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Abstract
An usual reinsurance policy for insurance companies admits one or two layers of the payment
deductions. Under optimality criterion of minimising the Conditional Tail Expectation (CTE) risk
measure of the insurer’s total risk, this article generalises an optimal stop-loss reinsurance policy to an
optimal multi-layer reinsurance policy. To achieve such optimal multi-layer reinsurance policy, this
article starts from a given optimal stop-loss reinsurance policy f(⋅). In the first step, it cuts down the
interval [0, ∞) into intervals [0, M1) and [M1, ∞). By shifting the origin of Cartesian coordinate system
to (M1, f(M1)), and showing that under the CTE criteria f xð ÞI½0;M1Þ xð Þ + f M1ð Þ + f x�M1ð Þð ÞI½M1 ;1Þ xð Þ
is, again, an optimal policy. This extension procedure can be repeated to obtain an optimal k-layer
reinsurance policy. Finally, unknown parameters of the optimal multi-layer reinsurance policy are
estimated using some additional appropriate criteria. Three simulation-based studies have been con-
ducted to demonstrate: (1) the practical applications of our findings and (2) how one may employ other
appropriate criteria to estimate unknown parameters of an optimal multi-layer contract. The multi-layer
reinsurance policy, similar to the original stop-loss reinsurance policy is optimal, in a same sense.
Moreover, it has some other optimal criteria which the original policy does not have. Under optimality
criterion of minimising a general translative and monotone risk measure ρ(⋅) of either the insurer’s total
risk or both the insurer’s and the reinsurer’s total risks, this article (in its discussion) also extends a given
optimal reinsurance contract f(⋅) to a multi-layer and continuous reinsurance policy.
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1. Introduction

Designing an optimal reinsurance policy, in some sense, is one of the most attractive aspects in
actuarial science. Reinsurance is a form of an insurance contract, according to which the reinsurer
accepts to cover a portion of an insurer’s risk by receiving a reinsurance premium. Therefore, both
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reinsurance and insurance companies try to design an optimal reinsurance policy to improve their
ability to managing their risks under a certain criteria, e.g., increasing their surplus/wealth of
company, decreasing the ruin probability, etc.

Several authors considered the problem of designing an optimal reinsurance policy under a certain
optimal criteria. Surprisingly, in most of the studies the stop-loss reinsurance policy (or some its
modification) is established as an optimal policy. For instance, Borch (1960) proved that, under the
variance retained risk optimal criteria and in the class of reinsurance policies with an equal rein-
surance premium, the stop-loss reinsurance minimises such variance. Under Borch’s (1960) class of
reinsurance policies, Hesselager (1990) showed that the stop-loss reinsurance is an optimal policy
which provides the smallest Lundberg’s upper bound for the ruin probability. Optimality of the
one-layer stop-loss contract under the minimisation of the ruin probability criteria and several
premium principles has been established by Kaluszka (2005). Passalacqua (2007) studied the impacts
of multi-layer stop-loss reinsurance contract on the valuation of risk capital (assessed under the
Solvency II framework) for credit insurance. Cai et al. (2008) showed that the one-layer stop-loss
contract is optimal whenever either both the ceded and the retained loss functions are increasing
or the retained loss function is increasing and left-continuous. Kaluszka & Okolewski (2008)
established that the one-layer stop-loss contract is an optimal contract under the maximisation of the
expected utility, the stability and the survival probability of the cedent. Tan et al. (2011) and Chi &
Tan (2011) showed that under the expectation premium principle assumption and the Conditional
Tail Expectation (CTE) minimisation criteria the stop-loss reinsurance contract is optimal. Porth
et al. (2013) employed an empirical reinsurance model (introduced by Weng, 2009) to show that,
under the standard deviation premium principle and consistency with market practice, a one-layer
stop-loss reinsurance contract is optimal. In a situation that both the ceded and the retained loss
functions are constrained to be increasing and under the variance premium principle assumption,
Chi (2012a, 2012b) showed that one-layer stop-loss reinsurance is always optimal over both the
Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR) criteria. Ouyang & Li (2010)
constructed a multi-layer reinsurance policy to achieve sustainable development of an agricultural
insurance policy in the sense of adverse selection and mortal hazard problems. In 2012,
Dedu generalised the stop-loss reinsurance to a multi-layer reinsurance policy. In the first step, she
considered a certain class of multi-layer reinsurance policies with some unknown parameters. An
optimal reinsurance policy, in such class, have been obtained by estimating unknown parameters
such that the VaR and the CTE of the insurer’s total risk have been minimised. Chi (2012a, 2012b)
showed that under minimising the risk-adjusted value of an insurer’s liability and the VaR (or the
CVaR) criteria the two-layer reinsurance contract is optimal under the Dutch premium principle
assumption. Cortes et al. (2013) considered a multi-layer reinsurance contract consisting of a fixed
number of layers. Then, they determined an optimal multi-layer contract such that for a given
expected return the associated risk value is minimised. Chi & Tan (2013) established that a one-layer
stop-loss contract is always optimal over both the VaR and the CVaR criteria and the prescribed
premium principles. Cai & Weng (2014) showed that under risk margin associated with an expectile
risk measure criteria, a two-layer reinsurance contract minimises the liability of an insurer for a
general class of reinsurance premium principles. Panahi Bazaz & Payandeh Najafabadi (2015)
estimated parameters of a one-layer reinsurance policy such that a convex combination of the CTE
of both the insurer’s and reinsurer’s random risks is minimised. Optimality of the stop-loss contract
under distortion risk measures and premiums has been established by Assa (2015). Zhuang et al.
(2016) showed that in a situation that the premium budget is not sufficiently high enough, under the
CVaR optimality criteria, the optimal reinsurance policy will change from the stop-loss contract to
a one-layer stop-loss. Payandeh Najafabadi & Panahi Bazaz (2016) considered a co-reinsurance
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contract which is a combination of several reinsurance contracts. Using a Bayesian approach
parameters of co-reinsurance contract have been estimated.

In order to exclude the moral hazard, an appropriate reinsurance contract has to assign increasing
functions to both insurer and reinsurer portions. On the other hand, reported claims in insurance industry
have the property that higher claim size is less frequent with more severe probability of loss, whereas lower
claim sizes are more frequent with less severe probability of loss. Unfortunately, the stop-loss reinsurance
contract despite several well-known properties does not consider these two important facts.

This article considers minimising the CTE risk measure of the insurer’s total risk as an optimal criterion
to design an optimal reinsurance contract. Then, it introduces an algorithm which generalises a given
optimal stop-loss policy to a multi-layer optimal reinsurance policy. To achieve such optimal multi-layer
reinsurance policy, this article starts from a given optimal stop-loss reinsurance policy f(⋅). In the
first step, it cuts down the interval [0, ∞) into intervals [0, M1) and [M1, ∞). By shifting the origin
of Cartesian coordinate system to (M1, f(M1)), it shows that under the CTE criteria,
f xð ÞI½0;M1Þ xð Þ + f M1ð Þ + f x�M1ð Þð ÞI½M1;1Þ xð Þ is, again, an optimal policy. This extension procedure can
be repeated to obtain an optimal k-layer reinsurance policy. Finally, unknown parameters of the multi-
layer reinsurance policy are estimated using some additional appropriate criteria. Practical application
of our findings have been shown through a simulation study. The multi-layer reinsurance policy, similar
to the original stop-loss reinsurance policy is optimal, in a same sense. Moreover, it involves some other
optimal criteria which the original policy does not have. Under optimality criterion of minimising a
general translative and monotone risk measure ρ(⋅) of either the insurer’s total risk or both the insurer’s
and the reinsurer’s total risks, this article (in its discussion) also extends an optimal reinsurance contract
f(⋅) to an optimal multi-layer and continuous reinsurance policy.

This article is organised as the following. Section 2 collects some elements that play vital roles in the
rest of this article. Moreover, section 2 presents an algorithm that extends a given optimal stop-loss
reinsurance policy to an optimal multi-layer policy. Section 3 describes three simulation-based
studies illustrating the practical application of our results. Parameters of the optimal multi-layer
contract, for each simulation study, have been estimated using an additional appropriate criteria.
In discussioning results of this article (from two different senses) extends an optimal reinsurance
contract f(⋅), under a general translative and monotone risk measure ρ(⋅), to an optimal multi-layer
and continuous reinsurance policy.

2. Preliminary

Suppose continuous and non-negative random variable X stands for the aggregate claim initially assumed
by an insurer. In addition, suppose that random claimXwith a cumulative distribution function FX(t) and
a survival function FXðtÞ, and a density function fX defines on the probability space ðΩ;F ;PÞ; where
Ω = [0,∞) and F is the Borel σ-field onΩ. Now, letXI andXR (orXR = h(X)), respectively, stand for the
insurer’s and the reinsurer’s risk portions from random claim X, such that X = XI+XR and 0≤XI &
XR = h(X)≤X. Under this presentation, the total risk of the insurance company can be restated as

ThðXÞ=XI + πXh

=X� hðXÞ + πXh ð1Þ

where h(⋅) is a functional form of a reinsurance contract and πXh stands for a reinsurance premium.
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Now, we collect some elements that play vital roles in the rest of this article.

Definition 1. The risk measure ρ(⋅) is called translative and monotone if and only if ρ(X + c) =
ρ(X) + c and ρ(X)≤ ρ(Y) whenever P(X≤Y) = 1 and c 2 R.

In the sense of the above definition a wide class of risk measures, such as coherent, spectral, dis-
tortion, Quantile-based and Wang, are translative and monotone risk measures, see Denuit et al.
(2006) for other possible classes of translative and monotone risk measures.

Consider the following class of reinsurance policies:

C= hðXÞ : both hðXÞ and X� hðXÞ are non-decreasing in X;f

0≤hðXÞ≤X ; and πXh = constant
� ð2Þ

where πXh stands for the reinsurance premium under a reinsurance contract h(⋅).

Suppose that f(⋅) in class of reinsurer contracts C, given by (2), minimises a given translative and
monotone risk measure ρ(⋅) of the total risk of insurance company, i.e., f ðXÞ � argmin

h2C
ρ ThðXÞð Þ.

Now one may cut down the interval [0, ∞) into intervals [0, M1) and [M1, ∞) and shift the
origin of Cartesian coordinate system to (M1, f(M1)), see Figure 1(a) for an illustration. Again, in
the new Cartesian coordinate system, the shifted reinsurance contract f(⋅) is an optimal contract
and, in the old Cartesian coordinate system, the reinsurance contract g(x)= f(x)I[0,M1)(x) +
f M1ð Þ + f x�M1ð Þð ÞI½M1 ;1Þ xð Þ is an appropriate contract. Since f(⋅) is an optimal contract, optimality
of g(⋅) arrives by showing that ρ(Tg(X))≡ ρ(Tf(X)). Unfortunately proof of such identity is not
available for general translative and monotone risk measures. Hopefully, Tan et al. (2011,
theorem 3.1) showed that under the CTE criteria as far as gð�Þ 2 C and 0≤ g(x)≤ f*(x) = max{x−dα, 0},
for a given α∈ (0, 1) and all x≥ 0, any contract g(⋅) is again optimal, i.e., ρðTgðXÞÞ � ρðTf � ðXÞÞ.
Using such seminal result, we can conclude that under the CTE minimisation criteria, the
new contract gðxÞ= f �ðxÞI½0;M1ÞðxÞ + ðf �ðM1Þ + f �ðx�M1ÞÞI½M1 ;1ÞðxÞ is optimal. Again cutting down
the interval [M1, ∞) into intervals [M1, M2) and [M2, ∞) and shifting the origin of Cartesian
coordinate system to (M2, f*(M2 −M1)), we can obtain new contract f*(x)I[0,M1)(x) +
ðf �ðM1Þ + f �ðx�M1ÞÞI½M1;M2ÞðxÞ + ðf �ðM2Þ + f �ðx�M2ÞÞI½M2 ;1ÞðxÞ which Tan et al. (2011,
theorem 3.1) warranties its optimality. Several implementation of the above procedure leads to an

dα M1 M2M1+dα M2+dα

f (x) f (M1)+f(x–M1)

f (M2)+f(x–M2)

M1 M2

(a) (b)

Figure 1. (a) Shifting the Cartesian coordinate system and finding the optimal contract in the new
Cartesian coordinate system and (b) stop-loss and an optimal and k-layer reinsurance strategies.
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optimal multi-layer reinsurance contract, under the CTE minimisation criteria. The following
algorithm provides such multi-layer contract.

Algorithm 1. Suppose XR stands for the reinsurer’s risk portion from random claim X. The
following steps design a multi-layer reinsurance policy which minimises the CTE of the insurer’s
total risk.

Step (1): A multi-layer reinsurance policy is obtained by the following iterative algorithm:

Part (1): For k≥ 2; cut down the interval [Mk, ∞) into intervals [Mk, Mk +1) and [Mk +1, ∞) and
define the reinsurer’s risk portion by

fkðXÞ= fk� 1ðXÞI½0;MkÞðXÞ + fk� 1ðMkÞ + f ðX�MkÞ½ �I½Mk ;1ÞðXÞ (3)

where f0(X) = f(X) = max{X − dα, 0};

Part (2): Go to Step 2 if a given stop criteria is met, otherwise set k = k+1 and go to Part (1)

Step (2) Part (1): The reinsurer’s risk portion under the k-layer reinsurance policy is
XR = f ðXÞI½0;M1ÞðXÞ + Pk� 1

j=1 fjðXÞI½Mj;Mj+ 1ÞðXÞ + fk� 1ðMkÞ + f ðX�MkÞ½ �I½Mk;1ÞðXÞ:

Part (2): Now estimate unknown parameters by some additional appropriate criteria (or esti-
mation methods) along the fact that the fact that E(max{X− dα, 0}) = E(XR).

Closeness to an appropriate criteria (such as an optimal ruin probability) can be considered, in
advance, as a stopping criteria in the above algorithm.

Algorithm (1) designs an optimal multi-layer reinsurance policy which the insurer’s and the rein-
surer’s portion of both companies are increasing functions in the initial insurer claim X. Moreover it
provides a sharing system such that its higher layer works appropriately for large reported claim size.

Application of Algorithm (1) leads to the following optimal k-layer reinsurance policy.

Xopt
R =

0 X< dα

X� dα dα ≤X<M1

M1 � dα M1 ≤X<M1 + dα

X� 2dα M1 + dα ≤X<M2

..

.

Mk � kdα Mk ≤X<Mk + dα

X� kdα Mk + dα ≤X

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(4)

Figure 1(b) illustrates optimal multi-layer reinsurance policy (4).

For the sake of simplicity, hereafter now, we set M�
0 : = dα; M�

1 : =M1; M�
2 : =M1 + dα and so on.

Amir T. Payandeh Najafabadi and Ali Panahi Bazaz

134

https://doi.org/10.1017/S1748499517000148 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000148


The cumulative distribution function for optimal k-layer reinsurance policy (4) can be restated as

FXopt
R

tð Þ= FX t� +M�
0

� �
I 0;M�

1 �M�
0½ Þ tð Þ + FX t +M�

2 � M�
1 �M�

0

� �� �
I M�

1 �M�
0 ; M�

3 �M�
2ð Þ+ M�

1 �M�
0ð Þ½ Þ tð Þ

+ FX t +M�
4 � M�

3 �M�
2

� �� M�
1 �M�

0

� �� �
I M�

3 �M�
2ð Þ + M�

1 �M�
0ð Þ; M�

5 �M�
4ð Þ + M�

3 �M�
2ð Þ + M�

1 �M�
0ð Þ½ ÞðtÞ

+ � � � + FX t +M�
m� 2 �

Xk =2� 2

j= 1

M�
2j + 1 �M�

2j

� �
� M�

1 �M�
0

� � !
I Pk =2� 2

j= 1

M�
2j + 1 �M�

2j

� �
+ M�

1 �M�
0ð Þ;1

� �ðtÞ
The following provides the moment generating function for the reinsurer’s risk portion from random
claim X, under optimal k-layer reinsurance policy (4).

Proposition 1. Suppose XR stands for the reinsurer’s risk portion from random claim X, under an
optimal k-layer reinsurance policy which minimises the CTE of the insurer’s total risk. Then, the moment
generating function for the reinsurer’s risk portion Xopt

R under an optimal k-layer reinsurance policy:

MXopt
R
ðtÞ= 1� e

t M�
1 �M�

0ð Þð +
Pk =2� 1

j= 1

M�
2j+ 1 �M�

2j

� ��
FX M�

k� 2

� �
+
ðM�

1

M�
0

tet X�M�
0ð ÞFX xð Þdx

+
Xk = 2� 1

j=1

ðM�
2j + 1

M�
2j

te
t x+ð M�

1 �M�
0ð Þ +Pj� 1

i= 1

M�
2i + 1 �M�

2ið Þ�M�
2j

�
FX xð Þdx

+
ð1
M�

k� 2

e
t X +ð

Pk =2� 1

j= 1

M�
2j+ 1 �M�

2j

� �
+ M�

1 �M�
0ð Þ�M�

k� 2Þ
dFX xð Þ

where
Pb

j= a cj =0 whenever b<a.

Proof. Observe that the moment generating function of Xopt
R , given by equation (4) can be calculated

as follows:

MXopt
R

tð Þ=
ðM�

0

0
dFX xð Þ +

ðM�
1

M�
0

et x�M�
0ð ÞdFX xð Þ + � � � +

ð1
M�

m� 2

e
t
�
X +

Pk = 2� 1

j= 1

M�
2j + 1 �M�

2j

� �
+ M�

1 �M�
0ð Þ�M�

k� 2Þ

The odd terms can be evaluated directly. The following calculation represents that how one can
evaluate other terms:

ðM�
3

M�
2

et x + M�
1 �M�

0ð Þ�M�
2ð ÞdFX xð Þ= et x + M�

1 �M�
0ð Þ�M�

2ð ÞFX xð Þ
			M�

3

M�
2

�
ðM�

3

M�
2

tet x+ M�
1 �M�

0ð Þ�M�
2ð ÞFX xð Þdx

= et M�
3 + M�

1 �M�
0ð Þ�M�

2ð ÞFX M�
3

� �� et M�
2 + M�

1 �M�
0ð Þ�M�

2ð ÞFX M�
2

� �
�
ðM�

3

M�
2

tet x+ M�
1 �M�

0ð Þ�M�
4ð ÞFX xð Þdx

= et M�
3 + M�

1 �M�
0ð Þ�M�

2ð ÞFX M�
3

� �� et M�
1 �M�

0ð ÞFX M�
2

� �
�
ðM�

3

M�
2

tet x+ M�
1 �M�

0ð Þ�M�
2ð Þdx +

ðM�
3

M�
2

tet x+ M�
1 �M�

0ð Þ�M�
2ð ÞFX xð Þdx
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= et M�
3 + M�

1 �M�
0ð Þ�M�

2ð ÞFX M�
3

� �� et M�
1 �M�

0ð ÞFX M�
2

� �
� et M�

3 + M�
1 �M�

0ð Þ�M�
2ð Þ + et M�

1 �M�
0ð Þ +

ðM�
3

M�
2

tet x+ M�
1 �M�

0ð Þ�M�
2ð ÞFX xð Þdx

The desired proof arrives by a straightforward calculation. □

Similar to Proposition (1), one may show that under the optimal k-layer reinsurance contract, the
moment generating function for the insurer’s risk portion, XI =X�Xopt

R ; from random claim X, is

MX�Xopt
R

tð Þ= FX 0ð Þ� e
t

�
Mk� 2 �

Pk = 2� 2

j= 1

M2j + 1 �M2jð Þ� M1 �M0ð Þ
�
FX Mk� 2ð Þ +

ðM0

0
tetxFX xð Þdx

+
Xk = 2� 1

j=1

ðM2j

M2j� 1

te
t

�
x� M1 �M0ð Þ �

Pj� 1

i= 1

M2i + 1 �M2ið Þ
�
FX xð Þdx

+ e
t

�
Mk� 2 � M1 �M0ð Þ�

Pk = 2� 2

j= 1

M2j + 1 �M2jð Þ
�
FX Mk� 2ð Þ

where
Pb

j= a cj = 0 whenever b< a.

Using Proposition (1) the expectation of the reinsurer’s risk portion Xopt
R , under an optimal k-layer

reinsurance can be evaluated as

E Xopt
R

� �
=M�

0 FX M�
1

� �� FX M�
0

� �� �
+
ðM�

1

M�
0

FX xð Þdx +
Xk = 2� 2

j=1

ð2j +1
2j

FX xð Þdx

+
ð1
M�

k� 2

xdFX xð Þ�M�
k�2 1� FX M�

k� 2

� �� �
The next section conducts several simulation-based studies, to show “how one can employ some
other appropriate criteria to fully determine an optimal k-layer reinsurance contract”.

3. Simulation Study

This section provides four numerical examples to show how the above findings, along with some
other additional appropriate criteria, can be applied in practice. These examples consider a given
multi-layer reinsurance policy which arrives by an extension of the optimal stop-loss reinsurance
policy. Unknown parameters of each multi-layer reinsurance policy are estimated using an additional
appropriate criteria.

Borch (1960) showed that, under the variance retained risk optimal criteria, in the class of rein-
surance contracts C; given by equation (2), the stop-loss reinsurance is optimal. The following
proposition shows that the proportional reinsurance contract minimises a convex combination of
variance of the insurer’s and the reinsurer’s risk portions from random claim X.

Proposition 2. Suppose XR = h(X) and XI = X − h(X), respectively, stand for the reinsurer’s and the
insurer’s risk portions from random claim X. Then, in the class of reinsurance contracts C; given by
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equation (2), proportional contract h�ðXÞ= 1
1 +ωX minimises the following convex combination of

variance of XR = h(X) and XI = X −h(X)

Qh =ωVar h Xð Þð Þ + 1�ωð ÞVar X� h Xð Þð Þ

where ω∈ [0, 1].

Proof. The above convex combination of two variances can be restated as

argmin
h2C

Qh = argmin
h2C

ωVar h Xð Þ�X +Xð Þ + 1�ωð ÞVar X� h Xð Þð Þf g

= argmin
h2C

ωVar X� X� h xð Þð Þð Þ + 1�ωð ÞVar X�h Xð Þð Þf g

= argmin
h2C

ωVar Xð Þ +Var X�h Xð Þð Þ� 2ωCov X;X�h Xð Þð Þf g

= argmin
h2C

Var X� h Xð Þð Þ�2ωCov X;X� h Xð Þð Þf g

= argmin
h2C

E X� h Xð Þð Þ2
h i

�E X�h Xð Þð Þ½ �2 � 2ωE X�h Xð Þð ÞX½ � +2ωE X� h Xð Þð Þ½ �E X½ �
n o

= argmin
h2C

E X� h Xð Þð Þ2 �2ω X�h Xð Þð ÞX
h i

�E X� h Xð Þð Þ½ � E X�h Xð Þð Þ½ � � 2ωE Xð Þ½ �
n o

= argmin
h2C

E X�h Xð Þð Þ½ � X� h Xð Þð Þ� 2ωX½ �½ � �E X�h Xð Þð Þ½ �E 1�2ωð ÞX� h Xð Þ½ �f g

= argmin
h2C

Cov X�h Xð Þð Þ; 1� 2ωð ÞX� h Xð Þ½ �f g

Therefore, one may conclude that the above convex combination is minimal whenever (X − h(X))
and (1 −2ω)X − h(X)] are linearly dependent. Choosing (1 − 2ω)X − h(X) = β0 + β1(X − h(X)) leads to
h(X) = (1 − 2ω− β1)X/(1− β1)− β0/(1 − β1) The fact that 0≤h(X)≤X implies that β0 = 0. Now by
substituting back h(X) = (1− 2ω − β1)X/(1− β1) in the above convex combination, we have

QI = ω
1�2ω� β1ð Þ2

1� β1ð Þ2 + 1�ωð Þ 2ωð Þ2
1� β1ð Þ2

" #
Var Xð Þ

Minimising this expression, with respect to β1, leads to desired result. □

Proposition (2) shows that the proportional reinsurance the contract minimises a convex combi-
nation of variance of XR and X −XR. The following example considers this observation as an
appropriate criteria to estimate unknown parameters of an optimal two-layer contract.

Example 1. Suppose that random claim X has been distributed according to one of the distributions
given in the first column of Table 1. Moreover suppose that the optimal multi-layer contract has two
layers and restated as

X2� layer
R Xð Þ =

0 X< dα

X�dα dα ≤X<M1

M1 �dα M1 ≤X<M1 +dα

X�2dα M1 +dα ≤X<M2

M2 �2dα M2 ≤X<M2 +dα

X�3dα M2 +dα ≤X

8>>>>>>>>>>><
>>>>>>>>>>>:
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For the sake of simplicity, we set M1 = dα + d1 and M2 = 2dα+ d1 + d2. Now M0 has been estimated
such that E(XR) = E(max{X − dα, 0}). Other two parameters d1 and d2 have been estimated such that
the square distance



QX2� layer

R
�Qh�

�2 is minimised, where Qh and h* are given in Proposition (2).

Table 1 shows estimation for unknown parameters of the above optimal two-layer X2� layer
R .

The last three columns of Table 1 show the convex combination of variance of XR = h(X) and
XI = X −h(X) for optimal stop-loss, optimal two-layer and proportional (given by Proposition (2))
contracts, respectively. As one may observe that, under the optimal two-layer contract such convex
combination of variances, compare to optimal stop-loss, has been improved. We conjecture that by
increasing number of layer such convex combination of variances will be improved.

Under criteria of maximising the expected utility, one may either determine an optimal reinsurance
contract (see Kaluszka & Okolewski, 2008, for more details) or estimate unknown parameters of an
optimal reinsurance contract (see Dickson, 2005: §9.2, for more details).

The following example considers criteria of maximising of convex combination of the expected
exponential utility of XR and X −XR as an additional appropriate criteria to estimate unknown
parameters of a two-layer optimal reinsurance contract.

Example 2. Suppose that random claim X has been distributed according to one of the distributions
given in the first column of Table 2. Moreover consider the optimal two-layer contract given in
Example (1).

Similar to Example (1), for the sake of simplicity, we set M1 = dα+ d1 and M2 = 2dα+ d1 + d2. Now
M0 has been estimated such that E(XR) = E(max{X − dα, 0}). Other two parameters d1 and d2 are
estimated such that the following convex combination of the expected exponential utilities of XR and
X −XR has been minimised.

Uh =ωE exp � β h Xð Þð Þð Þð Þ + 1�ωð ÞE exp � β X� h Xð Þð Þð Þð Þ (5)

where we set ω = 0.2 and β1 = β2 = 1.

Table 2 shows estimation for unknown parameters of the optimal two-layer X2� layer
R .

Table 1. Estimation for unknown parameters of the optimal two-layer contract under variance optimal criteria,
whenever ω = 0.1 and α = 0.1.

Random claim
distribution dα M1 M2

E(hSL(X)) =
E(h2− layer(X)) CTEhSL=CTEh2�layer Qh* QhSL Qh2�layer

Exp(10) 23.0259 24.4258 48.4516 1 10.423 16.667 52.948 46.1586
Exp(8) 18.4206 26.4986 45.9192 0.4498 8.14 6.6707 33.8867 29.5415
Exp(4) 9.2103 13.2103 18.1928 0.4099 4.0743 1.6692 8.4717 7.3853
Weibull(1,2) 1.5174 4.1396 6.657 0.028 0.2865 0.0358 0.1639 0.1338
Weibull(3,2) 4.5523 12.7469 18.2992 0.02135 1.2235 0.322 1.475 1.204

Note: Qh and h* are given in Proposition (2), hSL(X) = max{X −dα, 0} and h2�layerðXÞ=X2�layer
R ðXÞ.
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The last two columns of Table 2 show the convex combination of expected exponential utility of
XR = h(X) and XI = X − h(X) for the optimal stop-loss and the optimal two-layer contracts,
respectively. As one may observe, under the optimal two-layer contract such convex combination of
utilities, compare to optimal stop-loss contract, is improved.

The Bayesian method under name of the credibility method is well-known in various areas of the
actuarial sciences. For instance see: Whitney (1918) and Payandeh Najafabadi & Qazvini (2015) for
its application in the experience rating system; Bailey (1950), Payandeh Najafabadi (2010) and
Payandeh Najafabadi et al. (2012) for its application in evaluating insurance premium; Hesselager &
Witting (1988) and England & Verrall (2002) for its application in the IBNR claims reserving
system; and see Makov et al. (1996), Makov (2001), and Hossack et al. (1999) for its general
applications in actuarial science.

Now we employ the Bayesian estimation method as an appropriate method to estimate unknown
parameters of an optimal multi-layer reinsurance contract.

To derive any Bayes estimator for M�
0; � � � ;M�

m�2; based upon identically independent random claim
Xð1Þ; � � � ;XðnÞ, one has to consider initial values for M�

0; � � � ;M�
m� 2: Then, using such initial values,

he/she can define i.i.d reinsurer’s random claim Xð1Þ
R ; � � � ;XðnÞ

R : Now, using information given by
Xð1Þ

R ; � � � ;XðnÞ
R accompanied with prior information on parameters M�

0; � � � ;M�
m� 2 and other

unknown parameters, the Bayes estimators for parameters M�
0; � � � ;M�

m� 2; under an appropriate loss
function, say M̂�

0; � � � ; M̂�
m� 2; can be obtained. Certainly, such Bayes estimator may be, iteratively,

improved by using M̂�
0; � � � ; M̂�

m� 2 as a new initial estimator for M�
0; � � � ;M�

m� 2; then determining
Xð1Þ

R ; � � � ;XðnÞ
R ; and finally reevaluating the Bayes estimator M̂�

0; � � � ; M̂�
m� 2; again.

Suppose Xð1Þ; � � � ;XðnÞ; given parameter θ, are i.i.d. random claims with a common density
function fX and a distribution function FX. Moreover, suppose thatm�

0; � � � ;m�
k�2 stand for the initial

values for M�
0; � � � ;M�

k� 2: Using a straightforward calculation, the density function for random
variable XðiÞ

R ; for i= 1; � � � ; n; given parameters Θ : = ðθ;M�
0; � � � ;M�

k� 2Þ at observed value y(i), is
equal to

gXðiÞ
R jΘ

�
yðiÞ
�
= FX M�

0

� �� FX 0ð Þ� �
If0g
�
yðiÞ
�
+ fX

�
yðiÞ +M�

0

�
I 0;M�

1 �M�
0ð Þ
�
yðiÞ
�

+ FX M�
2

� �� FX M�
1

� �� �
I M�

1 �M�
0f g
�
yðiÞ
�

Table 2. Estimation for unknown parameters of the optimal two-layer contract under minimisation Uh as an
optimal criteria, whenever ω = 0.2 and α = 0.1.

Random claim distribution dα M1 M2

E(hSL(X)) =
E(h2 − layer(X)) CTEhSL=CTEh2�layer UhSL Uh2�layer

Exp(10) 23.0259 24.4259 48.4518 1 10.423 0.9312 0.9163
Exp(8) 18.4206 31.4132 51.1488 0.4498 8.14 0.6412 0.5629
Exp(4) 9.2103 13.2103 23.4037 0.4099 4.0743 0.8449 0.2000
Weibull(1,2) 1.5174 4.1396 6.657 0.028 0.2865 0.5629 0.4593
Weibull(3,2) 4.5523 12.7469 18.2992 0.02135 1.2235 0.3069 0.1465

Note: Qh and h* are given by equation (5), hSL(X) = max{X −dα, 0} and h2�layerðXÞ=X2�layer
R ðXÞ.
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+ fX
�
yðiÞ +M�

2 �
�
M�

1 �M�
0

��
I�

M�
1 �M�

0;M
�
3 �M�

2 +M
�
1 �M�

0

��yðiÞ�
+
�
FX
�
M�

4

�� FX
�
M�

3

��
I�

M�
3 �M�

2 +M
�
1 �M�

0

��yðiÞ� + � � �

+ fX
�
yðiÞ +M�

k� 2 �
Xk = 2� 2

j= 1

�
M�

2j +1 �M�
2j

�� �M�
1 �M�

0

��
I� Pk = 2� 2

j= 1

�
M�

2j + 1 �M�
2j

�
+
�
M�

1 �M�
0

�
;1
��yðiÞ�

Using the fact that random variables Xð1Þ
R ; � � � ;XðnÞ

R are i.i.d., it follows that the joint density function
for Xð1Þ

R ; � � � ;XðnÞ
R ; given parameters Θ : = ðθ;M�

0; � � � ;M�
k� 2Þ; can be restated as

fXð1Þ
R ;���;XðnÞ

R

�
yð1Þ; � � � ; yðnÞ jΘ�= FX M�

0

� �� FX 0ð Þ
 �n0Yn1
i=1

fX
�
yðiÞ +M�

0

�
FXðM�

2Þ� FXðM�
1Þ


 �n2 � � �

´
Yn

i=n0 + ���nðk� 2Þ

fX yðiÞ +M�
k�2 �

Xk = 2� 2

i=1

M�
2i +1 �M�

2i

� �� M�
1 �M�

0

� � !

where n0: = #(y(i) = 0), n1 : = # ð0< yðiÞ < ðM�
1 �M�

0ÞÞ; n2 : = # ðyðiÞ = ðM�
1 �M�

0ÞÞ; � � � nk� 2: ¼
#

Pk = 2�2
i=1 ðM�

2i + 1 �M�
2iÞ< yðiÞ

� �
Assuming πðθ;M�

0; � � � ;M�
k� 2Þ is the prior distribution for vector ðθ;M�

0; � � � ;M�
m� 2Þ, the joint posterior

distribution for vector Θ : = ðθ;M�
0; � � � ;M�

k� 2Þ is

π θ; M�
0; � � � ;M�

m� 2 jyð1Þ; � � � ; yðnÞ
� �

=
fXð1Þ

R ;���;XðnÞ
R

yð1Þ; � � � ; yðnÞ jθ;M�
0; � � � ;M�

k� 2

� �
π θ;M�

0; � � � ;M�
k� 2

� �
Ð
M�

k� 2
� � � ÐΘ fXð1Þ

R ;���;XðnÞ
R

yð1Þ; � � � ; yðnÞ jθ;M�
0; � � � ;M�ðk� 2Þ� �

π θ;M�
0; � � � ;M�

k� 2

� �
dθdM�

0; � � � ; dM�
k�2

Using the above joint posterior distribution, the Bayes estimator for each M�
0;��� ;M

�
k�2 under the

square error loss function, is

M̂�
i =

ð
M�k� 2

¼
ð
Θ

M�
i π θ;M�

0; � � � ; M�
k� 2 jyð1Þ; � � � ; yðnÞ

� �
dθdM�

0 � � � dM�
k� 2 (6)

for i= 0; � � � ; k� 2:

Now as an application of the above findings, we consider the following example.

Example 3. Suppose that random claim X has been distributed according to one of the distributions
given in the first column of Table 3. Moreover, suppose that the optimal multi-layer contract has one
layer and restated as

X1� layer
R =

0 X<M0

X�M0 M0 ≤X<M1

M1 �M0 M1 ≤X<M2

X + M1 �M0ð Þ�M2 M2 ≤X

8>>>>><
>>>>>:
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Table 3. Mean (standard deviation) of Bayes estimator for d0, d1 and d2 based upon 100 sample size and 100 iterations, whenever α = 0.1.

Claim
distribution

Prior
distribution
for d0

Prior
distribution
for d1

Prior
distribution
for d2

Mean (variance)
of estimated d0

Mean (variance)
of estimated d1

Mean (variance)
of estimated d2

E(hSL(X)) =
E(h1 − layer(X)) hSL(X) CTEhSL=CTEh1�layer

EXP(1) EXP(1) EXP(1) EXP(1) 0.0599 (4.795× 10 −16) 0.4474 (4.439× 10 − 14) 0.0643 (8.458× 10 − 7) 0.1 (X −2.3026) + 1.01
EXP(4) Gamma

(2,3)
Gamma
(3,2)

Gamma
(2,2)

0.0526 (3.823× 10 −18) 0.6575 (9.003× 10 − 13) 0.0638 (1.093× 10 − 5) 0.4 (X −9.2103) + 4.0743

Weibull
(1,2)

Gamma
(2,2)

Gamma
(3,2)

Gamma
(2,3)

0.0746 (1.661× 10 −17) 0.6575 (4.393× 10 − 15) 0.0798 (3.542× 10 − 6) 0.028249 (X −1.5174) + 0.2865

Note: hSL(X) = max{X −dα, 0} and h1�layerðXÞ=X1�layer
R ðXÞ.
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For the sake of simplicity, we set d0 = M0, d1 = M1 −M0 and d2 = M2 −M1. Now, suppose that the
prior distributions of the unknown parameters d0, d1 and d2 are independent and given in the
second, third and fourth columns of Table 3, respectively.

To construct a Bayes estimator for unknown parameters, we employed d0 = 0.20, d1 = 0.15 and
d2 = 0.02 as initial values.

The three last columns of Table 3 represent the mean and the standard deviation, respectively, of the
Bayes estimator for d0, d1 and d2, which generates 100 random numbers from a given distribution.
This estimators were derived using equation (6) when the mean of 100 iterations of the Bayes
estimator for d0, d1 and d2 was used as an estimator for d0, d1 and d2.

The small variance of these estimators shows that the estimation method is an appropriate method to
use with the different samples.

4. Conclusion and Suggestions

This article generalises the stop-loss reinsurance policy to a new continuous multi-layer reinsurance policy
which minimises the CTE risk measure of the insurer’s total risk. Unknown parameters of the new optimal
multi-layer reinsurance policy can be estimated using other additional appropriate criteria. Therefore, the
new multi-layer reinsurance policy not only similar to the original stop-loss reinsurance policy is optimal, in
a same sense, but also it has some other appropriate criteria which the original stop-loss policy does not
have. Estimation method of this article can be generalised to the other appropriate criteria such as the ruin
probability (Fang & Qu, 2014), percentile matching estimating method (Teugels & Sundt, 2004), etc.

The following two propositions are generalised result of this article under the general translative and
monotone risk measure ρ(⋅).

The following suppose that under minimisation criteria of a translative and monotone risk measure ρ(⋅)
of the insurer’s total risk reinsurance contract f(⋅) is optimal. Then, it provides a multi-layer reinsurance
contract which its corresponding risk measure coincides with the insurer’s total risk under contract f(⋅),
see Figure 2(a) for an illustration.

M1 M2 M3 M4 M5M3
* M4

* M5
*M2

*

(a)

M1 M2 M3
M4M3

*M2
* M4

*

(b)

Figure 2. (a) The optimal multi-layer reinsurance contract, given by Proposition (3) whenever
f ðXÞ= argminh2CfρðX�hðXÞ + πXh Þg and (b) the optimal multi-layer reinsurance contract, given by
Proposition (4), whenever f ðXÞ= argminh2Cfωρ1ðX�hðXÞ + πXh Þ + ð1�ωÞρ2ðhðXÞ�πXh Þg and ω∈ [0, 1].

Amir T. Payandeh Najafabadi and Ali Panahi Bazaz

142

https://doi.org/10.1017/S1748499517000148 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000148


Proposition 3. Suppose ρ(⋅) is a translative and monotone risk measure. Moreover, suppose that f(⋅)
in the class of reinsurance strategies C minimises risk measure of the total risk of insurance company.
Then, reinsurance g(⋅) also minimises the risk measure of total risk of insurance company:

g Xð Þ= f Xð ÞI 0;M1½ Þ Xð Þ + X�M1 + f M1ð Þð ÞI M1;M2½ Þ Xð Þ + f M�
2

� �
I M2;M�

2½ Þ Xð Þ

+ X�M�
2 + f M�

2

� �� �
I M�

2;M3½ Þ Xð Þ + � � � + X�M�
k + f M�

k

� �� �
I M�

k
;1½ Þ Xð Þ

whereM1;M2; � � � ;Mk are unknown parameters of the new optimal reinsurance andM�
1;M

�
2; � � � ;M�

k

have to be evaluated using equation f ðM�
2Þ=M2 �M1 + f ðM1Þ and f ðM�

i Þ=Mi �M�
i�1 + f ðM�

i� 1Þ for
i=3; � � � ; k:

Proof. Since ρ(⋅) is a translative risk measure, one may write that

ρ X� g Xð Þ + πXg
� �

= ρ X� g Xð Þð Þ + πXg

= ρ
h
X� f Xð Þð ÞI 0;M1½ Þ Xð Þ + M1 � f M1ð Þð ÞI½M1;M2Þ Xð Þ

+ X� f M�
2

� �
I M2 ;M�

2½ Þ Xð Þ
� �

+ M�
2 � f M�

2

� �� �
I M�

2 ;M3½ Þ Xð Þ

+ X� f M�
3

� �� �
I M3;M�

3½ Þ + � � � + M�
k � f M�

k

� �� �
I M�

k
;1½ Þ Xð Þ

i
+ πXg

≤ ρ X� f Xð Þð Þ + πXg

= ρ X� f Xð Þ + πXg
� �

= ρ X� f Xð Þ + πXf
� �

The above inequality arrives from the fact that ρ(⋅) is a monotone risk measure and X−g(X)≤X− f(X)
with probability 1. Now using the fact that ρðX� f ðXÞÞ= min

h2C
ρðX� hðXÞ + πXh Þ we conclude that the

above inequality has to be changed to an equality. □

Now we provide an optimal multi-layer reinsurance contract, for a situation that the optimal
reinsurance f(⋅) arrives by minimising a convex combination of two translative and monotone risk
measures ρ1(⋅) and ρ2(⋅) of the insurer’s total risk, XR = h(X), and the reinsurer’s total risk XI =
X −h(X), i.e., f ðXÞ= argminh2Cfωρ1ðX� hðXÞ + πXh Þ + ð1�ωÞρ2ðhðXÞ� πXh Þg; where ω∈ [0, 1], see
Figure 2(b) for an illustration.

As an example for such optimal reinsurance f(⋅), under such the convex combination of two dis-
tortion risk measures, see Assa (2015).

Proposition 4. Suppose ρ1(⋅) and ρ2(⋅) are two translative and monotone risk measures. Moreover,
suppose that f(⋅) in the class of reinsurance strategies C minimises a convex combination of two risk
measures ρ1(⋅) and ρ2(⋅), i.e., f ðXÞ= argminh2Cfωρ1ðX� hðXÞ + πXh Þ + ð1�ωÞρ2ðhðXÞ� πXh Þg; where
ω∈ [0, 1]. Then, for ω*∈ (0, amin/(amin+ amax)), the following k-layer reinsurance g(⋅) also minimises
such the convex combination of two risk measures ρ1(⋅) and ρ2(⋅).

gðXÞ= f Xð ÞI 0;M1½ Þ Xð Þ + X�M1 + f M1ð Þð ÞI M1 ;M2½ Þ Xð Þ + f M�
2

� �
I M2 ;M3½ Þ Xð Þ

+ X�M3 + f M�
2

� �� �
I M3;M4½ Þ Xð Þ + � � � + f Xð ÞI M�

2k + 1;1½ Þ Xð Þ
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whereM1;M2; � � � ;Mk are unknown parameters of the new optimal reinsurance andM�
1;M

�
2; � � � ;M�

k

have to be evaluated using equation: f ðM�
2Þ=M2 �M2 + f ðM1Þ; f ðM�

2j� 1Þ=M�
2j� 1 �M2j� 1 +

f ðM�
2ðj�1ÞÞ; f ðM�

2jÞ= f ðM�
2ðj� 1ÞÞ +M2j �M2j� 1; for j= 2; � � � ; k; amin : =minx2Afj2f ðxÞ�x j g; amax : =

maxx2Afj2f ðxÞ� x jg and A : =½M1;M�
2Þ∪ k

j=2½M�
2j�1;M

�
2j�:

Proof. Set π�g : =ω�πXg �ð1�ω�ÞπXg : Since ρ1(⋅) and ρ2(⋅) are a translative risk measures, one may
write that

ω�ρ1 X� g Xð Þ + πXg
� �

+ 1�ω�ð Þρ2 g Xð Þ� πXg

� �
= π�g +ω

�ρ1 X� g Xð Þð Þ + 1�ω�ð Þρ2 g Xð Þð

≤ π�g +ω
�ρ1 X� f Xð Þð ÞI 0;M1½ Þ Xð Þ + f Xð ÞI

M1 ;M
�
2½ Þ Xð Þ

�

+ X� f Xð Þð ÞI
M�
2
;M�

3½ Þ Xð Þ + � � � + X� f Xð Þð ÞI M�
2k +1;1½ ÞðXÞ



+ 1�ω�ð Þρ2 f Xð ÞI½0;M1Þ Xð Þ + X� f ðXÞð ÞI M1;M�
2½ Þ Xð Þ

h

+ f Xð ÞI M�
2 ;M

�
3½ Þ Xð Þ + � � � + f Xð ÞI M�

2k +1 ;1½ Þ Xð Þ
i

= π�g +ω
�ρ1 X� f Xð Þð ÞI 0;1½ Þ Xð Þ + 2f Xð Þ�Xð ÞI M1 ;M�

2½ Þ Xð ÞÞ
h

+ 2f Xð Þ�Xð Þ
Xk
j= 2

I
M�

2j�1;M
�
2j


 � Xð ÞÞ�

+ 1�ω�ð Þρ2 f Xð ÞI½0;1Þ Xð Þ + X� 2f Xð Þð ÞI M1;M�
2½ Þ Xð ÞÞ

h

+ X� 2f Xð Þð Þ
Xk
j= 2

I
M�

2j�1;M
�
2j


 � Xð ÞÞ�

≤ π�g +ω
�ρ1 X� f Xð Þð ÞI 0;1½ Þ Xð Þ
 �

+ 1�ω�ð Þρ2 f Xð Þ½ �

+ω�kamax � 1�ω�ð Þkamin

≤ π�g +ω
�ρ1 X� f Xð Þð ÞI 0;1½ Þ Xð Þ
 �

+ 1�ω�ð Þρ2 f Xð Þ½ �

=ω�ρ1 X� f Xð Þ + πXg
� �

+ 1�ω�ð Þρ2 f Xð Þ� πXg

� �

=ω�ρ1 X� f Xð Þ + πXf
� �

+ 1�ω�ð Þρ2 f Xð Þ� πXf

� �

The last inequality arrives from the fact that ω� 2 ½0; amin = ðamin + amaxÞ: Now using the fact that
ω�ρ1ðX� f ðXÞ + πXf Þ + ð1�ω�Þρ2ðf ðXÞ� πXf Þ= min

h2C
ω�ρ1ðX� hðXÞ + πXh Þ + ð1�ω�Þρ2ðhðXÞ� πXh Þ
� �

;

we conclude that the k-layer reinsurance g(⋅) also minimises such the convex combination. □
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