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Systematic Tail Risk

Maarten R. C. van Oordt and Chen Zhou∗

Abstract

We test for the presence of a systematic tail risk premium in the cross section of expected
returns by applying a measure of the sensitivity of assets to extreme market downturns, the
tail beta. Empirically, historical tail betas help predict the future performance of stocks in
extreme market downturns. During a market crash, stocks with historically high tail betas
suffer losses that are approximately 2 to 3 times larger than their low-tail-beta counterparts.
However, we find no evidence of a premium associated with tail betas. The theoretically
additive and empirically persistent tail betas can help assess portfolio tail risks.

I. Introduction

Risk managers are concerned with the performance of portfolios in distress
events, the so-called tail events in the market. In this article, we investigate the
sensitivity of assets to market risk under extremely adverse market conditions
(i.e., their loading on systematic tail risk). We estimate an additive measure of
sensitivity to systematic tail risk, the “tail beta.” We examine whether the esti-
mated loadings on systematic tail risk help explain the cross section of expected
returns and discuss their potential application in risk management.

Systematic tail risk may play an important role in asset pricing. One poten-
tial reason is that investors may follow a safety-first principle. Arzac and Bawa
(AB) (1977) derive an asset pricing theory under the safety-first principle of Telser
(1955). They consider investors who maximize their expected return subject to a
value-at-risk (VaR) constraint. In their framework, the cross section of expected
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returns is explained by a “beta” that is different from the regular market beta in the
capital asset pricing model (CAPM). If investors are constrained by a VaR with a
sufficiently small probability, then our tail beta equals the beta of AB, assuming
a linear model under extremely adverse market conditions.

Our empirical results provide evidence that historical tail betas do capture
future systematic tail risk: They help predict which stocks take relatively large
hits during future market crashes. The evidence is twofold. First, the persistencies
of the classification of firms based on tail betas and regular market betas are com-
parable, even though tail betas are estimated from only a few tail observations.
Second, stocks with historically high tail betas suffer losses during future market
crashes that are on average 2 to 3 times larger than their low-tail-beta counterparts.

Furthermore, we test whether the estimated tail betas help explain the cross
section of expected returns. That is, we test whether stocks with high tail betas
are compensated by a risk premium. Surprisingly, from the asset pricing tests we
do not observe such a premium for stocks with high tail betas. This finding is
not a consequence of losses suffered during the recent financial crisis. The risk
premium remains absent if this episode is excluded from our sample. Hence, the
role of systematic tail risk in explaining the cross section of expected returns
seems to be limited.

These results are not explained by many other factors documented in the as-
set pricing literature and are robust to methodological changes. The results are
established within all size cohorts (Fama and French (2008)) and in the context of
both equal- and value-weighted portfolios. They are robust when controlling for
downside beta, coskewness, cokurtosis, idiosyncratic risk (Ang, Hodrick, Xing,
and Zhang (2006)), and volume (Gervais, Kaniel, and Mingelgrin (2001)). The
results are not explained by return characteristics related to short-term reversal
(Jegadeesh (1990)), momentum (Carhart (1997)), and long-term reversal
(De Bondt and Thaler (1985)).

We focus on tail betas because regular market betas do not necessarily pro-
vide an accurate description of the loading on systematic risk under all mar-
ket conditions. It is a well-known stylized fact that equity returns show higher
correlations during periods of high stock market volatility (see, e.g., King and
Wadhwani (1990), Longin and Solnik (1995), Karolyi and Stulz (1996), and
Ramchand and Susmel (1998)). In addition, correlations increase especially dur-
ing periods of severe market downturns as reported by Longin and Solnik (2001),
Ang and Bekaert (2002), Ang and Chen (2002), and Patton (2004). The chang-
ing correlation signals that the comovement of assets with the market depends on
market conditions.

Several studies address the changing comovement in the context of a
nonlinear relation between asset returns and market risk. In line with the theoret-
ical work of Rubinstein (1973) and Kraus and Litzenberger (1976), one strand of
literature estimates the relation between asset returns and market risk with higher
order approximations. Among others, Harvey and Siddique (2000) and Dittmar
(2002) find that “coskewness” and “cokurtosis” play a role in asset pricing. How-
ever, room for extensions with additional higher moments may be limited because
the heavy tails observed in stock returns provide evidence that further higher mo-
ments may not exist (see Mandelbrot (1963), Jansen and De Vries (1991)).
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An alternative strand of literature focuses on the comovement of asset re-
turns with the market under specific market conditions. In line with the theory in
Bawa and Lindenberg (1977), several studies investigate the downside beta, which
is defined as the market beta conditional on below-average or below-zero mar-
ket returns (see, e.g., Price, Price, and Nantell (1982), Harlow and Rao (1989)).
Our tail beta fits within this latter strand of literature because it focuses on co-
movement with the market return under specific market conditions. However, in
contrast to downside beta, the tail beta measures comovement with the market if
market downturns are extreme. The lack of a risk premium for tail beta in our
results contrasts with the positive risk premium observed for downside beta (see,
e.g., Ang, Chen, and Xing (2006)). This difference suggests that investors are
concerned with their exposure to all systematic downside risk rather than focus-
ing only on their loading on systematic tail risk.

Our study is related to the empirical asset pricing literature on tail risks. A few
studies focus on the role of tail risk in the cross section of expected returns, irre-
spective of its relation with market risk (see, e.g., Bali, Demirtas, and Levy (2009),
Huang, Liu, Rhee, andWu(2012), andCholetteandLu(2011)).Alternatively, Kelly
and Jiang (2014) construct an index on the level of tail risks in the market and obtain
“tail risk betas” for individual assets by regressing asset returns on innovations in
this index. These betas can be considered a tail equivalent of the volatility betas of
Ang, Hodrick, Xing, and Zhang (2006), which measure the comovement of stock
returns with innovations in market volatility. In contrast to the tail risk beta of Kelly
and Jiang, our tail beta can be considered a tail equivalent of the market beta.

The expression tail beta appears in the literature with other meanings. For
example, De Jonghe (2010) estimates tail betas by applying a tail dependence
measure from Poon, Rockinger, and Tawn (2004) on stock returns. Spitzer (2006)
and Chabi-Yo, Ruenzi, and Weigert (2015) examine its asset pricing power. This
tail dependence measure is defined as the probability of an extreme downward
movement of the asset, conditional on the occurrence of a market crash. Hence,
instead of measuring the magnitude of the comovement, this measure has the
attributes of a conditional probability. Furthermore, Bali, Cakici, and Whitelaw
(2014) estimate “hybrid tail betas.” Their aim is to capture the covariance of the
asset and the market, given an adverse return on the asset.

Compared to these measures, the tail beta we estimate shares two appealing
features with the regular market beta. First, its interpretation as a measure of co-
movement with the market is in absolute terms. That is, on a day that the market
suffers a loss of 10%, an asset with a tail beta of 2 is expected to suffer a down-
ward movement of 20%. Second, the tail beta we estimate is an additive measure
of tail risk. In other words, the tail beta of an investment portfolio is the weighted
average of the tail betas of the individual assets. Consequently, the estimated tail
betas provide a clear insight into how each asset contributes to the systematic tail
risk of a portfolio, which is discussed in Section V.

II. Theory

To define the tail beta, we first introduce a linear model that decomposes
asset returns under extremely adverse market conditions into a systematic and an
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idiosyncratic component. We denote the return on asset j and the market portfolio
as Rj and Rm. The excess return on asset j and the market are given by Re

j =Rj−Rf

and Re
m = Rm − Rf , where Rf is the risk-free rate. The following model relates the

two excess returns under extremely adverse market conditions

Re
j = βT

j Re
m + εj, for Re

m < −VaRm(p̄),(1)

where εj denotes the idiosyncratic risk that is independent of Re
m under the condi-

tion Re
m <−VaRm(p̄) and Eεj=0. The VaRm(p̄) denotes the VaR of the excess mar-

ket return with some low probability p̄ such that Pr(Re
m ≤ −VaRm(p̄))=p̄; in other

words, it is the loss on the market that is exceeded with probability p̄. The tail beta
is defined as parameter βT

j and measures the sensitivity to systematic tail risk.
The linear tail model in expression (1) specifies the comovement between

the asset and the market excess return only under extremely adverse market con-
ditions. Nevertheless, safety-first investors do not need any further assumptions
to value each asset according to the asset pricing theory developed by AB (1977):
Given the linear tail model in expression (1), we show that the tail beta determines
expected returns in their framework.

The asset pricing theory of AB (1977) builds on the assumption that investors
maximize the expected return while limiting the probability of suffering a partic-
ularly large loss below a predetermined admissible level p.1 In other words, in-
vestors maximize the expected return under a VaR constraint. Under this objective
function, AB prove in a distribution-free setup that the equilibrium price for any
asset j is given by

E(Re
j ) = βAB

j E(Re
m),(2)

where the βAB
j is determined by the asset’s contribution to the VaR of the market

portfolio with a probability level equal to the admissible probability p (see the
Appendix), that is,

βAB
j =

E(Re
j |Re

m =−VaRm(p))

−VaRm(p)
.(3)

Given the linear tail model in expression (1), suppose that the investors care
about sufficiently large losses, such that the admissible probability p is smaller
than p̄. We can then express the βAB

j in equation (3) as

βAB
j =

E(βT
j Re

m + εj|Re
m =−VaRm(p))

−VaRm(p)
= βT

j +
E(εj)

−VaRm(p)
= βT

j .

Hence, we establish that the tail beta, βT
j , equals the beta in the AB (1977) asset

pricing theory, βAB
j . Consequently, given the linear tail model in expression (1)

and the safety-first framework with p < p̄, the expected returns of assets depend
on their tail betas.

In summary, if the market is populated with safety-first investors who care
about extreme losses that occur with a sufficiently low probability, and if tail

1The initial safety-first principle introduced by Roy (1952) assumes that agents minimize the
probability of suffering a large loss. AB (1977) adapt the formulation by Telser (1955), which assumes
that agents intend to limit the probability of suffering a particularly large loss to a prespecified level.
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betas can capture future systematic tail risk, then assets with higher tail betas should
be compensated with a risk premium in the cross section of expected returns.

III. Methodology

Our objective is to test whether assets with relatively high tail betas per-
form worse in future market crashes and whether they earn a systematic tail risk
premium. For that purpose, we collect daily data on New York Stock Exchange
(NYSE), American Stock Exchange (AMEX), and National Association of Se-
curities Dealers Automated Quotations (NASDAQ) stocks of nonfinancials be-
tween July 1963 and Dec. 2010 from the Center for Research in Security Prices
(CRSP). In addition, we collect the risk-free rates and the excess returns on the
market portfolio from the data library section on Kenneth French’s Web site
(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/).

We estimate firm-specific tail betas at the start of each month between July
1968 and Dec. 2010. A potential difficulty with the estimation of tail betas is the
low number of observations that correspond to extremely adverse market con-
ditions. Researchers often estimate market betas based on the past 60 monthly
returns. Such a low number of observations is insufficient for our purpose of es-
timating tail betas. We therefore use daily returns from the past 60 months in our
estimates, which corresponds to approximately 1,260 days.

We estimate tail betas using the estimation methodology based on extreme
value theory (EVT) developed by Van Oordt and Zhou (2016). The basic assump-
tion of this approach is that the market and asset returns are heavy-tailed with the
following expansion on the tail of their distribution functions:

Pr(Re
m < −u) ∼ Amu−αm and(4)

Pr(Re
j < −u) ∼ Aju

−αj , as u → ∞.

The parameters αm and αj are called the tail indices, and the parameters Am and
Aj are the scales. With the independence between the idiosyncratic risk, εj, and
the market risk, Re

m, the linear tail model in (1) induces a dependence structure
between extremely adverse market returns and the asset returns. The tail beta is
estimated by exploiting the tail dependence structure and using the observations in
the tail region only. With the number of observed returns denoted by n, only the k
lowest returns are used in the estimation.2 The estimator of the tail beta is given as

β̂T
j := ̂τj(k/n)

1/α̂m ̂VaRj(k/n)

̂VaRm(k/n)
,(5)

with four components obtained as follows. First, the tail index αm can be esti-
mated with the so-called Hill estimator (see Hill (1975)).3 Consider the losses

2Theoretically, the EVT approach requires k := k(n) to be an intermediate sequence such that
k → ∞ and k/n → 0 as n → +∞. In practice, these conditions on k are not relevant for a finite
sample size n. For low values of k, the estimate exhibits a large variance, while for high values of k,
it bears a potential bias because observations from relatively normal market conditions are included
in the estimation. Practically, we choose k = 50 days in each estimation window of 60 months, which
corresponds to a k/n-ratio of roughly 4%. The results are robust if tail betas are estimated with k=30.

3The EVT approach needs the weak condition that αj > αm/2. This condition requires a lower
bound on the tail index of asset excess returns. Empirical research usually finds that αm is around 4
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X(m)
t = −Re

m,t, for t = 1, . . . , n. By ranking them as X(m)
n,1 ≤ X(m)

n,2 ≤ . . . ≤ X(m)
n,n ,

the Hill estimator is calculated as

1
α̂m

=
1
k

k∑
i=1

ln X(m)
n,n−i+1 − ln X(m)

n,n−k.(6)

Second, the τj(k/n) parameter can be estimated nonparametrically as

̂τj(k/n) :=
1
k

n∑
t=1

1{
X( j)

t >X( j)
n,n−k and X(m)

t >X(m)
n,n−k

},(7)

where X( j)
n,n−k is the (k + 1)th highest loss on the asset, and where X( j)

t :=
−Re

j,t, t = 1, . . . , n (see Embrechts, De Haan, and Huang (2000)). This param-
eter characterizes the tail dependence between the market and the asset. Finally,
the VaRs of the market and asset return at probability level k/n are estimated by
their (k + 1)th highest losses.4

At the end of every estimation window we rank the firms based on their tail
betas and construct five portfolios, each of which contains the same number of
stocks. To maximize the potential variation after controlling for regular market
risk, we also sort stocks based on their tail beta spreads, that is, the spread be-
tween tail betas and regular market betas.5 In the portfolio formation procedure
we exclude firms that do not qualify according to the following two conditions.
First, stocks should not report zero returns on more than 60% of the trading days
in the estimation window. We use this criterion to avoid our results being dis-
torted by daily returns of thinly traded stocks. Second, the stock must be trading
at a price above US$5 on the last day of the estimation period. We use this cri-
terion to exclude penny stocks that potentially represent firms in severe financial
distress.6 In summary, portfolio formation occurs at the start of each month using
estimates based on daily returns from the past 60 months. The holding period is
the first month after the estimation window.

After constructing the portfolios, we calculate daily portfolio returns. The
excess return is calculated by averaging the excess returns on individual stocks
in each portfolio using both equal and value weights. Furthermore, using several

(see, e.g., Jansen and De Vries (1991), Loretan and Phillips (1994), and Poon et al. (2004)). In line
with these results, we observe α̂m = 3.5 as an average estimate for the market. Given these findings,
the condition is equivalent to αj > 2, which is satisfied if the excess returns of individual assets have
finite variance.

4An alternative approach to estimate tail betas involves performing a regression on the observa-
tions corresponding to the k largest market losses. For example, Post and Versijp (2007) provide esti-
mates of tail betas from regressions conditional on market returns below −10%. Our results are robust
to using the conditional regression approach. However, this approach yields a less persistent ranking
of firms over time and a smaller and less significant return difference between high- and low-tail-beta
stocks in extreme market downturns.

5See, for example, Ang, Chen, and Xing (2006), who sort based on the spread between downside
beta and market beta.

6Empirically, historical tail betas do not provide much information about the performance of penny
stocks in future extreme market downturns. Including penny stocks in the analysis does not qualita-
tively affect our conclusions.

https://doi.org/10.1017/S0022109016000193  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109016000193


Van Oordt and Zhou 691

benchmark models, we calculate risk-adjusted returns for individual stocks as
follows:

R∗
j,t = Rj,t − Rf ,t −

s∑
l=1

β̂j,lFl,t,(8)

where Rj,t is the daily return on stock j at time t, Rf ,t is the risk-free rate, and
(F1,t, . . . ,Fs,t) denotes the s risk factors in the benchmark model. We estimate
the factor loadings, β̂j,k, for individual stocks using regressions on daily returns in
the 60-month estimation window preceding t. The risk-adjusted returns of the tail
beta spread portfolios are calculated by averaging the risk-adjusted returns of the
individual stocks in each portfolio. Based on the constructed portfolio returns, we
then construct the zero-investment portfolio, which is obtained by taking a long
position of US$1 in the portfolio with the 20% highest tail beta spreads, while
taking a short position of US$1 in the portfolio with the 20% lowest spreads.

IV. Results

A. Descriptive Statistics

Table 1 reports the descriptive statistics averaged across the stocks in the
portfolios sorted on tail betas. Not surprisingly, there is a strong positive relation
between the loadings on systematic risk and the loadings on systematic tail risk.

TABLE 1

Descriptive Statistics

At the start of each month t between July 1968 and Dec. 2010 we estimate tail betas of New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations (NASDAQ)
stocks by applying the extreme value theory approach in equation (5) to daily returns from the 60 months preceding t.
Stocks are sorted into 5 quintiles according to their tail beta estimates. We exclude stocks with more than 60% zero
daily returns in the 60 months preceding t, and stocks with a price below US$5 at the end of the month preceding t.
The reported numbers are averages for the stocks in each sort. We average first across firms at each t, and then over
the 510 months in the sample. The market beta (β), downside beta (β−), standard deviation, idiosyncratic volatility, tail
dependence, skewness, coskewness, excess kurtosis, and cokurtosis are calculated using the daily returns from the 60
months preceding t. We estimate β− through a regression conditional on below-average market returns. Idiosyncratic
volatility is calculated as the standard deviation of the residuals obtained from regressing individual stock returns on the
Fama–French (1993) factors. The tail dependence measure, τ , is calculated following the estimator in equation (7) with
k = 50. Coskewness and cokurtosis are calculated as

β
SKD
j =

E
[
εj

(
Re

m − R̄e
m
)2

]
√

E
[
ε2

j

]
E
[(

Re
m − R̄e

m
)2

] and β
KUD
j =

E
[
εj

(
Re

m − R̄e
m
)3

]
√

E
[
ε2

j

] (
E
[(

Re
m − R̄e

m
)2

])3/2
,

where εj denotes the residual from a regression of Re
j on Re

m . We provide trading volume and market capitalization at the
end of the month preceding t.

Characteristic High βT 4 3 2 Low βT

Beta (β) 1.28 1.00 0.82 0.67 0.42
Tail beta spread (βT − β) 1.34 0.95 0.76 0.60 0.46
Downside beta (β−) 1.46 1.12 0.91 0.73 0.46
Standard deviation 4.29 3.19 2.57 2.12 1.69
Idiosyncratic risk 4.01 2.97 2.38 1.97 1.60
Tail dependence (τ ) 0.22 0.21 0.21 0.19 0.15
Skewness 0.80 0.57 0.45 0.42 0.47
Coskewness (βSKD) −0.11 −0.15 −0.19 −0.19 −0.21
Excess kurtosis 10.27 9.05 8.72 9.08 11.23
Cokurtosis (βKUD) −0.79 −0.23 0.39 1.21 2.26
Market capitalization (US$billions) 0.72 1.16 2.11 2.96 2.55
Volume (million shares) 10.00 7.96 7.85 7.55 5.09
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On average, stocks with high tail betas tend to have high market betas and high
downside betas. There is a clear trend in the (downside) betas across the portfo-
lios. The relation between the tail beta and the market beta stresses the impor-
tance of sorting on the tail beta spread when correcting for market risk. Similar
patterns can be observed for other risk measures such as volatility, idiosyncratic
risk, coskewness, and tail dependence with market risk. These trends indicate
that stocks with higher tail betas also tend to have higher values for other poten-
tial (systematic) risk measures, with cokurtosis as a notable exception. Finally,
high-tail-beta stocks tend to have smaller sizes and higher trading volumes. The
observed patterns between tail beta and other risk measures call for an elaborate
treatment of these risk measures in robustness checks.

B. Persistence

We verify whether the estimates of tail beta obtained from historical data are
persistent over time. In the absence of such persistence, estimating tail betas based
on historical data would merely serve a descriptive function and would provide no
insight into future comovements during adverse market conditions. To investigate
this issue we provide transition matrices based on tail beta estimates and their
60 months lagged estimates in Table 2. We estimate tail betas by using both the
EVT approach with k=50 and a regression conditional on the 50 sharpest market
declines. The table also provides a similar matrix for market betas estimated from
a regression with the CAPM as the benchmark model (based on approximately
1,260 observations). Higher numbers along and around the diagonal point to a
more persistent sorting.

We observe two patterns from the transition matrices. First, the numbers
along the diagonal of the transition matrices with tail betas are higher for the ma-
trix constructed with the EVT approach. This suggests that the EVT approach
provides a more persistent classification of firms’ sensitivity to systematic tail
risk than the conditional regression approach. This is potentially due to the latter
approach having a larger standard error. Second, the numbers along and around
the diagonal of the transition matrices based on tail betas estimated with the EVT
approach are, in general, at a similar level to those based on market betas. This
suggests a similar level of persistence in the sorting based on the two betas. Hence,
given that historical market betas contain useful information about future comove-
ment with the market, there seems to be no reason to worry about the persistence
in tail betas estimated with the EVT approach, even though they are estimated
from fewer observations.

C. Expected Returns

Table 3 reports the excess returns of the portfolios sorted on tail beta. The
table provides unconditional averages and averages conditional on days with a
sharp market decline defined as Re

m,t < −2%. Such a market loss occurred on
282 days, or approximately 2.5% of all days in our sample. These conditional
averages represent the losses in the portfolios under extremely adverse market
conditions. They provide direct evidence on whether historical tail betas capture
future sensitivity toward systematic tail risk.
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TABLE 2

Transition Matrices Based on 60 Months Lagged Values

Table 2 provides transition matrices for tail betas and regular market betas based on 60 months lagged values. At the start
of each month t between July 1968 and Dec. 2005 we estimate tail betas of New York Stock Exchange (NYSE), American
Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations (NASDAQ) stocks by
applying the extreme value theory (EVT) approach in equation (5) to daily returns from the 60 months preceding t. Stocks
are sorted into 5 quintiles according to their tail beta estimates. We exclude stocks with more than 60% zero daily returns
in the 60 months preceding t, and stocks with a price below US$5 at the end of the month preceding t. We also determine
the allocation of each firm in the tail beta quintiles based on tail betas estimated at t +60 months. For each tail beta quintile
at time t, we calculate the percentage of surviving firms allocated in each tail beta quintile at t + 60 months. We repeat
the procedure for market betas and tail betas obtained from, respectively, an unconditional regression and a conditional
regression (based on the 50 worst market returns) on the daily returns using the capital asset pricing model as benchmark
model. The numbers in the transition matrices are averages over time. Higher numbers along and around the diagonal of
the transition matrices point toward a more persistent sorting.

t + 60 Months

Panel A. Tail Beta

t High βT 4 3 2 Low βT

EVT Approach
High βT 49 29 14 6 3
4 21 29 27 17 6
3 9 18 29 29 13
2 4 11 23 35 26
Low βT 2 5 11 22 61

Conditional Regression
High βT 28 22 18 16 15
4 21 22 22 19 16
3 16 20 22 22 19
2 13 18 22 24 23
Low βT 13 16 20 23 28

Panel B. Market Beta

t High β 4 3 2 Low β

High β 53 28 13 5 2
4 23 33 26 13 5
3 11 24 31 24 10
2 5 13 24 33 25
Low β 2 4 10 25 59

The unconditional averages on the zero-investment portfolio are not signifi-
cantly different from 0 for either the value- or the equal-weighted portfolios. Nev-
ertheless, the zero-investment portfolios suffered large losses on days with sharp
market declines. For example, the high-tail-beta portfolio incurred on average a
value-weighted loss of 4.69%, whereas the low-tail-beta portfolio incurred a cor-
responding loss of only 1.81%. A similar pattern is observed for equal-weighted
portfolios. Hence, shorting the high-tail-beta portfolio while taking a long po-
sition in the low-tail-beta portfolio would have provided significant protection
against systematic tail risk, without bearing a cost in the long run. In fact, such a
strategy would have led to a positive, albeit insignificant, average return.

A potential reason for not observing higher average returns for high-tail-beta
stocks is the inclusion of the perhaps unusually large losses that high-tail-beta
stocks suffered during the recent financial crisis. If this was the explanation for
our results, we would observe a risk premium on systematic tail risk in the period
preceding the financial crisis. However, the data do not support this supposition.
The risk premium remains absent when excluding the period from the start of
2007 onward, as shown in the lower panel of Table 3. Moreover, the significance
of the difference in performance among the portfolios during sharp market de-
clines does not depend on including or excluding the financial crisis.
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TABLE 3

Returns of Stocks Sorted by Past Tail Betas

At the start of each month t between July 1968 and Dec. 2010 we estimate tail betas of New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations (NASDAQ)
stocks by applying the extreme value theory approach in equation (5) to daily returns from the 60 months preceding t.
We form 5 equal-weighted (EW) and value-weighted (VW) portfolios by sorting on the tail beta, and construct a zero-
investment portfolio (High − Low). We exclude stocks with more than 60% zero daily returns in the 60 months preceding
t, and stocks with a price below US$5 at the end of the month preceding t. Table 3 reports average excess returns for
each portfolio. We report the unconditional average (all days) and averages conditional on days that the market factor
lost at least 2% of its value (adverse), that is, R̄e

p|Re
m < −2%. The precrisis results exclude observations from 2007

onward. The Newey–West (1994) corrected t-statistics for unconditional averages and standard t-statistics for conditional
averages are reported in parentheses.

Weights R̄e
p No. of Obs. High βT 4 3 2 Low βT High − Low

Panel A. Full Sample

EW All days 10,704 0.03 0.04 0.04 0.04 0.03 0.00
(1.7) (2.8) (3.3) (3.5) (4.1) (−0.1)

Adverse 282 −3.96 −3.04 −2.60 −2.18 −1.49 −2.47
(−31.7) (−29.3) (−28.0) (−27.2) (−23.5) (−27.7)

VW All days 10,704 0.02 0.02 0.02 0.02 0.02 −0.01
(0.8) (1.7) (1.8) (2.0) (3.2) (−0.6)

Adverse 282 −4.69 −3.83 −3.25 −2.67 −1.81 −2.88
(−33.6) (−33.7) (−31.5) (−28.1) (−21.5) (−24.0)

Panel B. Precrisis

EW All days 9,697 0.03 0.04 0.04 0.04 0.03 0.00
(1.5) (2.8) (3.2) (3.5) (4.3) (−0.4)

Adverse 191 −3.55 −2.58 −2.18 −1.84 −1.21 −2.34
(−26.2) (−23.9) (−21.9) (−21.0) (−18.8) (−22.3)

VW All days 9,697 0.01 0.02 0.02 0.02 0.03 −0.01
(0.7) (1.6) (1.7) (2.1) (3.2) (−0.7)

Adverse 191 −4.46 −3.65 −3.01 −2.44 −1.63 −2.83
(−28.5) (−28.4) (−25.7) (−21.1) (−15.2) (−19.4)

The reported results do not guarantee that tail betas provide additional infor-
mation on the sensitivity to systematic tail risk over and above the information
provided by regular market betas. In other words, the differences in losses may
also be a consequence of underlying differences in market betas across the port-
folios. Although such an explanation would be surprising given the absence of
a premium in Table 3, we check whether the differences in losses remain sig-
nificant when controlling for standard risk factors. We sort the stocks based on
their tail beta spreads and calculate risk-adjusted returns using the Fama and
French (1993) model (FF3) as the benchmark model in equation (8). The risk-
adjusted returns reported in the first two rows in Table 4 follow a similar pat-
tern as before. After controlling for market risk, the losses on the equal- and
value-weighted, zero-investment portfolios during market crashes are, respec-
tively, 0.39% and 0.47% (both highly significant). Hence, tail betas do provide
information on the sensitivity to systematic tail risk that is not captured by regular
market betas.

Table 4 also reports the results on the potential premium when control-
ling for the FF3 risk factors. The average risk-adjusted returns on the value-
weighted portfolios provide no evidence of an additional risk premium for loading
on systematic tail risk. Only the equal-weighted, zero-investment portfolio earned
a positive average return (borderline significant). The difference between value
and equal weighting is related to differences in firm size within each portfolio.
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TABLE 4

Risk-Adjusted Returns of Stocks Sorted by Past Tail Betas

At the start of each month between July 1968 and Dec. 2010 we estimate tail betas of New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations (NASDAQ)
stocks by applying the extreme value theory approach in equation (5) to daily returns from the 60 months preceding t.
We form 5 equal-weighted (EW) and value-weighted (VW) portfolios by sorting on the spread between the tail beta and
the market beta and construct a zero-investment portfolio (High − Low). We exclude stocks with more than 60% zero
daily returns in the 60 months preceding t, and stocks with a price below US$5 at the end of the month preceding t. We
calculate risk-adjusted returns by applying equation (8) on daily stock returns at time t, where the loadings on the risk
factors in the benchmark model are estimated for each stock by an ordinary least squares regression on daily returns
from the 60 months preceding t. Table 4 reports the average Fama–French (1993) adjusted portfolio return, R̄*

FF3,p . We
report the unconditional average (all days) and averages conditional on days that the market factor lost at least 2% of
its value (adverse), that is, R̄*

FF3,p|Re
m < −2%. The third and fourth sets report the averages after first presorting the

stocks in 5 size cohorts and then sorting on the tail beta spread within each size cohort, where size is measured by market
capitalization at the end of month preceding t. The Newey–West (1994) corrected t-statistics for unconditional averages
and the standard t-statistics for conditional averages are reported in parentheses.

Weights R̄*
FF3,p Presort High βT − β 4 3 2 Low βT − β High − Low

1. EW All days — 0.01 0.01 0.01 0.01 0.00 0.01
(3.4) (4.4) (3.6) (3.0) (2.4) (2.0)

Adverse — −0.26 −0.03 0.01 0.07 0.13 −0.39
(−6.2) (−1.1) (0.5) (3.3) (6.5) (−8.0)

2. VW All days — −0.01 0.00 0.00 0.00 0.00 −0.01
(−1.0) (−0.7) (−0.2) (0.7) (1.1) (−1.2)

Adverse — −0.39 −0.16 −0.06 0.02 0.07 −0.47
(−4.5) (−2.9) (−1.5) (0.8) (3.7) (−4.9)

3. VW All days Small −0.02 0.00 0.01 0.01 0.01 −0.03
(−2.6) (0.2) (1.2) (1.4) (3.1) (−4.6)

2 −0.02 0.00 0.00 0.00 0.01 −0.02
(−2.7) (−1.1) (1.1) (0.7) (1.7) (−3.2)

3 −0.01 0.00 0.00 0.00 0.01 −0.01
(−1.6) (0.4) (0.4) (0.1) (2.1) (−2.3)

4 0.00 0.00 0.00 0.00 0.00 −0.01
(−0.8) (−0.1) (−0.7) (0.4) (0.7) (−1.1)

Large 0.00 0.00 0.00 0.00 0.00 0.00
(0.2) (−0.5) (−0.5) (1.8) (0.9) (−0.1)

Average −0.01 0.00 0.00 0.00 0.01 −0.01
(−2.2) (−0.4) (0.7) (1.4) (3.1) (−3.2)

4. VW Adverse Small −0.34 −0.13 0.01 −0.01 0.08 −0.42
(−5.4) (−2.4) (0.2) (−0.2) (2.0) (−6.5)

2 −0.52 −0.13 0.05 0.04 0.13 −0.65
(−9.8) (−3.5) (1.2) (1.3) (4.2) (−10.4)

3 −0.38 −0.01 0.06 0.11 0.19 −0.57
(−7.3) (−0.4) (1.9) (3.5) (6.1) (−8.7)

4 −0.18 0.01 0.04 0.07 0.13 −0.31
(−3.3) (0.1) (1.3) (2.2) (4.5) (−5.5)

Large −0.19 −0.09 0.04 0.10 0.05 −0.24
(−2.9) (−2.3) (1.4) (3.6) (1.6) (−3.1)

Average −0.32 −0.07 0.04 0.06 0.12 −0.44
(−7.5) (−2.6) (1.7) (2.8) (6.0) (−9.0)

Consequently, we apply a double-sorting procedure to evaluate the patterns among
similar sized firms. First, we presort stocks into five size cohorts based on mar-
ket capitalization at the end of the month preceding t. Subsequently, we sort on
the tail beta spread within each size cohort. We report the value-weighted, risk-
adjusted returns of each portfolio within each size cohort in the third and fourth
sets of Table 4.7 The last line is the average within each tail beta spread quintile

7The unconditional average risk-adjusted return of the zero-investment strategy is also negative
but insignificant within each size cohort in equal-weighted portfolios (unreported).
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across the different size cohorts. The portfolios constructed from high-tail-beta
spreads report significantly larger risk-adjusted losses during market crashes and
lower average risk-adjusted returns over the entire period within each size cohort.
Hence, contrary to the theoretical prediction, high tail betas seem to be associated
with lower, rather than higher, average returns. Note that the difference in losses
on adverse market days between high- and low-tail-beta spreads are strongest
within the three smallest size cohorts. Accordingly, one would expect the theo-
retical prediction to be strongest within these size cohorts. However, these size
cohorts provide the strongest refutation of the predicted presence of a positive
systematic tail risk premium by reporting negative and significant risk-adjusted
returns on the zero-investment portfolio over the entire period.

In summary, our results confirm that estimated tail betas help predict losses
in future stock market crashes; that is, they capture future systematic tail risk.
Nevertheless, we find no evidence that investing in high tail betas earns a positive
and significant premium. These results suggest that the safety-first framework
may not be suitable for explaining the cross section of expected returns or, at
least, not with the assumption that investors are concerned only with extreme
losses that occur with some very small probability.

D. Robustness

We perform robustness checks in several directions. Following Daniel and
Titman (1997), we apply a double-sorting procedure to examine whether our
results are also captured by other stock characteristics, namely, downside beta
(spread); (co)skewness; (co)kurtosis; (idiosyncratic) volatility; short-, medium-,
and long-term past performance; and trading volume. Table 5 reports the results
on FF3-adjusted returns after averaging within each tail beta quintile across the
cohorts. The larger losses of stocks with higher tail betas remain significant after
presorting on these characteristics. The absence of a positive systematic tail risk
premium is also robust (unreported). Furthermore, our results remain qualitatively
unchanged if the FF3 benchmark model is extended to include other asset pricing
factors, such as momentum and short- and long-term reversal factors, or factors
constructed from downside beta (spread), coskewness, and cokurtosis.

We also consider several methodological variations. Successively, we restrict
the sample to the period after the entrance of NASDAQ firms to the CRSP data in
Jan. 1973; we restrict our sample to NYSE firms only; we decrease the number
of worst days, k, used in the estimation of tail beta from 50 to 30; we replace
the EVT approach by the conditional regression approach; and we use monthly
returns instead of daily returns to estimate market betas and other factor loadings
in the benchmark model. Finally, we use alternative thresholds to define extremely
adverse market conditions, that is, excess market return below −5% or 0%. The
results remain qualitatively unchanged under all these methodological changes.

E. Downside Beta and Tail Beta

The lack of a premium for high-tail-beta stocks among all firms and the (lim-
ited) evidence of a negative premium among small and medium-sized firms contrast
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TABLE 5

Presorting and Risk-Adjusted Returns under Adverse Market Conditions

At the start of each month between July 1968 and Dec. 2010 we estimate tail betas of New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations (NASDAQ)
stocks by applying the extreme value theory approach in equation (5) to daily returns from the 60 months preceding t. We
first presort the equities into 5 cohorts according to the stock characteristic specified in the first column. We exclude stocks
with more than 60% zero daily returns in the 60 months preceding t, and stocks with a price below US$5 at the end of
the month preceding t. Within each cohort we form 5 value-weighted portfolios by sorting on the spread between tail beta
and market beta and construct a zero-investment portfolio (High − Low). We calculate risk-adjusted returns by applying
equation (8) to daily stock returns in the month containing t, where the loadings on the risk factors in the benchmark model
are estimated for each stock by an ordinary least squares regression on daily returns from the 60 months preceding t.
The reported numbers are the risk-adjusted returns averaged within each tail beta quintile across the cohorts based on
the presorting characteristic. Table 5 reports the average Fama–French (1993) adjusted portfolio return on days that the
market factor lost at least 2% of its value, that is, R̄*

FF3,p|Re
m < −2%. Standard t-statistics are reported in parentheses.

Presorting Characteristic High βT − β 4 3 2 Low βT − β High − Low

Size −0.32 −0.07 0.04 0.06 0.12 −0.44
(−7.5) (−2.6) (1.7) (2.8) (6.0) (−9.0)

Downside beta (β−) −0.38 −0.17 −0.06 −0.03 0.10 −0.49
(−5.2) (−3.4) (−1.7) (−1.3) (5.0) (−6.2)

Downside beta spread (β− − β) −0.36 −0.05 −0.05 0.05 0.01 −0.37
(−5.6) (−1.4) (−1.4) (1.9) (0.4) (−5.4)

Coskewness −0.39 −0.09 −0.03 −0.01 0.03 −0.42
(−5.7) (−2.3) (−0.8) (−0.5) (1.3) (−5.8)

Cokurtosis −0.36 −0.10 −0.04 0.00 0.06 −0.42
(−5.0) (−2.0) (−1.2) (0.1) (3.1) (−5.3)

Idiosyncratic volatility −0.37 −0.21 −0.03 −0.04 0.18 −0.55
(−5.2) (−4.5) (−0.9) (−1.2) (4.4) (−6.4)

Past 1 month performance −0.32 −0.10 −0.09 0.00 0.07 −0.39
(−4.6) (−2.0) (−2.4) (0.0) (3.4) (−5.2)

Past 2–12 months performance −0.30 −0.10 −0.05 0.03 0.10 −0.40
(−4.3) (−2.2) (−1.5) (1.2) (4.7) (−5.4)

Past 13–60 months performance −0.37 −0.10 −0.03 0.01 0.10 −0.48
(−5.5) (−2.2) (−1.0) (0.3) (5.2) (−6.4)

Volatility −0.37 −0.22 −0.05 −0.02 0.19 −0.56
(−5.2) (−4.7) (−1.4) (−0.7) (4.5) (−6.4)

Skewness −0.39 −0.12 −0.06 0.01 0.05 −0.44
(−5.6) (−2.7) (−1.9) (0.4) (2.4) (−5.8)

Kurtosis −0.37 −0.16 −0.06 0.02 0.04 −0.42
(−6.0) (−3.5) (−1.9) (0.9) (2.1) (−5.9)

Volume −0.30 −0.06 0.00 0.06 0.10 −0.40
(−6.5) (−1.7) (−0.1) (2.6) (5.0) (−8.1)

with the positive premium associated with downside beta (see, e.g., Ang, Chen, and
Xing (2006)). Although both measures evaluate the comovement of stocks with
downward movements of the market portfolio, there is a conceptual difference be-
tween the two. The downside beta measures stocks’ comovement in the more gen-
eral scenario of a below-average or zero market return, whereas the tail beta focuses
on the comovement if market downturns are extreme. This difference also shows
up in the robustness checks in Table 5, where the ability of tail beta to predict which
firms suffer larger FF3-adjusted losses in extreme market downturns remains after
presorting stocks on downside beta (spread).

Ang, Chen, and Xing (2006) report a positive in-sample risk premium for
holding high-downside-beta stocks with downside betas estimated from 12 months
of daily returns conditional on below-average market returns. To contrast their re-
sults with ours, we follow their procedure on our sample. At the end of each month
between June 1964 and Dec. 2009, we estimate regular market betas, downside
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betas, and tail betas from daily returns over the next 12 months.8 We construct
equal-weighted portfolios from sorts based on downside beta (spread) and tail
beta (spread). Table 6 reports the annualized average excess returns of these port-
folios, calculated over the same period as that used to compute the betas.

TABLE 6

Returns of Stocks Sorted by Realized Betas

Table 6 lists the equal-weighted average excess returns and risk characteristics of stocks sorted by realized betas. For
each month t between June 1963 and Dec. 2009 we estimate β, β− , and βT of New York Stock Exchange (NYSE),
American Stock Exchange (AMEX), and National Association of Securities Dealers Automated Quotations (NASDAQ)
stocks from daily returns over the next 12 months. β− is obtained from a regression conditional on below-average market
returns, and βT is obtained by applying the extreme value theory approach in equation (5). We exclude stocks with more
than 60% zero daily returns in the 12 months following month t, and stocks with a price below US$5 at the end of month t.
Following Ang, Chen, and Xing ((2006), Table 1), we form 5 equal-weighted portfolios by sorting on the corresponding risk
characteristics at the end of month t and construct a zero-investment portfolio (High − Low). R̄e

p is the annualized (daily
compounded) average return in excess of the 1-month Treasury bill rate over the next 12 months (the same 12-month
period as the period used to compute stock betas). The entry labeled “t-stat” is the t-statistic (in parentheses) for testing
against the null hypothesis of a zero average return on the High − Low portfolio, computed using Newey–West (1987)
heteroskedasticity- and autocorrelation-robust standard errors with 12 lags. The columns labeled “β,” “β− ,” and “βT ”
report the cross-sectional average of the stock betas in each portfolio. We first average across firms at each t, and then
over the 559 months in the sample.

Portfolio R̄e
p β β− βT Portfolio R̄e

p β β− βT

Panel A. Stocks Sorted by Realized β− Panel B. Stocks Sorted by Realized βT

1 Low β− 1.35 0.34 0.11 1.05 1 Low βT 5.50 0.41 0.39 0.54
2 3.81 0.61 0.60 1.30 2 9.20 0.66 0.72 1.23
3 4.88 0.84 0.93 1.59 3 8.33 0.87 0.97 1.63
4 6.15 1.11 1.32 1.96 4 5.80 1.10 1.26 2.11
5 High β− 9.15 1.60 2.11 2.63 5 High βT −5.15 1.46 1.75 3.01

High − Low 7.80 1.26 2.00 1.58 High − Low −10.65 1.06 1.36 2.46
t-stat. (2.18) t-stat. (−2.42)

Panel C. Stocks Sorted by Realized β− − β Panel D. Stocks Sorted by Realized βT − β

1 Low β− − β 0.49 1.02 0.55 1.65 1 Low βT − β 9.61 0.92 0.83 0.88
2 5.44 0.84 0.75 1.45 2 11.81 0.91 0.94 1.37
3 6.67 0.81 0.90 1.50 3 9.31 0.91 1.01 1.63
4 7.76 0.85 1.15 1.70 4 4.94 0.92 1.11 1.98
5 High β− − β 7.01 0.99 1.73 2.23 5 High βT − β −10.27 0.85 1.18 2.67

High − Low 6.52 −0.03 1.18 0.58 High − Low −19.88 −0.07 0.35 1.79
t-stat. (5.53) t-stat. (−8.42)

Panels A and B of Table 6 report the results after sorting on downside beta
and tail beta, respectively. Portfolios with high downside betas and high tail betas
also tend to have high regular market betas. In line with Ang, Chen, and Xing
(2006), high-downside-beta stocks are associated with significantly higher in-
sample returns. However, high-tail-beta stocks are associated with significantly
lower in-sample returns. This contrast between downside beta and tail beta be-
comes more pronounced when sorting on the spreads in Panels C and D. The
average regular market beta across the sorts based on spreads is almost flat in both
panels. The zero-investment portfolio based on downside beta spread earns an an-
nual premium of 6.5% (t-statistic = 5.5), whereas the zero-investment portfolio

8With on average about 252 daily observations in each estimation window of 12 months, we
choose k = 15 for estimating the tail beta, or k/n ≈ 8%. The relatively short estimation window is a
disadvantage for obtaining an accurate estimate of tail beta. Nevertheless, the in-sample results from
the estimation window of 12 months are in line with our other results based on estimates from longer
estimation windows.
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based on tail beta spread takes an annual loss of on average 19.9% (t-statistic =
−8.4). Naturally, these in-sample results may be partly due to a mechanical rela-
tion. For example, large losses in market crashes may result directly in both high
tail betas and low in-sample average returns. However, such a mechanical rela-
tion cannot explain the negative premium for loading on tail beta observed in the
out-of-sample results for small and medium-sized firms in Table 4.

In summary, different from downside beta, we observe no positive and signif-
icant in-sample premium associated with tail beta. The combination of a positive
premium for downside beta and the lack of such a premium for tail beta in our
results suggests that investors are predominantly concerned with their exposure
to general downside risk in their portfolio choice rather than focusing only on the
potential extreme losses that occur with some very low probability.

V. Risk Management

Because historical tail betas can capture future losses under extremely ad-
verse market conditions, tail betas may help investors assess the tail risk of port-
folios. As an additive measure of loading on systematic tail risk, the tail beta is a
useful measure in the context of managing the tail risk of portfolios. We discuss
this application in the current section.

We consider a portfolio consisting of d assets, following the linear tail model
in equation (1) with nonnegative tail betas, βT

1 , . . . , β
T
d . Under extremely adverse

market conditions, the excess return of a portfolio with nonnegative investment
weights, w1, . . . ,wd, can be written as

Re
P =

⎛
⎝ d∑

j=1

wjβ
T
j

⎞
⎠Re

m +
d∑

j=1

wjεj, for Re
m < −VaRm(p̄).(9)

Hence, the portfolio return also follows a linear tail model with a portfolio tail
beta equal to the weighted average of the tail beta of the individual assets, that is,
βT

P =
∑d

j=1 wjβ
T
j , and an idiosyncratic component that is given by εP=

∑d
j=1 wjεj.

To evaluate the tail risk of a portfolio, it is necessary to aggregate the system-
atic and idiosyncratic tail risks. We start by discussing the aggregation for a single
asset. Suppose the linear tail model in equation (1) and the heavy-tailed setup in
equation (4) hold for a larger area, min(Re

m,Re
j ) < −VaRm(p̄). It then follows that

the probability of a loss on asset j larger than u can be approximated by

Pr(Re
j < −u) ∼ Pr

(
βT

j Re
m < −u

)
+ Pr(εj < −u), as u → ∞.(10)

This approximation follows from Feller’s (1971) convolution theorem on aggre-
gating risk factors, which states that the probability that the sum of independent
heavy-tailed risk factors is above a high threshold can be approximated by the sum
of the probabilities of each risk factor being above that threshold.9 Suppose the
idiosyncratic risk, εj, follows a heavy-tailed distribution with tail index αεj and

9Embrechts, Klüppelberg, and Mikosch ((1997), Lemma 1.3.1) provides the proof for the case
αm = αεj . Along the same lines of proof, one can obtain that this relation holds for αm /= αεj .
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scale Aεj .
10 If αεj > αm, then the systematic tail risk dominates the idiosyncratic

tail risk, that is, Pr(εj < −u) = o(Pr(βT
j Re

m < −u)) as u → ∞. Consequently, the
downside tail distribution of the excess asset return, Re

j , follows a heavy-tailed
distribution with tail index αj = αm and scale Aj = (βT

j )
αm Am. In contrast, if

αεj < αm, then the idiosyncratic risk dominates the tail risk of the asset, and
we have αj = αεj and Aj = Aεj . In the case αεj = αm, both of the two components
contribute to the tail risk of the asset, and we have Aj = (βT

j )
αm Am + Aεj .

In the portfolio context, we first consider the case αε1 = · · · = αεd = αm.
Suppose the idiosyncratic tail risks are independent with scales Aε1 , . . . ,Aεd . Fol-
lowing Feller’s (1971) convolution theorem, the downside tail of the portfolio
follows a heavy-tailed distribution with tail index αP = αm and scale

AP =
(
βT

P

)αm Am +
d∑

j=1

wαm
j Aεj .(11)

In practice, all parameters in equation (11) can be statistically estimated. In par-
ticular, the tail beta of the portfolio, βT

P , can be obtained by taking a weighted
average of the tail beta estimates of the individual assets, the β̂T

j s. Furthermore,
the scales of the idiosyncratic tail risks, Aεj , can be obtained from

Âεj = Âj −
(
β̂T

j

)α̂m
Âm,(12)

where the scales of the market return and the asset return, Am and Aj, can be
estimated by univariate EVT analysis (see, e.g., Hill (1975)). With equation (11),
we thus obtain the estimate of the scale of a portfolio. Subsequently, the VaR of
the portfolio for some low probability level p can be calculated from the approxi-
mation

VaRP(p) ≈
(

AP

p

)1/αm

.(13)

Next, consider the case in which some assets in the portfolio correspond
to αεj > αm. The idiosyncratic tail risks of those assets are dominated by their
systematic tail risk and do not contribute to the tail risk of the portfolio. Hence, it
is still possible to evaluate the scale of the portfolio with equation (11) by omitting
the idiosyncratic tail risks of those assets. However, it is not necessary to identify
those assets or to modify the estimation procedure from equations (11) and (12).
Assets with αεj > αm exhibit complete tail dependence with the market return,
that is, τj = 1 and Aj =(βT

j )
αm Am. Therefore, the estimator on Aεj in equation (12)

converges to zero under the EVT approach. Including the estimate of Aεj for such
assets in equation (11) will not contaminate the estimate of the portfolio scale. In
summary, equation (11) can be applied to any portfolio consisting of assets with
αεj ≥ αm.

Finally, we discuss the case in which some assets correspond to αεj < αm.
Theoretically, the downside tail risk of the portfolio would be dominated by the
idiosyncratic risk of the asset with the lowest tail index. However, in practice this
may not be the case. The reason is that the return on many assets is in fact bounded

10A thin-tailed idiosyncratic risk could be thought of as having αεj=∞ in the following discussion.
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from below by −100%.11 Such an asset j with investment weight wj can generate
a maximum loss of wj. Therefore, in a well-diversified portfolio with a sufficiently
large number of assets, the idiosyncratic tail risks do not contribute to the tail risk
of the portfolio under the condition that their returns have a lower bound. This is
achieved even if some assets correspond to the case αεj < αm.12 In contrast to the
idiosyncratic risks, the systematic tail risk cannot be diversified away by investing
in a large number of assets, because the tail beta of a portfolio is the weighted
average of those of the individual assets. Hence, for any well-diversified portfolio
consisting of a sufficiently large number of assets with lower bounded returns, the
scale of its downside tail distribution can be approximated by

AP =

⎛
⎝ d∑

j=1

wjβ
T
j

⎞
⎠

αm

Am.

Subsequently, the VaR can be calculated from equation (13).

VI. Concluding Remarks

This article investigates whether systematic tail risk is compensated in the
cross section of expected returns. Asset pricing theory based on an equilibrium
framework with safety-first investors suggests that higher loadings on systematic
tail risk should be associated with a positive risk premium if investors are predom-
inantly concerned with extreme losses in low-probability events. Theoretically,
the risk premium is proportional to its tail beta, which measures the sensitivity to
systematic tail risk. Based on an EVT approach, we estimate tail betas and test
empirically whether high-tail-beta stocks receive higher average returns.

We find that assets with higher tail betas are associated with significantly
larger losses during future extreme market downturns. Hence, historical tail be-
tas are able to capture the sensitivity to future systematic tail risk. Furthermore,
the asset pricing tests do not report a positive and significant premium for high-
tail-beta stocks over the entire historical sample. One potential reason for this
result is that there are measurement issues, such as time variation in the actual tail
betas. However, because our historical estimates perform well in differentiating
future losses under extremely adverse market conditions, such an explanation is
satisfactory only if the risk premium for loading on systematic tail risk is low.
This suggests that room for a positive systematic tail risk premium in the cross
section of expected returns is limited. In addition, we find some evidence of a
negative and significant premium among small and medium-sized firms, which
further contradicts the presence of a positive premium for high-tail-beta stocks.

Our results suggest that investors are concerned with the general downside
risk of their portfolio rather than considering only the potential extreme losses

11Examples of assets in which the returns have a lower bound are long positions in stocks and
bonds. Counterexamples are short positions in currencies and stocks.

12The lower bound of equity returns is not accounted for in the heavy tail approximation, as in
equation (4). Instead, one could consider truncated heavy-tailed distributions. Ibragimov and Walden
(2007) prove the diversification effects of bounded risk factors from truncated heavy-tailed distribu-
tions provided that the number of risk factors is sufficiently large.
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that materialize with a very low probability. Alternative explanations are that in-
vestors are insufficiently aware of the cross-sectional differences in the loadings
on systematic tail risk or that fund managers are less concerned with extreme tail
risk than their clients are.

Another explanation for our results may be that systematic tail risk should be
investigated at a different investment horizon. Any difference between the theoret-
ical investment horizon and the frequency used for estimation causes a systematic
bias in the linear beta coefficients.13 Our result on the lack of a systematic tail risk
premium may change if tail betas are estimated from low-frequency data. How-
ever, analyzing tail betas at a lower frequency, such as monthly or annual, remains
a difficult and interesting issue, which is beyond the scope of the current study.

Parallel to the tail beta that measures assets’ sensitivity to extreme market
downturns, individual assets may also exhibit differences in their comovement
with large market booms. The methodology to estimate downside tail betas can
also be applied to estimate upside tail betas. In the same vein as the discussion
on (downside) risk management, such upside tail betas may provide information
on portfolio profits in a hypothetical large boom, where the upside tail beta of a
portfolio is a weighted average of the upside tail betas of the individual assets. In
the safety-first framework, which focuses on downside risk only, upside tail betas
are irrelevant for the cross section of expected returns. The relevance of upside
tail betas in other asset pricing frameworks is left for future research.

Appendix. Proof of Equation (3)

We start by introducing the notation of Arzac and Bawa (1977). Let the initial and
future market value of asset j be denoted by Vj and Xj. Each asset j generates a return
Rj=Xj/Vj. The market portfolio has the initial and future value Vm=

∑
j Vj and Xm=

∑
j Xj.

Hence, the market return is defined as

Rm =

∑
j Xj∑
j Vj

=
∑

j

w∗
j Rj,

with weights w∗
j = Vj/(

∑
j Vj).

Investor i holds a portfolio (γi,1, γi,2, . . .), which generates a future value as∑
j γi,jXj =

∑
j γi,jVjRj. Denote the p-quantile of this future value and the market port-

folio as Qi and Qm, respectively. Then, the p-quantile of the market return is qm = Qm/Vm.
Arzac and Bawa ((1977), eq. (14)) derive the formula to calculate the parameter

βAB
j as

βAB
j =

qj − rf

qm − rf
, with qj :=

∂Qi

∂γi,j

∣∣∣∣
(γi, j)=(γi)

Vj
,

13We thank the referee for pointing out this issue. Tail betas estimated at a lower frequency may
deviate from their high-frequency counterparts for two reasons. The first reason is the mathematical
bias discussed by, for example, Levhari and Levy (1977), which applies to all betas estimated from
discrete returns. The second reason is that conditioning on extremely adverse market conditions may
refer to different observations in case of different frequencies; for example, many small daily losses
may add up to a relatively large monthly loss without a single extreme market downturn.
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where (γi) is the optimal portfolio holding for investor i on all assets. The right-hand side
is the same across all investors. Because qm − rf is the p-quantile of the market excess
return, we have that qm − rf =−VaRm(p). Therefore, to prove the equality in equation (3),
it is necessary to prove only that qj = E(Rj|Rm = Qm(p)), where Qm(p) = qm.

To relate the quantile of the future value of investors’ portfolio to that of the mar-
ket return, we define for any positive investments (u1, u2, . . .) the p-quantile of

∑
j ujRj as

f (u1, u2, . . .). Notice that Qm= f (V1,V2, . . .), Qi= f (γi,1V1, γi,2V2, . . .). We calculate qj as

qj =

∂f (γi,1V1, γi,2V2, . . .)

∂γi,j

∣∣∣∣
(γi, j)=(γi)

Vj
=

Vj
∂f
∂uj

∣∣∣∣
(uj)=(γiVj)

Vj
=

∂f
∂uj

∣∣∣∣
(uj)=(γiVj)

.

The function f is homogeneous with degree 1, which implies that its partial derivative
∂f/∂uj is a homogeneous function with degree 0. Consequently, we have

∂f
∂uj

∣∣∣∣
(uj)=(γiVj)

=
∂f
∂uj

∣∣∣∣
(uj)=(w∗

j )

.

To derive the partial derivative of the f function, we use the expression that

f (u1, u2, . . .) = E

(∑
j

ujRj

∣∣∣∣∣
∑

j

ujRj = f (u1, u2, . . .)

)
.

Thus,

∂f
∂uj

∣∣∣∣
(uj)=(w∗

j )

=
∂

∂uj
E

(∑
j

ujRj

∣∣∣∣∣
∑

j

ujRj = f (u1, u2, . . .)

)∣∣∣∣∣
(uj)=(w∗

j )

=
∂

∂uj

∑
j

ujE

(
Rj

∣∣∣∣∣
∑

j

ujRj = f (u1, u2, . . .)

)∣∣∣∣∣
(uj)=(w∗

j )

= E

(
Rj

∣∣∣∣∣
∑

j

ujRj = f (u1, u2, . . .)

)∣∣∣∣∣
(uj)=(w∗

j )

= E(Rj|Rm = Qm(p)).

The last equality follows from the fact that Rm =
∑

j w∗
j Rj and Qm(p)= f (w∗

1 ,w∗
2 , . . .). The

qj thus quantifies the contribution of asset j to the p-quantile of the market return.
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