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In this paper, a bilayer model is derived to simulate the evolution of a thin film flow over

water. This model is derived from the incompressible Navier–Stokes equations together with

suitable boundary conditions including friction and capillary effects. The derivation is based

on the different properties of the fluids; thus, we perform a multiscale analysis in space and

time, and a different asymptotic analysis to derive a system coupling two different models:

the Reynolds lubrication equation for the upper layer and the shallow water model for the

lower one. We prove that the model verifies a dissipative entropy inequality up to a second-

order term. Moreover, we propose a correction of the model – by taking into account the

second-order extension for the pressure – that admits an exact dissipative entropy inequality.

Two numerical tests are presented. In the first test, we compare the numerical results with

the viscous bilayer shallow water model proposed in Narbona-Reina et al. (Comput. Model.

Eng. Sci., 2009, Vol. 43, pp. 27–71). In the second test, the objective is to show some of the

characteristic situations that can be studied with the proposed model. We simulate a problem

of pollutant dispersion near the coast. For this test, the influence of the friction coefficient on

the coastal area affected by the pollutant is studied.

Key words: Bilayer model, Reynolds equation, shallow water, multiscale analysis

1 Introduction

In this paper, we derive a bilayer model of two immiscible fluids where the upper layer

can be represented by a Reynolds lubrication model and the lower layer by a shallow

water model. This model can be used to simulate the evolution of a pollutant viscous

fluid over water.

Our purpose is to study the evolution of a system that consists of two layers of

Newtonian viscous fluids with different properties. For the upper layer, we consider a thin

liquid film of slow flow – Reynolds number of unity order – and for the lower one, we

assume a fluid-like water – high Reynolds number. Under these assumptions, it is not

possible to choose the same type of equations to model each layer.
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Thus, for the upper layer, we follow the Reynolds’ theory of lubrication to deduce

the equation that defines its behaviour. In this equation, the pressure plays the main

role. The Reynolds lubrication equation is classically used to model a fluid between two

very close surfaces or a very thin film. This equation was first derived in [24], where

several hypotheses are used in order to describe the pressure of the film. In fact, in this

derivation, inertial, gravitational, viscosity variation, slip condition at the bottom, surface

roughness and thermal effects are neglected. In addition, the author restricts his analysis

to an isoviscous, incompressible fluid. Later, much research related to the derivation of

the generalized Reynolds lubrication equation has been made in order to get a better

modelling of a thin film (see for example [7, 8, 11, 12, 19, 28, 30]).

In [21], a review of the long-scale evolution of thin liquid films is presented. A

general mathematical theory of Reynolds lubrication equations is introduced. In their

analysis, the authors use the slip condition at the bottom and take into account surface

tension effects at the free surface. A general nonlinear evolution equation or equa-

tions are then derived and several particular cases are considered. The condition on

the free surface with surface tension effects revealed the presence of a term of the

form ∂x(σ∂2
xh), where σ is the surface tension coefficient and h is the height of the

thin layer. This term appears at the leading order due to the scaling used for this

purpose.

In another way, the shallow water system, which is considered to model the lower

layer, is applied to study a large number of geophysical and engineering applications

such as ocean circulation, coastal areas, rivers, etc. Many derivations of this model had

been made in order to model shallow flows (see for example [1, 4, 13, 20, 23, 33]). The

pioneering work [14] has been considered as a basis to develop the deduction of the

shallow water layer of the model proposed in this paper. This derivation takes into

account laminar friction at the bottom and viscous effects. Viscous and capillary effects

are useful to obtain an existence result of global weak solutions in [34]. In [18], a viscous

two-dimensional one-layer shallow water system, taking into account surface tension,

capillary effects and quadratic friction terms, has been derived. In [20], the authors

derived a bilayer shallow water model where friction and surface tension at the interface

and free surface are introduced with a second-order approximation.

In the model considered in this work, coupling Reynolds lubrication and shallow water

equations, the shallow-flow assumption is taken, that is, the height (H) of the layer is

much smaller than its length (L). Thus, for the derivation of the model, all the variables

are written in terms of this aspect ratio ε = H/L, assumed small. As mentioned above,

the obtention of the model is inspired from the simulation of the transport of a pollutant

over water. Therefore, following this idea, we consider that this smallness ratio ε is not

the same for the two layers. This means that the order of all the characteristic variables,

namely, velocities, pressures, viscosities, space and time, is different for each layer. Due to

these hypotheses, the idea of the present work is to make a multiscale analysis in space

and time for the incompressible bilayer Navier–Stokes equations and obtain a simplified

system of three equations.

In the literature, one can find several papers related to the multiscale analysis in time

in order to model the evolution of the topography in oceans submitted to tidal effects, see

for example [9, 15, 25, 27].

https://doi.org/10.1017/S095679251300020X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251300020X


A bilayer model coupling shallow water and Reynolds lubrication equations 805

The novelty of this work rests on two features, which, to the best of our knowledge,

have not been tackled before in the modelling of multilayer systems. The first is the

coupling of two different equations on a bilayer model and the second is the multiscale

analysis – in space and time – developed in the two layers. Both also provide the main

difficulties in deriving the proposed model.

This paper is organized as follows. Section 2 is devoted to the derivation of the model.

First, we write the equations in non-dimensional variables, taking into account a different

scale for each layer. Next, to deduce the shallow water equation, we first perform the

hydrostatic approximation and use an asymptotic analysis to deduce the shallow water

system. We also use an asymptotic analysis to deduce a Reynolds lubrication equation

for the upper layer. In Section 3, we present the obtained model and in Section 3.1 we

study the energy of the model. Finally, in Section 4, we describe a numerical scheme to

discretize the proposed model and two numerical tests.

2 The thin film – shallow water model

In this section, we give a formal derivation of the model. To deduce the model, we

start from the incompressible Navier–Stokes equations for both layers and follow the

following steps: first, we non-dimensionalize equations, then we take into account the

asymptotic regime for the physical parameters and finally we integrate the equations to

get the averaged model.

Following the goal of this work, we search for a bilayer model where each one of the

fluids has different properties. Therefore, we consider that they have not only different

physical properties but also a different flow behaviour.

As mentioned before, we use this model to simulate the evolution of a pollutant over

water, so we also consider different thickness for each layer.

All these considerations imply some difficulties to develop the derivation of the model.

First, due to the different flow behaviour, we must follow different ways to obtain the

equations that model each layer. For the lower layer, we derive a shallow water model

and a Reynolds lubrication equation is used for the upper layer. The fact of considering

different thicknesses leads us to take different characteristic space variables. Moreover, in

order to take into account the ‘slow flow’ property for the fluid on the upper layer we also

consider different characteristic velocities. Thus, we must develop a two-scale analysis of

the problem in space and time.

First, we introduce the domain of study and set out the incompressible Navier–Stokes

equations together with appropriate boundary conditions. In particular, the interaction

between the two fluids is held in the interface boundary conditions through the friction

and capillary effects. We also take into account capillary effects at the free surface and

friction force at the bottom.

We consider the two-dimensional domain Ω(t) = Ω1(t)∪Ω2(t)∪Γb ∪Γ1,2(t)∪Γs(t), where

Ω1(t) = {(x, z) ∈ �2 : x ∈ ω, b(x) < z < I(x, t)},
Ω2(t) = {(x, z) ∈ �2 : x ∈ ω, I(x, t) < z < η(x, t)},
Γ1,2(t) = {(x, z) ∈ �2 : x ∈ ω, z = I(x, t)},
Γs(t) = {(x, z) ∈ �2 : x ∈ ω, z = η(x, t)},
Γb = {(x, z) ∈ �2 : x ∈ ω, z = b(x)},
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Figure 1. Schematic representation of the two layers over the solid boundary b, with the free

surface denoted by Γs, the interface between the two fluids, Γ1,2, and heights labelled h1 and h2.

and ω is a bounded domain in �. We denote by I the interface level, I(x, t) =

b(x) + h1(x, t), and by η the free surface, η(x, t) = b(x) + h1(x, t) + h2(x, t) (see Figure 1).

We consider the incompressible Navier–Stokes equations for each layer:

⎧⎨
⎩
ρi(∂tui + ui∂xui + wi∂zui) = −∂xpi + ρiνi(∂

2
xui + ∂2

zui),

ρi(∂twi + ui∂xwi + wi∂zwi) = −∂zpi + ρiνi(∂
2
xwi + ∂2

zwi) − ρig,

∂xui + ∂zwi = 0,

i = 1, 2. (2.1)

where we denote by vi = (ui, wi) the velocity field for each layer, ρi the density, νi is the

kinematic viscosity and pi the pressure, for i = 1, 2; g is the constant gravity. As a general

notation rule, the subscript 1 corresponds to the lower layer and the subscript 2 to the

upper layer. We also introduce the ratio of densities

r =
ρ2

ρ1

and the stress tensors σi = 2ρiνiD(vi) − piId, where D(vi) =
∇vi+∇vTi

2
and Id denotes the

identity matrix.

To complete the problem, we impose the following boundary conditions:

• At the free surface, z = η(x, t):

– The normal stress balance:

(σ2 · ns) = −δ κns, (2.2)

where δ is the surface tension coefficient, κ = −divxns is the mean curvature and ns
the unitary outward normal vector to the free surface, ns = 1√

1+|∂xη|2
(−∂xη, 1).

– The kinematic condition:

∂tη + u2 ∂xη = w2. (2.3)
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• At the interface, z = I(x, t):

– The kinematic conditions for each velocity:

∂th1 + u2 ∂xI = w2,

∂th1 + u1 ∂xI = w1. (2.4)

– The normal stress balance:

(σ1 · nI)n − (σ2 · nI)n = (δI κInI)n, (2.5)

with δI the interfacial tension coefficient, κI = −divxnI is the mean curvature of

the interface and nI = 1√
1+|∂xI|2

(−∂xI, 1), the unitary normal vector to the interface

pointing from layer 1 to layer 2. The subscript n denotes the normal component of

the vector.

– The friction condition (Navier-slip boundary condition):

(σi · nI)τ = −cρ2(v1 − v2)τ for i = 1, 2. (2.6)

The positive friction coefficient is denoted by c. The subscript τ denotes the tangential

component of the vector.

• At the bottom, z = b(x):

We consider the Navier-slip boundary conditions:

– The no-penetration condition:

v1 · nb = 0, (2.7)

where nb = 1√
1+|∂xb|2

(−∂xb, 1).

– The friction condition:

(σ1 · nb)τ = α(u1)τ, (2.8)

where α is the positive friction coefficient.

Remark 2.1 A linear friction term between the two layers is considered here. It coincides

with the friction law used in [20] that is of the form c(v1 − v2). In [6], this type of a

friction term is used to study a system of 3D Navier–Stokes equations in a two-layer thin

domain with an interface condition of the form (νi∂zu
i
j − k(u1

j − u2
j )) = 0, i, j = 1, 2.

2.1 Dimensionless equations

To derive the model, it is suitable to write the system (2.1)–(2.8) in dimensionless form.

First, let us divide the conservation equations by densities ρi to get

⎧⎪⎨
⎪⎩

∂tui + ui∂xui + wi∂zui = − 1
ρi

∂xpi + νi(∂
2
xui + ∂2

zui),

∂twi + ui∂xwi + wi∂zwi = − 1
ρi

∂zpi + νi(∂
2
xwi + ∂2

zwi) − g,

∂xui + ∂zwi = 0.

(2.9)
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Now we set the dimensionless variables, where we must take into account the different

properties of the fluids in two layers, so we make it separately. Nevertheless, the

characteristic variables of both layers must be related because we study the coupled

system. We must indicate that the Reynolds layer is not only thin and slow, but thinner

and slower than the shallow water layer. Thus, we will make an assumption relating the

aspect ratios of the two layers.

Non-dimensionalization for layer 1

First, we establish the dimensionless variables for the lower layer following a shallow

water non-dimensionalization (see [14]). We denote by H , L and U the characteristic

height, length and velocity, respectively. Thus, the characteristic time is T = L/U.

To impose the shallow flow condition, we assume that the aspect ratio between the

characteristic height and length is small, as commonly we denote it by ε = H/L. We

denote with the superscript asterisk (∗) the dimensionless variables:

x = Lx∗, z1 = Hz∗
1 , h1 = Hh∗

1,

u1 = Uu∗
1, w1 = εUw∗

1 , t = Tt∗1,

p1 = ρ1U
2p∗

1, Fr1 =
U√
gH

, Re1 =
UL

ν1
,

where we denoted by Fr1 the Froude number and by Re1 the Reynolds number.

Non-dimensionalization for layer 2

For the upper layer, we take a non-dimensionalization suitable for a Reynolds lubrication

equation following [21]. It mainly affects the characteristic pressure, which is larger due

to the lubrication effect. Now we denote by H2, U2 and T2 = L/U2 the characteristic

height, velocity and time for this layer, respectively. Thus, we also have a different ratio

height–length, namely, ε2 = H2/L. The dimensionless variables in this case are

x = Lx∗, z2 = H2z
∗
2 , h2 = H2h

∗
2,

u2 = U2u
∗
2, w2 = ε2U2w

∗
2 , t = T2t

∗
2,

p2 =
ρ2ν2U2

ε2H2
p∗

2, Fr2 =
U2√
gH2

, Re2 =
U2L

ν2
.

Since we study the coupled system, we must take into account that layer 2 is thinner and

slower than layer 1. These related aspects lead us to search for a relationship between the

characteristic height and velocity of the two layers that express these properties. Thus, we

assume that

H2 = εH, U2 = ε2U,

consequently, ε2 = ε2 and T2 = 1
ε2
T .
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We write the dimensionless variables of layer 2 in terms of H , U and ε:

x = Lx∗, z2 = εHz∗
2 , h2 = εHh∗

2,

u2 = ε2Uu∗
2, w2 = ε4Uw∗

2 , t =
1

ε2
Tt∗2,

p2 =
ρ2ν2U

εH
p∗

2, Fr2 =
ε2U√
gεH

, Re2 =
εUH

ν2
.

Remark 2.2 We give some remarks about the dimensionless procedure. First, to justify

our hypothesis on the aspect ratio ε2 = ε2, we focus on the oceanic circulation case.

In accordance with [18], the average thickness H of the oceans in the coastal domain

is nearly 100 m, whereas their horizontal characteristic value is about 100 km. So, the

aspect ratio ε = H/L is about 10−3. Thus, we are in the case that the pollutant layer has

an aspect ratio of ε2 ∼ 10−6 and a thickness 10−3 times smaller than layer 1, which is

equivalent to a thickness of H2 = εH ∼ 10cm, which seems reasonable. Second, we clarify

the existence of two dimensionless times t∗1 and t∗2. It just comes from considering two

characteristic velocities which automatically give two different characteristic times T and

T2 = 1
ε2
T . Therefore, the times do not have the same order, that is why we also consider

two dimensionless times.

Regarding the friction coefficients, we take

α = Uα∗, c = Uc∗,

and the Capillary numbers – at the free surface (C) and the interface (CI) – as

C =
ε2Uρ2ν2

δ
, CI =

Uρ1ν1

δI
.

We assume H as the characteristic height for the bottom, so b = Hb∗.

Due to the different characteristic heights, we must pay attention to the ranges for

the dimensionless vertical component. Thus, for layer 1, since z1 ∈ [b, b + h1], we obtain

directly that z∗
1 ∈ [b∗, b∗ + h∗

1]. For layer 2, the rank of the dimensional variable is

z2 ∈ [b + h1, b + h1 + h2], so we deduce that z∗
2 ∈ [ 1

ε
(b∗ + h∗

1),
1
ε
(b∗ + h∗

1) + h∗
2]. In what

follows – for the second layer – we denote ηε = 1
ε
(b∗ + h∗

1) + h∗
2 as the free surface level

and Iε = 1
ε
(b∗ + h∗

1) the interface level. Next, we write the equations and the boundary

conditions in dimensionless form, and omit the superscript (∗) in the notation for the sake

of clarity.

• Layer 1

∂t1u1 + u1∂xu1 + w1∂zu1 − 1

Re1

(
∂2
xu1 +

1

ε2
∂2
zu1

)
+ ∂xp1 = 0, (2.10)

∂t1w1 + u1∂xw1 + w1∂zw1 − 1

Re1

(
∂2
xw1 +

1

ε2
∂2
zw1

)
+

1

ε2
∂zp1 = − 1

ε2
1

Fr21
, (2.11)

∂xu1 + ∂zw1 = 0. (2.12)
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• Layer 2

ε4Re2(∂t2u2 + u2∂xu2 + w2∂z2
u2) = − ∂xp2 + ∂2

z2
u2 + ε4∂2

xu2,

ε8Re2(∂t2w2 + u2∂xw2 + w2∂z2
w2)= − ∂z2

p2 − ε4 Re2

Fr22
+ ε4(∂2

z2
w2 + ε4∂2

xw2),

∂xu2 + ∂z2
w2 = 0.

(2.13)

• Conditions at the free surface

∂t1 (b + h1) + ε3∂t2h2 + ε2u2 ∂x(b + h1) + ε3u2∂xh2 = ε3w2, (2.14)

(∂z2
u2 + ε4∂xw2)(1 − ε2(∂x(b + h1 + εh2))

2) − 4ε3∂xu2 ∂x(b + h1 + εh2) = 0,

(2.15a)

−p2 + 2ε4∂zw2 − ε3∂x(b + h1 + εh2)(∂z2
u2 + ε4∂xw2)

= −ε5
C−1∂2

x(b + h1 + εh2)

(1 + ε2(∂x(b + h1 + εh2))2)3/2
. (2.15b)

• Conditions at the interface

∂t1 (b + h1) + ε2u2 ∂x(b + h1) = ε3w2, (2.16)

∂t1 (b + h1) + u1 ∂x(b + h1) = w1, (2.17)

−2ρ1
1

Re1
(ε2∂xw1 + ∂zu1)∂x(b + h1) + ε2ρ1

(
2

1

Re1
∂xu1 − p1

)
∂x(b + h1)

2

+ ρ1

(
2

1

Re1
∂zw1 − p1

)
= −2ρ2

1

Re2
ε3

(
ε4∂xw2 + ∂z2

u2

)
∂x(b + h1)

+ ε2
1

Re2
ρ2(2ε

4∂xu2 − p2)∂x(b + h1)
2 + ρ2

1

Re2
(2ε4∂zw2 − p2)

+ ερ1
C−1

I
Re1

∂2
x(b + h1)(1 + ε2∂x(b + h1)

2), (2.18)

−4
1

Re1
∂xu1∂x(b + h1) +

1

Re1
(∂xw1 +

1

ε2
∂zu1)(1 − ε2∂x(b + h1)

2)

= − r

ε
c(u1 − ε2u2 + ε2(w1 − ε3w2)∂x(b + h1)), (2.19)

− 4ε4
1

Re2
∂xu2∂x(b + h1) + ε

1

Re2
(ε4∂xw2 + ∂z2

u2)(1 − ε2∂x(b + h1)
2)

= −1

ε
c(u1 − ε2u2 + ε2(w1 − ε3w2)∂x(b + h1)). (2.20)
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• Conditions at the bottom

−u1 ∂xb + w1 = 0, (2.21)

− ρ1
4

Re1
∂xu1∂xb + ρ1

1

Re1

(
∂xw1 +

1

ε2
∂zu1

)

− ε2ρ1
1

Re1

(
∂xw1 +

1

ε2
∂zu1

)
(∂xb)

2 =
α

ε
u1(1 + ε2(∂xb)

2). (2.22)

In the next subsections, we develop the derivation of the equations for both layers. We

begin with the shallow water layer following [14, 20] and then deduce the Reynolds

lubrication layer following [21]. In order to get the viscous effect and the influence of the

pressure of the thin film flow on the system, we derive a second-order approximation, that

is, we keep the terms of order ε0 and ε in the system.

2.2 Layer 1: shallow water flow

To obtain the shallow water model, we first take the hydrostatic approximation and then

develop the asymptotic analysis of (2.10).

2.2.1 Hydrostatic approximation

To obtain the averaged model, we integrate each equation into [b, b + h1].

We first integrate (2.10) to get

∂t1

(∫ b+h1

b

u1dz

)
+ ∂x

(∫ b+h1

b

u2
1dz

)
+

∫ b+h1

b

∂xp1dz − 1

Re1
∂x

(∫ b+h1

b

∂xu1dz

)
− u1|I(∂t1h1 + u1∂x(b + h1) − w1)|I − u1|bw1|b + u2

1|b ∂xb

− 1

Re1
∂xu1|b∂xb +

1

Re1
∂xu1|I ∂x(b + h1) − 1

ε2
1

Re1
∂zu1|I +

1

ε2
1

Re1
∂zu1|b = 0. (2.23)

Now, we simplify this equation by using the conditions at the bottom and at the interface.

In particular, we use equations (2.17), (2.19), (2.21) and (2.22) at order ε2. Then we write

(2.23) up to second order as

∂t1

(∫ b+h1

b

u1dz

)
+ ∂x

(∫ b+h1

b

u2
1dz

)
+

∫ b+h1

b

∂xp1dz − 1

Re1
∂x

(∫ b+h1

b

∂xu1dz

)

+
1

Re1
(∂xw1 − 3∂xu1∂x(b + h1))|I − 1

Re1
(∂xw1 − 3∂xu1∂xb)|b

+
1

ε
rc(u1|I − ε2u2|Iε

+ ε2w1|I ∂x(b + h1)) +
1

ρ1ε
αu1|b = 0. (2.24)

To find p1, we use the equation of the vertical velocity. From equation (2.12), we can write

− 1

Re1
∂2
zw1 + ∂zp1 = − 1

Fr21
+ O(ε2). (2.25)

https://doi.org/10.1017/S095679251300020X Published online by Cambridge University Press

https://doi.org/10.1017/S095679251300020X


812 E. D. Fernández-Nieto et al.

Now, we integrate this equation from z to (b + h1) and use the divergence-free condition

(2.12) to get up to second order:

p1(z) = p1|I − 1

Re1
(∂xu1 − ∂xu1|I) − 1

Fr21
(z − (b + h1)). (2.26)

2.2.2 Asymptotic analysis

We assume the following asymptotic regime for the data:

ν1 = O(ε), α = O(ε), c = O(ε), δI = O(ε−2),

so for simplicity we write

1

Re1
= εμ01, α = εα0, c = εc0, C−1

I = ε−2C−1
I0 . (2.27)

Since we look for a second-order approximation, we develop the unknowns at order 1

and define

h̃1 = h0
1 + εh1

1, ũ1 = u0
1 + εu1

1, p̃1 = p0
1 + εp1

1,

which are the unknowns of the problem for layer 1.

Taking into account (2.27), we write from (2.10), (2.19) and (2.22) that

∂2
zu1 = O(ε),

∂zu1|I = O(ε),

∂zu1|b = O(ε).

Then, u1 does not depend on z at first order, so u0
1(x, z, t) = u0

1(x, t). From (2.12), we can

write the mass equation for h0
1:

∂t1h
0
1 + ∂x(h

0
1u

0
1) = 0. (2.28)

To obtain the momentum equation, we first simplify (2.26). We get

p0
1(z) = p0

1|I − 1

Fr2
(z − (b + h0

1)), (2.29)

so p0
1(b) = p0

1|I +
1

Fr2
h0

1. Thus, we calculate the integral appearing in (2.24),

∫ b+h1

b

∂xp
0
1 dz = h0

1∂x(p
0
1|I) +

1

Fr21
h0

1∂x(b + h0
1).
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If we substitute this expression into (2.24) and consider only principal order terms, we

obtain

∂t1 (h
0
1u

0
1) + ∂x(h

0
1(u

0
1)

2) + h0
1∂x(p

0
1|I) +

1

2

1

Fr21
∂x(h

0
1)

2 +
1

Fr21
h0

1∂xb

+ rc0u
0
1|I +

1

ρ1
α0u

0
1|b = 0. (2.30)

As we can see, this equation does not contain the viscous effect, so next we derive the

second-order approximation. For this aim, we must take into account the terms of order

ε ignored before and perform a parabolic correction of the velocity following [14] and [20].

Second-order approximation

First, we define the average of the velocity u1 as ū1 =
1

h1

∫ b+h1

b

u1 dz, and we come back

to (2.24), which is written as follows:

∂t1 (h1ū1) + ∂x(h1ū
2
1) + ∂x

∫ b+h1

b

p1dz − p1|I ∂x(b + h1) + p1|b∂xb

− 1

Re1
∂x

(∫ b+h1

b

∂xu1dz

)
+

1

Re1
(∂xw1 − 3∂xu1∂x(b + h1))|I

− 1

Re1
(∂xw1 − 3∂xu1∂xb)|b

+
1

ε
rc(u1|I − ε2u2|Iε

+ ε2w1|I ∂x(b + h1)) +
1

ρ1ε
αu1|b = 0, (2.31)

where we have used u2
1 = ū2

1 + O(ε2) (see [33]).

From (2.12), we can now write the mass equation for the height h̃1:

∂t1 h̃1 + ∂x(h̃1ũ1) = O(ε2). (2.32)

Now, we use the asymptotic hypothesis and previous calculations to simplify (2.31). Using

the pressure expression (2.26), we obtain that

∂x

∫ b+h1

b

p1dz − p1|I ∂x(b + h1) + p1|b∂xb

=
1

2

1

Fr21
∂xh

2
1 +

1

Fr21
h1∂xb + h1∂x(p1|I). (2.33)

We use condition (2.18) to write

h1∂x(p1|I) = 2εμ01∂xh1∂xu
0
1 +

r

Re2
h1∂x(p2|Iε

) − 2εμ01∂x(h1∂xu
0
1)

− h1μ01C
−1
I0∂3

x(b + h1). (2.34)

Finally, we insert (2.33) and (2.34) into (2.31) and simplify the terms on the bottom and

on the interface I(x, t) = b(x) + h1(x, t) using again the divergence-free condition. Thus,
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we write the second-order approximation of the momentum equation for layer 1:

∂t1 (h1ū1) + ∂x(h1ū
2
1) +

1

2

1

Fr21
∂xh

2
1 +

1

Fr21
h1∂xb − 4εμ01∂x(h1∂xū1)

+
r

Re2
h1∂x(p2|Iε

) − h1μ01C
−1
I0∂3

x(b + h1) + rc0u1|I +
1

ρ1
α0u1|b = 0. (2.35)

To calculate u1|b , we make the parabolic correction of the velocity following [14]. So we

come back to (2.10) and look again at the momentum equation to write

μ01
1

ε
∂2
zu1 = ∂t1u

0
1 + u0

1∂xu
0
1 + ∂xp

0
1 =

1

h1

(
rc0u

0
1|I − 1

ρ1
α0u

0
1|b

)
+ O(ε),

where we have used (2.30) and the divergence-free equation. We use u1 = u0
1 + O(ε) and

integrate this equation to obtain

μ01
1

ε
∂zu1 =

1

h1

(
rc0u1|I − 1

ρ1
α0u1|b

)
(z − b) + μ01

1

ε
∂zu1|b + O(ε).

Next, by using the bottom friction condition (2.22) and integrating again, we obtain an

expression of ũ1 up to second order:

ũ1 = u1|b

(
1 + ε

α0

ρ1μ01
(z − b)

(
1 − z − b

2h1

))
+ ε

rc0u1|I
2μ01h1

(z − b)2 + O(ε2).

Thus, its average is

ū1 = u1|b

(
1 + ε

α0

ρ1μ01

h1

3

)
+ ε

rc0h1

6μ01
u1|I + O(ε2).

Finally, we get the value of the velocity at the bottom:

u1|b = γ(h1)ū1 − εrc0

6μ01
γ(h1)h1u1|I (2.36)

with

γ(h1) =

(
1 +

εα0

3ρ1μ01
h1

)−1

.

To complete (2.35), it remains to find ∂x(p2|Iε
) and u1|I , which depend on layer 2. They

will be calculated in the next section, where we develop the study of the second layer.

2.3 Layer 2: thin film flow

As for the first layer, we look for a second-order approximation, so we develop each

unknown at first order. We define

h̃2 = h0
2 + εh1

2, ũ2 = u0
2 + εu1

2, p̃2 = p0
2 + εp1

2.

The asymptotic regime for layer 2 affects the viscosity and capillary constants. When

surface tension effects are strong, it is essential to have them at the leading order [21], so
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we assume

ν2 = O(ε), δ = O(ε−2). (2.37)

Thus, we have that Re2 = εUH
ν2

= O(1) and C−1 = δ
ε2Uρ2ν2

= O(ε−5) and for simplicity we

write C−1 = ε−5C−1
0 .

Now, we study the velocity equations in (2.13), which can be written as follows:

−∂2
z2
ũ2 + ∂xp̃2 = O(ε4), (2.38)

∂z2
p̃2 = −ε4

Re2

Fr22
+ O(ε4). (2.39)

From the definition of Re2 and Fr2, we have ε4 Re2

Fr22
= ε2 gH2

Uν2
= O(ε), since ν2 = O(ε). Thus,

we define β0 = ε3(Re2/Fr
2
2). β0 is of order 1, so the equation for the pressure reads

∂z2
p̃2 = −εβ0 + O(ε4). (2.40)

The mass equation for the second layer comes from the integration of the divergence-free

equation. It is necessary to know the velocity u2 that we calculate from (2.38). In order to

establish the integrations limits, recall that for the non-dimensional variables, z2 ∈ [Iε, ηε]

(see Section 2.1).

We integrate the incompressibility equation to get

∂x

∫ ηε

Iε

ũ2 dz2 − ũ2 |ηε ∂xηε + ũ2 |Iε
∂xIε + w̃2 |ηε − w̃2 |Iε

= 0,

that is

∂x

∫ ηε

Iε

ũ2 dz2 − 1

ε
ũ2 |ηε ∂x(b + h̃1) − ũ2 |ηε ∂xh̃2 +

1

ε
ũ2 |Iε

∂x(b + h̃1) + w̃2 |ηε − w̃2 |Iε
= 0.

Taking into account the kinematic conditions on the free surface and on the interface

(2.16) and (2.14), we write

−1

ε
ũ2 |ηε ∂x(b + h̃1) − ũ2 |ηε ∂xh̃2 + w̃2 |ηε =

1

ε3
∂t1 (b + h̃1) + ∂t2 h̃2

and

1

ε
ũ2 |Iε

∂x(b + h̃1) − w̃2 |Iε
= − 1

ε3
∂t1 (b + h̃1).

So, finally the mass equation for the second layer reads

∂t2 h̃2 + ∂x

∫ ηε

Iε

ũ2 dz2 = 0. (2.41)

We will use (2.38) to obtain an expression for the velocity ũ2 but first we need to know

∂xp̃2 appearing in this equation. We integrate (2.40) from z to ηε to obtain

p̃2(z2) = p̃2 |ηε − εβ0(z2 − ηε),
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we use the boundary condition at the free surface (2.15b) to write

p̃2 |ηε = εC−1
0 ∂2

xηε. (2.42)

Thus, p̃2(z2) = εC−1
0 ∂2

xηε − εβ0(z2 − ηε) and

∂xp̃2 = ε
(
C−1

0 ∂3
xηε + β0∂xηε

)
(2.43)

does not depend on z2.

Now, we integrate (2.38) from z to ηε to find

∂z2
ũ2 = ∂z2

ũ2 |ηε + ∂xp̃2 (z2 − ηε) = ∂xp̃2 (z2 − ηε) + O(ε2),

where we have observed that (2.15a) gives ∂z2
ũ2 |ηε = O(ε2).

We integrate again to get ũ2, now from Iε to z2, so

ũ2 = ũ2 |Iε
+

1

2
∂xp̃2

(
(z2 − ηε)

2 − h̃2
2

)
. (2.44)

The value of ũ2 |Iε
can be found in terms of the pressure p̃2. In fact, note that from

previous equation ∂z2
ũ2 |Iε

= −h̃2∂xp̃2. On the other hand, using the boundary condition

at the interface (2.20), we have

∂z2
ũ2 |Iε

= −c0Re2
1

ε

(
ũ1 |I − ε2ũ2 |Iε

)
, (2.45)

then

ũ2 |Iε
=

1

ε2
ũ1 |I − 1

εc0Re2
h̃2∂xp̃2. (2.46)

Thus, the velocity ũ2 is

ũ2 =
1

ε2
ũ1 |I + ∂xp̃2

(
− h̃2

εc0Re2
+

1

2

(
(z2 − ηε)

2 − h̃2
2

))
. (2.47)

Finally, we write the equation for h̃2 by using (2.41) and (2.47):

∂t2 h̃2 + ∂x

(
1

ε2
h̃2ũ1

)
+ ∂x

(
h̃2

2

(
− 1

εc0Re2
− 1

3
h̃2

)
∂xp̃2

)
= 0, (2.48)

where the pressure term is given by (2.43).

Completion of the equation for layer 1

Recall that in (2.35) we must replace the values of ∂x(p2|Iε
) and u1|I . We find the value of

the velocity at the interface by using the boundary conditions; from (2.46) we write

u1|I =
εh2

c0Re2
∂xp2 + O(ε2), (2.49)
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but taking into account (2.43), we can write that

u1|I =
εh2

c0Re2

(
C−1

0 ∂3
x(b + h1) + β0∂x(b + h1)

)
+ O(ε2). (2.50)

Then, we get from (2.36)

u1|b = γ(h1)ū1 + O(ε2) with γ(h1) =

(
1 +

εα0

3ρ1μ01
h1

)−1

(2.51)

and the final equation for layer 1 reads

∂t1 (h1ū1) + ∂x(h1ū
2
1) +

1

2

1

Fr21
∂xh

2
1 +

1

Fr21
h1∂xb − 4εμ01∂x(h1∂xū1)

+
r

Re2
h1

(
C−1

0 ∂3
x(b + h1 + εh2) + β0∂x(εh2)

)
− h1μ01C

−1
I0∂3

x(b + h1)

+
r

Re2
εh2

(
C−1

0 ∂3
x(b + h1) + β0∂x(b + h1)

)
+

1

ρ1
α0γ(h1)ū1 = 0. (2.52)

3 Final model

In this section, we expose and discuss the final model obtained in the previous section as

a formal second-order approximation of the initial problem defined by (2.1)–(2.8). First,

we will write this system in dimensional variables and then study the energy balance of

the model.

The final deduced model is given in non-dimensional variables by (2.32), (2.43), (2.48)

and (2.52). Note that the model contains three equations, mass and momentum for the

shallow water flow and the mass equation for the thin film flow.

Next, we present the system in dimensional variables:

(M1) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th1 + ∂x(h1u1) = 0,

∂t(h1u1) + ∂x(h1u1
2) +

1

2
g∂xh

2
1 + gh1∂xb − 4ν1∂x(h1∂xu1)

+ h1

( δ

ρ1
∂3
x(b + h1 + h2) + rg∂xh2

)
− h1

δI
ρ1

∂3
x(b + h1)

+ h2

( δ

ρ1
∂3
x(b + h1) + rg∂x(b + h1)

)
+

α

ρ1
γ(h1)u1 = 0,

∂th2 + ∂x(h2u1) + ∂x

(
−h2

2 1

ρ2

(1

c
+

1

3ν2
h2

)
∂xp2

)
= 0,

(3.1)
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with

∂xp2 = δ ∂3
x(b + h1 + h2) + ρ2g∂x(b + h1 + h2) and γ(h1) =

(
1 +

α

3ν1
h1

)−1

. (3.2)

Remark 3.1 The continuity of the tangential stress is usually considered for the interface

separating two immiscible viscous fluids and it may correspond to the most realistic case

for fluid–fluid interfaces. In our case – due to the different properties of the fluids involved

in our system – we found it more appropriate to impose a Navier-slip condition. This

condition incorporates the possibility of fluid slip at the interface with the thin lubrication

layer [2, 26, 32]. Nevertheless, we would like to know what is the influence of this change

into the model. To introduce this condition into the model, we must replace the friction

condition (2.6) by the following one:

(σ1 · nI)τ = −(σ2 · nI)τ, (3.3)

where by nI we denote the unitary normal vector to the interface pointing from layer 1

to layer 2. However, we also need an additional condition. When the continuity of the

tangential stress is considered, the continuity of velocities at the interface is also usually

imposed [17, 29, 31],

u1 = u2 at z = I(x, t). (3.4)

By imposing this condition, we obtain the model (M1) without the term ∂x(−h2
2

1
ρ2

1
c
∂xp2)

in the third equation of (3.1). Note that formally it corresponds to impose an

infinity friction coefficient, which implies the continuity of the velocity at the

interface.

3.1 Energy of the model

In this subsection, we prove that the model (M1) admits a dissipative energy inequality

up to a second-order term. Then, we propose a variation of this model, called (M2). The

objective is to obtain a model provided with an exact energy balance, as we expose later

in Proposition 3.1. The idea of the modification is to change the value of the velocity of

layer 1 at the interface written in terms of the pressure p2.

In order to complete the equation for layer 1, the last step on the derivation has been

to replace in the integrated momentum equation the values of u1|I and u1|b , according

to (2.50) and (2.51). As a variation of the model, we propose to change the value of

u1|I to also consider the terms of order ε2 coming from ∂xp2. Thus, from (2.43) we

write

∂xp2 = C−1
0 ∂3

x(b + h1 + εh2) + β0∂x(b + h1 + εh2).

Then, from (2.49) we deduce the value for the velocity u1|I:

u1|I =
εh2

c0Re2

(
C−1

0 ∂3
x(b + h1 + εh2) + β0∂x(b + h1 + εh2)

)
.
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The final system obtained in this case reads as follows:

(M2) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th1 + ∂x(h1u1) = 0,

∂t(h1u1) + ∂x(h1u1
2) +

1

2
g∂xh

2
1 + gh1∂xb − 4ν1∂x(h1∂xu1)

+ h1

( δ

ρ1
∂3
x(b + h1 + h2) + rg∂xh2

)
− h1

δI
ρ1

∂3
x(b + h1)

+ h2

( δ

ρ1
∂3
x(b + h1 + h2) + rg∂x(b + h1 + h2)

)
+

α

ρ1
γ(h1)u1 = 0,

∂th2 + ∂x(h2u1) + ∂x

(
−h2

2 1

ρ2

(1

c
+

1

3ν2
h2

)
∂xp2

)
= 0,

(3.5)

with

∂xp2 = δ ∂3
x(b + h1 + h2) + ρ2g∂x(b + h1 + h2) and γ(h1) =

(
1 +

α

3ν1
h1

)−1

. (3.6)

We have the following result:

Proposition 3.1 The models (M1) and (M2) defined by (3.1) and (3.5), respectively, admit

an entropy inequality:

∂t

(
u2

1

2
+ gh1(b +

h1

2
) + rgh2

(
b + h1 +

h2

2

))

− δ

ρ1
∂t

(
(h1 + h2)∂

2
x(b + h1 + h2) +

1

2
(∂x(h1 + h2))

2

)

+
δI
ρ1

∂t

(
h1∂2

x(b + h1) +
1

2
(∂xh1)

2

)

+ ∂x

(
h1u1

(u2
1

2
+ g(h1 + b)

)
+ rgh2u1(b + 2h1 + h2)

)

− ∂x

(
4ν1h1∂x

(u2
1

2

)
+ h2

2

1

ρ2

(1

c
+

1

3ν2
h2

)
∂x

(1

2
(δ∂2

x(b + h1 + h2)

+ ρ2g(b + h1 + h2))
2
))

− δ

ρ1
∂x

(
(h1 + h2)u1∂2

x(b + h1 + h2) − (h1 + h2)∂t(∂x(h1 + h2))
)

+
δI
ρ1

∂x

(
h1u1∂2

x(b + h1) − h1∂t(∂xh1)
)

� R. (3.7)

For model (M2), we have an exact dissipative entropy inequality, with

R = R2 = −4ν1h1(∂xu1)
2 − rg2h2

2

(1

c
+

1

3ν2
h2

)(
∂x(b + h1 + h2)

)2

− α

ρ1
γ(h1)u

2
1.
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For model (M1), we have an approximated dissipative entropy inequality, with

R = R2 + rgu1∂x

(
h2

2

)
+

δ

ρ1
u1h2∂3

x (h2) .

Proof. First, we multiply the momentum equation by u1 and use the mass conservation

equation of the first layer for simplification. Then, we obtain

∂t

(
u2

1

2
+ gh1

(
b +

h1

2

))
+ ∂x

(
h1u1

(u2
1

2
+ g(h1 + b)

))
− ∂x

(
4ν1h1∂x

(u2
1

2

))

+
δ

ρ1
h1u1∂3

x(b + h1 + h2) − δI
ρ1

h1u1∂3
x(b + h1) +

δ

ρ1
h2u1∂3

x(b + h1 + ξh2)

+
δ

ρ1
∂th2∂2

x(b + h1 + h2) +
δ

ρ1
∂x(h2u1)∂

2
x(b + h1 + h2)

+ rgh1u1∂x(h2) + rgh2u1∂x(b + h1 + ξ h2) = −4ν1h1(∂xu1)
2 − α

ρ1
γ(h1)u

2
1, (3.8)

where the coefficient ξ = 0 for model (M1) and ξ = 1 for model (M2).

Second, we multiply the equation for the thin film flow by δ∂2
x(b+h1+h2)+ρ2g(b+h1+h2)

to obtain

∂t

(
rg

(
b +

h2

2

))
+ rgh1∂th2 + rg(b + h1 + h2)∂x(h2u1)

+ δ ∂th2 ∂2
x(b + h1 + h2) + δ ∂x(h2u1)∂

2
x(b + h1 + h2)

− ∂x

(
h2

2

1

ρ2

(1

c
+

1

3ν2
h2

)
∂x

(1

2
(δ∂2

x(b + h1 + h2) + ρ2g(b + h1 + h2))
2
))

= −h2
2

1

ρ2

(1

c
+

1

3ν2
h2

)(
δ∂3

x(b + h1 + h2) + ρ2g∂x(b + h1 + h2)
)2

. (3.9)

We use the mass conservation equation to write

u1h1∂xh2 + h1∂th2 = ∂x(rgu1h1h2) − ∂x(h1u1)h2 + h1∂th2 = ∂x(rgu1h1h2) + ∂t(h1h2), (3.10)

and to develop the following product affecting the terms with δI:

∂x(h1u1)∂
2
xh1 = −∂t(h1∂2

xh1) + h1∂t(∂
2
xh1) = −∂t(h1∂2

xh1) + ∂x(h1∂t∂xh1) − 1

2
∂t((∂xh1)

2).

(3.11)

We make similar calculations for the term with δ.

Finally, by adding (3.8) and (3.9), and taking into account (3.10) and (3.11), we obtain

the entropy inequality (3.7).

�

Remark 3.2 For model (M1), we obtain a dissipative entropy inequality, up to the term

rg u1∂xh
2
2 +

δ

ρ1
u1h2∂3

x (h2) .
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It is of the order of ε2 because we assumed h2 to be of the order of ε.

�

4 Numerical tests

We present in this section two academic tests (Sections 4.2 and 4.3). In the first test,

a comparison with the numerical results obtained by the viscous bilayer shallow water

model proposed in [20] is presented. In the second test, the objective is to show some of

the characteristic situations that can be studied with the proposed model. Concretely, we

simulate the problem of a pollutant dispersion near the coast. We study the influence of

the friction coefficient in order to determine the coastal area affected by the pollutant. As

previously, in Subsection 4.1, we present a numerical scheme to discretize the proposed

model (3.1)–(3.2).

4.1 Numerical scheme

Before describing the numerical scheme, we observe that the proposed model (3.1)–(3.2)

can be written as follows:

∂tW + ∂xF(W ) = S1(W )∂xb + ∂x(D(W )∂xS2(W )) + Sδ,1(W ) + Sδ,2(W ) + SF (W ), (4.1)

where if we denote q1 = u1h1, then

W =

⎡
⎣ h1

q1

h2

⎤
⎦ , F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2
1

h1
+

1

2
gh2

1 + rgh1h2 + ξ
rg

2
h2

2

h2
q1

h1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, S1(W ) =

⎡
⎣ 0

−g(h1 + r h2)

0

⎤
⎦ ,

D(W ) =

⎡
⎢⎢⎣

0 0 0

0 4ν1h1 0

0 0 gh2
2

(
1

c
+

h2

3ν2

)
⎤
⎥⎥⎦ , S2(W ) =

⎡
⎢⎣

0
q1

h1

b + h1 + h2

⎤
⎥⎦ ,

Sδ,1(W ) =

⎡
⎢⎢⎣

0

−δ̄ r

(
(h1 + h2)∂

3
x(b + h1) + (h1 + ξ h2)∂

3
x(h2)

)
+ δ̄Ih1∂3

x(b + h1)

0

⎤
⎥⎥⎦ ,

Sδ,2(W ) =

⎡
⎢⎢⎣

0

0

δ̄∂x

(
h2

2

(
1

c
+

h2

3ν2

)
∂3
x(b + h1 + h2)

)
⎤
⎥⎥⎦ , SF (W ) =

⎡
⎢⎣

0

−γ1(h1)
q1

h1

0

⎤
⎥⎦ ,
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and

γ1(h1) =
3 ᾱ ν1

3ν1 + ᾱh1
, ᾱ =

α

ρ1
, δ̄ =

δ

ρ2
, δ̄I =

δI
ρ1

.

Here, the coefficient ξ = 0 corresponds to model (M1) and ξ = 1 to model (M2).

The Jacobian matrix of F(W ) is

A(W ) =

⎡
⎢⎢⎣

0 1 0

−u2
1 + g(h1 + rh2) 2u1 gr(h1 + ξh2)

−u1
h2

h1

h2

h1
u1

⎤
⎥⎥⎦ . (4.2)

Note that when h1 = 0, we set u1 = q1/h1 = 0. Then, the third component of the flux,

(h2 q1/h1), is zero and consequently their derivatives are also zero. That is, in the case that

h1 = 0, the third row of A(W ) is set to zero. The eigenvalues of A(W ) are

λ1 = u1 − C, λ2 = u1, λ3 = u1 + C,

with

C =

√
gh1(1 − r) + rgh1

(
1 +

h2

h1

)2

+ rg
h2

2

h1
(ξ − 1).

Remark 4.1 Let us remark that for the characteristic variables, we have that h2 = εh1. If

we denote ε = h2/h1, then

C =
√

gh1(1 − r) + rgh1(1 + ε)2 + rgh1ε2(ξ − 1).

Thus, when ε tends to zero, we have that C tends to
√
gh1. That is, the eigenvalues coincide

with those of the transport matrix for the shallow water equations with a passive scalar

transport equation.

�

For the discretization of the system, we use a finite volume method. Computing cells

Ii = [xi−1/2, xi+1/2] are considered. For simplicity, we suppose that these cells have constant

size Δx. Let us define xi+ 1
2

= iΔx and xi = (i − 1/2)Δx, the centre of the cell Ii. Let Δt be

the time step and define tn+1 = tn + Δt, being t0 = 0.

Wn
i denotes the approximation of the cell averages of the exact solution provided by

the numerical scheme:

Wn
i

∼=
1

Δx

∫ xi+1/2

xi−1/2

W (x, tn) dx. (4.3)

The source term S(W )∂xb(x) is discretized following the ideas introduced in [5] and [22].

The discretization of B(W )∂xW first requires us to interpret this term as a Borel measure

(see [10]), depending on the choice of a family of paths linking two given states. Here,

the family of segments are considered as in [22]. We also consider a semi-discretization

in time of the friction term between the fluid and the bottom.

Let us suppose that the values Wn
i are known. In order to advance in time, we proceed

as follows:
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• First step. We define W ∗
i = [h∗

1,i q
∗
1,i h

∗
2,i]

T as

W ∗
i = Wn

i − Δt

Δx

(
DFn,+

i−1/2 + DFn,−
i+1/2

)
, (4.4)

where DFn,±
i+1/2 = DF±

i+1/2(W
n
i ,W

n
i+1) is the generalized Roe flux difference computed

using the family of segments:

DF±
i+1/2(Wi,Wi+1) =

1

2

(
F(Wi+1) − F(Wi) − S1(Wi+1/2)(bi+1 − bi) − Sδ,1,i+1/2Δx

)

±
(
Sδ,2,i+1/2 +

1

2
|Ai+1/2|ΔIW|i+1/2

+ D(Wi+1/2)
S2(Wi+1) − S2(Wi)

Δx

)
, (4.5)

where |Ai+1/2| is the absolute value of the Roe matrix Ai+1/2,

Wi+1/2 =
Wi + Wi+1

2
, ΔIW|i+1/2

=

⎡
⎣ bi+1 + h1 i+1 − bi − h1 i

q1 i+1 − q1 i

h2 i+1 − h2 i

⎤
⎦ ,

Sδ,1,i+1/2 =

⎡
⎢⎢⎣

0

−δ̄ r

(
(h2,i+1/2 + h1,i+1/2)φi+1/2(b + h1) + (h1,i+1/2 + ξ h2,i+1/2)φi+1/2(h2)

)
0

⎤
⎥⎥⎦

+

⎡
⎣ 0

δ̄Ih1,i+1/2 φi+1/2(b + h1)

0

⎤
⎦ ,

Sδ,2,i+1/2 =

⎡
⎢⎢⎣

0

0

δ̄h2
2,i+1/2

(
1

c
+

h2,i+1/2

3ν2

)
φi+1/2(b + h1 + h2)

⎤
⎥⎥⎦ ,

and

φi+1/2(ω) =
1

Δx3
(ωi+2 − 3ωi+1 + 3ωi − ωi−1).

• Second step. Semi-discretization in time of the friction term. We define

Wn+1
i = [h∗

1,i q
n+1
1,i h∗

2,i]
T ,

where

qn+1
1,i =

q∗
1,i

1 + Δtγ1(h
∗
1)/h

n
1

.

The scheme is L∞-stable, for small values of δ, under the Courant-Friedrich-Levy (CFL)

condition
Δt

Δx
max

i

(
|q1 i|
h1 i

+
√

gh1 i + ‖D(Wi)‖L∞/Δx

)
� 1.
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4.2 Test 1: comparison with a viscous bilayer shallow water model

In this first test, we compare the numerical results of the model proposed in this paper

with the two-layer viscous shallow water model proposed in [20]. The objective of this

test is to show the difference between the proposed model and the two-layer shallow

water equations. To deduce this bilayer shallow water model, two immiscible flows with

different physical properties have been considered. It includes viscosity and friction effects

on the bottom and at the interface level. It is obtained from an asymptotic analysis of non-

dimensional and incompressible Navier–Stokes equations with hydrostatic approximation.

In order to obtain the viscous effect into the model, a second-order approximation is also

considered. The model proposed in [20] reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th1 + ∂x(h1u1) = 0,

∂t(h1u1) + ∂x(h1u1
2) +

1

2
g∂xh

2
1 + gh1∂xb + rgh1∂xh2

= −γ−1 c r

(
β
ᾱh1

6ν1
u1 + (u1 − u2)

)
+ δ̄Ih1∂3

x(b + h1)

−βᾱ

(
u1 + γ−1r

ᾱh1

6ν1
(u1 − u2)

)
+ 4ν1∂x(h1∂xu1),

∂th2 + ∂x(h2u2) = 0,

∂t(h2u2) + ∂x(h2u2
2) +

1

2
g∂xh

2
2 + gh2∂x(b + h1)

= γ−1 c

(
β
ᾱh1

6ν1
u1 + (u1 − u2)

)
+ 4ν2∂x(h2∂xu2) + δ̄h2∂3

x(b + h1 + h2),

(4.6)

where

ᾱ =
α

ρ1
, β =

(
1 +

ᾱ

3ν1
h1

)−1

, γ = 1 +
c

3

(
r
h1

ν1
+

h2

ν2

)
.

Recall that c is the coefficient linked to the friction term between both layers (see equation

(2.6)), α defines the friction coefficient between the first layer and the bottom (see equation

(2.8)), δ̄ = δ/ρ2 and δ̄I = δI/ρ1, with δ and δI the surface and interfacial tension

coefficients, respectively.

In order to make a comparison of the numerical results of both models, we consider a

very simple test. The domain is set to [0, 25] and is discretized with 200 points. The final

time is t = 2.5 s. A flat bottom is considered, b(x) = 0, and the initial conditions are (see

Figure 2): q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) = 1, h2(x, 0) =

{
0.04 if x ∈ [12, 13],

0 otherwise.

No flux boundary conditions are considered, i.e. ∂xhi = 0, ∂x(hiui) = 0 for i = 1, 2. From

a numerical point of view, they are imposed by considering a ghost cell where the value

of the unknowns coincides with the value at the boundary cell. Let us remark that at the
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b
b+h1

b+h1+h2

q1

Figure 2. (Colour online) Test 1. Initial conditions for test 1 with flat solid surface, a local

perturbation in h2 and null fluxes for both fluids.

contact points between the pollutant drop and the liquid, it is not necessary to use any

special numerical treatment since a Navier slip is incorporated in (3.1)–(3.2).

For this test, the friction coefficients are set to c = 1 and ᾱ = 10−3. We set ρ1 = 1, 027,

corresponding to the sea water, and ρ2 = 920, δ = 0.033, corresponding to the density

and tension surface coefficient of a marine residual fuel. The interfacial tension coefficient

is set to δI = 0.027, corresponding to an oil/sea-water interface (see [16]). In the areas

where h2 = 0, we set δI = 0.072, corresponding to the sea-water surface tension.

Then, we have

r = 0.8958, δ̄ =
δ

ρ2
= 0.3587 × 10−4, δ̄I =

δI
ρ1

=

{
0.2629 × 10−4 if h2 > 0,

0.7010 × 10−4 if h2 = 0.
(4.7)

The water viscosity and the pollutant viscosity are set to

ν1 = 10−6, ν2 = 5.9783 × 10−4. (4.8)

In Figure 3, the evolution of the layers for the proposed model, coupling Saint Venant

and Reynolds lubrication equations (SVR in what follows), is compared with the viscous

bilayer shallow water system (2SW in what follows). We can observe that the evolution

of the upper layer is completely different for these two models. The layer on the top is

supposed to be a thin film flow, so the velocity of this layer must be lower than the

velocity of the water fluid considered on the shallow water layer. These hypotheses on the

relative velocities and thicknesses of the layers have been taken into account to deduce

the SVR model. It corresponds to the behaviour that we observe in this test, where

the pollutant drop remains enclosed over the water layer (see Figure 3, left column). In

Figure 4, a zoom of the evolution of the free surface near the pollutant is presented. On

the contrary, if we look at the 2SW model solutions (Figure 3, right column), we can see
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(a) t

b
b+h1

b+h1+h2

q1

= 0.5 s (SVR) (b) t = 0.5 s (2SW)

(c) t = 1 s (SVR) (d) t = 1 s (2SW)

(e) t = 2.5 s (SVR) (f) t = 2.5 s (2SW)

Figure 3. (Colour online) Test 1. Evolution of water and pollutant layers at time t ∈ {0.5, 1, 2.5}
s. Left: proposed model (SVR). Right: viscous bilayer shallow water system (2SW).

that the velocity of the pollutant layer is very similar to the velocity of the water layer,

which makes the pollutant to spread all over the water layer. From the physical point

of view, this is the situation that one finds when the two fluids have similar thicknesses

but not for the case studied here. Let us remark that to derive the 2SW model, the same

shallow water assumptions as for both layers, with different density and viscosity, have

been considered.

With this numerical test, we point out that the 2SW model is not well adapted to study

the evolution of a thin pollutant layer over water. It is necessary to consider a Reynolds

lubrication theory to model the evolution of the thin film flow.
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(a) t = 0.1 s
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(b) t = 0.2 s
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(c) t = 0.3 s
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(d) t = 0.5 s
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(e) t = 1 s
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(f) t = 2.5 s

b+h1

b+h1+h2

Figure 4. (Colour online) Test 1. Details of the dynamics of the free surface centred around the

pollutant, on the region 11 < x < 14, for water and pollutant layers for the (SVR) model at time

t ∈ {0.1, 0.2, 0.3, 0.5, 1, 2.5} s.

4.3 Test 2: pollutant dispersion near the coast

The aim of this test is to show some of the characteristic situations in which the proposed

model can be used. Concretely, we study the dispersion of a pollutant near the coast, for

an academic case. The domain is [0, 12] and it is discretized with 200 points. The bottom

is defined by the following function:

b(x) =

⎧⎨
⎩

e
−(x−8)2

10 if x � 8,

1 + e
−(x−20)2

50 − e
−122

50 if x > 8.
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b
b+h1

b+h1+h2
q1

Figure 5. (Colour online) Test 2. Initial condition for test 2 with bottom surface simulating a

coast profile, two pollutant sticks over water and null fluxes for both fluids.

As an initial condition, we set a horizontal free surface and two pollutant slicks (see

Figure 5). Concretely,

q1(x, 0) = q2(x, 0) = 0, h1(x, 0) = max(0.78 − b(x), 0) − h2(x, 0),

h2(x, 0) =

{
10−2 max(sin(π x), 0) if x ∈ [2, 5],

0 otherwise.

As a boundary condition, the velocity on x = 0 is imposed:

u1(0, t) = 0.4 sin

(
t π

5

)
. (4.9)

The evolution of the water surface and the pollutant slick is computed for t ∈ [0, 8] s. As

in the first test, the values of r, ν1, ν2, δ̄ and δ̄I are defined by (4.7) and (4.8). We also

set the friction coefficient between the fluid and the bottom as ᾱ = 10−3. In this test, we

study the influence of c – the friction coefficient between the pollutant and the water –

on the spread of the pollutant over the coast. We consider several values of c in [10−3, 1].

For the numerical simulation, we apply the wet/dry numerical treatment proposed

in [3].

In Figure 6, the fluid and pollutant evolution are presented for t ∈ { 2, 3, 4, 5, 7, 8} s

with c = 10−1. This period includes one period wave of the fluid induced by the boundary

condition imposed for u1 (equation (4.9)).

In Figures 6(a) and (b), we can observe how first the pollutant slicks are transported

separately. Note that at these times we are simulating that the tide rises, so the velocity of

the water layer is higher at the left of the domain than at the right. Consequently, the first

oil slick moves with a higher velocity than the second one. This leads both oil slicks to

connect some time later, as we can observe in Figures 6(c) and (d). The maximum imposed

velocity at the boundary condition is reached at t = 2.5 s. At t = 5 s, the imposing velocity

turns negative. Then, in Figures 6(e) and (f), we observe that the water comes back, as

well as the transport of the oil pollutant, which has been spread near the coastline.
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(a) t = 2 s (b) t = 3 s

(c) t = 4 s (d) t = 5 s

(e) t = 7 s (f) t = 8 s

b
b+h1

b+h1+h2

q1

Figure 6. (Colour online) Test 2. Evolution of water and pollutant layers at time

t ∈ {2, 3, 4, 5, 7, 8} s for the proposed model.

In Figure 7, the simulation at t = 8 s for c ∈ {10−3, 10−2, 10−1, 1} is presented. We

check the influence of the friction coefficient on the range of the pollutant spread. We can

observe that the spread of the pollutant layer is not linearly dependent on the friction

coefficient c. Moreover, when the value of c is smaller, the pollutant is nearest to the

shoreline.

In order to study the influence of c, we present in Figure 8 the values of xmax, the

maximum value of x such that h2(x, t) > 0, for c ∈ {j × 10−3, j × 10−2, j × 10−1, 1},
with j = 1, . . . , 9. We can observe that when c ∈ [0.1, 1], xmax is almost constant. When

c ∈ [10−2, 10−1], the value of xmax begins to increase. And for c � 10−2, the value of

xmax increases with a large slope. We can conclude that the spread of the pollutant layer,
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(a) t = 8 s, c = 1 (b) t = 8 s, c = 10−1

(c) t = 8 s, c = 10−2 (d) t = 8 s, c = 10−3

b

b+h1+h2

b+h1

q1

Figure 7. (Colour online) Test 2. Water and pollutant profiles for fixed time t = 8 and for several

values of the friction coefficient c ∈ {1, 10−1, 10−2, 10−3} for the proposed model.
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Figure 8. Test 2. Maximum value of x such that h2(x, t) > 0 (denoted by xmax) in terms of the

friction coefficient c ∈ {j × 10−3, j × 10−2, j × 10−1, 1} for j = 1, . . . , 9.
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as a function of c, can be approximated by a function with a vertical and a horizontal

asymptote.

Moreover, since the model has been deduced by supposing that h2/h1 = O(ε) (if h1 > 0),

we have checked if this condition is verified in the numerical simulations, with ε = 10−1.

We obtain that h2/h1 = O(ε) in the zones where h1 > 0 for c � 3 × 10−3. For c < 3 × 10−3,

it is not verified near the shoreline.

Note that even if the numerical simulation for c = 10−3 and c = 2 × 10−3 does not

verify that h2/h1 = O(ε) in all the points of the domain, we observe in Figure 8 that the

values of xmax are reasonable in comparison with the behaviour observed for the values

of xmax corresponding to c � 3 × 10−3.

5 Conclusions

A new bilayer model is presented in this paper to simulate the transport of a viscous thin

layer of fluid over water. For this aim, two kinds of equations have been considered for

each layer: the Reynolds lubrication equation to model the upper layer and a shallow

water model to describe the evolution of the water layer. An analysis of two different scales

in space and time is carried out in the derivation of the coupling model. The model can

be applied to simulate a transport of a viscous pollutant over water. We have proved that

the model verifies, up to a second-order term, a dissipative entropy inequality. Moreover,

we have proposed a correction of the model that takes into account the second-order

extension for the pressure law. This version of the model verifies an exact dissipative

entropy inequality. Finally, some academic numerical tests are presented. The objective

of the first test is to show the difference between the proposed model and the bilayer

shallow water equations. We have observed that the bilayer shallow water model is not

well adapted to study the evolution of a thin pollutant layer over water. It is necessary

to consider a Reynolds lubrication theory to model the evolution of the thin film flow,

as we consider in the proposed model. In the second test, we simulate the problem of

a pollutant dispersion near the coast. In this test, we have studied the influence of the

friction coefficient on the amplitude of the coastal area affected by the pollutant.
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