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Abstract. This paper studies the conjecture of Hirschfeldt, Miller and
Podzorov in [13] on the complexity of order-computable sets, where a
set A is order-computable if there is a computable copy of the structure
(N, <,A) in the language of linear orders together with a unary pred-
icate. The class of order-computable sets forms a subclass of ∆0

2 sets.
Firstly, we study the complexity of computably enumerable (c.e.) order-
computable sets and prove that the index set of c.e. order-computable
sets is Σ0

4 -complete. Secondly, as a corollary of the main result on c.e.
order-computable sets, we obtain that the index set of general order com-
putable sets is Σ0

4 -complete within the index set of ∆0
2 sets. Finally, we

continue to study the complexity of more general ∆0
2 sets and prove that

the index set of ∆0
2 sets is Π0

3 -complete.
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1 Introduction

Computability theory is a useful tool to classify mathematical structures ac-
cording to their intrinsic complexity. For the work on computable model theory,
refer to books, e.g., Ash and Knight [1], Harizanov Section 15 of [11]. For the
work on special algebraic structures such as abelian groups, rings and fields, see,
for instance, [2–4, 8–10, 12, 14, 15]. In [14], Lempp showed that the complexity of
the problem of being torsion-free for a finitely presented group is Π0

2 -complete.
Downey and Melnikov proved in [9] that a computable completely decompos-
able group is ∆0

5-categorical; that is, any two computable presentations of such
a group is isomorphic through a ∆0

5-isomorphism. Riggs investigated the de-
composability problem for torsion-free abelian groups in [17]; he obtained that
the decomposability problem for torsion-free abelian groups of finite rank is Σ0

3 -
complete, however, the same problem for general torsion-free abelian groups is
Σ1

1 -complete. Conidis investigated the complexity of radicals of computable rings
and of computable modules in [5, 6]; for instance, he constructed a computable
noncommutative ring whose prime radical is Π1

1 -complete in [5]. Recently, we
studied the complexity of decomposability of computable rings in [20] and ob-
tained that the index set of computable decomposable rings is Σ0

2 -complete
within the index set of computable rings.
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In [13], Hirschfeldt, Miller and Podzorov proposed a seemingly simple notion
of order-computable sets from the computable-model-theoretic point of view.
However, their results reveal that there are no easy characterizations of order-
computable sets from the perspective of pure computability theory. Hirschfeldt,
Miller and Podzorov also analyzed the order-computability problem and left the
conjecture on the complexity of order-computable sets open. In this paper, we
affirmatively answer the conjecture on the complexity of order-computable sets
in [13].

Fix the standard linear order (N, <) on natural numbers of order type ω.

Definition 1. [13] A set A is order-computable if there is a computable structure
(N,≺, R) in the language of linear orders together with a unary predicate such
that (N,≺, R) ∼= (N, <,A).

As proved in [13], an order-computable set A can be computed via a special
copy (N,≺, R) of (N, <,A) with R the following standard sets:

(1) R = Fk := {0, 1, . . . , k − 1} if A is a finite set with size |A| = k;
(2) R = Fk := {0, 1, . . . , k − 1} if A is a cofinite set such that the size of the

complement A of A is |A| = k;
(3) R = E := {2m : m ∈ N} if A is an infinite coinfinite set.

In the above standard cases, say that ≺ order-computes A. Let f be the prede-
cessor function of the linear order (N,≺) isomorphic to (N, <); that is, f(x) is
the number of predecessors of x under ≺ for all x. Then f is a permutation on
the set of natural numbers and it can be computed via a ∅′ oracle, i.e., f ≤T ∅′.
Furthermore, for any n,

n ∈ A ⇔ f−1(n) ∈ R.

Then A ≤T ∅′. This implies that order-computable sets are ∆0
2.

Computable sets are order-computable, but there are order-computable sets
that are not computable. In [13], the authors proved various results on order-
computable sets from the perspective of high/low hierarchy and Ershov hierarchy
in pure computability theory. For instance, they proved that any low c.e. set is
order-computable and that there is a low d.c.e. set that is not order-computable;
they also showed that the Turing degree 0′ contains both order-computable sets
and non order-computable sets.

Using the tool of computable predecessor approximation functions, Hirschfeldt,
Miller and Podzorov pointed out that the complexity of the property of being
order-computable for a ∆0

2 set is Σ0
4 , leaving the following two conjectures open.

– Conjecture I: The index set {e ∈ N : We is order-computable} of c.e. order-
computable sets is Σ0

4 -complete, where W0,W1, . . . ,We, . . . is an effective
listing of all c.e. sets.

– Conjecture II: The index set {e ∈ N : Ae is order-computable} of order
computable sets is Σ0

4 -complete, where Ae is a ∆0
2 set with index e. That is,

the e-th partial computable binary function φ2
e is total and it satisfies the

condition (∀x)[lims φ
2
e(x, s) ↓= 0 or 1]; in this case, Ae(x) = lims φ

2
e(x, s)

for all x.
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In Section 3, we affirmatively answer the Conjecture I and Conjecture II on the
complexity of order-computable sets above.

The class of ∆0
2 sets plays an important role in pure computability theory. It

is also interesting to consider the complexity of ∆0
2 sets themselves. We continue

to prove that the index set of ∆0
2 sets is Π0

3 -complete in Section 4.
The remaining sections are organized as follows. Section 2 provides basic

notions of computability theory as well as basic properties of order-computable
sets. Section 3 answers the conjectures of Hirschfeldt, Miller and Podzorov on
the complexity of c.e. order-computable sets and of general order-computable
sets. Finally, Section 4 proves the result on the complexity of ∆0

2 sets.

2 Preliminary

For basic notions of computability theory, refer to books such as [7, 16, 18, 19].
A function f : A → N with domain A is partial computable if there is a

Turing program that computes the value f(x) for any x ∈ A. Based on the
effective coding of all Turing programs, partial computable functions can be
effectively listed as φ0, φ1, . . . , φe, . . ., where φe is the function computed by
the e-th Turing program. Similarly, all partial computable binary functions are
listed as φ2

0, φ
2
1, . . . , φ

2
e, . . . . A set is computably enumerable if it is the domain

of a partial computable function. All computably enumerable (often abbrevi-
ated as c.e.) sets can be effectively enumerated as W0,W1, . . . ,We, . . . with
We = dom(φe) = {x ∈ N : φe(x) ↓}. Computable functions are those par-
tial computable functions φe with domain the set of all natural numbers, i.e., φe

is total. Computable sets are those with computable characteristic functions.
We now briefly introduce arithmetical hierarchy on sets. For n ≥ 2, let

⟨·, · · · , ·⟩ : Nn → N be an effective coding of n-tuples of natural numbers into
natural numbers. For a set A,

(1) A is Σ0
1 if there is a computable set B such that A = {x : ∃y[⟨x, y⟩ ∈ B]}.

(2) A is Π0
1 if there is a computable set B such that A = {x : ∀y[⟨x, y⟩ ∈ B]}.

(3) For n ≥ 2, A isΣ0
n if there is aΠ0

n−1 setB such that A = {x : ∃y[⟨x, y⟩ ∈ B]}.
• Σ0

2 sets are of the form {x : ∃y1∀y2⟨x, y1, y2⟩ ∈ B} with B a computable
set.

• Σ0
4 sets are of the form {x : ∃y1∀y2∃y3∀y4⟨x, y1, y2, y3, y4⟩ ∈ B} with B

a computable set.

(4) For n ≥ 2, A isΠ0
n if there is aΣ0

n−1 setB such that A = {x : ∀y[⟨x, y⟩ ∈ B]}.
• Π0

2 sets are of the form {x : ∀y1∃y2⟨x, y1, y2⟩ ∈ B} with B a computable
set.

• Π0
3 sets are of the form {x : ∀y1∃y2∀y3⟨x, y1, y2, y3⟩ ∈ B} with B a

computable set.

For two sets A,B ⊆ N, A is many-one reducible (i.e., m-reducible) to B, if
there is a computable function f : N → N such that for all x ∈ N, x ∈ A ⇔
f(x) ∈ B.
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Definition 2. For a complexity class Γ (e.g., Π0
3 , Σ

0
4), a Γ set A is m-complete

Γ (or simply Γ -complete) if any Γ set B is m-reducible to A.

Let W0,W1, . . . ,We, . . . be the effective listing of all c.e. sets. The index sets
of subclasses of c.e. sets provide typical examples of arithmetic complete sets.

(1) The index set Tot = {e : We = dom(φe) = N} of (total) computable func-
tions is Π0

2 -complete.
(2) The index set Cof = {e : We is cofinite} of cofinite c.e. sets is Σ0

3 -complete.
(3) The index set of computable sets {e : We is computable} is Σ0

3 -complete.

By definition,∆0
2 sets are those that are both Σ0

2 andΠ0
2 . By Post’s Theorem,

a set A is ∆0
2 if and only if A ≤T ∅′; furthermore, by Shoenfield Limit Lemma,

A is ∆0
2 if and only if there is a computable binary function f such that the

characteristic function of A is A(x) = lims f(x, s) ↓ for all x. Based on the index
of partial computable binary functions, we have the following index for a ∆0

2 set.

Definition 3. A number e is an index of a ∆0
2 set A if the e-th partial com-

putable binary function φ2
e is total and the characteristic function of A is A(x) =

lims φ
2
e(x, s) ↓ for all x.

For a number e, it becomes an index of some∆0
2 set if and only if the following

conditions on e hold:

(1) φ2
e is a computable function, that is, for all x, s, there is a stage t such that

the computation φ2
e,t(x, s) converges at stage t;

(2) for all x, the limit lims φ
2
e(x, s) converges to 0 or 1.

First, (1) is Π0
2 ; furthermore, similar to the fact that the index set of computable

functions Tot = {e ∈ N : (∀x)[φe(x) ↓]} is Π0
2 -complete, the condition (1) is Π0

2 -
complete. More specifically, the index set Tot2 = {e ∈ N : (∀x, y)[φ2

e(x, y) ↓]}
of computable binary functions is Π0

2 -complete. Second, the condition (2) is Π0
4

because it can be described by the following Π0
4 formula:

(∀x)(∃sx)(∀s ≥ sx)(∃t ≥ s)[φ2
e,t(x, s) ↓= φ2

e,t(x, sx) ↓= 0 or 1].

The condition (2) is indeed Π0
4 -complete. We omit the detail proof here.

Proposition 1. The index set {e ∈ N : (∀x)[lims φ
2
e(x, s) ↓= 0 or 1]} is Π0

4 -
complete.

For e to be a ∆0
2 index, both conditions (1) and (2) hold. Then under the

condition (1) that φ2
e is total, the condition (2) becomes Π0

3 because φ2
e(x, s) is

always defined for all x, s. From the analysis above, we obtain the upper bound
on the complexity of the index set I of ∆0

2 sets. We further prove that I is
Π0

3 -complete in Section 4.

Proposition 2. The index set I = {e ∈ N : e is an index of a ∆0
2 set} is Π0

3 .
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We next review basic properties of order-computable sets, for more details,
refer to [13]. Order-computable sets are always∆0

2 and they are closely connected
with predecessor functions of linear orders that order-compute them. Such linear
orders are of order type ω.

For a computable linear order of order type ω, the predecessor function of it
can be approximated via partial computable binary functions in a natural way.

Definition 4. [13] A partial computable binary function f is a computable pre-
decessor approximation function if it satisfies the following properties:

(1) for all n, s, f(n, s) ↓ if and only if n < s;
(2) for all s, f(·, s) is a permutation on {0, 1, . . . , s− 1};
(3) for all i < s, f(i, s) ≤ f(i, s+ 1) ≤ f(i, s) + 1;
(4) for all n, lims f(n, s) exists.

For an order-computable set A order-computed via the linear order ≺, that
is, (N, <,A) is isomorphic to the computable structure (N,≺, R) with R the
standard sets defined in introduction above, let

fA(n, s) :=

{
|{x < s : x ≺ n}|, if n < s
↑, otherwise

For n < s, fA(n, s) is the number of predecessors of n under the restricted
order (N,≺) ↾s on the finite set {0, 1, . . . , s − 1}, and fA(·, ·) is a computable
predecessor approximation function such that

A :=


{lims fA(m, s) : 0 ≤ m ≤ k − 1}, if (∃k)[|A| = k]
{lims fA(m, s) : m ≥ k}, if (∃k)[|A| = k]
{lims fA(2m, s) : m ≥ 0}, otherwise

Conversely, consider the e-th partial computable binary function φ2
e(·, ·), if

it is a computable predecessor approximation function under Definition 4, then
for each s ≥ 1, φ2

e(·, s) is a permutation on {0, 1, . . . , s − 1}, so it determines a
finite linear order Ls = ({0, 1, · · · , s− 1},≺s) such that

|{x < s : x ≺s n}| = φ2
e(n, s),

and L =
⋃

s Ls = (N,≺) is a computable linear order on N of order type ω such
that the number of predecessors of n is just lims φ

2
e(n, s). Then the following set

Oe := {lim
s

φ2
e(2m, s) : m ∈ N}

is an infinite coinfinite order-computable set, which is order-computed via the
constructed order ≺. From this analysis, we see that any infinite coinfinite order-
computable sets are of the form Oe for some e with φ2

e a computable predecessor
approximation function.

The class of order-computable sets forms a subclass of ∆0
2 sets. To study

the complexity of order-computable sets by using indices of ∆0
2 sets, rather

than using usual m-reducibility, it is more suitable to consider the notion of
m-reducibility within a given set proposed by Calvert and Knight, see Defini-
tions 3.1, 3.2 in [3], see also Definition 3.6 in [4].

https://doi.org/10.1017/jsl.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2025.5


6 H. Wu

Definition 5. [3, 4] Let A ⊆ B. A set S is m-reducible to A within B if there
is a computable function f : N → B such that for all x, x ∈ S ⇔ f(x) ∈ A.

Similar to the usual m-reducibility, we have the following Γ -completeness
within a given set.

Definition 6. [3, 4] Let A ⊆ B and Γ a complexity class (e.g., Π0
3 , Σ

0
4). A set

A is m-complete Γ within a set B (or simply Γ -complete within B) if

(1) A is Γ within B; that is, there is a Γ set C such that A = C ∩B;
(2) any Γ set S is m-reducible to A within B.

We now consider the complexity of the index set of order-computable sets
within the index set I of ∆0

2 sets.

Proposition 3. [13] The index set {e ∈ I : Ae is order-computable} of order
computable sets is Σ0

4 within I.

Proof. Let e ∈ I. For all x, Ae(x) = lims φ
2
e(x, s) ↓. Ae is order-computable if

and only if one of the following three conditions hold:

(1) Ae is finite;
(2) Ae is cofinite;
(3) there is an index i such that
(3.1) φ2

i is a computable predecessor approximation function, and
(3.2) for any n, n ∈ Ae if and only if n = lims φ

2
i (2m, s) for some m.

First of all, φ2
e is a computable approximation for the ∆0

2 set Ae, that is, φ
2
e

is a total function such that for all x, lims φ
2
e(x, s) converges to 0 or 1. This can

be described by the following Π0
3 formula:

(∀x, y)(∃t)[φ2
e,t(x, y) ↓] ∧ (∀z)(∃sz)(∀s ≥ sz)[φ

2
e(z, s) = φ2

e(z, sz)].

For (1), Ae is finite if and only if there is a large number N such that for all
n > N , Ae(n) = lims φ

2
e(n, s) = 0. This can be described by the Σ0

4 formula:

(∃N)(∀n > N)(∃sn)(∀s ≥ sn)[φ
2
e(n, s) = φ2

e(n, sn) = 0].

Similarly, Ae is cofinite if and only if

(∃N)(∀n > N)(∃sn)(∀s ≥ sn)[φ
2
e(n, s) = φ2

e(n, sn) = 1].

Therefore, both (1) and (2) are Σ0
4 properties on e.

Now consider the condition (3): there exists an index i satisfying (3.1) and
(3.2). First, (3.1) says that φ2

i is a computable predecessor approximation func-
tion, which can be described by the following Π0

3 formula:

(∀s)(∀n < s)(∃t)[φ2
i,t(n, s) ↓]∧

(∀s)(∀n ≥ s)(∀t)[φ2
i,t(n, s) ↑]∧

(∀s)(∀n,m < s)[φ2
i (n, s) < s ∧ (n ̸= m → φ2

i (n, s) ̸= φ2
i (m, s))]∧

(∀s)(∀n < s)[φ2
i (n, s) ≤ φ2

i (n, s+ 1) ≤ φ2
i (n, s) + 1]∧

(∀n)(∃sn > n)(∀s ≥ sn)[φ
2
i (n, s) = φ2

i (n, sn)].
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Second, (3.2) says that for all n, Ae(n) = 1 ⇔ n = lims φ
2
i (2m, s) for some m.

This condition can be expressed as

(∀n)(∃m)(∃t > n+ 2m)(∀s ≥ t)[φ2
e(n, s) = φ2

e(n, t) = 1 → φ2
i (2m, s) = φ2

i (2m, t) = n]∧
(∀n)(∀m)(∃t > n+ 2m)(∀s ≥ t)[φ2

e(n, s) = φ2
e(n, t) = 0 → φ2

i (2m, s) = φ2
i (2m, t) ̸= n].

Therefore, the condition (3) is a Σ0
4 property on e.

For e ∈ I, Ae is order-computable if and only the Σ0
4 properties (1)-(3) on e

hold. This shows that the index set of order-computable sets is Σ0
4 within I. ⊓⊔

Similar to the case of general order-computable sets, we have the same upper
bound for the complexity of c.e. order-computable sets.

Proposition 4. [13] The index set {e ∈ N : We is order-computable} of c.e.
order-computable sets is Σ0

4 .

3 Order-computable sets

Let ⟨Φe : e ∈ N⟩ be an effective listing of all oracle Turing functionals. Fix
the Halting set K. Then ΦK

0 , ΦK
1 , . . . , ΦK

e , . . . is an effective listing of all partial
computable functions relative to K and WK

0 ,WK
1 , . . . ,WK

e , . . . is an effective
listing of all c.e. sets relative to K with WK

e = {x ∈ N : ΦK
e (x) ↓}, the domain

of ΦK
e . At a stage s, a number x goes into WK

e [s] if ΦK
e (x)[s] is defined with

use ϕK
e (x)[s]; we also say that x ∈ WK

e [s] with use ϕK
e (x)[s]. For any number

x, it belongs to WK
e if and only if there is a stage sx such that at any stage

t ≥ sx, x ∈ WK
e [t] with use the same as ϕK

e (x)[sx]. In this case, the convergent
computation ΦK

e (x)[sx] ↓ does not change after stage sx, and thus, x stays in
WK

e forever. Let CofK = {e ∈ N : WK
e is cofinite}. Then CofK is Σ0

3 -complete
relative to the c.e. complete set K, and thus, it is Σ0

4 -complete.

Theorem 1. The index set of c.e. order-computable sets is Σ0
4 -complete.

Proof. An infinite coinfinite set A is order-computable if and only if there is a
computable predecessor approximation function f such that for all n,

n ∈ A ⇔ (∃m)[n = lim
s

f(2m, s)].

Consider the Σ0
4 -complete set CofK = {e ∈ N : WK

e is cofinite}. To prove the
theorem, we enumerate a uniform sequence ⟨Ce : e ∈ N⟩ of noncomputable c.e.
sets such that for all e,

e ∈ CofK ⇔ Ce is order-computable.

For e ∈ CofK , we build Ce to be low so that it is order-computable, because low
c.e. sets are order-computable (see Theorem 2.6, [13]). On the other hand, for
e /∈ CofK , to ensure the non order-computability of Ce, we construct Ce to be
not order-computed by φ2

i for any i; that is, Ce ̸= Oi = {lims φ
2
i (2m, s) : m ∈ N}

if φ2
i does become a computable predecessor approximation function.
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3.1 Requirements and strategies

We enumerate a uniform sequence of c.e. sets ⟨Ce : e ∈ N⟩ such that the following
requirements are satisfied.

(1) P⟨e,i⟩: Ce ̸= φi.

(2) R⟨e,i,i+j⟩: If [i, i+ j + 1] ⊆ WK
e and (∃∞s)[ΦCe

j (j)[s] ↓], then ΦCe
j (j) ↓.

If [i, i + j + 1] ⊈ WK
e and φ2

i is a computable predecessor approximation
function, then Ce ̸= Oi = {lims φ

2
i (2m, s) : m ∈ N}.

Here, ⟨φi : i ∈ N⟩, ⟨φ2
i : i ∈ N⟩ and ⟨Φj : j ∈ N⟩ are effective listing of partial

computable functions, partial computable binary functions and oracle Turing
functionals, respectively.

For each e, all P⟨e,i⟩-requirements with i ∈ N together ensure the noncom-

putability of Ce. For e ∈ CofK , WK
e is cofinite; that is, there is a number i such

that [i,∞) ⊆ WK
e . In this case, for all j, [i, i + j + 1] ⊆ WK

e , and the require-
ment R⟨e,i,j⟩ ensures that the computation ΦCe

j (j) converges if and only if there

are infinitely many stages s such that ΦCe
j (j) converges at stage s. This implies

that C ′
e = {j ∈ N : ΦCe

j (j) ↓} is ∆0
2 and thus C ′

e ≤T ∅′, i.e., Ce is low. As low
c.e. sets are order-computable, Ce is order-computable. On the other hand, for
e /∈ CofK , WK

e is not cofinite. Then for all i ∈ N, there exists a number ji such
that [i, i + ji + 1] ⊈ WK

e , and the requirement R⟨e,i,ji⟩ ensures that Ce is not
order-computed by φ2

i . So Ce is not order-computable.
The construction of c.e. sets ⟨Ce : e ∈ N⟩ proceeds on a priority tree T whose

nodes are assigned P- and R-requirements. We view each node α as a strategy
for satisfying the assigned requirement whose possible outcomes are immediate
successors of α on T . A P-strategy has two possible outcomes d, f with priority
d <L f on the priority tree T . While an R-strategy has three possible outcomes
∞, d, f with priority ∞ <L d <L f on T . We assign P-requirements to nodes of
length even and assign R-requirements to nodes of length odd. So the priority
tree T is simply a subtree of the full tree S = {∞, d, f}<ω of finite strings on
{∞, d, f}, where S has the usual lexicographic order such that α⌢∞ <L α⌢d <L

α⌢f for any α ∈ S.

Definition 7. The priority tree T is defined as follows.

(1) Let the empty node λ ∈ T .
(2) Let α ∈ T with length |α| ≥ 0.

• If |α| is even, add α⌢d and α⌢f into T .
• If |α| is odd, add α⌢∞, α⌢d and α⌢f into T .

At each stage s of the construction, we will define a current approximation
δs ∈ T of the true path TP = lim infs δs of the construction. TP will be an
infinite path on the priority tree T . For any node α ∈ T , when α ⊆ δs, say that
α is visited at stage s, and call s an α-stage.

For ease of description, we often write the P⟨e,i⟩-requirement assigned to a
node α ∈ T as P⟨e(α),i(α)⟩ (or simply Pα) with e(α) = e and i(α) = i. Similarly,
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we write the R⟨e,i,j⟩-requirement assigned to a node β ∈ T as R⟨e(β),i(β),j(β)⟩
(or simply Rβ) with e(β) = e, i(β) = i and j(β) = j. In the following, we first
give a basic P- and R-strategy for satisfying a single P- and R-requirement,
respectively, and then define the assignment of the requirements to the priority
tree T .

A basic P⟨e,i⟩-strategy. Let α be a node of length even on the priority tree T
assigned the P⟨e,i⟩-requirement. A basic α-strategy works to diagonalize against
Ce = φi at α-stages.

(1) At the first α-stage s, choose a new witness wα,s and a set of fresh trigger

elements {xk
α,s : 1 ≤ k ≤ qα = 23

|α|+1} for higher priority R-strategies β
with Ce(β) = Ce(α) on the priority tree T to enumerate into Ce(β) later such
that

Nα,s < x1
α,s < x2

α,s < · · · < xqα
α,s < wα,s,

whereNα,s is a new number larger than all used numbers before; particularly,
Nα,s is bigger than all restraints r(β, s) appointed on Ce(β) by R-strategies
β < α (i.e., β <L α or β ⊂ α).
The witness wα,s and the triggers xk

α,s(1 ≤ k ≤ qα) keep unchanged at later
stages unless the node α is initialized by higher priority strategies.

(2) Wait for an α-stage t > s such that φi,t(wα,s) ↓= 0.
(3) Put wα,s into Ce,t.

The possible outcomes of a basic α-strategy are the following:

f : wait at Step (2) forever; in this case, either φi is not total or φi(wα,s) ↓=
1 ̸= Ce(wα,s) = 0;

d : arrive at Step (3); in this case, φi(wα,s) ↓= 0 ̸= Ce(wα,s) = 1.

In both cases, the strategy ensures that Ce ̸= φi. The priority of the two out-
comes on the priority tree is d <L f .

A basic R⟨e,i,j⟩-strategy. Let α be a node of length odd on the priority tree T
assigned the R⟨e,i,j⟩-requirement. First, define the following notion of expansion-
ary stages to approximate the condition [i, i+ j+1] ⊆ WK

e . Since the condition
[i, i + j + 1] ⊆ WK

e is Σ0
2 , as in usual infinite injury constructions, we ensure

that the Σ0
2 condition [i, i + j + 1] ⊆ WK

e holds if and only if there are finitely
many expansionary stages during the construction.

Definition 8. Let s be an α-stage. If there was a last α-stage s− such that
[i, i+ j+1] ⊆ WK

e [s−] and for all x ∈ [i, i+ j+1], x ∈ WK
e [s] with use the same

as ϕK
e (x)[s−], then s is called a non α-expansionary stage; otherwise, s is called

an α-expansionary stage.

Supposed that α is visited infinitely often during the construction. The Σ0
2

condition [i, i + j + 1] ⊆ WK
e is true if and only if there is an α-stage s such

that every α-stage t ≥ s is a non α-expansionary stage. An α-strategy works
to satisfy its requirement R⟨e,i,j⟩. At a non α-expansionary stage s, it prevents
numbers from enumerating into Ce to preserve convergent computations of the
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form ΦCe
j (j)[s] ↓. While at an α-expansionary stage s, it devotes to diagonalize

against φ2
i to be a computable predecessor approximation function for Ce by

enumerating numbers into Ce.
Second, to measure the approximation of the order-computable set Oi com-

puted by φ2
i , define the following length function l(i, s) of Oi.

(1) If there is a number x ∈ [1, s] such that the following conditions hold:
• φ2

i,s(n, x) ↓< x for all n < x, and φ2
i,s(m,x) ↑ for all x ≤ m ≤ s;

• φ2
i,s(·, x) is a permutation on {0, 1, . . . , x− 1};

• φ2
i,s(n, t) ≤ φ2

i,s(n, t+ 1) ≤ φ2
i,s(n, t) + 1 for all n < t < x;

let l(i, s) be the largest such a number x, and define

Oi,s = {φ2
i,s(2m, l(i, s)) : 2m < l(i, s)}.

(2) Otherwise, such a number x does not exist, let l(i, s) = 0 and Oi,s = ∅.

If φ2
i does become a computable predecessor approximation function, then

we have lims l(i, s) = ∞, and the corresponding order-computable set is

Oi = lim
s

Oi,s = {lim
s

φ2
i (2m, s) : m ∈ N}.

In order to diagonalize against φ2
i to be a computable predecessor approximation

function for Ce, an α-strategy aims to make sure that either lims l(i, s) < ∞, or
lims φ

2
i (y, s) = ∞ for some even number y, or φ2

i really becomes a computable
predecessor approximation function with lims l(i, s) = ∞ but Ce(x) ̸= Oi(x) for
some x; that is, there is a large stage sx such that for all t ≥ sx, Ce,t(x) ̸= Oi,t(x).
This analysis motivates us to formally define the following approximation of the
length of agreement between Ce and Oi. The idea behind this definition was
already used in Theorem 3.11, [13] to build a Turing degree which contains no
order-computable sets.

Definition 9. Say that φ2
i appears to be a computable predecessor approxima-

tion function for Ce at an α-stage s if l(i, s) > 0, l(i, s) > l(i, t) for all α-stages
t < s, and Ce,s = {φ2

i,s(2m, l(i, s)) : 2m < l(i, s)} = Oi,s.

A basic α-strategy acts to satisfy its requirement R⟨e(α),i(α),j(α)⟩ with e(α) =
e, i(α) = i and j(α) = j at α-stages as follows. There are two cases:

Case 1. At a non α-expansionary stage s, an α-strategy proceeds to preserve
the computation ΦCe

j (j)[s]. Let ϕCe
j (j)[s] denote the use of the computation

ΦCe
j (j)[s] if it converges.

(1) If ΦCe
j (j)[s] converges, appoint a restraint r(α, s) = ϕCe

j (j)[s] on Ce to pre-

serve the computation ΦCe
j (j)[s].

(2) If ΦCe
j (j)[s] diverges, set r(α, s) = 0.

Any lower priority β-strategy on T can only enumerate numbers > r(α, s) into
Ce(β) later.

Case 2. At α-expansionary stages, a basic α-strategy acts to diagonalize
against φ2

i to be a computable predecessor approximation function for Ce.
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(1) At the first α-expansionary stage s0, choose a large new witness wα,s0 and

a set of fresh trigger elements {xk
α,s0 : 1 ≤ k ≤ qα = 23

|α|+1} for higher
priority R-strategies β with e(β) = e(α) and β ≤ α (i.e., β <L α or β ⊆ α)
to enumerate into Ce(β) later such that

Nα,s0 < x1
α,s0 < x2

α,s0 < · · · < xqα
α,s0 < wα,s0 ,

where Nα,s0 is a new number larger than all used numbers before; par-
ticularly, Nα,s0 is bigger than all restraints r(β, s0) appointed on Ce(β) by
R-strategies β with β < α.
• Enumerate wα,s0 into Ce(α),s0 .

The witness wα,s0 and the triggers xk
α,s0(1 ≤ k ≤ qα) keep unchanged at

later stages unless the node α is initialized by higher priority strategies.
(2) Wait for an α-expansionary stage t0 > s0 such that the length approximation

of the order-computable set l(i(α), t0) > wα,s0 , and φ2
i(α) appears to be a

computable predecessor approximation function for Ce(α) at stage t0.
(3) Let yα,t0 be the unique even number such that φ2

i(α)(yα,t0 , l(i(α), t0)) =
wα,s0 ∈ Ce(α),s0 .

• Pick the largest trigger element xk
α,s0 < wα,s0 that has not been enumer-

ated into Ce(β) by β-strategies with β < α.

• Enumerate xk
α,s0 into Ce(α),t0 .

• Go to Step (4.n) with n = 1.
The even number yα,t0 remains the same at later stages as long as α is not
initialized.

(4.n) Wait for an α-expansionary stage tn > tn−1 such that φ2
i(α) appears to be a

computable predecessor approximation function for Ce(α) at stage tn.
(5.n) Let uα,t0 = wα,s0 and uα,tn = φ2

i(α)(yα,t0 , l(i(α), tn)). Then we have

wα,s0 ≤ uα,tn−1
= φ2

i(α)(yα,t0 , l(i(α), tn−1))

< φ2
i(α)(yα,t0 , l(i(α), tn)) = uα,tn ∈ Oi(α),tn = Ce(α),tn

because the enumeration of the trigger element xk
α,s0 < wα,s0 in Step (3)

for n = 1 or xk
β,t ∈ (wα,s0 , uα,tn−1

) in Step (5. (n − 1)) for n ≥ 2 forces the

number of predecessors of yα,t0 computed by φ2
i(α) to move up.

As uα,tn ∈ Ce(α),tn and uα,tn > wα,s0 , there is a unique node β > α on the
priority tree T such that

uα,tn = wβ,t or uα,tn = xk
β,t for some k,

where wβ,t and xk
β,t(1 ≤ k ≤ qβ = 23

|β|+1

) were first appointed on β at some
β-stage t ∈ (t0, tn).
• Pick the largest trigger number xk

β,t < uα,tn ≤ wβ,t that has not been
enumerated into Ce(β′) for any β′ ≤ β.

• Enumerate xk
β,t into Ce(α),tn .

• Go to Step (4.(n+ 1)).
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For each node β ∈ T , since the number of nodes β′ ∈ T with β′ <L β or

β′ ⊆ β is strictly less than 3|β|+1, we appoint enough (i.e., 23
|β|+1

many)
trigger elements xk

β,t on node β for higher priority β′-strategies working for
R-requirements to enumerate into Ce(β′) during the construction. That is,
the trigger elements in Step (3) or Step (5.n) always exist if needed (see
Lemma 1 below).

The possible outcomes of a basic α-strategy is listed as follows:

f : finitely many α-expansionary stages;
d: wait at Step (2) or Step (4.n) for some n ≥ 1 forever at α-expansionary

stages;
∞: go to Step (4.(n + 1)) from Step (5.n) infinitely often at α-expansionary

stages.

The priority of the outcomes on the priority tree T is ∞ <L d <L f .
If there are finitely many α-expansionary stages, α has the finite outcome

f , and the computation Φ
Ce(α)

j(α) (j(α)) will be preserved after certain stage if it

converges at infinitely many α-stages. If there are infinitely many α-expansionary
stages, α has two possible outcomes ∞ <L d.

(i) If α has the outcome d, then either lims l(i(α), s) < ∞ or Ce(α) ̸= Oi(α) in
which case α only enumerates finitely many triggers into Ce(α).

(ii) If α has the outcome ∞, then lims φ
2
i(α)(yα,t0 , s) = limn uα,tn = ∞ in which

case α enumerates infinitely many triggers into Ce(α).

In both cases, φ2
i(α) cannot be a computable predecessor approximation function

for Ce(α). In other words, Ce(α) is not order-computed via φ2
i(α).

This ends the description of basic strategies.
Fix a bijection ⟨·, ·⟩ : N2 → N such that ⟨e, i⟩ < ⟨e, i′⟩ for all e, i, i′ with i < i′.

For e, i, j ∈ N, let ⟨e, i, j⟩ = ⟨⟨e, i⟩, j⟩. Then we can fix a linear order ≺ on all
P⟨e,i⟩- and R⟨e,i,j⟩-requirements (e, i, j ∈ N) of order type ω as follows.

(1) For all e, i, e′, i′, let P⟨e,i⟩ ≺ P⟨e′,i′⟩ if and only if ⟨e, i⟩ < ⟨e′, i′⟩, and let the
priority of all P-requirements be listed as

P⟨e0,i0⟩ ≺ P⟨e1,i1⟩ ≺ · · · ≺ P⟨en,in⟩ ≺ · · · .

Particularly, for any number e, we have

P⟨e,0⟩ ≺ P⟨e,1⟩ ≺ · · · ≺ P⟨e,i⟩ ≺ · · · .

(2) For all e, i, j, e′, i′, j′, let R⟨e,i,j⟩ ≺ R⟨e′,i′,j′⟩ if and only if ⟨e, i, j⟩ < ⟨e′, i′, j′⟩,
and let the priority of all R-requirements be listed as

R⟨e′0,i′0,j′0⟩ ≺ R⟨e′1,i′1,j′1⟩ ≺ · · · ≺ R⟨e′n,i′n,j′n⟩ ≺ · · · .

Particularly, for fixed numbers e, i, we have

R⟨e,i,0⟩ ≺ R⟨e,i,1⟩ ≺ · · · ≺ R⟨e,i,j⟩ ≺ · · · .
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(3) Define the priority of all P- and R- requirements as

P⟨e0,i0⟩ ≺ R⟨e′0,i′0,j′0⟩ ≺ P⟨e1,i1⟩ ≺ R⟨e′1,i′1,j′1⟩ ≺ · · · ≺ P⟨en,in⟩ ≺ R⟨e′n,i′n,j′n⟩ ≺ · · · .

The tree of strategies. The priority tree T of the construction is a subtree of
S = {∞, d, f}<ω such that any node α ∈ T of length even has two immediate
extensions α⌢d and α⌢f on T and any node α ∈ T of length odd has three
immediate extensions α⌢∞, α⌢d and α⌢f on T . Say that a node α ∈ T is a
P⟨e,i⟩- or an R⟨e,i,j⟩-strategy if it is assigned the corresponding requirement. As
before, we write the P⟨e,i⟩-requirement assigned to a node α of T with length
even as P⟨e(α),i(α)⟩ (or simply Pα). Similarly, we write the R⟨e,i,j⟩-requirement
assigned to a node β of T with length odd as R⟨e(β),i(β),j(β)⟩ (or simply Rβ).

According to the priority of P-, R-requirements above, assign the require-
ments to nodes of the priority tree T by induction on their length as follows.

(1) For the empty node λ ∈ T , assign the highest priority P-requirement P⟨e0,i0⟩
to node λ.

(2) For nodes d, f ∈ T , assign the highest priority R-requirement R⟨e′0,i′0,j′0⟩ to
d, f .

(3) Assume that α = α−⌢
o ∈ T with length |α| ≥ 1. There are two cases

depending on the parity of |α|.
• If |α| is odd, then α⌢∞, α⌢d and α⌢f ∈ T . Suppose that the immediate

predecessor α− of α is assigned the P⟨en,in⟩-requirement with n ≥ 0.

* For o ∈ {∞, d, f}, assign P⟨en+1,in+1⟩ to node α⌢o.

• If |α| is even, then α⌢d and α⌢f ∈ T . Suppose that the immediate
predecessor α− of α is assigned the R⟨e′n,i′n,j′n⟩-requirement with n ≥ 0.

* For o ∈ {d, f}, find the least m > n such that ⟨e′m, i′m⟩ ≠ ⟨e(β), i(β)⟩
for all nodes β of length odd assigned theR⟨e(β),i(β),j(β)⟩-requirement

with β⌢d ⊆ α or β⌢∞ ⊆ α, and assign R⟨e′m,i′m,j′m⟩ to node α⌢o.

Note that a node β⌢o ∈ T with |β| odd and o ∈ {d,∞} represents that the β-
strategy has an infinite outcome o. In this case, [i(β), i(β)+j(β)+1] ⊈ WK

e(β)

and the β-strategy works to diagonalize against φ2
i(β) to be a computable

predecessor approximation function for Ce(β). So we do not need to assign

R⟨e(β),i(β),·⟩-requirements to nodes of T below β⌢o.

We now describe possible conflictions between multiple R-strategies on the
priority tree T . Let α be an R⟨e,i,j⟩-strategy on T . Suppose that [i, i+ j + 1] ⊈
WK

e . For all j′ > j, as [i, i+j+1] ⊆ [i, i+j′+1], we have [i, i+j′+1] ⊈ WK
e . So

we do not need to assign R⟨e,i,j′⟩ requirements with j′ > j to nodes below the

infinite outcomes of α (i.e., below α⌢d or α⌢∞) on the priority tree. However,
for i′ ̸= i, R⟨e,i′,·⟩-requirements are still assigned to nodes below the infinite
outcomes of α. Let α′ ⊃ α be an R⟨e,i′,j′⟩-strategy on T .

(i) If α⌢d ⊂ α′, then there are no conflictions because α only enumerates finitely
many triggers of nodes with lower priority into Ce.
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(ii) If α⌢∞ ⊂ α′, then α acts infinitely often to enumerate triggers of nodes
β ∈ T with β > α into Ce to force lims φ

2
i (y, s) = ∞ for some even number

y; this may injure a convergent computation ΦCe

j′ (j
′)[s] ↓, which α′ needs

to preserve, infinitely often. Since the triggers enumerated by α during the
construction tend to infinity, to deal with this problem, we only preserve
believable computations ΦCe

j′ (j
′)[s] ↓ where α will not enumerate triggers

< ϕCe

j′ (j
′)[s], the use of the computation, after stage s.

Definition 10. Let α′ ∈ T be an R⟨e,i′,j′⟩-strategy. A convergent computation

ΦCe

j′ (j
′)[s] ↓ is believable at a non α′-expansionary stage s if for any R-strategy

α ∈ T with e(α) = e and α⌢∞ ⊂ α′, the α-strategy acts as in Step (5.n) for
some n ≥ 1 to enumerate a trigger xk

β,t of some node β > α into Ce at stage s,

then the use of the convergent computation ϕCe

j′ (j
′)[s] is strictly less than x1

β,t,

where x1
β,t < · · · < x

qβ
β,t with qβ = 23

|β|+1

are all triggers of the node β first
defined at some β-stage t < s.

3.2 Construction and verification

We are ready to provide a formal construction of the c.e. sets Ce(e ∈ N) by
stages according to the tree of strategies.

Construction.
Stage 0. Let δ0 = λ, the empty node on T . Initialize all nodes on T . For all

e, let Ce,0 = ∅. For all nodes α ∈ T with length |α| odd, set the Ce(α)-restraint
r(α, 0) = 0.

Stage s ≥ 1. Define the current true path δs ∈ T with length |δs| ≤ s at
substages m with 0 ≤ m ≤ s− 1, starting at substage 0. Let α0 = λ, the empty
node on T , and assume that we have defined αm = δs(0) · · · δs(m − 1) by the
end of substage m− 1 for 1 ≤ m ≤ s.

Substage m(0 ≤ m ≤ s − 1). Define the current true outcome δs(m) of αm

and enumerate numbers into Ce(αm),s according to the basic αm-strategy with
additional initializations to strategies with lower priority on the priority tree T .

– If a node α ∈ T is initialized at stage s, then the witness wα,s and triggers

xk
α,s(1 ≤ k ≤ qα = 23

|α|+1

) are undefined.

– If m = s − 1, let δs = αm
⌢δs(m) = αs−1

⌢δs(s − 1) = δs(0) · · · δs(s − 1).
Initialize all nodes α ≥ δs, also initialize all nodes of length ≥ s + 1. End
current stage s and go to next stage.

Substage m proceeds as follows. There are two cases depending on the parity
of m.

Case I. If m is even, then αm is a P-strategy. Check whether there was a
last αm-stage s− such that αm has not been initialized since then.

(1) If such a last αm-stage s− did not exist, then s is the first αm-stage after
last initialization. Act as in the basic αm-strategy.
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• Choose a large new witness wαm,s and a set of fresh trigger elements

{xk
αm,s : 1 ≤ k ≤ qαm = 23

|αm|+1} for β-strategies with |β| odd and
β ≤ αm (i.e., β <L αm or β ⊆ αm) on the priority tree T to enumerate
into Ce(β) later such that

Nαm,s < x1
αm,s < x2

αm,s < · · · < x
qαm
αm,s < wαm,s,

where Nαm,s is a new number larger than all used numbers before; par-
ticularly, Nαm,s is bigger than all restraints r(β, s) appointed on Ce(β)

by higher priority β-strategies.
• Go to Step (2); that is, wait for φi(αm)(wαm,s) ↓= 0.

• Let δs(m) = f . Define δs = αm
⌢δs(m) = αm

⌢f . Initialize all nodes
α ≥ αm

⌢f , also initialize all nodes of length ≥ s+ 1.
• End Stage s and go to next stage.

The witness wαm,s and the triggers xk
αm,s(1 ≤ k ≤ qαm

) keep unchanged at
later stages unless the node αm is initialized by higher priority strategies.

(2) If such a last αm-stage s− did exist, then there was a largest αm-stage
s0 ≤ s− < s such that the witness wαm,s0 and trigger elements xk

αm,s0 with

1 ≤ k ≤ qαm = 23
|αm|+1

were defined at stage s0 and αm has not been
initialized since then. Define the current outcome δs(m) of the αm-strategy
started at stage s0 according to the current state of the strategy.
• If the αm-strategy waits at Step (2), let δs(m) = f .

* Initialize all nodes α >L αm
⌢f . Go to substage m + 1 of current

stage s if m+ 1 < s.
• If the αm-strategy currently arrives at Step (2), act as in Step (3).

* Enumerate wαm,s0 into Ce(αm),s.

* Let δs(m) = d. Define δs = αm
⌢δs(m) = αm

⌢d. Initialize all nodes
α ≥ αm

⌢d and all nodes of length ≥ s+ 1.
* End Stage s and go to next stage.

• Otherwise, the αm-strategy was already arrived at Step (2) at last αm-
stage s−, let δs(m) = d.
* Initialize all nodes α >L αm

⌢d. Go to substage m + 1 of current
stage s if m+ 1 < s.

Case II. If m is odd, then αm is an R-strategy. Act as follows.
Case 1. If s is a non αm-expansionary stage, let δs(m) = f . Act as in the

basic αm-strategy.

(1) If the computation Φ
Ce(αm)

j(αm) (j(αm))[s] newly converges and it is a believable

computation at stage s, let ϕ
Ce(αm)

j(αm) (j(αm))[s] be the use of the computation.

• Appoint a new Ce(αm)-restraint r(αm, s) = ϕ
Ce(αm)

j(αm) (j(αm))[s].

• Define δs = αm
⌢δs(m) = αm

⌢f . Initialize all nodes α ≥ δs (i.e., α >L δs
or α ⊇ δs). Also initialize all nodes of length ≥ s+ 1.

• End Stage s and go to next stage.
(2) Otherwise, there are two possible subcases:
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(i) if Φ
Ce(αm)

j(αm) (j(αm))[s] diverges or it converges but not believable at current

stage, let the Ce(αm)-restraint r(αm, s) = 0.
(ii) otherwise, it is a believable computation already convergent at last non

αm-expansionary stage s−, let the Ce(αm)-restraint r(αm, s) = r(αm, s−).
In both subcases, initialize all nodes α >L αm

⌢f . Go to substage m + 1 of
current stage s if m+ 1 < s.

Case 2. If s is an αm-expansionary stage, check whether there was a last
αm-expansionary stage s− such that αm has not been initialized since then.

(1) If such a last αm-expansionary stage s− did not exist, then s is the first αm-
expansionary stage after last initialization. Act as in the basic αm-strategy.

• Choose a large new witness wαm,s and a set of fresh trigger elements

{xk
αm,s : 1 ≤ k ≤ qαm

= 23
|αm|+1} for higher priority β-strategies of

length odd with β ≤ αm (i.e., β <L αm or β ⊆ αm) on the priority tree
T to enumerate into Ce(β) later such that

Nαm,s < x1
αm,s < x2

αm,s < · · · < x
qαm
αm,s < wαm,s,

where Nαm,s is a new number larger than all used numbers before; par-
ticularly, Nαm,s is bigger than all restraints r(β, s) appointed on Ce(β)

by R-strategies β with priority strictly higher than αm.
• Enumerate the witness wαm,s into Ce(αm),s.

• Define δs = αm
⌢δs(m) = αm

⌢d. Initialize all nodes α ≥ αm
⌢d and all

nodes of length ≥ s+ 1.
• End Stage s and go to next stage.

The witness wαm,s and the triggers xk
αm,s(1 ≤ k ≤ qαm) keep unchanged at

later stages unless the node αm is initialized by higher priority strategies.
(2) If such a last αm-expansionary stage s− did exist, then there was a largest

αm-expansionary stage s0 ≤ s− < s such that the witness wαm,s0 and trigger

elements xk
αm,s0 with 1 ≤ k ≤ qαm = 23

|αm|+1

were defined at stage s0 and
αm has not been initialized since then. Define the current outcome δs(m)
of the αm-strategy started at stage s0 according to the current state of the
strategy.
• If the αm-strategy waits at Step (2) or at Step (4.n) for some n ≥ 1, let
δs(m) = d.
* Initialize all nodes α >L αm

⌢δs(m) = αm
⌢d. Go to substage m+ 1

of current stage s if m+ 1 < s.
• If the αm-strategy currently arrives at Step (2), let δs(m) = d. Act as in
Step (3).
* Let t0 = s and uαm,t0 = wαm,s = wαm,s0 . Let yαm,s be the unique
even number such that

φ2
i(αm)(yαm,s, l(i(αm), s)) = wαm,s = wαm,s0 ∈ Oi(αm),s = Ce(αm),s.

The even number yαm,s remains the same at later stages as long as
αm is not initialized.
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* Pick the largest trigger element xk
αm,s = xk

αm,s0 < wαm,s0 that has
not been enumerated into Ce(β) by β-strategies with β < αm (i.e.,
β <L αm or β ⊂ αm).

* Enumerate xk
αm,s into Ce(αm),s. Go to Step (4.1).

By Lemma 1 below, such a trigger xk
αm,s0 always exists.

* Define δs = αm
⌢δs(m) = αm

⌢d. Initialize all nodes α ≥ αm
⌢d and

all nodes of length ≥ s+ 1.
* End Stage s and go to next stage.

• If the αm-strategy arrives at Step (4.n) for some n ≥ 1, let δs(m) = ∞.
Act as in Step (5.n).
* Let tn = s and uαm,tn = φ2

i(αm)(yαm,t0 , l(i(αm), s)). Then we have

wαm,s0 ≤ uαm,tn−1
= φ2

i(αm)(yαm,t0 , l(i(αm), tn−1))

< φ2
i(αm)(yαm,t0 , l(i(αm), tn)) = uαm,tn ∈ Ce(αm),tn

because the enumeration of the trigger element xk
αm,t0 < wαm,s0 in

Step (3) for n = 1 or xk
β,t ∈ (wαm,s0 , uαm,tn−1) in Step (5. (n − 1))

for n ≥ 2 forces the number of predecessors of yαm,t0 computed by
φ2
i(αm) to move up.

As uαm,tn ∈ Ce(αm),tn and uαm,tn > wαm,s0 , there is a unique node
β > αm on the priority tree T with e(β) = e(αm) such that

uαm,tn = wβ,t or uαm,tn = xk
β,t for some k,

where wβ,t and xk
β,t(1 ≤ k ≤ qβ = 23

|β|+1

) were first appointed on β
at some β-stage t ∈ (s0, tn).

* Pick the largest trigger number xk
β,t < uαm,tn ≤ wβ,t that has not

been enumerated into Ce(β′) for any β′ ≤ β.

* Enumerate xk
β,t into Ce(αm),tn . Go to Step (4.(n+ 1)).

By Lemma 1 below, such a trigger xk
β,t always exists.

* Initialize all nodes α >L αm
⌢∞. Go to substage m + 1 of current

stage s if m+ 1 < s.

This ends the construction.

Lemma 1. For each node α ∈ T , let qα = 23
|α|+1

. Suppose that s0 is a first α-
stage after last initialization during the construction such that the witness wα,s0

and the set of trigger elements Xα,s0 = {xk
α,s0 : 1 ≤ k ≤ qα} were first chosen at

stage s0. Then there are enough trigger elements from Xα,s0 for higher priority
β-strategies to enumerate into Ce(β) after stage s0. That is,

{xk
α,s0 ∈ Ce(β) : β ∈ T, β ≤ α, 1 ≤ k ≤ qα} ⊊ Xα,s0 .

Proof. During the construction, only higher priority R-strategies β ≤ α with
e(β) = e(α) can enumerate triggers from Xα,s0 into Ce(β) after stage s0. Fur-
thermore, if β ≤ α is initialized at some stage s > s0, then it will initiate a new
strategy later; thus β will not use triggers from Xα,s0 after stage s.
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Let β1 be the first R-strategy with β1 ≤ α that acts as in Step (3) or Step
(5.n) for some n to enumerate a trigger xk

α,s0 into Ce(β1),s1 at some stage s1 > s0.
Then there is a unique even number yβ1,s1 such that

φ2
i(β1)

(yβ1,s1 , l(i(β1), s1)) = wα,s0 ∈ Oi(β1),s1 = Ce(β1),s1 ,

so we have e(β1) = e(α), and the β1-strategy enumerates the largest xqα
α,s0 into

Ce(β1),s1 = Ce(α),s1 . This enumeration forces the number of predecessors of yβ1,s1

approximated by φ2
i(β1)

to move up if the β1-strategy next arrives at Step (4.1)

from Step (3) or at Step (4.(n+ 1)) from Step (5.n) at some stage s > s1. That
is, at stage s, we have

wα,s0 = φ2
i(β1)

(yβ1,s1 , l(i(β1), s1)) < φ2
i(β1)

(yβ1,s1 , l(i(β1), s)) ∈ Ce(α),s.

Since we only enumerate witnesses and triggers of nodes of T into Ce(α) during
the construction, φ2

i(β1)
(yβ1,s1 , l(i(β1), s)) is a trigger or witness of some node

β ∈ T with priority strictly lower than α. The β1-strategy enumerates some
trigger of β into Ce(β1) = Ce(α) at stage s. From this analysis, we see that β1

never enumerates triggers from the set Xα,s0 into Ce(β1) after stage s1. So β1

uses at most one trigger from Xα,s0 .
Let β2 be the first R-strategy in {β ∈ T : β ≤ α} \ {β1} that acts as in Step

(3) or Step (5.n) for some n to enumerate a trigger xk
α,s0 into Ce(β2),s2 at some

stage s2 > s1. Then there is a unique even number yβ2,s2 such that

φ2
i(β2)

(yβ2,s2 , l(i(β2), s2)) = wα,s0 or xqα
α,s0 ∈ Oi(β2),s2 = Ce(β2),s2 ,

then e(β2) = e(α) and k = qα − 1.

(i) If φ2
i(β2)

(yβ2,s2 , l(i(β2), s2)) = wα,s0 , as in the case of β1-strategy above, β2

never enumerates triggers from Xα,s0 into Ce(β2) after stage s2.
(ii) If φ2

i(β2)
(yβ2,s2 , l(i(β2), s2)) = xqα

α,s0 < wα,s0 , the enumeration of xqα−1
α,s0 forces

φ2
i(β2)

(yβ2,s2 , l(i(β2), s)) > xqα
α,s0 if the β2-strategy acts as in Step (5.m) for

some m to enumerate triggers at some least stage s > s2.
• If φ2

i(β2)
(yβ2,s2 , l(i(β2), s)) > wα,s0 , then β2 acts to enumerate a trigger

of node β with β > α at stage s.
• If φ2

i(β2)
(yβ2,s2 , l(i(β2), s)) = wα,s0 , then β2 acts to enumerate the largest

unused trigger xk
α,s0 at stage s.

Therefore, the β2-strategy requires at most two triggers from Xα,s0 into
Ce(β2) after stage s0.

Let β3 be the first R-strategy in {β ∈ T : β ≤ α} \ {β1, β2} that acts as in
Step (3) or Step (5.n) for some n to enumerate a trigger xk

α,s0 into Ce(β3),s3 at
some stage s3 > s2. Then there is a unique even number yβ3,s3 such that

φ2
i(β3)

(yβ3,s3 , l(i(β3), s3)) = wα,s0 or xk
α,s0 ∈ Oi(β3),s3 = Ce(β3),s3 = Ce(α),s3 ,

and there are at most 1+2=3 triggers xk
α,s0 ∈ Ce(α),s3 . Now it requires at most

4 enumerations of new triggers from Xα,s0 into Ce(β3) = Ce(α) to force the
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number of predecessors of yβ3,s3 approximated by φ2
i(β3)

, namely, φ2
i(β3)

(yβ3,s3 , ·),
to exceed wα,s0 . The total number of triggers from Xα,s0 used by β1, β2 and β3

is at most 1 + 2 + 22 = 23 − 1.
Generally, for m ≥ 2, suppose that βm is the first R-strategy in {β ∈ T :

β ≤ α} \ {β1, . . . , βm−1} that acts as in Step (3) or Step (5.n) for some n to
enumerate a trigger xk

α,s0 into Ce(βm),sm at some stage sm > sm−1. Then there
is a unique even number yβm,sm such that

φ2
i(βm)(yβm,sm , l(i(βm), sm)) = wα,s0 or xk

α,s0 ∈ Oi(βm),sm = Ce(βm),sm = Ce(α),sm ,

and there are at most 1 + 2 + · · ·+ 2m−2 = 2m−1 − 1 triggers xk
α,s0 ∈ Ce(α),sm .

Since the value of φ2
i(βm)(yβm,sm , l(i(βm), sm)) has at most 2m−1 many possible

choices, it requires at most 2m−1 many enumerations of new triggers from Xα,s0

into Ce(βm) = Ce(α) to force the number of predecessors of yβm,sm to exceed
wα,s0 . So the total number of triggers from Xα,s0 used by β1, . . . , βm is at most
1 + 2 + · · ·+ 2m−1 = 2m − 1.

Since the number of nodes of length ≤ |α| in the priority tree T is strictly
less than

1 + 3 + · · ·+ 3|α| =
3|α|+1 − 1

2
< 3|α|+1,

the number of higher priority nodes β ∈ T with β ≤ α is strictly less than 3|α|+1,
and we have m < 3|α|+1. This implies that the total number of triggers from
Xα,s0 used by all higher priority R-strategies β with β ≤ α is strictly less than

1 + 2 + · · ·+ 23
|α|+1−1 = 23

|α|+1

− 1 < 23
|α|+1

= qα.

Therefore, we appoint enough trigger elements xk
α,s0 on node α for higher priority

β-strategies to enumerate into Ce(β) = Ce(α) during the construction. That is,
the trigger elements in Step (3) or Step (5.n) of a basic α-strategy initiated at
stage s0 always exist if needed. This completes the proof of the lemma. ⊓⊔

Let TP = lim infs δs be the leftmost path on T visited infinitely often during
the construction, called the true path of the construction. That is, for any n ≥ 1,
the node TP ↾n= TP(0) · · ·TP(n − 1) ∈ T is visited infinitely often, but any
node α <L TP ↾n is visited finitely often during the construction.

Lemma 2. TP is an infinite path on the priority tree T .

Proof. The empty node λ ⊂ TP because every stage is a λ-stage; furthermore,
λ has the highest priority on the priority tree T , it is not initialized at stages
s > 0. Let α ⊂ TP with |α| ≥ 0. Assume that there is a least stage sα such that
α is not initialized at any stage s > sα. There are two cases.

Case 1. If |α| is even, α is a P-strategy. Let tα be the first α-stage> sα. The α-

strategy picks a new witness wα,tα and a finite set {xk
α,tα : 1 ≤ k ≤ qα = 23

|α|+1}
of new triggers at stage tα. Since α has the highest priority after stage sα, the
witness wα,tα and the triggers xk

α,tα are never redefined later.
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(1) If the α-strategy waits at Step (2) forever after stage tα, then any α-stage
s ≥ tα is an α⌢f -stage. In this case, α⌢f is not initialized after stage tα, α
has true outcome f , and we have α⌢f ⊂ TP.

(2) Otherwise, the α-strategy arrives at Step (2) and acts as in Step (3) at some
stage s > tα; the strategy enumerates the witness wα,tα into Ce(α),s, making
Ce(α) ̸= φi(α), and the construction is terminated at stage s with the current

true path δs = α⌢d. Then any α-stage s′ ≥ s is an α⌢d-stage, and α⌢d is
not initialized after stage s. So we have α⌢d ⊂ TP.

Case 2. If |α| is odd, then α is an R-strategy. There are two subcases.

(1) If there are finitely many α-expansionary stages, let tα be the least stage> sα
such that any s ≥ tα is not an α-expansionary stage. The basic α-strategy
acts at most once to appoint a new restraint on Ce(α) at some stage s ≥ tα

if the believable computation Φ
Ce(α)

j(α) (j(α))[s] newly converges in which case

the α-strategy terminates current construction by setting the current true
path δs = α⌢f and initializing all nodes ≥ α⌢f . This action preserves the

believable computation Φ
Ce(α)

j(α) (j(α))[s] forever, and the α-strategy never sets

new Ce(α)-restraints later. Then α⌢f is not initialized after stage s and any

α-stage s′ ≥ s is an α⌢f -stage. So we have α⌢f ⊂ TP.
(2) If there are infinitely many α-expansionary stages, let tα be the first α-

expansionary stage > sα. The α-strategy picks a new witness wα,tα and a

finite set {xk
α,tα : 1 ≤ k ≤ qα = 23

|α|+1} of new triggers, it first enumerates
wα,tα into Ce(α),tα at the same stage tα. Since α has the highest priority

after stage sα, the witness wα,tα and the triggers xk
α,tα are never redefined

later.
• If the α-strategy waits at Step (2) forever after stage tα, then any α-
expansionary stage s ≥ tα is an α⌢d-stage. In this case, α⌢d is not
initialized after stage tα, and we have α⌢d ⊂ TP.

• Otherwise, the α-strategy arrives at Step (2) and acts as in Step (3) at
some stage t0 > tα. At stage t0, the strategy enumerates the largest un-
used trigger xk

α,tα into Ce(α),t0 ; the construction is terminated by setting

the current true path δt0 = α⌢d, and initializing all nodes ≥ α⌢d. There
are two possible situations after stage t0.
* The α-strategy waits at Step (4.n) forever after certain stage s > t0.
Then any α-expansionary stage s′ ≥ s is an α⌢d-stage. In this case,
α⌢d is not initialized after stage s and α⌢d ⊂ TP.

* The α-strategy arrives at Step (4.(n+ 1)) from Step (5.n) infinitely
often after stage t0. Then there are infinitely many α-expansionary
stages s > t0 such that the α-strategy acts as in Step (5.n) for some
n at stage s by enumerating a largest unused trigger of some node
with lower priority into Ce(α),s. Such a stage s is an α⌢∞-stage. In

this case, α⌢∞ is not initialized after stage t0 and α⌢∞ ⊂ TP.

We have seen that for any α ⊂ TP with |α| ≥ 0, there is a least stage sα
such that α is not initialized after stage sα. The α-strategy acts after stage sα
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with an outcome o such that α⌢o ⊂ TP. This shows that TP is an infinite path
on the priority tree T . ⊓⊔

Lemma 3. For all e, Ce is noncomputable.

Proof. For fixed numbers e, i, let α be the unique P⟨e,i⟩-strategy along the true
path TP of the construction, then α is initialized finitely often, and there are
infinitely many α-stages during the construction. Suppose that α has the highest
priority after some least stage sα. The α-strategy acts to diagonalize against φi

computing Ce after stage sα.

(i) If the strategy waits at Step (2) forever after certain stage, then there is a
witness w such that either φi(w) diverges or it converges with φi(w) ↓= 1 ̸=
Ce(w) = 0; in this case, α has true outcome f .

(ii) If the strategy arrives at Step (2) and acts as in Step (3) at some stage
s > sα, then there is a witness w such that φi(w) ↓= 0 ̸= Ce(w) = 1; in this
case, α has true outcome d.

The α-strategy succeeds to ensure that Ce ̸= φi after stage sα. Then Ce ̸= φi

for all i, and thus it is not computable. ⊓⊔

Lemma 4. For all e, e ∈ CofK if and only if Ce is order-computable.

Proof. Fix a number e. If e ∈ CofK , WK
e is cofinite. Then there exists a number

i such that [i,∞) ⊆ WK
e , that is, [i, i + j + 1] ⊆ WK

e for all j. For any node
α assigned an R⟨e,i,·⟩-requirement on the priority tree, there are only finitely
many α-expansionary stages. For each j, there is a unique node α⟨e,i,j⟩ working
for R⟨e,i,j⟩ along the true path TP of the construction such that

α⟨e,i,0⟩
⌢f ⊂ α⟨e,i,1⟩

⌢f ⊂ · · · ⊂ α⟨e,i,j⟩
⌢f ⊂ · · · ⊂ TP.

For each j, the α⟨e,i,j⟩-strategy is not initialized after certain stage sj . Then
s0 ≤ s1 ≤ · · · ≤ sj ≤ · · · because of the priority of the strategies. α⟨e,i,j⟩ acts

at most once to appoint a new Ce-restraint ϕ
Ce
j (j)[s] to preserve the believable

computation ΦCe
j (j)[s] if it newly converges at some stage s ∈ (sj , sj+1]. Since

the computation ΦCe
j (j)[s] ↓ is believable, all higher priority R-strategies β with

β⌢∞ ⊂ α⟨e,i,j⟩ only enumerate triggers xk
β′,s′ of nodes β

′ > α⟨e,i,j⟩ at any stage

s′ ≥ s such that x1
β′,s′ > ϕCe

j (j)[s], the use of the believable computation. Then

the computation ΦCe
j (j)[s] ↓ is not injured by β-strategy after stage s, and thus,

it is preserved forever. Then C ′
e is a ∆0

2 set because for all j, j ∈ C ′
e if and only

ΦCe
j (j) converges if and only if there are infinitely many stages s such that the

computation ΦCe
j (j)[s] ↓ is believable. Therefore, Ce is a low c.e. set, and thus,

it is order-computable.
If e /∈ CofK , WK

e is not cofinite. Now for all i, there is a least number ji such
that [i, i+ ji+1] ⊈ WK

e . For all i, there are only finitely many nodes for R⟨e,i,·⟩-
requirements along the true path TP of the construction, one node α⟨e,i,j⟩ for
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R⟨e,i,j⟩ with 0 ≤ j ≤ ji such that each α⟨e,i,j⟩ with j < ji has the finite outcome
f and the longest node α⟨e,i,ji⟩ has an infinite outcome o ∈ {d,∞}. That is,

α⟨e,i,0⟩
⌢f ⊂ α⟨e,i,1⟩

⌢f ⊂ · · · ⊂ α⟨e,i,ji−1⟩
⌢f ⊂ α⟨e,i,ji⟩

⌢o ⊂ TP.

Let α = α⟨e,i,ji⟩ be the R⟨e,i,ji⟩-strategy along the true path TP of the
construction, then α is initialized finitely often, and there are infinitely many α-
expansionary stages. α has the highest priority after certain stage sα. After stage
sα, the α-strategy acts to diagonalize against φ2

i to be a computable predecessor
approximation function for Ce.

(i) If the strategy waits at Step (2) or Step (4.n) forever after certain stage,
then either lims l(i, s) < ∞ or Ce ̸= Oi, the order-computable set computed
by φ2

i ; in this case, α has true outcome d, and α⌢d ⊂ TP.
(ii) If the strategy first arrives at Step (2) and then arrives at Step (4.(n + 1))

from Step (5.n) infinitely often, then there is an even number y such that
lims φ

2
i (y, s) = ∞; in this case, α has true outcome ∞, and α⌢∞ ⊂ TP.

The α-strategy succeeds in ensuring that Ce is not order-computed by φ2
i after

stage sα. Then Ce is not order-computed by φ2
i for all i, and thus it is not order-

computable. ⊓⊔
We have constructed a uniform sequence of c.e. sets ⟨Ce : e ∈ N⟩ such that

e ∈ CofK if and only if Ce is order-computable for all e. Since CofK is Σ0
4 -

complete, so is the index set of c.e. order-computable sets. This completes the
proof of Theorem 1. ⊓⊔

Recall that I = {e ∈ N : φ2
e is total, and (∀x)[lims φ

2
e(x, s) ↓∈ {0, 1}]} is

the index set of ∆0
2 sets. For e ∈ I, Ae = {x ∈ N : (∀x)[lims φ

2
e(x, s) ↓= 1]}

is the ∆0
2 set with index e. Since both c.e. sets and order-computable sets form

subclasses of ∆0
2 sets, based on Theorem 1, we obtain the exact complexity for

general order-computable sets.

Corollary 1. The index set {e ∈ I : Ae is order-computable} is Σ0
4 -complete

within I.
Proof. For a number e, e ∈ I if and only if φ2

e is a computable binary function
such that lims φ

2
e(x, s) converges to 0 or 1 for all x. To prove the corollary, it

suffices to construct a uniform sequence ⟨Fe : e ∈ N⟩ of computable binary
functions such that the following two conditions hold:

(1) for all e, lims Fe(x, s) converges to 0 or 1 for all x;
(2) for all e, e ∈ CofK ⇔ Be = {x ∈ N : lims Fe(x, s) ↓= 1} is order-computable.

Let ⟨Ce : e ∈ N⟩ be the uniform sequence of c.e. sets constructed in Theorem
1 such that e ∈ CofK ⇔ Ce is order-computable for all e. For any e, x, s and
t > x, s, define Fe,t(x, s) = Ce,s(x). Then the sequence ⟨Fe : e ∈ N⟩ meets
the desired conditions above. First, Fe(x, s) is defined for all x, s, so Fe is a
computable binary function. Second, since Ce,s(x) changes from 0 to 1 for at
most once when x is first enumerated into Ce at stage s, the condition (1) holds.
Third, lims Fe(x, s) converges to 1 if and only if x ∈ Ce, so Be = {x ∈ N :
lims Fe(x, s) ↓= 1} = Ce for all e; the condition (2) holds. ⊓⊔
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4 Index set of ∆0
2 sets

We continue to study the complexity of the index set I of ∆0
2 sets.

Theorem 2. The index set I of ∆0
2 sets is Π0

3 -complete.

Proof. For any number e, e is an index of a ∆0
2 set if and only if φ2

e is total and
lims φ

2
e(x, s) converges to 0 or 1 for all x in which case e is the index of the ∆0

2 set
Ae = {x ∈ N : lims φ

2
e(x, s) ↓= 1}. As TotK = {e ∈ N : (∀x)[ΦK

e (x) converges]}
is Π0

2 -complete relative the c.e. complete set K, it is Π0
3 -complete. To prove the

theorem, it suffices to construct a uniform sequence ⟨Fe : e ∈ N⟩ of computable
binary functions such that for all e,

e ∈ TotK ⇔ (∀x)[lim
s

Fe(x, s) ↓= 0 or 1].

We will build a computable ternary function F (·, ·, ·) satisfying the following
requirements:

R⟨e,x⟩: If ΦK
e (x) is defined, then lims F (e, x, s) converges to 0.

If ΦK
e (x) is undefined, then lims F (e, x, s) diverges.

Then ⟨Fe = F (e, ·, ·) : e ∈ N⟩ is the desired sequence of computable binary
functions.

If e ∈ TotK , ΦK
e is total, i.e., ΦK

e (x) is defined for all x, then R⟨e,x⟩ ensures
that lims Fe(x, s) converges to 0. In this case, Fe approximates the empty set
∅ = {x : lims Fe(x, s) ↓= 1}. If e /∈ TotK , ΦK

e is not total, i.e., there is a number
x such that ΦK

e (x) is undefined, then R⟨e,x⟩ ensures that lims F (e, x, s) diverges.
In this case, Fe cannot approximate a ∆0

2 set.
Fix an effective bijection ⟨·, ·⟩ : N2 → N, and for all i, j, k, let ⟨i, j, k⟩ =

⟨⟨i, j⟩, k⟩. We construct the computable ternary function F (·, ·, ·) by stages.
Construction.
Stage 0. Define F (0, 0, 0) = F (0, 0, 1) = 0.
Assume that we have defined F (e, x, y) for all e, x with e, x ≤ s − 1 and

y ≤ 2s− 1 by the end of stage s− 1.
Stage s ≥ 1. For all e, x ≤ s, define F (e, x, ·) as follows:
Step 1. For all e, x < s, define F (e, x, 2s) and F (e, x, 2s+1) as follows. There

are two cases:

(1) If there was a last stage s− < s such that ΦK
e (x)[s−] was defined with use

ϕK
e (x)[s−] and the computation has not been changed since then, that is,

ΦK
e (x)[s] is defined with use ϕK

e (x)[s] = ϕK
e (x)[s−] , define

F (e, x, 2s) = F (e, x, 2s+ 1) = 0.

(2) Otherwise, either ΦK
e (x)[t] was undefined for all t < s, or there was a con-

vergent computation ΦK
e (x)[s−] at last stage s− < s but the computation is

changed currently, that is, either ΦK
e (x)[s] is undefined or it is defined with

use ϕK
e (x)[s] > ϕK

e (x)[s−], define

F (e, x, 2s) = 0 and F (e, x, 2s+ 1) = 1.
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Step 2. For all e, x ≤ s and t ≤ 2s+ 1, define F (e, s, t) = F (s, x, t) = 0.

This ends the construction.

For all e, x ∈ N, at any stage s bigger than e, x of the construction, we have
defined F (e, x, y) for all y ≤ 2s+1 by the end of stage s. Furthermore, the value
of F (e, x, y) is never changed during the construction. So F is a computable
ternary function.

Lemma 5. For all e, x ∈ N, R⟨e,x⟩ is satisfied.

Proof. Fix numbers e, x. If ΦK
e (x) is defined, then there is a least stage s such that

the ΦK
e (x)[s] is defined with use ϕK

e (x)[s] and the computation is not changed
later; that is, at any stage t ≥ s, the computation ΦK

e (x)[t] is defined with use
ϕK
e (x)[t] the same as ϕK

e (x)[s]. Let se,x be such a least stage bigger than e, x.
Then at any stage s > se,x, we always defined F (e, x, 2s) = F (e, x, 2s+ 1) = 0.
So F (e, x, y) = 0 for all y > 2se,x and we have lims F (e, x, s) = 0.

If ΦK
e (x) is undefined, then there are infinitely many stages s > e, x such that

either the computation ΦK
e (x)[s] is undefined or it is defined with use strictly

bigger than that of the last convergent computation. At such a stage s, we defined
F (e, x, 2s) = 0, but F (e, x, 2s+ 1) = 1. So lims F (e, x, s) does not exist. ⊓⊔

For a number e, there are two situations:

• If e ∈ TotK , then ΦK
e (x) is defined for all x. By Lemma 5, lims F (e, x, s) =

0 for all x. In this case, Fe = F (e, ·, ·) approximates the ∆0
2 set {x :

lims F (e, x, s) ↓= 1}, which is exactly the empty set ∅.
• If e /∈ TotK , then ΦK

e (x) is undefined for some x. By Lemma 5, lims F (e, x, s)
does not exist for this x. In this case, Fe = F (e, ·, ·) cannot approximate any
∆0

2 set.

We have constructed a uniform sequence of computable binary functions
⟨Fe = F (e, ·, ·) : e ∈ N⟩ such that for all e, ΦK

e is total if and only if lims Fe(x, s)
exists with limit 0 for all x. So the index set I of ∆0

2 sets is Π0
3 -complete.

This completes the proof of Theorem 2. ⊓⊔
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