
Astin Bulletin 40(1), 65-95. doi: 10.2143/AST.40.1.2049219 © 2010 by Astin Bulletin. All rights reserved.

ON THE RISK-NEUTRAL VALUATION OF LIFE INSURANCE 
CONTRACTS WITH NUMERICAL METHODS IN VIEW 

BY

DANIEL BAUER, DANIELA BERGMANN AND RÜDIGER KIESEL

ABSTRACT

In recent years, market-consistent valuation approaches have gained an increas-
ing importance for insurance companies. This has triggered an increasing 
interest among practitioners and academics, and a number of specifi c studies 
on such valuation approaches have been published.

In this paper, we present a generic model for the valuation of life insurance 
contracts and embedded options. Furthermore, we describe various numerical 
valuation approaches within our generic setup. We particularly focus on 
 contracts containing early exercise features since these present (numerically) 
challenging valuation problems.

Based on an example of  participating life insurance contracts, we illus-
trate the different approaches and compare their effi ciency in a simple and a 
generalized Black-Scholes setup, respectively. Moreover, we study the impact 
of the considered early exercise feature on our example contract and analyze 
the infl uence of model risk by additionally introducing an exponential Lévy 
model.
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 1. INTRODUCTION

In recent years, market-consistent valuation approaches for life insurance 
 contracts have gained an increasing practical importance.

In 2001, the European Union initiated the “Solvency II” project to revise 
and extend current solvency requirements, the central intention being the 
incorporation of  a risk-based framework for adequate risk management 
and option pricing techniques for insurance valuation. Furthermore, in 2004 
the International Accounting Standards Board issued the new International 
Financial Reporting Standard (IFRS) 4 (Phase I), which is also concerned 
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with the valuation of  life insurance liabilities. Although Phase I just consti-
tutes a temporary standard, experts agree that fair valuation will play a 
major role in the future permanent standard (Phase II), which is expected 
to be in place by 2010 (see International Accounting Standards Board 
(2007)).

However, so far, most insurance companies only have little knowledge 
about risk-neutral valuation techniques and, hence, mostly rely on simple 
models and brute force Monte Carlo simulations. This is mainly due to the 
fact that predominant software solutions (e.g. Moses, Prophet, or ALM.IT) 
were initially designed for deterministic forecasts of an insurer’s trade accounts 
and only subsequently extended to perform Monte Carlo simulations. In aca-
demic literature, on the other hand, there exists a variety of different articles on 
the valuation of life insurance contracts. However, there are hardly any detailed 
comparisons of different numerical valuation approaches in a general setup. 
Moreover, some studies do not apply methods from fi nancial mathematics 
appropriately to the valuation of  life insurance products (e.g. questionable 
worst-case scenarios in Gatzert and Schmeiser (2008) and Kling, Ruß and 
Schmeiser (2006); see Sec. 3.1 below for details).

The objective of this article is to formalize the valuation problem for life 
insurance contracts in a general way and to provide a survey on concrete 
valuation methodologies. We particularly focus on the valuation of insurance 
contracts containing early-exercise features or intervention options (cf. Stef-
fensen (2002)), such as surrender options, withdrawal guarantees, or options 
to change the premium payment method. While almost all insurance contracts 
contain such features, insurers usually do not include these in their price and 
risk management computations even though they may add considerably to the 
value of the contract.

The remainder of the text is organized as follows: In Section 2, we present 
our generic model for life insurance contracts. Subsequently, in Section 3, 
we describe different numerical valuation approaches. Based on an example of 
participating life insurance contracts, we carry out numerical experiments in 
Section 4. Similarly to most prior literature on the valuation of life contingen-
cies from a mathematical fi nance perspective, we initially assume a general 
Black-Scholes framework. We compare the obtained results as well as the 
 effi ciency of the different approaches and analyze the infl uence of a surrender 
option on our example contract. However, as is well-known from various 
empirical studies, several statistical properties of fi nancial market data are not 
described adequately by Brownian motion and, in general, guarantees and 
options will increase in value under more suitable models. Therefore, we analyze 
the model risk for our valuation problem by introducing an exponential Lévy 
model and comparing the obtained results for our example to those from the 
Black-Scholes setup. We fi nd that the qualitative impact of the model choice 
depends on the particular model parameters, i.e. that there exist (realistic) 
parameter choices for which either model yields higher values. Finally, the last 
section summarizes our main results.
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2. GENERIC CONTRACTS

We assume that fi nancial agents can trade continuously in a frictionless and 
arbitrage-free fi nancial market with fi nite time horizon T.1 Let ( WF,  F F, 
QF,  �F   =  ( F Ft )t  !  [ 0,T ] ) be a complete, fi ltered probability space, where QF is a 
pricing measure and �F is assumed to satisfy the usual conditions. In this prob-
ability space, we introduce the q1-dimensional, locally bounded, adapted Markov 
process (Yt

F )t  !  [ 0,T ]   =  (Yt
F, (1),  …,  Yt

F, (q1) )t  !  [ 0,T ] , and call it the state process of 
the fi nancial market.

Within this market, we assume the existence of  a locally risk-free asset
(Bt)t  !  [ 0,T ] with Bt   =  exp ru du{ }

t
0

# , where rt   =  r(t,Yt
F  ) is the short rate. More-

over, we allow for n  !  � other risky assets ( At
(i ) )t  !  [ 0,T ], 1  ≤   i   ≤   n, traded in the 

market with2

 t
( ( ( , .A A t Y i n1t
i i # #=

)) F ),

In order to include the mortality component, we fi x another probability space 
(  WM,  GM,  PM  ) and a homogenous population of  x-year old individuals at 
inception. Similar to Biffi s (2005) and Dahl (2004), we assume that a q2-dimen-
sional, locally bounded Markov process ( Yt

M )t  !  [ 0,T ]   =  ( Yt
M, (q1+1 ),  …, Yt

M, ( q ) )t  !  [ 0,T ], 
q  =  q1 + q2, on ( WM,  GM,  PM  ) is given. Now let m (·,  ·)   :   �+  ≈  �q2  "  �+ be a 
positive continuous function and defi ne the time of death Tx of  an individual 
as the fi rst jump time of a Cox process with intensity (  m ( x + t, Yt

M ) )t  !  [ 0,T ], i.e.

 s
t

( ,inf t x s Y ds Ex 0
$m= + M) ,T ' 1#

where E is a unit-exponentially distributed random variable independent of 
( Yt

M )t  !  [ 0,T ] and mutually independent for different individuals. Also, defi ne 
subfi ltrations �M  =  ( Ft

M )t  !  [ 0,T ] and �   =   ( Ht )t  !  [ 0,T ] as the augmented sub-
fi ltrations generated by ( Yt

M )t  !  [ 0,T ] and ( 1{Tx  ≤  t})t  !  [ 0,T ], respectively. We set
Gt

M  =  Ft
M  0  Ht and �M  =  ( Gt

M)t  !  [ 0,T ].
Insurance contracts can now be considered on the combined fi ltered prob-

ability space 

 �, , , ( )G Q [t tW = ! ,0G ,]T_ i

where W  =  WM  ≈   WF, G  =  F F   0   GM, Gt  =  Ft
F  0   Gt

M, and Q  =  QF  7  PM is the 
product measure of independent fi nancial and biometric events. We further let 

1 In actuarial modeling, it is common to assume a so-called limiting age meaning that a fi nite time 
horizon naturally suffi ces in view of our objective.

2 We denote by At
(i) only assets which are not solely subject to interest rate risk, e.g. stocks or immov-

able property. The price processes of non-defaultable bonds traded in the market are implicitly given 
by the short rate process.
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�  =  ( Ft )t  !  [ 0, T ], where Ft  =  Ft
F  0  Ft

M. A slight extension of the results by Lando 
(1998) ( Prop. 3.1 ) now yields that for an Ft-measurable payment Ct, we have 
for u   ≤   t3

 

s u

1

x
Y

u

u t>
Q

x
1

1

�

� ( , )exp

B B C

B B C x s ds

{

{

t t t u

T u t u

t1

>
Q

m= - +

-

-
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T }
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F& 0#

which can be readily applied to the valuation of insurance contracts. For nota-
tional convenience, we introduce the realized survival probabilities
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as well as the corresponding one-year realized death probability 

 1: .q p1 1 ( )
x t x t x t

t
1 1 1= - = -+ - + - + -

( ) ( )t t p

While QF is specifi ed as some given equivalent martingale measure, there is 
some fl exibility in the choice of PM. In a complete fi nancial market, i.e. if  QF 
is unique, with a deterministic evolution of mortality and under the assumption 
of risk-neutrality of an insurer with respect to mortality risk ( cf. Aase and 
Persson (1994) ), Møller (2001) points out that if  PM denotes the physical 
measure, Q as defi ned above is the so-called Minimal Martingale Measure ( see 
Schweizer (1995) ). This result can be extended to incomplete fi nancial market 
settings when choosing QF to be the Minimal Martingale Measure for the 
fi nancial market ( see e.g. Riesner (2006) ). However, Delbaen and Schacher-
mayer (1994) quote ‘‘the use of mortality tables in insurance” as ‘‘an example 
that this technique [change of measure] in fact has a long history” in actuarial 
sciences, indicating that the assumption of risk-neutrality with respect to mor-
tality risk may not be adequate. Then, the measure choice depends on the 
availability of suitable mortality-linked securities traded in the market ( see Dahl, 
Melchior and Møller (2008) for a particular example and Blake, Cairns and 
Dowd (2006) for a survey on mortality-linked securities ) and/or the insurer’s 
preferences ( see Bayraktar and Ludkovski (2009), Becherer (2003) or Møller 
(2003) ). In what follows, we assume that the insurer has chosen a measure PM 
for valuation purposes, so that a particular choice for the valuation measure 
Q is given.

3 In what follows, we write m ( x + t, Yt )   :=   m ( x + t, Yt
M ) and r ( t, Yt )   :=   r ( t, Yt

F ), where ( Yt )t  !  [0, T ]    :=
( Yt

F, Yt
M )t  !  [0, T ] is the state process.
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To obtain a model for our generic life insurance contract, we analyze the 
way such contracts are administrated in an insurance company. An impor-
tant observation is that cash fl ows, such as premium payments, benefi t pay-
ments, or withdrawals, are usually not generated continuously but only at 
discrete points in time. For the sake of  simplicity, we assume that these dis-
crete points in time are the anniversaries n  !  {0, …,T } of  the contract. 
Therefore, the value Vn of  some life insurance contract at time n under the 
assumption that the insured in view is alive by the risk-neutral valuation for-
mula is:

 1
n m m�B B C

T
Q

= n
m n

n
=

-V F ,9 C/

where Cm is the cash fl ow at time m, 0   ≤   m   ≤   T.
Since the value at time t only depends on the evolution of  mortality

and the fi nancial market, and as these again only depend on the evolution of 
( Ys )s  !  [0, t ] , we can write:

 s( , , [ , ]) .V t Y s t0t !=V u

But saving the entire history of the state process is cumbersome and, fortu-
nately, unnecessary: Within the bookkeeping system of an insurance company, 
a life insurance contract is usually managed ( or represented ) by several accounts 
saving relevant information about the history of the contract, such as the account 
value, the cash-surrender value, the current death benefi t, etc. Therefore, we 
introduce m  !  � ‘‘virtual” accounts ( Dt )t  !  [ 0,T ]  =  ( Dt

( 1 ),  …,  Dt
( m ) )t  !  [ 0,T ], the

so-called state variables, to store the relevant history. In this way, we obtain a 
Markovian structure since the relevant information about the past at time t is 
contained in ( Yt, Dt ). Furthermore, we observe that these virtual accounts are 
usually not updated continuously, but adjustments, such as crediting interest 
or guarantee updates, are often only made at certain key dates. Also, policy-
holders’ decisions, such as withdrawals, surrenders, or changes to the insured 
amount, often only become effective at predetermined dates. To simplify nota-
tion, we again assume that these dates are the anniversaries of the contract. 
Therefore, to determine the contract value at time t if  the insured in view is 
alive, it is suffi cient to know the current state of the stochastic drivers and the 
values of the state variables at StV  = max{n  !  �  |  n   ≤   t}, i.e. the value of the 
generic life insurance contract can be described as follows:

 ( , , ) ( , , ), [0, ] .V t Y V t Y D t Tt t t t t != =DV 6 @

We denote the set of all possible values of ( Yt, Dt ) by Qt.
This framework is ‘‘generic” in the sense that we do not regard a particular 

contract specifi cation, but we model a ‘‘generic” life insurance contract allowing 
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for payments that depend on the insured’s survival. While more general con-
tracts depending on the survival of a second life ( multiple life functions ) or 
payments depending e.g. on the health state of the insured ( multiple decre-
ments ) are not explicitly considered in our setup, their inclusion would be 
straightforward akin to the classical case.

Similar frameworks in continuous time have been e.g. proposed by Aase 
and Persson (1994) and Steffensen (2000), where the value — or, more precisely, 
the market reserve — of a generic contract is described by a generalized ver-
sion of Thiele’s Differential Equation. In contrast, we limit our considerations 
to discrete payments since ( a ) this is coherent with actuarial practice as pointed 
out above and ( b ) the case of continuous payments may be approximated by 
choosing the time intervals suffi ciently small. Hence, we do not believe that 
these limitations restrict the applicability of our setup.

In particular, many models for the market-consistent valuation of  life 
insurance contracts presented in literature fi t into our framework. For exam-
ple, Brennan and Schwartz (1976) price equity-linked life insurance policies 
with an asset value guarantee. Here, the value of the contract at time t only 
depends on the value of the underlying asset which is modeled by a geometric 
Brownian motion, i.e. we have an insurance contract which can be described 
by a one-dimensional state processes and no state variables.

Participating life insurance contracts are characterized by an interest rate 
guarantee and some bonus distribution rules, which provide the possibility 
for the policyholder to participate in the earnings of the insurance company. 
Furthermore, these contracts usually contain a surrender option, i.e. the policy-
holder is allowed to lapse the contract at time n  !  {1,…, T }. Such contracts 
are, for instance, considered in Briys and de Varenne (1997), Grosen and 
 Jørgensen (2000) and Miltersen and Persson (2003). All these models can be 
represented within our framework. Moreover, the setup is not restricted to the 
valuation of ‘‘entire” insurance contracts, but it can also be used to determine 
the value of parts of insurance contracts, such as embedded options. Clearly, 
we can determine the value of an arbitrary option by computing the value of 
the same contract in- and excluding that option, ceteris paribus. The difference 
in value of the two contracts is the marginal value of the option. For example, 
the generic model can be used in this way to analyze paid-up and resumption 
options within participating life insurance contracts such as in Gatzert and 
Schmeiser (2008) or exchange options such as in Nordahl (2008). Alternatively, 
the value of a certain embedded option may be determined by isolating the 
cash-fl ows corresponding to the considered guarantee ( see Bauer, Kiesel, Kling 
and Ruß (2006) ).

Bauer, Kling and Ruß (2008) consider Variable Annuities including so-
called Guaranteed Minimum Death Benefi ts ( GMDBs ) and/or Guaranteed 
Minimum Living Benefi ts ( GMLBs ). Again, their model structure fi ts into our 
framework; they use one stochastic driver to model the asset process and eight 
state variables to specify the contract.
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3. A SURVEY OF NUMERICAL METHODS

The contracts under consideration are often relatively complex, path-dependent 
derivatives, and in most cases, analytical solutions to the valuation problems 
cannot be found. Hence, one has to resort to numerical methods. In this sec-
tion, we present different possibilities to numerically tackle these valuation 
problems.

3.1. Monte Carlo simulations

Monte Carlo simulations are a simple and yet useful approach to the valuation 
of insurance contracts provided that the considered contract does not contain 
any early exercise features, i.e. policyholders cannot change or ( partially ) sur-
render the contract during its term. We call such contracts European.

In this case, we can simulate K paths of the state process ( Yt )t  !  [ 0,T ] , say 
( Yt

( k ) )t  !  [ 0,T ], k = 1,  …,  K, and compute the numéraire process, the realized 
 survival probabilities as well as the state variables at each anniversary of the 
contract. Then, the ‘‘value” of the contract for path k, V0

( k ), 1  ≤   k  ≤   K, is given 
as the sum of  discounted cash fl ows in path k, and, by the Law of  Large 
Numbers ( LLN ), the risk-neutral value of the contract at inception V0 may be 
estimated by the sample mean for K suffi ciently large.

However, if  the contract includes early exercise features, the problem is 
more delicate since the value of the option or guarantee in view depends on 
the policyholder’s actions.

The question of how to incorporate policyholder behavior does not have 
a straight-forward answer. From an economic perspective, one could assume 
that policyholders will maximize their personal utility, which would lead to a 
non-trivial control problem similar as for the valuation of  employee stock 
options ( see Carpenter (1998), Ingersoll (2006), or references therein ). How-
ever, the assumption of homogenous policyholders does not seem proximate. 
In particular, the implied assertion that options within contracts with the same 
characteristics are exercised at the same time does not hold in practice, and it 
is not clear how to include heterogeneity among policyholders.

Alternatively, it is possible to assess the exercise behavior empirically. 
For such an approach, our framework provides a convenient setup: A regression 
of historical exercise probabilities on the state variables could yield coherent 
estimates for future exercise behavior. However, aside from problems with 
retrieving suitable data, when adopting this methodology insurers will face 
the risk of systematically changing policyholder behavior, which has had severe 
consequences in the past. For example, the UK-based mutual life insurer 
 Equitable Life, the world’s oldest life insurance company, was closed to new 
business due to solvency problems arising from a misjudgment of  policy-
holders’ exercise behavior of  guaranteed annuity options within individual 
pension policies.
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Hence, in compliance with ideas from the new solvency and fi nancial 
reporting regulations, we take a different approach and consider a valuation 
of embedded options as if  they were traded in the fi nancial market. While 
from the insurer’s perspective the resulting ‘‘value” may exceed the actual or 
realized value, it is a unique ‘‘supervaluation” in the sense that policyholders 
have the possibility ( or the option ) to exercise optimally with respect to the 
fi nancial value of their contract. Moreover, the resulting ‘‘superhedging” strat-
egy for attainable embedded options is unique in the same sense. This is in line 
with Steffensen (2002), where a quasi-variational inequality for the value of 
life insurance contracts containing continuously exercisable options is derived 
under the same paradigm.

In order to determine this value, we need to solve an optimal control prob-
lem. To illustrate it, let us consider a life insurance contract with surrender 
option. The option is most valuable if  the policyholder behaves ‘‘fi nancially 
rational”, i.e.

t
1- f

t x x
1(Q

0

� ( , ) ( 1, ,sup p C D B p q Y( ) ( ) ( )

Y
x0 1

0

1
1

1 0)(= + +
!t

t
t t n

n

t
n

n
n

n n+

-

=

-

+
+

+n,YB t n D) F)V > H/

where C( n,  yn,  dn ) is the surrender value at time n and f ( n,  yn,  dn – 1 ) is the death 
benefi t upon death in [n  –  1, n ) if  the state process and the state variables take 
values yn and dn ( dn – 1 at t  =  n  –  1 ), respectively, and Y0 denotes the set of all 
stopping times in {1, …, T }. Clearly, maximizing the exercise value over each 
single sample path and computing the sample mean, as e.g. pursued in Gatzert 
and Schmeiser (2008) and Kling et al. (2006) for different types of contracts, 
overestimates this value.

To determine a Monte Carlo approximation of this value, which we refer 
to as the contract value in what follows, we need to rely on so-called “nested 
simulations”. We do not allow for surrenders at inception of the contract, so 
we defi ne C ( 0, y0,  d0 )  :=  0. By the Bellman equation ( see e.g. Bertsekas (1995) 
for an introduction to dynamic programming and optimal control ) the con-
tract value at time n, n  !  {0,  …,  T –  1}, is the maximum of the exercise value 
and the continuation value. The latter is the weighted sum of the discounted 
expectation of the contract value given the information ( yn,  dn)  !  Qn, i.e.
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We now generate a tree with T time steps and b  !  � branches out of  each 
node. We start with initial value Y0 and then generate b independent successors 
Y1

1,  …, Y1
b. From each node we generate again b successors and so on. To 

93216_Astin40_1_03.indd   7293216_Astin40_1_03.indd   72 11-05-2010   09:36:5211-05-2010   09:36:52

https://doi.org/10.2143/AST.40.1.2049219 Published online by Cambridge University Press

https://doi.org/10.2143/AST.40.1.2049219


 ON THE RISK-NEUTRAL VALUATION OF LIFE INSURANCE CONTRACTS 73

simplify notation, let Xn
l1 l2 … ln   =   ( Yn

l1 l2 … ln,  Dn
l1 l2 … ln). With this notation, an esti-
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where Bn
l1 … ln and 1 1x n+ - x n+ -( )p ... ...l l1 1n nl lq  denote the values of the bank account and 

the one-year survival ( death ) probability at t  =  n in sample path ( Y0, Y1
l1,  …, 

Yn
l1 … ln ), respectively.

Using K replications of the tree, we determine the sample mean V0( K, b ), 
and by the LLN we get V0( K, b )  "  �Q[V0 ] as K   "  3 almost surely. Hence, fi xing 
b, we can construct an asymptotically valid ( 1  –  d ) confi dence interval for 
�Q[V0 ]. But this estimator for the risk-neutral value V0  =  V( 0, X0 ) is biased 
high ( see Glasserman (2003), p. 433 ), i.e.

 0� (V V X0
Q $ 0, ),7 A

where, in general, we have a sharp inequality. However, under some integrabil-
ity conditions, the estimator is asymptotically unbiased and hence, we can 
reduce the bias by increasing the number of branches b in each node.

In order to construct a confi dence interval for the contract value V( 0, X0 ), 
following Glasserman (2003), we introduce a second estimator. It differs from 
the estimator introduced above in that all but one replication are used to 
decide whether to exercise the option or not, whereas in case exercising is not 
decided to be optimal, the last replication is employed. More precisely, we 
defi ne for n  !  {0,  …,  T  –  1}
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Then, averaging over all b possibilities of  leaving out one replication, we 
obtain 

 n

,n
n

n
:

. , { , ..., }
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]
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Again using K replications of the tree, we obtain a second estimator for the 
contract value by the sample mean n0( K, b ), which is now biased low, and we 
can construct a second asymptotically valid ( 1  –  d ) confi dence interval, this time 
for �Q [ v0 ].

Taking the upper bound from the fi rst confi dence interval and the lower bound 
from the second one, we obtain an asymptotically valid ( 1  –  d )-confi dence 
interval for V0:

 
K K

n ,v V
0 1 2 0 1 2

- +d d
- -z zVs s

( , )
( , )

( , )
( , )

K b
K b

K b
K b

,e o

where 1 2-
dz  is the ( 1  –  2

d )-quantile of the standard normal distribution. sV( K, b )
and sv( K, b ) denote the sample standard deviations of the K replications for 
the two estimators.

The drawback for non-European insurance contracts is that the number of 
necessary simulation steps increases exponentially in time. Since insurance 
contracts are usually long-term investments, the computation of  the value 
using ‘‘nested simulations” is therefore rather extensive and time-consuming. 
Moreover, for different options with several ( or even infi nitely many ) admis-
sible actions, such as withdrawals within variable annuities, the complexity will 
increase dramatically.

3.2. A PDE approach

P( I )DE methods bear certain advantages in comparison to the Monte Carlo 
approach. On one hand, they include the calculation of certain sensitivities 
( the so-called ‘‘Greeks”; see e.g. Hull (2000), Chapter 13 ), which are useful for 
hedging purposes. On the other hand, they often present a more effi cient 
method for the valuation of non-European insurance contracts. The idea for 
this algorithm is based on solving the corresponding control problem on a 
discretized state space and, for special insurance contracts, was originally pre-
sented in Grosen and Jørgensen (2000) and Tanskanen and Lukkarinen (2003). 
In order to apply their ideas in the current setup, for the remainder of this 
subsection, we work under the additional assumption that the state process 
( Yt )t  !  [0, T ] is a Lévy process.

The value Vt of  our generic insurance contract depends on t, Yt, and the 
state variables Dt. However, between two policy anniversaries n  –  1 and n, 
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 ON THE RISK-NEUTRAL VALUATION OF LIFE INSURANCE CONTRACTS 75

n  !  {1,  …,  T }, the evolution of  V depends on t and Yt only since the state 
variables remain constant. Consequently, given the state variables Dn – 1  =  dn – 1 
and the value function at some time t0  !  [n  –  1,  n ) provided that the insured in 
view is alive, Vt0

, the value function on the interval [n  –  1,  t0] is 
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Here, F ( t,Yt ) can be interpreted as the part of the value Vt that is attributable 
to payments in case of survival until time t0 whereas the second part  corresponds 
to benefi ts in case of death in [t,  t0]. In particular, F ( t0, y )  =  V ( t0,  y, dn – 1 ).

Applying Itô’s formula for Lévy processes ( see e.g. Prop. 8.18 in Cont and 
Tankov (2003) ), we obtain 

 t -( , ) ( , , ( , ))dF t Y k t Y F t Y dt dMt t t= +- ,

with drift term k ( t,Yt–,  F ( t,Yt– ) ) and local martingale part Mt. Both terms 
strongly depend on the particular model choice and, therefore, cannot be 
specifi ed in more detail. Since, by construction,

 s
,1

s t+
t

( , ) ( ,exp r x s Y ds F t Y
[t t0

0

m- +
! n-

)
]

c m' 1#

is a ( closed ) Q-martingale, the drift needs to be zero Q-almost surely. This is 
a standard technique akin to the well-known Feynman-Kac formula. We thus 
obtain a P( I )DE for the function F  :  ( t,  y )   7  F ( t,  y ):

 ( , ) ( , ) ( , ) ( , ) ( , , ( , )) 0r t y F t y t y F t y k t F t ym- - + =y  (2)

with terminal condition 

 ( ) ( , , .F t y V t y d0 0 1= n-, )

At the policy anniversary n, on the other hand, the value function is left-contin-
uous for t0  "  n– by no-arbitrage arguments ( see Tanskanen and Lukkarinen 
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(2003)) and since dying at the instant n is a zero-probability event. Moreover, 
Vn = supfn  !  Fn

 V ( n,  hfn
( Yn,  dn – 1 ) ) by the principles of  dynamic programming 

( Bellman equation ) and no-arbitrage, where Fn is the set of all options that 
may be exercised at t  =  n and hfn   :   Qn –  "  Qn denotes the transition function 
which describes how the state variables change at t  =  n if  option fn is exercised. 
Hence, all in all, 

 
f

,1 n
!

f( , ) ( ( , )) .supV t y d V y d tas0 1 0" " nn n
F

- -
n n

n
, h  (3)

Since the value function at maturity T is known for all ( y,  d )  !  QT, we can use 
Equations ( 1 ), ( 2 ), and ( 3 ) to construct a backwards algorithm to obtain the 
value function on the whole interval [ 0, T ]:

For t  =  T  –  u, u  !  {1,  …,  T }, evaluate the P( I )DE ( 2) for ‘‘all possible” 
dT – u with terminal condition ( cf. ( 3 ) )
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Then, set ( cf. ( 1 ) )
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In the special case of a life insurance contract with surrender option akin to 
the previous subsection, Fn consists of only two elements, say {SUR, NO-SUR}, 
corresponding to surrendering and not surrendering the contract, respectively. 
In the case of a surrender, the transition results in the value function coinciding 
with the surrender value C( n + 1,  hSUR(  yn + 1,  dn ) ), whereas not surrendering will 
result in the value function V( n + 1,  hNO-SUR(  yn + 1,  dn ) ). Therefore, ( 4) simplifi es 
to
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ii ii$ .

In order to apply the algorithm, the state spaces Qn, n  =  0,  …,  T, are discretized 
and interpolation methods are employed to determine the right-hand sides of 
( 4 ) if  the arguments are off  the grid. In particular, it is necessary to solve the 
P( I )DE for all state variables on the grid, so that the effi ciency of the algo-
rithm highly depends on the evaluation of the P( I )DEs.

In Tanskanen and Lukkarinen (2003), the classical Black-Scholes model and 
a deterministic evolution of mortality are assumed. In this case, the resulting 
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PDE is the well-known Black-Scholes PDE, which can be transformed into a 
one-dimensional heat equation, from which an integral representation can be 
derived when the terminal condition is given. If  a modifi ed Black-Scholes 
model with stochastic interest rates is assumed as in Zaglauer and Bauer 
(2008), the situation gets more complex: The PDE is no longer analytically 
solvable and one has to resort to numerical methods.

For a general exponential Lévy process driving the fi nancial market, PIDEs 
with non-local integral terms must be solved. Several numerical methods have 
been proposed for the solution, e.g. based on fi nite difference schemes ( see e.g. 
Andersen and Andreasen (2000) and Cont and Voltchkova (2005) ), based on 
wavelet methods (Matache, von Petersdorff  and Schwab (2004) ), or Fourier 
transform based methods (Jackson, Jaimungal and Surkov (2008), Lord, Fang, 
Bervoets and Oosterlee (2008)).

While in comparison to Monte Carlo simulations the complexity does not 
increase exponentially in time, the high number of  P( I )DEs needing to be 
solved may slow down the algorithm considerably.

3.3. A least-squares Monte Carlo approach

The least-squares Monte Carlo ( LSM ) approach by Longstaff  and Schwartz 
(2001) was originally presented for pricing American options but has recently 
also been applied to the valuation of insurance contracts ( see e.g. Andreatta 
and Corradin (2003) and Nordahl (2008) ). We present the algorithm for life 
insurance contracts with a simple surrender option. Subsequently, problems 
for the application of this method to more general embedded options as well 
as potential solutions are identifi ed.

As pointed out by Clément, Lamberton and Protter (2002), the algorithm 
consists of  two different types of  approximations. Within the fi rst approxi-
mation step, the continuation value function is replaced by a fi nite linear 
 combination of certain ‘‘basis” functions. As the second approximation, Monte 
Carlo simulations and least-squares regression are employed to approximate 
the linear combination given in step one.

Again, let C( n,  yn,  dn ) be the payoff at time n  !  {1,  …, T } if the stochastic 
drivers and the state variables take values yn and dn, respectively, and the option 
is exercised at this time. Furthermore, let C( s, n, ys, ds ), n  <  s  ≤  T, describe the 
cash fl ow at time s given the state process ys and the state variables ds, condi-
tional on the option not being exercised prior or at time n, and the  policyholder 
following the optimal strategy according to the algorithm at all possible exer-
cise dates s  !  {n  +  1,  …, T } assuming that the policyholder is alive at time n.

The continuation value g ( n,Yn, Dn ) at time n is the sum of all expected 
future cash fl ows discounted back to time n under the information given at 
time n, i.e.

 nrn su dun
n

s
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To determine the optimal strategy at time t  =  n, i.e. to solve the optimal 
 stopping problem, it is now suffi cient to compare the surrender value to the 
continuation value and choose the greater one. Hence, we obtain the following 
discrete valued stopping time t  :=  t1:

     
t+n1 1

T

T1 1{ , , { , , }

T

C Y g Y C Y g Y1 < # #

t

t n

=

= -n n+n n n n n n n n
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and the contract value can be described as 
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Following Clément et al. (2002), we assume that the sequence ( Lj( Yn,  Dn ) )j  ≥  0 
is total in the space L2( s ( ( Yn,  Dn ) ) ), n  =  1,  …, T  –  1, and satisfi es a linear inde-
pendence condition ( cf. conditions A1 and A2 in Clément et al. (2002) ) such 
that g ( n,Yn,  Dn ) can be expressed as 

 a ( )j nn n( , , ) ( , ),g Y Yj
j 0

n =
3

n n
=

LD D/  (7)

for some aj( n  )  !  �,  j  !  � � {0}.
For the fi rst approximation, we replace the infi nite sum in ( 7) by a fi nite 

sum of the fi rst J basis function. We call this approximation g ( J ). Similarly to 
( 5 ) and ( 6 ), we can now defi ne a new stopping time t ( J ) and a fi rst approxima-
tion V ( J  ) for the contract value by replacing g by g ( J ).

However, in general the coeffi cients ( aj( n ) )j
J
=
–
0
1 are not known and need to 

be estimated. We use K  ! � replications of the path ( Yn, Dn ), 0  ≤  n  ≤  T, and 
denote them by ( Yn

( k ),  Dn
( k ) ), 1  ≤  k  ≤  K. The coeffi cients are then determined by 

a least-squares regression. We assume that the optimal strategy for s  ≥  n  +  1 is 
already known and hence, for each replication the cash fl ows C ( s, n, Ys

( k ),  Ds
( k ) ), 

s  !  {n  +  1,  …, T }, are known. Under these assumptions, the least-squares 
 estimator for the coeffi cients is
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Replacing ( a j ( n ) ) j
J
=
–

0
1 by ( a� j

( K )( n ) ) j
J
=
–

0
1, we obtain the second approximation 

g ( J, K  ) and again, we defi ne the stopping time t( J, K ) and another approximation 
V ( J, K ) of  the value function by replacing g by g ( J, K ).
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With the help of these approximations, we can now construct a valuation 
algorithm for our insurance contract:

First, simulate K paths of  the state process up to time T and compute
the state variables under the assumption that the surrender option is not 
exercised at any time. Since the contract value, and hence, the cash fl ow at 
maturity T is known for all possible states, defi ne the following cash 
fl ows:

T T 1-
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For n  =  T  –  u, u  !  {1,  …, T  –  1}, compute g ( J, K  ) as described above and 
determine the optimal strategy in each path by comparing the surrender 
value to the continuation value. Then, determine the new cash fl ows.4 For 
s  !  {T  –  u  +  1,  …, T }, we have
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At time n  =  0, discount the cash fl ows in each path and average over all K 
paths, i.e.
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4 Note that we do not use the estimated continuation value but the actual cash fl ows for the next 
regression. Otherwise the estimator will be biased ( cf. Longstaff  ad Schwartz (2001) ).
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The two convergence results in Section 3 of Clément et al. (2002) ensure that, 
under weak conditions, the algorithm gives a good approximation of  the 
actual contract value when choosing J and K suffi ciently large.

The LSM algorithm can be conveniently implemented for insurance con-
tracts containing a simple surrender option since the new future cash fl ows can 
be easily determined: If  the surrender option is exercised at n0  !  {1,  …, T  –  1}, 
the cash fl ow C ( n0,  n0  –  1, Yn0

,  Dn0
 ) equals the surrender value and all future 

cash fl ows are zero.
If we have more complex early exercise features, the derivation of the future 

cash fl ows could be more involved since the contract may not be terminated. 
For example, if  a withdrawal option in a contract including a Guaranteed 
Minimum Withdrawal Benefi t is exercised, this will change the states variables 
at that time. However, the future cash fl ows for the new state variables will 
not be known from the original sample paths, i.e. it is necessary to determine 
the new future cash fl ows up to maturity T. This may be very tedious if  it is 
a long-term insurance contract and the option is exercised relatively early. 
In particular, if  the option can be exercised at every anniversary and if  the 
withdrawal is not fi xed but arbitrary with certain limits, this may increase the 
complexity of the algorithm considerably.

A potential solution to this problem could be employing the discounted 
estimated conditional expectation for the regression instead of the discounted 
future cash fl ows. However, this will lead to a biased estimator ( see Longstaff  
and Schwartz (2001), Sec. 1 ). But even if  this bias is accepted, another prob-
lem regarding the quality of the regression function may occur. In the LSM 
algorithm, we determine the coeffi cients of the regression function with the 
help of sample paths that are generated under the assumption that no option 
is exercised at any time, i.e. the approximation of the continuation value will 
be good for values which are “close” to the used regressors. But g ( J, K ) may not 
be a good estimate for contracts with, e.g., high withdrawals because with-
drawals reduce the account balance, and hence, the new state variables will
not be close to the regressors. An idea of how to resolve this problem might 
be the application of different sampling techniques: For each period, we could 
determine a certain number of different initial values, simulate the development 
for one period, compute the contract value at the end of this period and use 
the discounted contract value as the regressand. However, determining these 
initial values, again, is not straight-forward. We leave the further exploration 
of this issue to future research.

Aside from these problems, the LSM approach bears profound advantages 
in comparison to the other approaches: On one hand, the number of simula-
tion steps increases linearly in time and, on the other hand, it avoids solving 
a large number of  P( I )DEs. Also, in contrast to the P( I )DE approach, the 
LSM approach is independent of the underlying asset model: The only part 
that needs to be changed in order to incorporate a new asset model is the 
Monte Carlo simulation.
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4. EXAMPLE: A PARTICIPATING LIFE INSURANCE CONTRACT

In this section, we compare the results obtained with the three different numer-
ical approaches for a German participating life insurance contract including 
a surrender option.

4.1. The contract model

We consider the participating term-fi x contract from Bauer et al. (2006) and 
Zaglauer and Bauer (2008). While this contract is rather simple and, in par-
ticular, does not depend on biometric events, it presents a convenient example 
to illustrate advantages and disadvantages of the presented approaches and to 
compare them based on numerical experiments.

We use a simplifi ed balance sheet to model the insurance company’s fi nan-
cial situation ( see Table 1 ).

TABLE 1

SIMPLIFIED BALANCE SHEET

Assets Liabilities

At Lt 
Rt 

At At

Here, At denotes the market value of  the insurer’s asset portfolio, Lt is the 
policy holder’s account balance, and Rt  =  At  –  Lt is the bonus reserve at time t. 
Disregarding any charges, the policyholder’s account balance at time zero 
equals the single up-front premium P, that is L0  =  P. During its term, the 
policyholder may surrender her contract: If  the contract is lapsed at time 
n0   !  {1,  …, T }, the policyholder receives the current account balance Ln0

. Further-
more, we assume that dividends are paid to shareholders at the anniversaries 
in order to compensate them for adopted risk.

As in Bauer et al. (2006) and Zaglauer and Bauer (2008), we use two different 
bonus distribution schemes, which describe the evolution of the liabilities: The 
MUST-case describes what insurers are obligated to pass on to policyholders 
according to German regulatory and legal requirements, whereas the IS-case 
models the typical behavior of German insurance companies in the past; this 
distribution rule was fi rst introduced by Kling, Richter and Ruß (2007).

4.1.1. The MUST-case

In Germany, insurance companies are obligated to guarantee a minimum rate 
of interest g on the policyholder’s account, which is currently fi xed at 2.25%. 
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82 D. BAUER, D. BERGMANN AND R. KIESEL

Furthermore, according to the regulation about minimum premium refunds 
in German life insurance, a minimum participation rate d of  the earnings on 
book values has to be passed on to the policyholders. Since earnings on book 
values usually do not coincide with earnings on market values due to account-
ing rules, we assume that earnings on book values amount to a portion y of  
earnings on market values. The earnings on market values equal An

–   –  A+
n – 1, 

where An
– and A+

n   =  max{An
– – dn ,  Ln } describe the market value of the asset 

portfolio shortly before and after the dividend payments dn at time n, respec-
tively. The latter equation refl ects the assumption that e.g. under Solvency II, 
the market-consistent embedded value should be calculated neglecting the 
insurer’s default put option, i.e. that shareholders cover any defi cit. Therefore, 
we have 

 ,+( ) [ ( ) ] .L g L y A A gL T1 11 1 1 # #d n= + + - -n n n n n-
-

-
+

-  (8)

Assuming that the remaining part of earnings on book values is paid out as 
dividends, we have 

 
1

1

( ) ( )
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d y A A

y A A gL

1 { ( ) }
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1

1 1

>1 1

1 1 1
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-
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+
-

-
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+
- - -
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n n n n n

-
-

+
-

-
-

+
-

-
-

+

 (9)

4.1.2. The IS-case

In the past, German insurance companies have tried to grant their policy-
holders stable but yet competitive returns. In years with high earnings, reserves 
are accumulated and passed on to policyholders in years with lower earnings. 
Only if  the reserves dropped beneath or rose above certain limits would the 
insurance companies decrease or increase the bonus payments, respectively.

In the following, we give a brief  summary of the bonus distribution intro-
duced in Kling et al. (2007), which models this behavior.

The reserve quota xn is defi ned as the ratio of the reserve and the policy-
holder’s account, i.e. -+

.x L
R

L
A L

= =n n

n

n

n n  Let z  !  [0, 1] be the target interest rate 
of the insurance company and a  !  [0, 1] be the proportion of the remaining 
surplus after the guaranteed interest rate is credited to the policyholder’s 
account that is distributed to the shareholders. Whenever the target interest 
rate z leads to a reserve quota between specifi ed limits a and b with

 
a
( )

( )

L z L

d z g L

A A d

R A L

1 1

1

= +

= -

= -

= -

n n

n n

n n n

n n n

-

-

+ -

+

,

,

,

,

then exactly the target interest rate z is credited to the policyholder’s account.
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If  the reserve quota drops below a or exceeds b when crediting z to the 
policyholder’s account, then the rate is chosen such that it exactly results in a 
reserve quota of a or b, respectively. However, ( 8) needs to be fulfi lled in any 
case. Hence, by combining all cases and conditions, we obtain ( see Zaglauer 
and Bauer (2008) ):

 

z
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4.2. Asset models ( I )

We consider two different asset models, namely a geometric Brownian motion 
with deterministic interest rate ( constant short rate r ), and a geometric Brown-
ian motion with stochastic interest rates given by a Vasicek model ( see Vasicek 
(1977) ).

In the fi rst case, we have the classical Black-Scholes ( BS ) setup, so the asset 
process under the risk-neutral measure Q evolves according to the SDE:

 t ( )dA rA dt A P x1t A t t 0 0= + = + ,A ,s dW

where r is the constant short rate, sA  >  0 denotes the volatility of  the asset 
process A, and W is a standard Brownian motion under Q. Since we allow for 
dividend payments at each anniversary of the contract, we obtain 

 A ) .expA A r W2t t A t t1

2

1
s

= -
-

-
+

-(+ -Wsd n
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In the second case, we have a generalized Black-Scholes model with

 
t ( ),

( ) ,

dA r A P x

dr r dt r
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0>

t t A t t A t t

t t r t

0 0

0

r

k z s
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= - +

2A A A

,

ddt + r dW s Zs ,

dW

where r  !  [ –1, 1] describes the correlation between the asset process A and the 
short rate r, sr is the volatility of the short rate process, and W and Z are two 
independent Brownian motions. z and k are constants. Hence,

 A Ar A ds
t t

.expA A ds 2 1t t t

t

t s t s1 1

2

1 1

s
r r s= - + + -

-
-
+

- - -

2s dW Ze o# # #

We refer to this model as the extended Black-Scholes ( EBS ) model.
According to the risk-neutral valuation formula, the value for our partici-

pating life insurance contract including a surrender option is given by:5

 EUR

0 ru
t

t
� | .sup expV du L F

0 0
Q

0

= -
!

t
-

Y

NON
; E& 0#  (10)

For a discussion of  the problems occurring when implementing a suitable 
hedging strategy as well as potential solutions, we refer to Bauer et al. (2006)
and Zaglauer and Bauer (2008).

4.3. Choice of parameters and regression function

To compare results, we use the same parameters as in Bauer et al. (2006) and 
Zaglauer and Bauer (2008). We let the guaranteed minimum interest rate 
g  =  3.5%,6 the minimum participation rate d  =  90%, and the minimal propor-
tion of market value earnings that has to be identifi ed as book value earnings 
in the balance sheet y  =  50%. Moreover, the reserve corridor is defi ned to be 
[a, b]  =  [ 5%, 30% ], the proportion of earnings that is passed on to the share-
holders is fi xed at a  =  5%, and the volatility of the asset portfolio is assumed 
to be sA  =  7.5%. The correlation between asset returns and money market 
returns is set to r  =  0.05. We consider a contract with maturity T  =  10 years. 
The initial investment is P  =  10,000, the insurer’s initial reserve quota is 
x0  =  10%, and the initial ( or constant ) interest rate r0  =  r is set to 4%. In the 
Vasicek model, the volatility of the short rate process sr is chosen to be 1%, 
the mean reversion rate is k  =  0.14, and the mean reversion level z  =  4%.

A crucial point in the LSM approach for non-European contracts is the 
choice of the regression function as a function of the state process and the 

5 Y0 is the set of all stopping times in {1,  …, T }.
6 The largest German insurer ‘‘Allianz Lebensversicherungs-AG” reports an average guaranteed inter-

est rate of approximately 3.5% in 2006 ( see Allianz Lebensversicherungs-AG (2006), p. 129 ).
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state variables. Clearly, in the current setup, the state processes are ( At )t  !  [0,T ] 
and ( At,  rt )t  !  [0,T ] for the BS and the EBS model, respectively, and the state 
variables can be represented by ( Dn )n  !  {1,  ..., T – 1}  =  ( An

+,  An,  Ln )n  !  {1,  ..., T – 1} in 
both models. Using a top down scheme, we found that a regression function 
with eight different terms is suffi cient; more terms do not make a signifi cant 
difference. We estimate the continuation value with the help of the following 
regression function:7

,n n,Y

n
n n

a a a a

a a a a

( ) ( , , ) ( ) ( ) ( ) ( )
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x L
A L

=n n

n n  is the reserve quota and a0( n ),  …,  a7( n )  !  �. We use the 
same regression function at all times n  !  {1,  …, T  –  1} but, of course, the coef-
fi cients may vary. Note that in this particular setup, the dimensionality of the 
problem can be further reduced by modifying the state process: Here, it is 
 suffi cient to consider 

 A A A
A

t
t

1
1

$= n
n

-
+

-

and rt as above in the corresponding one period problem, i.e. for t  !  [ n  –  1, n ], 
and consequently, it suffi ces to save ( An

+,  Ln ) as the state variables in both asset 
models ( cf. Bauer et al. (2006), Zaglauer and Bauer (2008) ).

Note that we do not have to specify a regression function for the European 
contract case: Here, the LSM approach trivially coincides with the simple 
Monte Carlo approach.

4.4. Numerical experiments

The valuation of European contracts, i.e. contracts without surrender option, 
is simple. Here, Monte Carlo simulations provide a fast and accurate valuation 
methodology. Therefore, we focus on the valuation of non-European contracts.

We start by analyzing the valuation via ‘‘Nested Simulations”. Table 2 
shows our results for 5,000 trees with 1 to 7 paths per node in the MUST-case 
and the BS setting. Aside from the two estimators V0(K, b) and v0(K, b), the 
( real ) times for the procedures are displayed.8 The difference between the two 
estimators is relatively large even for 7 paths per node. In particular, this means 
that resulting confi dence intervals are relatively wide. Hence, although Monte-
Carlo simulations are the only considered approach where confi dence intervals 

7 Note that in the BS model, the last three terms may be discarded.
8 All numerical experiments were carried out on a Linux machine with a Pentium IV 2.40 Ghz CPU 

and 2.0 GB RAM, with no other user processes running.
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may be produced, the computational effort to produce results in a reliable 
range is enormous.

Within the PDE and LSM approach, on the other hand, we fi nd that for 
both asset models, the contract values resulting from the two approaches dif-
fer by less than 0.2% of the initial investment ( see Table 3 ). However, the PDE 
approach is more sensitive to discretization errors and takes signifi cantly more 
time: In the BS model, in the current computation environment, it takes 
approximatively 10 minutes to compute the non-European contract value with 
the PDE approach, whereas with the LSM approach, we obtain the result in 
approximately 24 seconds. The difference is even more pronounced in the EBS 
model. Here we have about 40 hours with the PDE approach compared to 
about 30 seconds with the LSM approach.

TABLE 3

CONTRACT VALUES IN THE TWO ASSET MODELS9 

MUST BS IS BS MUST EBS IS EBS

PDE LSM PDE LSM PDE LSM PDE LSM

NON-EUR 10360.4 10361.2 10919.1 10920.0 10619.1 10603.9 11103.0 11088.9
EUR 10360.4 10361.2 10919.1 10920.0 10449.9 10452.0 11020.7 11022.9

SUR 0 0 0 0 169.2 151.9 82.3 66.0

While clearly all results depend on the particular implementations and the 
contract in view, due to the magnitude of the differences, we conclude that for 
the valuation of  non-European insurance contracts for fi nancial reporting 

TABLE 2

“NESTED SIMULATIONS” FOR A NON-EUROPEAN CONTRACT

Paths per node V0 (K, b) v0 (K, b) time

1 10523.4 10055.0  < 1 sec. 
2 10411.0 10051.6 15 sec.
3 10395.6 10100.3 11 min. 37 sec.
4 10388.8 10169.8 2 h 47 min.
5 10380.2 10228.6 . 1 day
6 10378.6 10270.3 . 6 days
7 10375.6 10293.8 . 30 days

9 The values for the PDE approach coincide with Bauer et al. (2006) and Zaglauer and Bauer (2008), 
respectively. Note that the PDE approach is only used to valuate the surrender option. The European 
contract values are calculated using Monte Carlo techniques to obtain a higher accuracy, and the 
differences between the two European contract values is solely due to Monte Carlo errors.
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within Solvency II and/or IFRS 4, the LSM approach appears to be the 
 superior choice for determining the risk-neutral value. However, if  additional 
sensitivities need to be computed for risk management purposes ( ‘‘the Greeks” ), 
the PDE method may still present a valuable alternative.

4.5. Influence of the surrender option

While values for the surrender option within this particular contract model 
have been calculated before in Bauer et al. (2006) and Zaglauer and Bauer 
(2008) via PDE approaches, no detailed sensitivity analyses are presented due 
to the high computational effort. However, the LSM approach allows for such 
analyses. We fi x the parameters as indicated above ( cf. Sec. 4.3 ), but as in the 
latter part of Zaglauer and Bauer (2008) choose an alternative value for the 
volatility parameter. For the S&P 500 index, Schoutens (2003) fi nds an implied 
volatility of 18.12%, but since insurers’ asset portfolios contain a limited pro-
portion of  risky assets only,10 we choose s  =  0.03624, which approximately 
corresponds to a portfolio consisting of 20% S&P 500 and 80% short maturity 
bonds.

TABLE 4

VALUE OF THE SURRENDER OPTION IN THE BS MODEL

MUST g = 2.25% g = 3.5% g = 4.0% IS g = 2.25% g = 3.5% g = 4.0%

NON-EUR 9885.3 9966.8 10065.8 NON-EUR 10326.3 10450.8 10565.9
EUR 8976.0 9687.8 10065.8 EUR 10177.8 10419.5 10565.9

SUR 909.3 279.0 0.0 SUR 148.5 31.3 0.0

Table 4 presents the values of the surrender option in the BS model for three 
different choices of the guaranteed rate g. We fi nd that for low g in the MUST-
case, the surrender option is of signifi cant value. However, the non-European 
contract values are almost equal to the initial premium of 10,000, so this is 
clearly due to the possibility of surrendering the contract early in its term. The 
surrender option is considerably less valuable in the IS-case since the target 
interest rate exceeds the riskless interest rate, and therefore, in most cases, it is 
advantageous not to exercise. Moreover, for a high guaranteed rate g, the 
rationale for surrendering decreases in both case since the contract is close to 
the riskless asset with an additional option feature.

Figure 1 illustrates the infl uence of g on the value of the surrender option 
in the EBS model. We observe the same effects as in the BS model. The option 

10 By the regulation on investments, German insurers are obligated to keep the proportion of stocks 
within their asset portfolio below 35%. For example, the German “Allianz Lebensversicherungs-AG” 
reports a proportion of 21% stocks in 2006 ( see Allianz Lebensversicherungs-AG (2006), p. 32 ).
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value is smaller in the IS-case than in the MUST-case, and it is decreasing in 
g. However, in this case the value of the option is positive even for guaranteed 
interest rates exceeding 4% because interest rates could increase over the term 
of the contract.

All in all, we fi nd that even though in many cases the infl uence of  the 
 surrender option is not very pronounced, the value for some parameter 
 combinations is signifi cant. In particular, this means that in changing environ-
ments, as e.g. increasing interest rates, the option adds signifi cantly to the 
value of  the contract and, hence, should not be disregarded by insurance 
 companies. Moreover, for different kinds of  non-European options and/or 
contracts, the infl uence may be signifi cantly more pronounced ( see e.g. Bauer 
et al. (2008) for Guaranteed Minimum Benefi ts within Variable Annuities ).

4.6. Asset models ( II )

Although the Black-Scholes model is still very popular in practice, numerous 
empirical studies suggest that it is not adequate to describe many features of 
fi nancial market data. Exponential Lévy models present one possible alterna-
tive and have become increasingly popular. To assess the infl uence of model 
risk on our example contract, we introduce a third asset model with a normal 
inverse Gaussian ( NIG ) process driving the asset process ( At )t  !  [ 0, T ]. This 
model better represents the statistical properties of  empirical log returns. 
 Similar exponential Lévy models have been applied to the valuation of insurance 
contracts by different authors ( see e.g. Ballotta (2006) or Kassberger, Kiesel and 
Liebmann (2008)).

FIGURE 1: Influence of g on the value of the surrender option in the EBS model.
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The probability density function of an NIG ( a,  b,  d,  m ) distribution is given 
by

 b-
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where K1 denotes the modifi ed Bessel function of the third kind with index 1, 
and an NIG process is defi ned as a Lévy process ( Xt )t  !  [ 0, T ] at zero with 
Xt  + NIG( a,  b,  d  ·  t, m  ·  t ) ( see Barndorff-Nielsen (1998) or Schoutens (2003) 
for more details ).

As in the classical BS model, we assume a constant short rate r and defi ne 
our exponential Lévy ( NIG ) model by 

 t,A A et
X

0=

where Xt  + NIG( a,  b,  d  ·  t, m  ·  t ) under “a” risk-neutral measure Q: Financial 
markets driven by Lévy processes are generally not complete, and hence, the 
equivalent martingale measure is not unique. There are different methods of 
how to choose a valuation measure, e.g. by the so-called Esscher transform or 
the mean correcting method. As in Kassberger et al. (2008), we use the mean 
correcting method. Here, the parameters a, b, and d are calibrated to observed 
option prices, and the parameter m is chosen such that the discounted price 
process is a martingale under Q, i.e.

 b-a a( 1) .m r d b= + - + -22 2 2
` j

Hence, under the risk-neutral measure Q, for this asset model we have 
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X

t1
t t 1 $ $b d=

-
-
+ - XX +-

Again following Kassberger et al. (2008), we choose the parameters resulting 
from the calibration procedure for the S&P 500 index from Schoutens (2003) 
based on call options prices, i.e. a  =  6.1882, b  =  – 3.8941, and d  =  0.1622, 
where the volatility from Schoutens (2003) is adapted according to our assump-
tions on the asset portfolio.

4.7. Model risk: The BS model vs. the NIG model

While one may expect that the contract increases in value when changing the 
asset process from a geometric Brownian motion to an exponential Lévy 
model, Table 5 illustrates that this is not always the case.11 At least in the 

11 Since the differences in contract values for the two asset models are consistent for European and 
non-European contracts, we only present results for European contracts.
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MUST-case, the question of whether the European contract value is higher 
for the BS or the NIG model depends on the guaranteed minimum interest 
rate. This can be explained by considering the different shapes of the two cor-
responding density functions. In the MUST-case, for a European contract with 
maturity T  =  1, we have

 
+

+

A-
+(1 ) ( )

(1 ) ( ( ) ( ) ) ,

L g P y A gP

g P P y x e g1 1X

1 1 0

0
1

d

d

= + -

= + + - -

- +

+

8

8

B

B

where X1 is Normal and NIG distributed in the BS and the NIG model, 
respectively, and thus 

r i
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- xg
3
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1 0
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!
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,
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i
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 (11)

where ( x+1logc 1)
g

0
= +ydb l and ƒBS ( ƒNIG ) is the corresponding density of the 

log returns within the BS ( NIG ) model.

TABLE 5

EUROPEAN CONTRACT VALUES IN THE BS AND NIG MODEL

g  =  2.25% g  =  3.5% g  =  4.0%
BS NIG BS NIG BS NIG

MUST 8976.0 9040.0 9687.8 9671.4 10065.8 10042.5

IS 10177.8 10279.0 10419.5 10490.0 10565.9 10613.3

FIGURE 2: Influence of g on the difference in the contract values ( MUST-case, T  =  1 ).

The left-hand side of Figure 2 now illustrates the difference in values for the 
two models 

 0 0V V0 = ,VD -
NIG BS
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and we fi nd that for g smaller than approximately 3%, the contract is worth 
more in the NIG model, whereas for g between 3% and 7% the BS model 
yields higher contract values. If  the guaranteed interest rate is unrealistically 
high (≥  7% ), the difference is comparatively negligible. In order to analyze this 
behavior, in view of ( 11 ) it is now suffi cient to compare both density functions 
with parameters fi tted to the data as described above ( see the right-hand side 
of Figure 2 ): For low values of g, the interest rate guarantee is worth more 
within the NIG model due to the increased kurtosis of  the corresponding 
distribution. However, for an increasing level of g, this infl uence vanishes and 
the option in the BS model becomes more valuable due to the skewness of the 
NIG distribution. In contrast, in the IS-case the contract is worth more in the 
NIG model since the target rate z is credited unless very extreme outcomes 
occur, which are clearly ‘‘more likely” under the NIG distribution.

But not only the guaranteed minimum interest rate g infl uences this rela-
tionship. The left-hand side of Figure 3 illustrates the infl uence of the stock 
proportion within the insurer’s asset portfolio on the difference in contract 
values between the two models for the MUST-case, g  =  3.5%, and T  =  10.
For small proportions, the difference of the two contract values is negative,
i.e. the value in the BS model is higher, due to the afore-mentioned effect. 
However, a higher stock proportion increases the volatility, and in the NIG 
model, the tails “fatten” faster than in the BS model. From a stock proportion 
of about 30%, this leads to a higher value for the NIG driven model.

FIGURE 3: Influence of the stock proportion on the difference in the contract values ( MUST-case, T  =  10 ).

The right-hand side of Figure 3 shows combinations of g and the stock 
proportion that result in a ‘‘fair” contract,12  i.e. the contract value equals the 
initial investment of 10,000. For low g and the standard parameters, the con-
tract values lie below 10,000. Hence, the stock proportion needs to be increased 
in order to yield a fair contract. Since for small g, the NIG model leads to 
higher contract values than the BS model, the increase in the stock proportion 
is comparatively lower in the NIG model. In contrast to this, in the IS-case we 
cannot fi nd any realistic fair parameter combinations at all.

12 For a discussion of the notion ‘‘fairness”, we refer to Bauer et al. (2006).
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All in all, our analyses show that for our example contract and a realistic 
range for the parameters, the infl uence of  the asset model on the contract 
value is rather small and it depends on the particular parameter choice which 
model leads to the higher value. However, clearly the infl uence may be a lot 
more pronounced for different embedded options and/or contracts.

5. CONCLUSION

In this paper, we construct a generic valuation model for life insurance benefi ts 
and give a survey on existing valuation approaches. Firstly, we explain how to 
use Monte Carlo simulations for the valuation. The Monte Carlo approach 
yields fast results for European contracts, i.e. contracts without any early  exercise 
features, but it is ineffi cient for the valuation of long-term non-European 
 contracts: In this case, the number of  necessary simulation steps to obtain 
accurate results may be extremely high. Secondly, we present a discretization 
approach based on the consecutive solution of  certain partial ( integro- )
differential equations ( PDE approach ). This approach is more apt for the valu-
ation of long-term non-European contracts and allows for the calculation of 
the “Greeks”, but depending on the model specifi cations solving the P( I )DEs 
can be very complex and can slow down the algorithm considerably.

Lastly, we discuss the so-called least-squares Monte Carlo approach. It com-
bines the advantages of  the Monte Carlo and the PDE approach: On one 
hand, it is a backward iterative scheme such that early exercise features can 
be readily considered and, on the other hand, it remains effi cient even if  the 
dimension of the state space becomes larger as the valuation is carried out by 
Monte Carlo simulations rather than the numerical solution of P( I )DEs.

We apply all algorithms to the valuation of  participating life insurance 
contracts and initially consider two asset models, namely the classical Black-
Scholes setup and a generalized Black-Scholes model with stochastic interest 
rates. Our numerical experiments show that the differences in the computa-
tional time needed for the valuation of non-European contracts is enormous.

Furthermore, again based on the example of participating life insurance 
contracts, we analyze the infl uence of the ‘‘early exercise feature”, i.e. a sur-
render option, as the difference between the non-European and European 
contract. We fi nd that for many scenarios, the surrender option is ( almost ) 
worthless in this particular case. However, we demonstrate that the sensitivities 
of European and non-European contract values with respect to key contract 
parameters differ considerably, so that disregarding this contract feature may 
be misleading.

Finally, we study the impact of  model risk on our example contract by 
additionally introducing an exponential Lévy ( NIG ) model for the asset side. 
Comparing the NIG model to the classical Black-Scholes model, we fi nd that 
for realistic parameter combinations, the infl uence is not very pronounced. 
In particular, it depends on the parameter choice which model yields higher 
contract values.
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All in all, this article provides a framework for the market-consistent valua-
tion of life insurance contracts and a survey as well as a discussion of different 
numerical methods for applications in practice and academia. Our numerical 
experiments give insights on the effectiveness of  the different methods and 
show that the infl uence of early exercise features should be analyzed.
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