
k, = sin 8.

2.3. Artificial neural networks

In the previous work, 30,000 iterations were needed
during the training session of a single hidden layer neural
network with back-propagation algorithm on patterns
described in Table 1. Even when done off-line, the time
taken is unreasonably long. It was decided to apply a
neural network with adaptive back-propagation algo-
rithm for the training session in order to try to reduce the
training time. The algorithm changes its learning rate
according to the ecrror at the output layer. The next
section describes the neural network more fully.

Apart from the time taken for training, the design time
of a feed-forward perceptron with hidden layers is quite
lengthy. This is due to a number of parameters that need
to be adjusted, like the number of hidden layers, the
number of neurons in each layer, the rate of learning, the
momentum factor and the type of sigmoid functions to
be applied. A radial basis function consists of an input
layer, a hidden layer and an output layer. Training in
radial basis function is cquivalent to finding a surface in a
multidimensional spacc that provides a best fit to the
training data’. Thus a radial basis function tends to have
many more necurons in its hidden layer than a
comparable feed-forward network, but designing a radial
basis function often takes much less time.

2.3.1. Two hidden layer neural network with adaptive
back-propagation algorithm. A two hidden layer neural
network with adaptive back-propagation algorithm
(Figure 2.3) was uscd for the training of the three link
manipulator arm. During the training session there are
two passes of computation, namely the forward and
backward pass. In the forward pass, the synaptic weights

1st 2nd
input hidden  hidden  output
layer layer layer layer

m

O o->
I 50 U
N~ ZO o O->T
P" C|> ! P
u- > U
he ad 3 O->

weights L weights

= R

Fig. 2.3. Multi-layer perceptron with two hidden layers.
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remain unaltered throughout the network. The function
signal appearing at the output of neuron j is calculated
as:

0, =¢(inp;) and inp;= (2 W,~i(>;> +"w;,  (2.5)

where (-) is the activation function, w; is the weight
associated with a neuron in layer i and a ncuron in layer
J, and "w;, is the weight of the bias neuron in layer i. The
activation functions applied in this work were:

1

S 1 2.6
1 + einP ( )

@ ¢

T2
which are the log-sigmoid function and tan-sigmoid
function respectively.

The error, 8, at the output layer of a neuron in the
output layer is calculated by comparing its output, 0.y,
to the desired output, d:

8 = (p’(inpoul)(d - O(HII) (2'7)

where inp,, is the net input into that neuron in the
output layer. These crror values are then used in the
backward pass to adjust the weights from the output
layer back to the input layer as:

5= '(inp) X wd 28)
/
where w; are weights between the output layer and the
next layer before it. The error calculation is implemented
on a neuron-by-neuron basis over the entire epoch of
patterns. The weights are then adjusted according to:
w(new) = w(old) + néo + a(Aw(old)) (2.9)
where is the momentum factor and 7 is the adaptive
learning rate.

The adaptive lcarning rate is applied heuristically.
Depending on the crror at the output layer, if it cxceeds
a predefined ratio (1.04), the new weights, biascs, output
and error are discarded. In addition the Icarning rate is
decrcased by multiplying by a predefined value (0.7).
Otherwise, the new weights, etc. are kept. If the new
error is less than the old error, the lcarning rate is
incrcased (by multiplying by 1.05).

2.3.2. Radial basis function. The construction of a radial
basis function nctwork involves three entirely different
layers. The input layer is made up of source nodcs
(sensory units), the second layer is a hidden layer of high
enough dimensions, and the output layer supplies the
responsc of the network to the activation patterns
applied to the input layer. The transformation from the
input space to the hidden-unit space is non-linear,
whercas the transformation from the hidden-unit space
to the output space is linear.

If an input vector is presented, each ncuron in the
hidden layer will output a value corresponding to how
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Fig. 2.4. Radial basis function network.
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close the input vector is to each neuron’s centre ¢;. Each
hidden ncuron has an activation function of thc form
o(||X —¢])). The output layer is linear, so:

Oput = (2 w; ¢(]|X — E,||> +'w (2.1())
i=1

where s is the number of centres, w; are the wecights
between corresponding neurons in the hidden and output
layers and “w is the bias weight.

Figure 2.4 shows the structurc of a radial basis function
network. The input layer is connected to the hidden layer
via unweighted connections whereas the hidden layer is
connected to the output layer using a set of weighted
connections.

The weights can be learned by using Hebb’s activation
rule, i.e. the change in the weight associated with a
neuron is proportional to the error at the output and the
activation of the neuron.

3.1. Training of the three link arm and results
The training patterns were points taken from a path
traverse by the end-cffcctor of the arm. This is a three
dimensional path as shown in Figure 3.1 and Figure 3.2.
Nineteen patterns (Table ) were used for the training of
the ncural network and eight other points (Table II)
were used to test the network after it had been trained.
A two hidden layer perceptron with adaptive
back-propagation algorithm was used for the training of
normalised patterns in the three link manipulator arm.
Both configurations werc trained 8000 times using their
respective patterns with 11 neurons for the first hidden
layer and 13 neurons for the second hidden layer. A

Manipulator inverse kinematics

goal

-0.5 -05

Fig. 3.1. The path traccd by the arm in first configuration.

log-sigmoid transfer function (Eqn. 2.12) was uscd for all
the neurons. The number of neurons for each layer was
chosen after a number of trials comparing the sum
squared error produced’. The momentum factor was
fixed at 0.9 and the learning rate was initially set at 0.775.
Even though the arm has three links, there are only two
configurations that thc arm can have to reach the same
point in space. These configurations correspond to the
two sets of weights obtained after the training of the
network.

Figures 3.3 and 3.4 show the graph of thc difference
between the desired and actual output for each
configuration. For configuration 1, the average percen-
tage crror for 8, is 0.109%, 6, is 0.149% and 6, is
—0.113%. This comparcs well with the average
percentage crrors in the previous work, which were
0.7%, 0.01% and 0.002% where training with 30,000
iterations was nceded. The average percentage error for

0o 0

Fig. 3.2, The path traced by the arm in second configuration.

Table I1. The normalised data used for the test session of the three link manipulator

First configuration

Second configuration

X y Z 0, 6, 0 X y Z 0, 0, 0,
0.05 0.00 0.950 0.00000 0.93060 0.42227 0.05 0.00 0.950 0.00000 0.81852  0.42227
0.12 0.07 0.949 0.26404 0.90495 0.41620 0.12 0.07 0.949 0.52807 0.79039  0.41620
0.23 0.18 0.944 0.33202 0.85898 0.40086 0.23 0.18 0.944 0.66405 0.74444  0.40086
0.36 0.31 0.927 0.35545 0.80772 0.39411 0.36 0.31 0.927 0.71091 0.68285 0.39411
0.52 0.47 0.880 0.36747 0.75945 0.43630 0.52 0.47 0.880 0.73494 0.57630  0.43630
0.64 0.59 0.819 0.37239 0.73285 0.51120 0.04 0.59 0.819 0.74477 0.46593 0.51120
0.67 0.62 0.800 0.37333 0.72650 0.53452 0.67 0.62 0.800 0.746606 0.43415 0.53452
0.83 0.78 0.664 0.37718 0.68381 0.67423 0.83 0.78 0.664 0.75435 0.23752  0.67423
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120.0 First Configuration
90.0
60.0
8 300 o0
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th 3"

Fig. 3.3. A graph showing the differences between actual
and desired output.

the second configuration is 0.213%, 0.152% and 0.025%
for 0, 6, and 6; respectively. The corresponding results
in the previous work' were 2.4%, 0.1% and 0.5%.

3.2. Training of the two link planar arm and results
The results above were based on a predefined trajectory
ol the manipulator arm. Unfortunately, a trajectory of
the end-effector cannot be determined in advance, thus
the nced to have a lookup table of the workspacc. Then
for any path or trajectory taken, the solution can be
found without having to train the neural network again.
The patterns chosen for the training of the neural
networks in this work were taken from points in the
workspace of the arm, i.c. the area that can be reached

80.0 Second Configuration
600 "“*-—OM\
® 400
20.0
0.0 + e + + t t t + {
1 2 3 4 5 6 7 8
No. of points

Tt th_1 -0 th_2'
th_2''---ae-= th_3' th_3"

Fig. 3.4. A graph showing the differences between actual and
desired output.
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Fig. 3.5. The actual workspace arca used in the training of the
network.

by the end-effector of the arm (Figure 3.5). For this work
though, only half of the workspace was considered. The
number of patterns used for the training was 102, so that
the networks can generalise the workspace well (Table
[V and Figure 3.6). Filteen points taken randomly from
within the workspace were used to test the networks
initially (Table I and Figure 3.7). As the arm has only

) Train Points,
o 00 0 °
18 + ° ° o
-] < o O
164+ 0606 o °
° ° ° oo
144+ o °
° o o °
12+ ° o o
- o o0 o0 ° oo
3 1+ ° o o
>~ o o0 o o o ° °
0.8 + ° ° o
° ° %0 oo 0
0.6 + © © o (-2 -4 (- o °
° o o0 o o0 o
04 + o ° ° ° °
(- L] © <o o ¢ O O
0.2 + ° ° ° °
° o o ° o0 ©
0 +—o0-—0 t ¢ + : } t } t |
0 02 04 06 08 | 12 14 16 18 2
x-axis

Fig. 3.6. The points uscd to train the networks.

Table 111, Test patterns for the neural nctworks for the planar manipulator

End cffector position
in opcrational space

End effector position in joint space (deg).
First configuration

Second configuration

X y 6, 6, 0, 0,
0 2 90.0 0.0 90.0 0.0
0.1 0.5 153.9 —150.5 3.5 150.5
0.1 1.4 131.3 -90.9 40.5 90.9
0.3 1.9 96.9 -31.8 65.1 31.8
0.4 0 78.5 —156.9 —78.5 156.9
0.4 1.9 92.0 —27.7 64.2 27.7
0.5 0.5 114.3 —138.6 —24.3 138.6
0.6 1.2 111.3 —95.7 15.6 95.7
0.8 1.7 84.8 -40.1 44.8 40.1
1 1.1 89.7 —84.0 5.7 84.0
1 1.5 82.0 -51.3 30.7 51.3
1.3 1.2 70.5 -55.6 14.9 55.6
1.3 1.5 56.1 —14.1 42.1 14.1
1.6 1.2 36.9 0.0 36.9 0.0
1.8 0.7 36.3 =30.1 6.2 30.1
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Table 1V. Training patterns for the neural networks for the planar manipulator
End effector position in joint End cffector position in joint
End effector position space (deg). End effector position space (deg).
in operational spacc First configuration Sceond configuration in operational space First configuration Second conliguration
X y 0, 6, 0, 6, X y 0, 9, 0, 0,
0.1 0 87.1 —174.3 —87.1 174.3 0.9 0.5 88.1 -118.0 —30.0 118.0
0.1 0.4 154.1 —156.2 —2.1 156.2 0.9 0.9 95.5 =101.0 ~5.5 101.0
0.1 0.6 152.8 —144.6 8.2 144.6 0.9 1.3 93.1 —75.5 17.5 75.5
0.1 0.9 146.7 —126.2 20.6 126.2 0.9 1.6 84.0 —46.8 37.3 46.8
0.1 1.4 131.3 —90.9 40.5 90.9 0.9 1.7 78.0 -31.8 46.2 31.8
0.1 1.6 123.1 —73.4 49.7 73.4 1 0.2 70.7 —118.7 ~48.0 118.7
0.1 1.9 104.9 —35.9 69.0 35.9 | 0.6 85.3 —108.7 —234 108.7
0.2 0 84.3 —168.5 —84.3 168.5 1 0.9 89.7 —95.5 =5.7 95.5
0.2 0.3 135.9 —-159.2 —23.3 159.2 1 1.1 89.7 —84.0 5.7 84.0
0.2 0.8 141.6 -131.3 10.3 131.3 1 1.3 87.3 —69.8 17.5 69.8
0.2 1.1 135.7 ~112.0 23.7 112.0 1 1.5 82.0 =513 30.7 513
0.2 1.3 130.1 -97.8 32.4 97.8 1.2 0.2 62.0 —105.1 —43.1 105.1
0.2 1.6 119.1 =725 46.6 72.5 1.2 0.3 65.8 -103.6 -37.8 103.6
0.2 1.9 101.2 ~34.4 66.8 34.4 1.2 0.6 74.4 —95.7 -21.3 95.7
0.3 0.5 132.1 —146.1 —14.0 146.1 1.2 0.7 76.3 =92.0 =157 92.0
0.3 0.3 122.8 —155.5 -32.8 155.5 1.2 1.1 78.0 =71.0 7.0 71.0
0.3 0.7 134.4 —135.2 —0.8 135.2 1.2 1.5 67.5 ~32.3 35.2 323
0.3 0.9 133.2 ~123.4 9.9 123.4 1.3 0.1 53.7 —98.6 —44.9 98.6
0.3 1.2 127.8 —103.6 24.2 103.6 1.3 0.4 64.3 —94.3 =30.0 94.3
0.3 1.5 118.8 —80.2 38.6 80.2 1.3 0.6 69.1 —88.6 —19.5 88.6
0.3 1.7 110.3 —60.7 49.7 60.7 1.3 0.7 70.7 —84.8 - 14.1 84.8
0.3 1.9 96.9 ~31.8 65.1 31.8 1.3 1 72.5 —69.8 2.7 69.8
0.4 0.4 118.6 —147.1 —28.6 147.1 1.3 1.1 71.9 —63.3 8.6 63.3
0.4 0.5 122.7 —142.7 —20.0 142.7 1.3 1.5 56.1 ~14.1 42.1 14.1
0.4 0.9 126.5 ~121.0 5.5 121.0 1.5 0.2 48.4 —81.7 —33.2 81.7
0.4 1.1 124.2 —108.4 15.8 108.4 1.5 0.6 57.9 =722 —14.3 72.2
0.4 1.6 110.4 —68.9 41.5 68.9 1.5 0.9 60.0 —58.0 2.0 58.0
0.4 1.8 100.3 —45.6 54.7 45.6 1.5 1.2 54.8 —32.3 22.5 32.3
0.4 1.9 92.0 ~27.7 64.2 27.7 1.5 1.3 47.9 —14.1 33.9 14.1
0.5 0.1 86.5 —150.5 —63.9 150.5 1.6 0.1 40.3 -73.4 —33.1 73.4
0.5 0.3 104.0 —146.1 —42.1 146.1 1.6 0.3 46.1 =710 —24.9 71.0
0.5 0.6 117.2 —134.0 —16.8 134.0 1.6 0.4 48.5 —68.9 —20.4 68.9
0.5 1.1 118.4 ~105.7 12.7 105.7 1.6 0.7 52.8 —58.3 5.5 58.3
0.5 1.7 101.2 =552 46.0 55.2 1.6 1 5.4 —38.7 12.6 38.7
0.6 0.5 106.8 —134.0 =272 134.0 1.6 1.2 36.9 0.0 36.9 0.0
0.6 0.7 111.9 ~125.1 ~13.2 125.1 1.7 0.1 35.0 —63.3 28.3 63.3
0.6 1.8 9.0 -36.9 53.1 36.9 1.7 0.3 40.3 —60.7 -20.3 60.7
0.6 1.9 77.4 -9.9 67.5 9.9 1.7 0.5 44.0 —55.2 =112 55.2
0.7 0.1 77.4 -138.6 ~61.2 138.6 1.7 0.7 45.6 —46.4 0.8 46.4
0.7 0.3 100.1 —129.1 —29.0 129.1 1.7 0.9 43.8 -31.8 12.0 31.8
0.7 0.9 107.4 —110.5 -3.1 110.5 1.7 I 40.0 ~19.1 20.9 19.1
0.7 1.1 106.8 ~98.6 8.2 98.6 1.8 0.3 33.6 —48.3 -14.7 48.3
0.7 1.5 99.1 —68.3 30.8 68.3 1.8 0.5 36.4 —41.8 =54 41.8
0.7 1.8 83.8 —30.1 53.7 30.1 1.8 0.6 36.9 -36.9 0.0 36.9
0.8 0.2 79.7 ~131.3 =51.6 131.3 1.8 0.7 36.3 -30.1 6.2 30.1
0.8 0.8 100.6 —111.1 -10.6 I11.1 1.8 0.8 33.9 —19.9 14.0 19.9
0.8 1.1 101.1 —94.3 6.8 94.3 1.9 0.1 21.0 =359 —149 359
0.8 1.4 96.5 ~72.5 24.0 72.5 1.9 0.3 24.9 318 —-6.9 31.8
0.8 1.7 84.8 —40.1 44.8 40.1 1.9 0.4 25.8 =277 -2.0 27.7
0.9 0.1 69.4 —126.2 —56.7 126.2 1.9 0.5 25.5 -21.6 4.0 21.6
0.9 0.3 80.1 —123.4 —43.2 123.4 1.9 0.6 22.5 -9.9 12.6 9.9

two links, the arm can be in either of two poscs or
configurations to reach any point in spacc (Figure 3.8).
Thus two sets of weights or lookup tables from the
training session are needed to get a solution to the
inverse kinematics, i.e. angles of the joints, for a point in
the workspace.
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For comparison, a conventional geomctrical method, a
perceptron network with two hidden layers and a radial
basis function were applied. The conventional method
was chosen to be the reference or standard for the
comparison since the manipulator is assumed to be rigid.
The reason for doing so is because cven il a neural
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20 Test Points,

L4

o} t < t t t } t t |
0 0.2 04 06 0.8 1 1.2 1.4 1.6 18
x-axis

Fig. 3.7. The points used to test the networks.

ZPX

Fig. 3.8. The two poscs possible to reach a point X in the
workspace.

network have a small sum squared error during its
training time, it may still not generalise well. A
back-propagation algorithm with adaptive lcarning rate
was used to tcach the network. The momentum factor
was sct at 0.9 and the learning rate was initially set at
(0.265. For the first configuration, the first hidden layer
has 17 ncurons and the second hidden layer has 23
neurons with cach neuron having a log-sigmoid
activation function. For the sccond configuration, due to
its distribution being between —1 and +1, the first
hidden layer has 23 neurons and the sccond has 27
neurons with a tan-sigmoid activation function. For both
nctworks, a training of 20,000 times was done. Figure 3.9
and Figure 3.10 show the graphs of the training lor both
configuration 1 and 2 using the perceptron network.
Figure 3.11 and Figurc 3.12 show the graphs of the

Training for 20000 Epochs

10 ; . .

10°

10%}

» B e R
0 0.5 1 1.5 2

Sum-Squared

Epoch %10
Etror

Fig. 3.9. A graph of the training for configuration 1 using two
hidden layer perceptron.
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Training for 20000 Epochs

10 . .
10° g ]
10%t 1
- s s e

0 0.5 1 1.5 2

Sum-Squared
Error

Fig. 3.10. A graph of the training for configuration 2 using two
hidden layer perceptron.

Sum-Squared Network Ermror for 52 Epochs
10 r T T r v

0
10

10

-2
10

3
10

104 i A 1 i "
c 10 20 30 40 50

Sum-Squared Error Epoch

Fig. 3.11. A graph of the training for configuration 1 using
radial basis function.

training [or both configurations using the radial basis
function.

Table V and Table VI show the resulting errors after
the training sessions of the two hidden layer perceptron
network and radial basis function respectively against the

Sum-Squared Network Error for 51 Epochs
10 T T Y T

-4
10 L " L s "
0 10 20 30 40 50

Sum-Squared Error Epoch

Fig. 3.12. A graph of the training for configuration 2 using
radial basis function.
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Table V. The resulting errors after training of the two hidden layer perceptron

Two hidden layer perceptron with backpropagation algorithm.
Errors after training for train2_1-test2_1 after de-normalising. (17/logsig-23/logsig-logsig)
{work2_1.mat ##* ¥p = [2,000 20,000 0.001 0.265]}

0, * 3 (degrees)

— 0} * 4 (degrees)

target actual % error n target actual % error
90.0 99.5 10.543 ! 0.0 ~26.6  #DIV/OI
153.9 152.4 =0.979 2 —150.5 -150.4 —0.046
131.3 132.1 0.546 3 -90.9 -90.7 —0.164
96.9 96.8 —0.083 4 -31.8 —33.0 3.675
78.5 85.9 9.446 5 -156.9 —1553 —1.054
92.0 89.9 —2.233 6 =277 —26.1 —5.761
1143 113.9 —0.307 7 —138.6 —137.6 —0.730
111.3 112.7 1.260 8 —95.7 —94.6 —1.183
84.8 85.4 0.707 9 —40.1 —40.7 1.521
89.7 89.7 =0.063 10 —84.0 -82.7 —1.474
82.0 83.4 1.725 I -51.3 =51.1 —0.365
70.5 68.6 =2.730 12 —55.6 —49.5 —10.961
56.1 54.7 —2.480 13 —14.] ~16.1 14.348
36.9 35.9 —2.704 14 0.0 —6.8  #DIV/OI
36.3 36.1 —0.586 15 —30.1 -27.7 =7.923
Avcrage crror 0.804 Average error —0.778

Errors after training for train2_2-test2_2 after de-normalising. (23/tansig-27/tansig-tansig)
{work2_2mat *## {p = [2,000 20,000 0.001 0.265]}

01 = 3 (degrees)

—04 # 3.5 (degrees)

target actual % error n target actual % error

90.0 75.1 —16.539 1 0.0 26.6 #DIV/O1
3.5 52 50.990 2 150.5 151.0 0.375
40.5 39.8 —1.711 3 90.9 91.7 (.952
65.1 65.4 (0.414 4 31.8 31.0 —2.534
—78.5 =76.0 —3.128 N 156.9 156.8 —0.081
64.2 64.1 —0.165 6 27.7 26.8 —3.376
—243 —25.7 5.700 7 138.6 138.6 0.029
15.6 15.5 —0.393 8 95.7 94.5 —1.261
44.8 44.6 —0.445 9 40.1 39.9 —0.465
5.7 59 2416 10 84.0 84.1 0.133
30.7 30.7 0.157 11 51.3 SL7 0.702
14.9 12.9 —13.425 12 55.6 57.4 3302
42.1 41.4 —1.570 13 14.1 15.2 7.751

36.9 353 —4.336 14 0.0 4.1 #DIV/OI
6.2 73 17.426 15 30.1 28.8 —4.451
Average error 2.359 Average crror 0.083

selected points (Table IIT). As can be seen, the average
percentage errors were (.L8% and —0.8% for 8, and 6,
for the first configuration, and 2.4% and 0.1% for 6, and
0, for the second configuration when trained using the
perceptron network. Training by radial basis [unction
gave average percentage errors of 0.7% and 0.8% for 6,
and 6, for the first configuration, and 0.1% and 0.8% for
6, and 6, for the second configuration. Figure 3.13 and
Figure 3.14 show the differences between the desired
(‘calculated’) and actual valucs obtained by using the two

https://doi.org/10.1017/50263574798001064 Published online by Cambridge University Press

hidden layer perceptron network and the radial basis
function, respectively.

Three types of path were used to test the weights of
the networks, as shown in Figure 3.15. The paths were
chosen to represent the different paths that the
end-effector might take [rom start to its goal in the
workspace. Using the weights obtained from the training
session of the perceptron nctwork and radial basis
function, the position of the end-effector was used to find
its joint angles ol 8, and 6, for cach of the paths. Figure
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Table VI. The resulting errors after training of the radial basis function

Radial basis function.
Errors afier training for train2_1-test2_1 after de-normalising
{worb2_1.mat *** dp = [25,200 0.001 0.5]}

8| * 3 (degrecs)

— 05 * 4 (degrees)

target actual % error n target actual % error
90.0 91.2 1.299 1 0.0 —7.1 #DIV/OI
153.9 154.1 0.149 2 —-150.5 —-150.2 —0.198
131.3 131.3 —0.030 3 -90.9 —90.7 —0.164
96.9 97.0 0.041 4 -31.8 -31.9 0.214
78.5 80.1 2.042 5 -156.9 —158.3 0.888
92.0 91.7 —0.308 6 -27.7 -27.2 —1.962
114.3 114.3 -0.021 7 —138.6 —138.7 0.047
111.3 111.2 -(.068 8 —95.7 -954 -(0.345
84.8 85.1 0.261 9 —40.1 —40.6 1.293
89.7 89.7 —0.024 10 —84.0 —83.9 —-0.082
82.0 82.0 0.026 11 -51.3 —-51.3 0.037
70.5 71.6 1.536 12 —55.6 —-57.9 4.085
56.1 56.5 0.644 13 —14.1 —14.9 5.552
36.9 38.4 4.056 14 0.0 -3.0 #DIV/OI
36.3 36.4 0.313 15 —30.1 -30.3 0.752
Average error 0.661 Average error 0.778

Errors after training for train2_2-test2_2 after de-normalising
{worb2_2mat *** dp = [25,200 0.001 0.5]}

0, + 3 (degrees) — 0} * 4 (degrees)

target actual % crror n target actual % error

90.0 75.6 —16.043 1 0.0 247 #DIV/OI
3.5 4.1 19.202 2 150.5 150.0 —0.278
40.5 40.7 0.497 3 90.9 90.5 —0.350
65.1 64.9 —(1.351 4 31.8 322 1.440
—78.5 -83.4 6.270 5 156.9 164.5 4.826
64.2 64.6 0.558 6 27.7 26.9 —3.160
—24.3 —24.3 0.181 7 138.6 138.7 0.043
15.6 15.8 1.816 8 95.7 95.6 —0.171
44.8 44.6 —0.407 9 40.1 40.4 0.835
5.7 5.9 3.015 10 84.0 83.7 —0.345
30.7 30.6 -0.236 11 51.3 51.5 0.350
14.9 13.8 —7.431 12 55.6 571 3.770
42.1 41.7 —0.753 13 14.1 14.5 3.190

36.9 357 —3.264 14 0.0 2.4 #DIV/OI
6.2 6.1 —0.896 15 30.1 30.2 0.343
Average error 0.144 Average error 0.807

3.16, Figure 3.17 and Figure 3.18 show the resulting
curves from applying conventional method, perceptron
nctwork and radial basis function for paths 1, 2 and 3,
respectively. For path 1, the average percentage crrors of
0, and 0, were 0.6% and —0.6% for the first
configuration, and —3.7% and —1.4% for thc second
configuration when using the weights from the
perceptron network. The radial basis function gave
average percentage errors of —0.2% and —0.9% for the
first configuration and —1.6% and —0.5% for the sccond
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configuration for 8, and 8, respectively. The error values
given are relative to the performance of the conventional
method. For the second path the average percentage
errors of 9, and 8, were 0.1% and —0.2% for the first
configuration, and 6.6% and —0.3% for the second
configuration when using the weights from the
perceptron network. The radial basis function gave
average percentage errors of —0.1% and —0.04% for the
first configuration and 3.1% and —0.1% for the second
configuration for 6, and 6, respectively. And finally for
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between the desired and actual co-ordinates for configurations 1 (a) and 2 (b) when using two hidden layer

Configuration 2.
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Fig. 3.14. The difference between the desired and actual co-ordinates for configurations 1 (a) and 2 (b) when using radial basis

function.

path 3, the average percentage errors of 6, and 0, were
1.3% and 0.1% for the first configuration, and 2.1% and
—0.3% for the second configuration when using the
weights from the perceptron network. The radial basis
function gave an average percentage errors of —0.1%
and —0.4% for the first configuration and 4.3% and
=0.4% for the second configuration for 6, and 6,
respectively.

4. Discussion and conclusion

Part 1 of the work described here compared the results
of training using a plain back-propagation algorithm with
an adaptive back-propagation algorithm. As can be scen
from thc results, the adaptive back-propagation algo-
rithm necds less training in order to gencralise the
patterns taken from the cnd-effector’s path (8,000
iterations) and also has smaller percentage errors

Path 1 Path 2 T Path3
Y Y Y 1
1 t t t : } ; } \ | -
X X ' XI '
(a) (b) (c)
Fig. 3.15. Shown arc three paths (a, b and ¢) as used 10 test the system.
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Path 1
(first configuration)
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Path 1
(second configuration)

y-axis
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0.80 + —&—prbf
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Fig. 3.16. The two graphs show the different results from the different methods applied for (a) first configuration and (b) second

configuration.

Path 2
(first configuration)

Path 2
(second configuration)

} $ | Il

0.00 T T T 1

0.50 1.00 1.50
x-axis

b

Fig. 3.17. The two graphs show the different results from the different methods applied for (a) first configuration and (b) second

configuration.

becausc the learning rate was changing to minimise the
errors. Unfortunatcly this is not sufficient as the path of
the arm for most of the time cannot be determined well
in advance. Furthermore thc path might need to be
changed to accommodate a new object. For this purpose,
a training of the wholc workspacc is needed. This has the

Path 3
(first configuration)

y-axis
1.80 T
1.60 T
1.40 T
1.20 T
1.00 +
0.80 +
0.60 T
0.40 1
0.20 T

—+—ffp

—a—rbf

T

-

0.00 f +

0.00

0.50

1.00
x-axis
a

1.50

2.00

advantage of not limiting the end-cffector to a predcfined
path and thus allowing any necessary changes. For
comparison, 3 mcthods to finding the solution of the
inverse kinematics were applied namely, conventional
mcthod, perceptron network and radial basis function.
The conventional method was taken as a ‘standard’

y-axis Path 3
1.80 T (second configuration)
1.60 T
1.40 T
120 + T conv
1.00 + ——ffp
0.80 + —*—pbf
0.60 1
0.40 T
0.20 T
0.00 t t t {
0.00 0.50 1.00 1.50 2.00
x-axis
b

Fig. 3.18. The two graphs show the different results from the different methods applied for (a) first configuration and (b) sccond

configuration.
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solution to this problem as a rigid manipulator were
assumed. This might not be the casc when applied to a
flexible manipulator.

Quite a long training time was required for the
adaptive back-propagation algorithm (20,000 iterations)
while the radial basis function only requircd about 50
iterations before being able to determinc the number of
hidden neurons. This is due to the way cach nctwork
transforms the input vectors through the hidden units
and into the output vectors. During (raining, the
perceptron network modified or changes its ncurons’
weights so as to minimisc the sum squared error while
the radial basis {unction was dependent on its design, i.e.
the number of hidden neurons and their centres, to give
a small sum squared error. Thus a well designed radial
basis function can sometimes have a small number of
hidden ncurons while also giving a smaller error.

By training neural networks on the workspace of the
manipulator, the inverse kinematics can be casily solved.
As the workspace is fixed, this training can be done once
and ofl-linc. The same method can also be applied to a
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mobile manipulator as its workspace with respect to the
mobile base is fixed. An appropriatc transformation can
be done in order to get its position with respect to the
reference {rame.
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