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The purpose of this paper is to give a pricing analysis for the American option in a

jump-diffusion model by PDE arguments. Existence and uniqueness of the solution to the

obstacle problem for the associated model is shown in suitable spaces. We also prove the

unique existence of the solution of the corresponding free boundary problem. Furthermore,

smoothness and monotonicity of the free boundary which is the optimal exercise boundary

of the option are deduced.

1 Introduction

Black & Scholes [1] tackled the problem of pricing a European option on a non-dividend

paying stock. In the Black-Scholes model, the underlying stock price is a continuous

function of time, and is controlled by the following stochastic differential equation:

dSt

St
= µdt+ σdWt,

where St is the underlying stock price at time t, µ, σ are respectively drift and volatility

terms, and {Wt}t�0 is a standard real-valued Brownian motion. However, many empirical

studies exhibit some biases in this kind of model. Cox & Ross [5] introduced a pure jump

model in which the underlying stock is modeled by a known size jump process without

diffusion term. The market is then complete. Merton [12] developed a jump-diffusion

model in which the ‘normal’ vibration in the price, namely, the diffusion part, is still

modeled by a standard geometric Brownian motion and has a continuous path, and the

‘abnormal’ vibration in the price is modeled by a ‘jump’ process. In such a model the

price is not a continuous function of time. Such a model allows us to take into account

brusque variations in market prices due to some rare events, such as nature disaster in a

major economy, or major political changes, and can be used to explain the bias exhibited

in the Black–Scholes model. Merton [12] established a pricing formula for the European

option assuminng that jump risk is unpriced. Generalizations of his result can be found

in Aase [1] and Naik & Lee [13].

The American option pricing problem has been given much attention in recent economic

and finance literature. Nevertheless, there is no explicit formula for the price of the
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American option. The earliest works on this problem are due to Mckean [11], and further

to Van Moerbeke [15], who transformed the American option pricing analysis into a

free-boundary problem, within the framework of the diffusion model. In addition to the

free-boundary method, the formulation of the optimal-stopping problem by variational

inequalities, as developed by Bensoussan & Lions [2], and applied to the American

option in diffusion models by Jaillet et al. [9], provided numerical computations for the

pricing of American options. This approach was further applied by Zhang [17] to the

American option in Merton’s jump-diffusion model. However variational inequalities lead

to a somewhat less-explicit characterization of the American option price. Using the

free-boundary approach as well as results in probability theory, Pham [14] studied the

behavior of the optimal-stopping boundary for this problem, and proved the continuity

of the corresponding free boundary with some restriction on the size of jump risk.

This paper studies the problem of pricing the American option with dividend in a

jump-diffusion model by a PDE argument. The existence and uniqueness of the solution

to the obstacle problem for the associated model is shown in suitable spaces. We also

prove the unique existence of the solution of the corresponding free boundary problem.

Furthermore, strict monotonicity and regularity of the free boundary which is the optimal

exercise boundary of the considered option are deduced without more restriction. Because

of some technical difficulty, we are merely able to prove the smoothness of the optimal

exercise boundary under some additional condition.

The paper is organized as follows: § 1 outlines the problem of pricing the American

option in the jump-diffusion model, and relates this pricing problem to a parabolic

variational inequality. § 2 studies a penalized problem corresponding to this variational

inequality. § 3 proves the existence and uniqueness and other properties of the solution to

this variational inequality. § 4 relates this variational inequality to a free boundary problem,

in which the free boundary is the optimal exercise boundary of American options in the

jump-diffusion model, and establishes some basic properties of the free boundary and the

price function. § 5 derives further properties of the optimal exercise boundary, such as

continuity, differentiability and strict monotonicity etc.

We consider a financial market where two assets (B, S) are traded continuously up to

some fixed time horizon T , B is a riskless asset, such as a bond, whose price Bt at time t

is governed by the differential equation

dBt

Bt
= rdt,

where r is the constant positive interest rate, and S is a risky asset, such as a stock, with

price St at time t. Here, (St)t�0 is assumed to be a stochastic process and is governed by

the following stochastic differential equation:

dSt

St−
= (µ− q)dt+ σdWt + d


 Nt∑

j=1

Uj


 ,

where coefficients µ, q, σ are positive constants, q is a dividend yield, (Wt)t�0 is a standard

Brownian motion, (Nt)t�0 is a Poisson process with parameter λ and (Uj)j�1 is a sequence

of square integrable independent, identically distributed random variables, with values

in (−1,+∞). The parameter λ of the Poisson process (Nt)t�0 accounts for the frequency

https://doi.org/10.1017/S0956792505006340 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792505006340


Free boundary and American options in a jump-diffusion model 97

of jumps, and the random variable (Uj)j�1 accounts for the relative amplitude of jumps.

The model described above can be interpreted as follows: the underlying stock price in

this model allows a discontinuous path, with jump times controlled by a Poisson process,

which is modeled by a geometric Brownian motion between two jump times, and can

leap a random value at jump times. Here, We assume that processes (Wt)t�0, (Nt)t�0,

(Uj)j�1 are independent.

Similar to the argument in Willmott [16], we can relate the American option pricing

problem concerned here to some obstacle problem by the risk minimizing approach. That

is, the American option price, within the jump-diffusion model, V = V (S, τ) solves the

following parabolic variational inequality:{
min{−LV , V − φ} = 0, S > 0, 0 � τ < T ,

V (S, T ) = φ(S), S > 0,
(P )

where K > 0 is the striking price in this option, S is the price of the underlying stock,

T is a maturity date, φ(S) is the payoff of this American option and L is the parabolic

integro-differential operator

LV =
∂V

∂τ
+
σ2

2
S2 ∂2V

∂S2
+ (r − q − λk)S

∂V

∂S
− (r + λ)V + λ

∫ +∞

−1

V (S(1 + y), τ)dN(y),

in which N(y) is the distribution function of the random variable U1, namely, N(y) is a

nondecreasing function satisfying N(−1) = 0, N(+∞) = 1, k =
∫ +∞

−1
ydN(y).

In this paper, we focus our discussions on put options, so the payoff function is

φ(S) = (K − S)+.

Let t = T − τ, x = ln S , u(x, t) = V (S, τ), ψ(x) = φ(S). Then (P ) changes into{
min{L1u, u− ψ} = 0,−∞ < x < ∞, 0 < t � T ,

u(x, 0) = ψ(x),−∞ < x < ∞, (1.1)

where

L1u =
∂u

∂t
− σ2

2

∂2u

∂x2
−

(
r − q − σ2

2
− λk

)
∂u

∂x
+ru−λ

∫ +∞

−1

[u(x+ln(1+y), t)−u(x, t)]dN(y),

or after changing the variable to z = ln(1 + y) in the integral on the right,

L1u =
∂u

∂t
− σ2

2

∂2u

∂x2
− (r − q − σ2

2
− λk)

∂u

∂x
+ (r + λ)u− λ

∫ +∞

−∞
u(x+ z, t)dÑ(z)

with Ñ(z) = N(ez − 1); Ñ(z) is a nondecreasing function satisfying Ñ(−∞) = 0, Ñ(+∞) =

1,
∫ ∞

−∞ e
zdÑ(z) = k + 1, and

ψ(x) = (K − ex)+.

Throughout this paper, we always assume that the constants σ, r, q, λ and k are positive,

and Ñ(z) satisfies ∫ ∞

−∞
e|z|dÑ(z) < ∞. (A)

In addition, we always denote HT = R × (0, T ], where R = (−∞,∞).
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2 Approximation

In this section, we study the penalty problem corresponding to (1.1):{
L1u

ε + βε(u
ε − ψε) = 0,−∞ < x < ∞, t > 0,

uε(x, 0) = ψε(x),−∞ < x < ∞ (2.1)

with 0 < ε < 1, ψε(x) = Πε(K − ex), where βε(x), Πε(y) satisfy the following conditions:

βε(x) ∈ C∞(R); βε(x) � 0; βε(x) = 0, if x � ε;

βε(0) = −Cε, (Cε � (r + λ)K + rε); β′
ε(x) � 0; β′′

ε (x) � 0;

lim
ε→0

βε(x) =

{
0, x > 0,

−∞, x < 0;
(A1)

Πε(y) ∈ C∞(R), 0 � Π ′
ε(y) � 1; Π ′′

ε (y) � 0; Πε(y) =

{
y, y � ε,

0, y � −ε. (A2)

First, we have a lemma on integro-differential equations, which is similar to the max-

imum principle of parabolic equations in the unbounded region. In financial terms it

states that the value of a non-negative payoff is non-negative, which is clear if the time-t

value is regarded as a risk-neutral expectation of the payoff.

Lemma 2.1 Assume that u(x, t) ∈ C(HT )
⋂
C2,1(HT ) satisfies

Lu =
∂u

∂t
− a2(x, t)

∂2u

∂x
+ b(x, t)

∂u

∂x
+ (c(x, t) + λ)u− λ

∫ +∞

−∞
u(x+ z, t)dÑ(z) � 0,

in which 0 < |a(x, t)| < M, |b(x, t)| � M, c(x, t) � δ > 0, and λ, σ, M are positive constants.

If u(x, t) � −m, (m > 0 is a constant) in HT , then u(x, 0) � 0 implies u(x, t) � 0.

Proof For any r0 > 0, let

w(x, t) =
m

r20
(x2 + βt)eαt + u(x, t),

where α, β will be determined later. We have

Lw(x, t)

�
meαt

r20
[β + (x2 + βt)α− 2a2 + 2bx+ (c+ λ)(x2 + βt) − λ

∫ +∞

−∞
((x+ z)2 + βt)dÑ(z)]

=
meαt

r20
[(α+ c+ λ)x2 + 2bx+ (β − 2a2) + β(α+ c)t− λ

∫ +∞

−∞
(x+ z)2dÑ(z)]

�
meαt

r20
[(α+ δ − λ− 1)x2 + (β − 2a2 −M2) + (α+ δ)βt− λ

∫ ∞

−∞
z2dÑ(z)].

From (A), we can take α, β > 0 so large that Lw � 0 in HT .

Since w(x, 0) = m
r20
x2 + u(x, 0) � 0, w(x, t)||x|=r0 � m + u(x, t)||x|=r0 � 0 and w(x, t) �

m + u(x, t) � 0 when |x| > r0, we may assert that w(x, t) � 0 in [−r0, r0] × [0, T ]. In

fact, if w(x, t) has a negative minimum at the point (x0, t0) ∈ (−r0, r0) × (0, T ], then, since
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−∞ dÑ(z) = 1, we have

Lw(x0, t0) � (c(x0, t0) + λ)w(x0, t0) − λ

∫ ∞

−∞
w(x0 + z, t)dÑ(z)

� c(x0, t0)w(x0, t0) < δw(x0, t0) < 0,

which contradicts Lw � 0. For any (ξ, τ) ∈ HT , we take r0 > 0 so large that (ξ, τ) ∈
(−r0, r0) × (0, T ]. From the above argument, we obtain w(ξ, τ) � 0, i.e., m

r20
(ξ2 + βτ)eατ +

u(ξ, τ) � 0. Letting r0 → +∞ then gives u(ξ, τ) � 0 and the desired conclusion follows

from the arbitrariness of (ξ, τ) ∈ HT .

Theorem 2.1 For any ε ∈ (0, 1), the problem (2.1) has a unique solution uε(x, t) ∈ C∞(HT )∩
L∞(HT ).

Proof Uniqueness of the solution to (2.1) is a direct corollary of Lemma 2.1. Now we

prove the existence.

Let B = {u ∈ Cα, α2 (Hτ), ‖u‖
Cα,

α
2 (Hτ)

� U0}. Then B is a bounded closed convex set in

the space Cα, α2 (Hτ), where Hτ = R × (0, τ] and τ,U0 > 0 will be determined below.

For any v ∈ B, we consider the following Cauchy problem{
L̃u = λ

∫ ∞
−∞ v(x+ z, t)dÑ(z) − βε(v − ψε),

u(x, 0) = ψε(x),
(2.2)

where L̃u = ∂u
∂t

− σ2

2
∂2u
∂x

− (r − q − σ2

2
− λk) ∂u

∂x
+ (r + λ)u. It is clear that (2.2) has a unique

solution u = Tv ∈ C2+α,1+ α
2 (Hτ). By properties of the fundemental solution of the operator

L̃, it is easily proved that for small τ ∈ (0, T ), we have

‖u‖
Cα,

α
2 (Hτ)

� C + θ‖v‖
Cα,

α
2 (Hτ)

,

where C > 0, θ ∈ (0, 1) are some constants. Therefore, if we choose U0 � C
1−θ , then

u = Tv ∈ B for any v ∈ B.

Denote

g(x, t) = λ

∫ +∞

−∞
v(x+ z, t)dÑ(z) − βε(v − ψε).

Then

‖g‖
Cα,

α
2 (Hτ)

� C(‖v‖
Cα,

α
2 (Hτ)

+ 1).

By the standard theory of parabolic equations, we have

‖u‖
C2+α,1+ α

2 (Hτ)
= ‖Tv‖

C2+α,1+ α
2 (Hτ)

� C(‖v‖
Cα,

α
2 (Hτ)

+ 1),

which implies that the set B is precompact. Besides, for any v1, v2 ∈ B, we have

‖T (v1 − v2)‖C2+α,1+ α
2 (Hτ)

� C‖v1 − v2‖
Cα,

α
2 (Hτ)

,

which implies the continuity of the operator Tv. Therefore, T has a fixed-point uε ∈
C2+α,1+ α

2 (Hτ) by Schauder’s Fixed-Point Theorem.

Since τ ∈ (0, T ) can be choosen depending only on ε, λ and the bound of the initial

value, we can obtain a solution uε of (2.1) in HT and uε ∈ C2+α,1+ α
2 (HT ). Using the theory

of parabolic equations, we further conclude that uε ∈ C∞(HT ).
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For the need of the following sections, we proceed to establish a series of estimates for

uε(x, t) which is always assumed to be the bounded solution of (2.1) in HT .

As an immediate corollary of Lemma 2.1, we have

Lemma 2.2 uε(x, t) is bounded uniformly in ε ∈ (0, 1), more precisely, 0 � uε(x, t) � K + ε.

Proof From (A2) and the definition of ψε(x), we have uε(x, 0) = ψε(x) ∈ [0, K]. From

(A1), there holds

L1u
ε = −βε(uε − ψε) � 0.

Thus we may apply Lemma 2.1 to the operator L1 to conclude that uε(x, t) � 0.

Let w(x, t) = K + ε− uε(x, t). Then

L1w = L1(K + ε) − L1u
ε = r(K + ε) + βε(u

ε − ψε) � βε(u
ε − ψε).

Since ψε(x) � K , the definition of βε(x) implies that βε(K + ε− ψε(x) = 0. Hence

L1w + βε(K + ε− ψε) − βε(u
ε − ψε) = L1w + β′

ε(·)w � 0,

where the variable of β′
ε(·) is some value between K + ε − ψε and uε − ψε. Denote

Lw = L1w + β′
ε(·)w. Then Lw � 0. Thus we can apply Lemma 2.1 to the operator L to

conclude w(x, t) � 0, i.e., uε(x, t) � K + ε from w(x, 0) = K + ε − ψε(x) � 0. It is to be

noted that, since β′
ε(·) � 0 and hence the coefficients of w in Lw is bounded from below,

Lemma 2.1 can be used to the operator L. �

Lemma 2.3 uε(x, t) � ψε(x) and βε(u
ε − ψε) is bounded uniformly in ε.

Proof It is obvious from (A2) that |Πε(y) − yΠ ′
ε(y)| < ε and

L1ψε(x)

= −σ2

2
Π ′′
ε (K − ex)e2x +

σ2

2
Π ′
ε(K − ex)ex + (r − q − λk − σ2

2
)Π ′

ε(K − ex)ex

+ (r + λ)Πε(K − ex) − λ

∫ ∞

−∞
Πε(K − ex+z)dÑ(z)

� rΠ ′
ε(K − ex)ex + (r + λ)Πε(K − ex)

= r[Πε(K − ex) − (K − ex)Π ′
ε(K − ex)] + rKΠ ′

ε(K − ex) + λΠε(K − ex)

� rε+ (r + λ)K.

So, if we denote w = uε − ψε, then

L1w = L1u
ε − L1ψε � −βε(uε − ψε) − (rε+ rK + λK)

= βε(0) − βε(u
ε − ψε) − (rε+ rK + λK) − βε(0).

By the definition of Cε,

L1w + βε(u
ε − ψε) − βε(0) = L1w + β′

ε(·)w � −βε(0) − (rε+ rK + λK) � 0.

Thus using Lemma 2.1, we obtain w(x, t) � 0, i.e. uε(x, t) � ψε(x). Besides, by virtue of

the monotonicity of βε and Lemma 2.3, we see that βε(u
ε − ψε) is bounded uniformly

in ε. �
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Lemma 2.4 uεx is bounded uniformly in ε ∈ (0, 1), more precisely, −(K + 1) � uεx � 0, and

uεt � 0.

Proof Let w = uεx. Then w satisfies{
L1w + β′

ε(u
ε − ψε)(w − ψ′

ε) = 0,

w(x, 0) = ψ′
ε(x).

From (A2), w(x, 0) = −exΠ ′
ε(K − ex) � 0. Since Π ′

ε(K − ex) = 0 when ex � K + ε, we

have w(x, 0) = −exΠ ′
ε(K − ex) � −(K + ε) � −(K + 1). Using Lemma 2.1 to the operator

L1 + β′
ε(u

ε − ψε), we obtain −(K + 1) � w(x, t) = uεx(x, t) � 0.

Let v = uεt . Then v satisfies {
L1v + β′

ε(u
ε − ψε)v = 0,

v(x, 0) = f(x),

where

f(x) =

[
σ2

2
ψ′′
ε +

(
r − q − λk − σ2

2

)
ψ′
ε − (r + λ)ψε + λ

∫ ∞

−∞
ψε(x+ z, t)dÑ(z) − βε(0)

]
.

From the proof of Lemma 2.4, v(x, 0) = f(x) = L1ψε − βε(0) � Cε − (rε+ rK + λK) � 0.

Thus, by Lemma 2.1, we obtain v = uεt � 0. �

Lemma 2.5
∂2uε

∂x2
− ∂uε

∂x
� 0.

Proof Let w = ∂2uε

∂x2 − ∂uε

∂x
. Then{

L1w + β′
ε(u

ε − ψε) · w = f(x, t),

w(x, 0) = φ(x)

where

f(x, t) = −β′′
ε (u

ε − ψε)(
∂uε

∂x
+Π ′

ε(K − ex)ex)2 + β′
ε(u

ε − ψε)Π
′′
ε (K − ex)e2x � 0,

φ(x) = e2xΠ ′′
ε (K − ex).

By Lemma 2.1, we have w(x, t) � 0, that is , ∂2uε

∂x2 � ∂uε

∂x
. �

Lemma 2.6 For any a < b, small positive constant δ ∈ (0, T ) and p ∈ (1,∞), uε(x, t) ∈
W 2,1

p (QT ) and

‖uε‖
W

2,1
p (QT ) � C

with constant C independent of ε, where QT = (a, b) × [δ, T ].

Proof Choose cut-off functions ξ(t) ∈ C∞
0 (0, T ], η(x) ∈ C∞

0 (a − 1, b + 1) such that 0 �
ξ, η � 1, ξ(t) = 1 if t ∈ [δ, T ], η(x) = 1 if x ∈ [a, b].

Let w(x, t) = ξ(t)η(x)uε(x, t). Then


∂w
∂t

− σ2

2
∂2w
∂x2 = f(x, t), (x, t) ∈ Q̃T

w(x, 0) = 0, x ∈ (a− 1, b+ 1)

w(x, t) = 0, x = a− 1, b+ 1, t ∈ (0, T ),
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where Q̃T = (a− 1, b+ 1) × (0, T ) and

f(x, t) = (−σ2ξη′ + ξη(r − q − λk − σ2

2
)) ∂uε

∂x
+ (− σ2

2
ξη′′ + ξ′η − (r + λ)ξη)uε

+ λξη
∫ ∞

−∞ u
ε(x+ z, t)dÑ(z) − ξηβε(u

ε − ψε).

Using W 2,1
p estimates for parabolic equations gives

‖w‖
W

2,1
p (Q̃T ) � C(‖uε‖Lp(Q̃T ) + ‖f‖Lp(Q̃T )).

Since by Lemmas 2.3–2.5, uε, uεx and βε(u
ε − ψε) are bounded uniformly in ε, we have

‖uε‖
W

2,1
p (QT ) � ‖w‖

W
2,1
p (Q̃T ) � C,

where C is independent of ε. Thus Lemma 2.7 is proved. �

Lemma 2.7 For any small δ ∈ (0, T ) and p ∈ (1,∞), uε(x, t) ∈ W 2,1
p (Q, e−|x|dx) and

‖uε‖
W

2,1
p (Q,e−|x|dx) � C

with constant C independent of ε, where Q = Q1 ∪ Q2, Q1 = (lnK + δ,+∞) × (0, T ],

Q2 = (−∞, lnK − δ) × (0, T ] and W 2,1
p (Q, e−|x|dx) is the weighted space with weight e−|x|.

Proof Choose a cut-off function η(x) ∈ C∞
0 (lnK + δ

2
, N + 1)(lnK + δ < N) such that

η(x) = 1 if x ∈ [lnK + δ,N], η(x) = 0 if x � N + 1 and let w = ηuεe− |x|
p . Then


∂w
∂t

− σ2

2
∂2w
∂x2 = f̃(x, t), (x, t) ∈ Q̃1 = (lnK + δ

2
, N + 1) × (0, T )

w(x, 0) = ψε(x) = 0, x ∈ (lnK + δ
2
, N + 1)

w(x, t) = 0, x = lnK + δ
2
, N + 1, t ∈ (0, T ),

where

f̃(x, t) = (−σ2(η′ − η
p
) + (r − q − λk − σ2

2
)η) ∂uε

∂x
e− |x|

p

+ (− σ2

2
(η′′ − (1 + 1

p
)η′ + η

p2 ) − (r + λ)η)uεe− |x|
p

− ηβε(u
ε − ψε)e

− |x|
p + ληe− |x|

p

∫ ∞
−∞ u

ε(x+ z, t)dÑ(z)

The same reasoning which leads to Lemma 2.7 then gives

‖w‖
W

2,1
p (Q̃1)

� C.

Clearly, we can choose η(x) such that η, η′, η′′ have a bound independent of N and hence

the constant C does not depend upon ε and N. From this estimate, it follows that

‖uε‖
W

2,1
p ( ˜̃Q1 ,e

−|x|dx)
� C,

where ˜̃Q1 = (lnK + δ,N) × (0, T ]. Since C is independent of N, we finally obtain

‖uε‖
W

2,1
p (Q1 ,e−|x|dx) � C.

Similarly, we can prove

‖uε‖
W

2,1
p (Q2 ,e−|x|dx) � C. �
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Let P = (lnK, 0), and Bδ(P ) be the disc in (x, t) plane with radius δ, centered at P .

Remark 2.1 Combining Lemma 2.7 with Lemma 2.8, we can affirm that for any small

δ > 0 and p ∈ (1,∞), uε ∈ W 2,1
p (H1, e

−|x|dx) and

‖uε‖
W

2,1
p (H1 ,e−|x|dx) � C

with constant C independent of ε, where H1 = R × [0, T ]/Bδ(P ).

Lemma 2.8 For any a < b, p ∈ [2,∞) and almost all t ∈ (0, T ],

∫ a

b

(∣∣∣∣∂2uε

∂x2

∣∣∣∣
p

+

∣∣∣∣∂uε

∂t

∣∣∣∣
p

+

∣∣∣∣∂uε

∂x

∣∣∣∣
p)
dx � C

with constant C independent of ε.

Proof Differentiating the equation in (2.1) once with respect to t, multiplying by

e−|x|ξ2(t)η2(x)( ∂uε

∂t
)2n−1 (n is a positive integer) and integrating over Q̃t = (a−1, b+1)×(0, t),

t ∈ (0, T ], we obtain

∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2n−1 ∂2uε

∂t2
dxdτ− σ2

2

∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2n−1 ∂3uε

∂x2∂t
dxdτ

− (r − q − λk − σ2

2
)
∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2n−1 ∂2uε

∂x∂t
dxdτ

+ (r + λ)
∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2ndxdτ

− λ
∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
(x, τ))2n−1(

∫ ∞
−∞

∂uε

∂t
(x+ z, τ)dÑ(z))dxdτ

+
∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2nβ′

ε(u
ε − ψε) dxdτ

= I1 + I2 + I3 + I4 + I5 + I6 = 0, (2.3)

where ξ(t) ∈ C∞
0 (0, T ], η(x) ∈ C∞

0 (a − 1, b + 1) are cut-off functions such that 0 � ξ(t),

η(x) � 1, ξ(t) = 1 if t ∈ [δ, T ] (δ > 0), η(x) = 1 if x ∈ [a, b].

Since β′
ε(·) � 0 and ∂uε

∂t
� 0, we have I6 � 0. Let Φ(t) =

∫ b+1

a−1 e
−|x|ξ2(t)η2(x)( ∂uε

∂t
)2ndx.

Then I4 = (r + λ)
∫ t

0
Φ(τ)dτ.

Integrating by parts and using Lemma 2.7 and Hölder’s inequality gives

I1 =
∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2n−1 ∂2uε

∂t2
dxdτ

= 1
2n

∫ b+1

a−1 e
−|x|ξ2(t)η2(x)( ∂uε

∂t
)2ndx− 1

n

∫∫
Q̃t

e−|x|ξ(τ)ξ′(τ)η2(x)( ∂uε

∂t
)2ndxdτ

� 1
2n
Φ(t) − C1

∫ t
0 Φ(τ)dτ− C2.
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Again integrating by parts gives

I2 = − σ2

2

∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
)2n−1 ∂3uε

∂x2∂t
dxdτ

= (2n−1)σ2

2

∫∫
Q̃t

ξ2(τ)η2(x)e−|x|( ∂uε

∂t
)2n−2( ∂2uε

∂x∂t
)2dxdτ

+ σ2

2

∫∫
Q̃t

ξ2(τ)( ∂uε

∂t
)2n−1 ∂2uε

∂x∂t
η(x)e−|x|(2η′(x) − η(x)sgn(x))dxdτ

= I21 + I22.

Note that I21 � 0. Using Lemma 2.7 and Hölder’s inequality, we have

|I22| �
1

3
I21 + C2

which implies

I2 �
2

3
I21 − C2.

Similar reasoning leads to

|I3| �
1

3
I21 + C1

∫ t

0

Φ(τ)dτ.

Using Hölder’s inequality and Young’s inequality, Remark 2.1 and condition (A), we can

easily derive

|I5| = λ
∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
(x, τ))2n−1

( ∫ ∞
−∞

∂uε

∂t
(x+ z, τ)dÑ(z)

)
dxdτ

= λ
∫ ∞

−∞
( ∫∫
Q̃t

e−|x|ξ2(τ)η2(x)( ∂uε

∂t
(x, τ))2n−1 ∂uε

∂t
(x+ z, τ)dxdτ

)
dÑ(z)

� λ
∫ ∞

−∞
[ ∫ t

0
ξ2(τ)

( ∫ b+1

a−1
e−|x|η2(x)( ∂uε

∂t
(x, τ)

)2n
dx)

2n−1
2n( ∫ b+1

a−1 e
−|x|η2(x)( ∂uε

∂t
(x+ z, τ))2ndx

) 1
2n dτ

]
dÑ(z)

� λ
∫ ∞

−∞
[ ∫ t

0 ξ
2(τ)( 2n−1

2n
Φ(τ) + 1

2n

∫ b+1

a−1 e
−|x|η2(x)( ∂uε

∂t
(x+ z, τ))2ndx)dτ

]
dÑ(z)

� 2n−1
2n
λ
∫ t

0
Φ(τ)dτ+ 1

2n
λ
∫ ∞

−∞
∫ t

0
ξ2(τ)

∫ b+1

a−1
e−|x|η2(x)( ∂uε

∂t
(x+ z, τ))2ndxdτdÑ(z)

� 2n−1
2n
λ
∫ t

0 Φ(τ)dτ+ λ
2n

∫ ∞
−∞ e

|z|( ∫ t
0 ξ

2(τ)
∫ b+1+z

a−1+z e
−|y|( ∂uε

∂t
(y, τ))2ndydτ

)
dÑ(z)

� 2n−1
2n
λ
∫ t

0
Φ(τ)dτ+ C2.

Then combining these estimates for Ii (i = 1, · · · , 6) with (2.3), we are led to

Φ(t) � C1

∫ t

0

Φ(τ)dτ+ C2,

which implies

Φ(t) � C2e
C1t

by Gronwall’s inequality. So, for any δ � t � T ,

∫ b

a

(
∂uε

∂t
(x, τ)

)2n

dx � C
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with constant C independent of ε. From this, it follows from Lemma 2.4, by using (2.1)

and Lemma 2.5 that ∫ b

a

∣∣∣∣∂2uε

∂x2
(x, τ)

∣∣∣∣
p

dx � C, 2 � p < ∞.

Combining these estimates with Lemma 2.5 leads to Lemma 2.9. �

Lemma 2.9 ∂2uε

∂x2 , ∂uε

∂t
are bounded uniformly in ε ∈ (0, 1) in QδT , where QδT = (a, b) ×

(0, T )/Bδ(P ).

Proof By Lemmas 2.5 and 2.6, we have ∂2uε

∂x2 � ∂uε

∂x
� −(K + 1), so it suffices to prove that

∂2uε

∂x2 has a uniform upper bound in QδT . Let w = ∂uε

∂t
. Then w satisfies

L1w + w · β′
ε(u

ε − ψε) = 0.

Denote Lw = ∂w
∂t

− σ2

2
∂2w
∂x2 − (r − q − λk − σ2

2
) ∂w

∂x
+ (r + λ)w. Use the same notations and

choose a cut-off function η(x, t) ∈ C∞
0 (R × (0, T ]) such that 0 � η(x, t) � 1, η(x, t) = 1 if

(x, t) ∈ QδT , η(x, t) = 0 if (x, t) ∈ Bδ
2
(P ), x < ã or x > b̃ for some constants ã, b̃. Denote

Q̃T = (ã, b̃) × (0, T ). Then

L(ηw) + ηβ′
ε(u

ε − ψε) · w
= η(Lw + β′

ε(u
ε − ψε) · w) − w · ( σ

2

2
ηxx − (r − q − λk − σ2

2
)ηx − ηt) − σ2ηxwx

= λη
∫ ∞

−∞ w(x+ z, t)dÑ(z) + w · ( 3σ2

2
ηxx + (r − q − λk − σ2

2
)ηx + ηt) − σ2 ∂

∂x
(ηxw)

= g0 + (g1)x,

where g0 = λη
∫ ∞

−∞ w(x+ z, t)dÑ(z) + w · ( 3σ2

2
ηxx + (r − q − λk − σ2

2
)ηx + ηt), g1 = −σ2ηxw.

Since β′
ε � 0, we have

L(ηw) � g0 + (g1)x.

This means that ηw is a subsolution of the problem

Lv = g0 + (g1)x, (x, t) ∈ Q̃T ,

v(x, t) = 0, x = ã, b̃,

v(x, 0) = 0, x ∈ [ã, b̃].

Lemma 2.9 implies that |g0|
L
p
2
,∞(Q̃T )

+ |g1|Lp,∞(Q̃T ) � C with constant C independent of ε.

Therefore, by the theory of parabolic equations, we obtain

sup
Q̃T

ηw � C(|g0|
L
p
2
,∞(Q̃T )

+ |g1|Lp,∞(Q̃T )),

where C > 0 is independent of ε. This, together with Lemma 2.5, proves the uniform

boundedness of ∂uε

∂t
on QδT .

The uniform boundedness of ∂2uε

∂x2 on QδT then follows from the same property of uε,
∂uε

∂x
, ∂uε

∂t
and βε(u

ε − ψε) and equation (2.1). Lemma 2.10 is proved. �

Lemma 2.10 For any a < b < lnK , 0 < t1 < t2 < T ,∫ t2

t1

∫ b

a

(
∂2uε

∂x∂t

)2

dxdt � C (2.4)

with constant C independent of ε.
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Proof Let v = ∂uε

∂x
. Then v satisfies

L1v + β′
ε(u

ε − ψ)(v − ψ′
ε) = 0.

Choose a cut-off function η(x, t) ∈ C∞
0 ((−∞, lnK) × (0, T )) such that η(x, t) = 1 for

x ∈ [a, b],t ∈ [t1, t2], multiply the above equation by η2vt and integrate over HT . Then

∫∫
HT

η2( ∂v
∂t

)2dxdt− σ2

2

∫∫
HT

∂2v
∂x2 η

2 ∂v
∂t
dxdt− (r − q − λk − σ2

2
)
∫∫
HT

∂v
∂x
η2 ∂v

∂t
dxdt

+ (r + λ)
∫∫
HT

η2v ∂v
∂t
dxdt+

∫∫
HT

η2β′
ε(u

ε − ψε)(v − ψ′
ε)

∂v
∂t
dxdt

− λ
∫∫
HT

η2 ∂v
∂t

(
∫ +∞

−∞ v(x+ z, t)dÑ(z))dxdt

= I1 + I2 + I3 + I4 + I5 + I6 = 0.

(2.5)

Integrating by parts gives

I2 = − σ2

2

∫∫
HT

∂2v
∂x2 η

2 ∂v
∂t
dxdt = σ2

4

∫∫
HT

η2 ∂
∂t

[( ∂v
∂x

)2]dxdt+ σ2

2

∫∫
HT

2η ∂η
∂x

∂v
∂x

∂v
∂t
dxdt

= σ2

4

∫∫
HT

∂
∂t

[( ∂v
∂x

)2η2]dxdt+ σ2
∫∫
HT

η ∂η
∂x

∂v
∂x

∂v
∂t
dxdt− σ2

2

∫∫
HT

( ∂v
∂x

)2η ∂η
∂t
dxdt

= − σ2

2

∫∫
HT

( ∂v
∂x

)2η ∂η
∂t
dxdt+ σ2

∫∫
HT

η ∂η
∂x

∂v
∂x

∂v
∂t
dxdt

Lemma 2.10 implies the uniform boundedness in ε of η ∂v
∂x

= η ∂2uε

∂x2 . Hence

|I2| � C +
1

4

∫∫
HT

η2

(
∂v

∂t

)2

dxdt.

Similarly, we have

|I3| + |I4| � C(R) +
1

4

∫∫
HT

η2

(
∂v

∂t

)2

dxdt.

Again integrating by parts gives

I5 =
∫∫
HT

η2β′
ε(u

ε − ψε)(v − ψ′
ε)

∂v
∂t
dxdt = 1

2

∫∫
HT

η2β′
ε(u

ε − ψε)
∂
∂t

[(v − ψ′
ε)

2]dxdt

= − 1
2

∫∫
HT

η2β′′
ε (u

ε − ψε)
∂uε

∂t
(v − ψ′

ε)
2dxdt−

∫∫
HT

η ∂η
∂t
β′
ε(u

ε − ψε)(v − ψ′
ε)

2dxdt.

Since β′′
ε (·) � 0 and by Lemma 2.5, ∂uε

∂t
� 0, the first term of the right side is nonnegative.

Thus, after integrating by parts, we obtain

I5 � −
∫∫
HT

η ∂η
∂t
β′
ε(u

ε − ψε)(v − ψ′
ε)

2dxdt

=
∫∫
HT

βε(u
ε − ψε)

∂
∂x

[(v − ψ′
ε)η

∂η
∂t

]dxdt � −C.
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Here we have used the uniform boundedness in in ε of η ∂v
∂x

= η ∂2uε

∂x2 and ηψ′′
ε , which follow

from Lemma 2.10 and the definition of Πε.

Finally, using Lemma 2.3 derives

I6 = −λ
∫∫
HT

η2 ∂v
∂t

(∫ +∞
−∞ v(x+ z, t)dÑ(z)

)
dxdt � −λ(K + 1)

∫∫
HT

η2| ∂v
∂t

|dxdt

� −C − 1
4

∫
HT
η2( ∂v

∂t
)2dxdt.

Combining these estimates for Ii (i = 2, · · · , 6) with (2.5), we deduce

∫∫
HT

η2

(
∂v

∂t

)2

dxdt � C.

Hence ∫ b

a

∫ t2

t1

(
∂2uε

∂x∂t

)2

dxdt � C,

where the constant C is independent of ε. �

Lemma 2.11 For any a < b < lnK , 0 < t1 < t2 < T ,

∫ b

a

∫ t2

t

(
∂2uε

∂t2

)2

dxdτ+

∫ b

a

(
∂2uε

∂x∂t

)2

(x, t)dx � C, t ∈ (t1, t2) (2.6)

with constant C independent of ε.

Proof Let w = ∂uε

∂t
. Then w satisfies

L1w + β′
ε(u

ε − ψε)w = 0.

Multiply by η2wt and integrate over Ωt = (−∞,∞) × (0, t) (0 < t � t2). Here η(x, t) ∈
C∞

0 ((−∞, lnK) × (0, T )) is the same cut-off function as in Lemma 2.10. Then

∫∫
Ωt

η2( ∂w
∂t

)2dxdτ− σ2

2

∫∫
Ωt

η2 ∂2w
∂x2

∂w
∂t
dxdτ− (r − q − λk − σ2

2
)
∫∫
Ωt

η2 ∂w
∂x

∂w
∂t
dxdτ

+ (r + λ)
∫∫
Ωt

η2w ∂w
∂t
dxdτ+

∫∫
Ωt

η2β′
ε(u

ε − ψε)w
∂w
∂t
dxdτ

− λ
∫∫
Ωt

η2 ∂w
∂t

(∫ +∞
−∞ w(x+ z, t)dÑ(z)

)
dxdτ

= I1 + I2 + I3 + I4 + I5 + I6 = 0.

(2.7)

Integrating by parts gives

I2 = − σ2

2

∫∫
Ωt

η2 ∂2w
∂x2

∂w
∂t
dxdτ = σ2

2

∫∫
Ωt

η2 ∂w
∂x

∂2w
∂x∂t

dxdτ+ σ2
∫∫
Ωt

η ∂η
∂x

∂w
∂x

∂w
∂t
dxdτ

= σ2

4

∫ ∞
−∞ η

2( ∂w
∂x

)2(x, t)dx− σ2

2

∫∫
Ωt

η ∂η
∂t

( ∂w
∂x

)2dxdτ+ σ2
∫∫
Ωt

η ∂η
∂x

∂w
∂x

∂w
∂t
dxdτ.
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Using Lemma 2.11, we obtain

I2 �
σ2

4

∫ ∞

−∞
η2

(
∂w

∂x

)2

(x, t)dx− C − 1

6

∫∫
Ωt

η2

(
∂w

∂t

)2

dxdτ.

Similarly, we have

I3 � −C − 1
6

∫∫
Ωt

η2( ∂w
∂t

)2dxdτ,

I4 � −C − 1
6

∫∫
Ωt

η2( ∂w
∂t

)2dxdτ.

To estimate I5, we integrate by parts again and note that β′
ε(·) � 0, β′′

ε (·) � 0 and ∂uε

∂t
� 0,

I5 =
∫∫
Ωt

η2β′
ε(u

ε − ψε)w
∂w
∂t
dxdτ

� 1
2

∫ ∞
−∞ η

2β′
ε(u

ε − ψε)w
2(x, t)dx−

∫∫
Ωt

η ∂η
∂t
β′
ε(u

ε − ψε)w
2dxdτ

� −
∫∫
Ωt

η ∂η
∂t
β′
ε(u

ε − ψε)w
2dxdτ

= −
∫ ∞

−∞ η
∂η
∂t
βε(u

ε − ψε)w(x, t)dx+
∫∫
Ωt

( ∂
∂t

(η ∂η
∂t

)w + η ∂η
∂t

∂w
∂t

)βε(u
ε − ψε)dxdτ

� −C − 1
6

∫∫
Ωt

η2( ∂w
∂t

)2dxdτ.

Finally

I6 = −λ
∫∫
Ωt

η2 ∂w

∂t

(∫ +∞

−∞
w(x+ z, t)dÑ(z)

)
dxdτ � −C − 1

6

∫∫
Ωt

η2

(
∂w

∂t

)2

dxdτ.

Combining these estimates with (2.7), we deduce

1

6

∫∫
Ωt

η2

(
∂w

∂t

)2

dxdτ+
σ2

4

∫ ∞

−∞
η2

(
∂w

∂x

)2

(x, t)dx � C, t ∈ (0, t2]

and complete the proof of (2.6). �

3 Solutions to the problem (P )

In this section, we return to the problem (P ). We first prove the uniqueness of solutions

to (P ) or equivalently, (1.1), which is valid for slightly generalized solutions. To introduce

such solutions, as we did in Lemma 2.8, we consider a certain kind of weighted function

spaces with weight e−|x|, denoted by

H = L2(R, e−|x|dx), V = {u ∈ H |ux ∈ H}.

The inner product and the norm in H are denoted by (·, ·)H and ‖ · ‖H .
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A function u ∈ L2((0, T ];V ) with ut ∈ L2([δ, T ];H) for any δ ∈ (0, T ) is said to be a

generalized solution to (1.1), if

(ut, v − u)H + a(u, v − u) + b(u, v − u) � 0, a.e. in (0, T ], for any v ∈ V , v � ψ(x), (3.1)

lim
t→0+

∫
R

|u(x, t) − ψ(x)|2e−|x|dx = 0, (3.2)

u(x, t) � ψ(x), a.e. in R × (0, T ], (3.3)

where

a(u, v) = σ2

2

∫ ∞
−∞ uxvxe

−|x|dx+ (r + λ)
∫ ∞

−∞ uve
−|x|dx

−
∫ ∞

−∞( σ
2

2
sgn(x) + r − q − λk − σ2

2
)uxve

−|x|dx

b(u, v) = −λ
∫ ∞

−∞
[ ∫ ∞

−∞ u(x+ z, t)dÑ(z)
]
ve−|x|dx

Theorem 3.1 (1.1) admits at most one generalized solution u ∈ L∞((0, T ];V ).

Proof Suppose that u1, u2 are generalized solutions of (1.1). Let v = u2 + (u1 − u2)
+. Then

v ∈ V , v � ψ, and from (3.1),

( ∂u2

∂t
, v − u2)H + a(u2, v − u2) + b(u2, v − u2)

= ( ∂u2

∂t
, (u1 − u2)

+)H + a(u2, (u1 − u2)
+) + b(u2, (u1 − u2)

+)

� 0, a.e. in (0, T ]

(3.4)

Denote v− = u1 − ε(u1 − u2)
+, 0 < ε < 1. It is obvious that v− ∈ V and v− � ψ. Again

from (3.1) by taking v = v−, we obtain

(
∂u1

∂t
,−ε(u1 − u2)

+)H + a(u1,−ε(u1 − u2)
+) + b(u1,−ε(u1 − u2)

+

)
� 0, a.e. in (0, T ],

and hence(
∂u1

∂t
, (u1 − u2)

+)H + a(u1, (u1 − u2)
+) + b(u1, (u1 − u2)

+

)
� 0, a.e.in(0, T ]. (3.5)

Combining (3.4) with (3.5) gives

(
∂(u2 − u1)

∂t
, (u1 − u2)

+
)
H

+ a(u2 − u1, (u1 − u2)
+) + b(u2 − u1, (u1 − u2)

+

)
� 0, a.e. in (0, T ].

Let w = u1 − u2. Then

(
∂w

∂t
, w+

)
H

+ a(w,w+) + b(w,w+) � 0 a.e. in (0, T ]. (3.6)
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Now we observe that(
∂w

∂t
, w+

)
H

=
1

2

d

dt

∫ ∞

−∞
(w+)2e−|x|dx =

1

2

d

dt

(
‖w+‖2

H

)
(3.7)

and

a(w,w+) = a(w+, w+) �
σ2

4
‖w+

x ‖2
H − C‖w+‖2

H.

In addition,

b(w,w+) = −λ
∫
R

(∫
R
w(x+ z, t)dÑ(z)

)
w+(x, t) · e−|x|dx

� −λ
∫
R

∫
R
w+(x+ z, t)w+(x, t)e−|x|dÑ(z)dx

� −λ‖w+‖H
(∫
R
(
∫
R
w+2(x+ z, t)e−|x|dx)dÑ(z)

) 1
2

� −λ‖w+‖H
(∫
R
(
∫
R
w+2(x+ z, t)e−|x+z|dx) · e|z|dÑ(z)

) 1
2

= −λ‖w+‖2
H

∫
R
e|z|dÑ(z).

Hence, using condition (A) gives

b(w,w+) � −C‖w+‖2
H. (3.9)

Combining (3.7), (3.8), (3.9) with (3.6), we derive

1

2

d

dt

(
|w+|2H

)
+
σ2

4
‖w+

x ‖2
H − C‖w+‖2

H � 0, a.e. in (0, T ],

in particular,
d

dt

(
|w+|2H

)
� C‖w+‖2

H, a.e. in (0, T ].

Using (3.2), we see that |w+|2H → 0 as t → 0, so, by Gronwall’s inequality, we obtain

|w+|2H = 0 for t ∈ (0, T ] and hence u1 � u2 a.e. in R × (0, T ]. Similarly, we can prove that

u2 � u1 a.e. in R × (0, T ]. Thus we obtain the uniqueness of solutions to (1.1). �

Corollary 3.1 Suppose that u is a solution to (1.1), u, ∂u
∂x

are bounded and continuous and
∂u
∂x

, ∂u
∂t

∈ L2([δ, T ], H) for any δ ∈ (0, T ). Then u is a generalized solution to (1.1).

Proof It suffices to verify that u satisfies (3.1) for any v ∈ V with v � ψ. Since L1u � 0

and L1u = 0 whenever u > ψ, v − u � 0 whenever u = ψ, we have

(L1u, v − u)H � 0. (3.10)

Integrating by parts gives

∫
R

∂2u
∂x2 (v − u)e−|x|dx

= −
∫
R

∂u
∂x

( ∂v
∂x

− ∂u
∂x

)e−|x|dx+
∫
R
sgn(x) ∂u

∂x
(v − u)e−|x|dx

Thus from (3.10) it is easy to derive (3.1). �
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As before, let P = (lnK, 0), and Bδ(P ) be the disc in (x, t) plane with radius δ , centered

at P .

Theorem 3.2 For any a < b and small positive constant δ, there exists a subsequence {εk},
as εk → 0, such that the solution uεk (x, t) of (2.1) converges uniformly in QT = (a, b) ×
(0, T )/Bδ(P ). The limit function u(x, t) is a solution of (1.1), u(x, t) ∈ W 2,1

p (QT ), for any

p ∈ (1,∞), and L1u = 0, in {u > ψ}.

Proof By Lemma 2.7, there exists a subsequence {εk} with εk → 0 and a function

u ∈ W 2,1
p (QT ) such that

uεk
weakly
−→ u, in W 2,1

p (QT ).

Since p ∈ (1,+∞) is arbitrary, again by Lemma 2.7, there exists α ∈ (0, 1) such that

u ∈ C1+α, 1+α
2 (QT ) by the imbedding theorem. From Lemmas 2.5 and 2.3, for any x, y ∈

R, t ∈ (0, T ], there holds

|uε(x, t) − uε(y, t)| � C|x− y|,

where C is independent of ε. Using an argument in treating parabolic equations without

nonlocal term, we can obtain

|uε(x, s) − uε(x, t)| � C|s− t| 1
2

for any x ∈ R, s, t ∈ (0, T ], where C is independent of ε. The uniform boundedness

and equicontinuity of {uε} imply that there exists a uniformly convergent subsequence

{uεk}(εk → 0) of {uε}, supposed to be the same subsequence as above,

uεk
uniformly

−→ u.

Now we prove that u(x, t) is a solution of (1.1). Since βε � 0, we have L1u
ε � 0. Letting

ε = εk → 0 gives L1u � 0 in QT in the sense of distributions. Noting that u ∈ W 2,1
p (QT ),

we can assert that L1u � 0, a.e. in QT . Since a, b, δ are arbitrary, L1u � 0, a.e. in HT . By

Lemma 2.4, uε(x, t) � ψε(x). Letting ε → 0, we find that u(x, t) � ψ(x). It remains to prove

that L1u = 0 in {u > ψ}. In fact, for any (x0, t0) ∈ {u > ψ}, from the continuity of u, ψ,

there exists a neighborhood N of (x0, t0) such that u(x, t) > ψ(x) in N. From the uniform

convergence of uεk (x, t) and ψεk (x), there exists δ > 0 such that uεk (x, t) � ψεk (x) + δ for

εk small enough. So βεk (u
εk − ψεk ) = 0 and L1u

εk = 0 in N. Letting εk → 0 and noting

that u ∈ W 2,1
p (QT ), we obtain L1u = 0 a.e. in N.

Thus we have proved that as the limit of a uniformly convergent subsequence of {uε},
u is a solution of (1.1).

Similar to parabolic equations, we can prove by Bernstein’s Method that

‖uε‖
C2+α,1+ α

2 (N)
� C
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for any N ⊂ {u > ψ}, where C is independent of ε. Therefore, ∂u
∂t
, ∂u

∂x
, ∂2u

∂x2 exist, are

continuous and L1u = 0 in {u > ψ}. �

Remark 3.1 The solution u obtained in Theorem 3.3 as the limit of a subsequence of uε

possesses all properties assumed in Corollary 3.2, some properties have been presented

above and others will be given later. So we can further affirm that, for any a < b

and small positive constant δ, the whole family {uε} is uniformly convergent to u in

QT = (a, b) × (0, T )/Bδ(P ), as ε → 0.

In what follows, we discuss properties of the solution u(x, t) to (1.1) thus obtained. Let

x = ln S, t = T − τ, u(x, t) = V (S, τ). Then V (S, τ) is a solution to (P ). We will describe

properties of solutions sometimes in terms of u(x, t), sometimes in terms of V (S, τ).

Theorem 3.3 For any a < b and small positive constant δ, ∂u
∂t

, ∂2u
∂x2 ∈ L∞(QT ) and ∂u

∂x
is

continuous in HT , where QT = (a, b) × (0, T ]/Bδ(P ),

Proof By Lemma 2.10 , Theorem 3.3 , we can infer ∂u
∂t

, ∂2u
∂x2 ∈ L∞(QT ). Since ∂2uε

∂x2 is

uniformly bounded in QT , we can prove that ∂u
∂x

ε
is uniformly 1

2
-Hölder continuous in t

and hence infer the continuity of ∂u
∂x

in HT . �

Theorem 3.4 The solution V (S, τ) to (P ) possesses the following properties:

(1) V (S, τ) is nonincreasing both in S and in τ;

(2) For each τ ∈ [0, T ), V (S, ·) is a convex function of S;

(3) V (S, τ) ∈ [0, K], for any (S, τ) ∈ [0,∞) × [0, T ).

Proof Let x = ln S , t = T − τ. Then u(x, t) = V (S, τ) is a solution to (1.1).

(1) By Lemma 2.5, we have ∂uε

∂x
� 0, ∂uε

∂t
� 0. So uε(x, t) is nonincreasing in x and

nondecreasing in t. Since u(x, t) is the limit of uε(x, t) as ε → 0, u(x, t) possesses the same

property.

(2) Denote vε(S, t) = uε(ln S, t) = uε(x, t). Then by Lemma 2.6, ∂2vε

∂S2 = 1
S2 (

∂2uε

∂x2 − ∂uε

∂x
) � 0,

which implies that vε(S, t) is a convex function of S . Using Theorem 3.3, we conclude that

so is the limit function V (S, τ).

(3) Since u(x, t) � ψ(x), we have u(x, t) � 0, so does V (S, τ). By Lemma 2.3, uε(x, t) � K+ε,

for any (x, t) ∈ R × (0, T ]. Letting ε → 0 yields u(x, t) � K , so does V (S, τ) for any

(S, τ) ∈ [0,+∞) × [0, T ). �

Lemma 3.1 Assume that Lw � 0 in R+ × [0, T ) with L being the operator in §1 and E is

a subregion in R+ × [0, T ) in which w(S, τ) � 0. If for some point P ∈ ∂E, w(P ) = 0, the

inward normal vector γ at P to ∂E is not parallel to the τ axis and there exists an inscribed

disc B ⊂ E such that B∩∂E = {P } and w > 0 on B/{P }, then ∂w
∂γ

(P ) > 0, where ∂
∂γ

denotes

the derivative along γ.

Proof Let (S1, τ1) and R be the centre and radius of B. Consider a disc B1 centered at

P = (S0, τ0) with radius R0 less than |S1 − S0| (since γ is not parallet to the τ− axis,
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|S1 − S0| > 0). Denote C ′ = ∂B1 ∩ B, C ′′ = ∂B ∩ B1, and D the region with boundary

C ′ ∪ C ′′. Since w > 0 on B/{P }, there exists η > 0 such that

w(S, τ) � η, (S, τ) ∈ B/B1. (3.11)

Consider the auxilliary function

v(S, τ) = e−αR2 − e−α[(S−S1)
2+(τ−τ1)2].

Then a simple calculation shows that

Lv = e−α[(S−S1)
2+(τ−τ1)2]

{
− 2σ2S2(S − S1)

2α2

+ α[2(τ− τ1) + σ2S2 + 2(r − q − λk)S(S − S1)] + (r + λ)
}

− re−αR2

− λ
∫ +∞

−1 e−α[(S (1+y)−S1)
2+(τ−τ1)2]dN(y).

Since R0 < |S1 − S0|, we have Lv < 0 in D, if α > 0 is chosen appropriately large.

Let w = w + εv(ε > 0). Then for large α > 0 and ε > 0,

Lw = Lw + εLv < 0 in D

from which it follows that w can not attain negative global minimum in D. Note that

v = 0 on ∂B, so w � 0 on C ′′. From (3.11), we can take ε > 0 so small that w > 0 on

C ′. If w < 0 at some point in D, then w will attain negative minimum in D, which is

impossible. Hence w � 0 on D and w(P ) = 0. Thus

∂w

∂γ
(P ) =

∂w

∂γ
(P ) + ε

∂v

∂γ
(P ) � 0.

Since ∂v(P )
∂γ

= −2αRe−αR2

< 0, we finally obtain ∂w(P )
∂γ

> 0. So the lemma is proved. �

Theorem 3.5 V (S, τ) > 0, ∀(S, τ) ∈ R+ × [0, T ).

Proof Since V (S, τ) � φ(S) = (K−S)+(see the proof of Theorem 3.3), we have V (S, τ) > 0

when S < K . So it remains to prove that V (S, τ) > 0 when S � K . Since V (S, τ) is

decreasing in S , it suffices to prove that V (S, τ) > 0 when S > K , τ ∈ (0, T ).

Let Ω1 = {(S, τ)|S > K, τ ∈ (0, T ), V (S, τ) = 0} and Ω2 = {(S, τ)|S > K, τ ∈
(0, T ), V (S, τ) > 0}. Suppose that Ω1 is nonempty, namely, there exists (S0, τ0) ∈ Ω1.

Denote Γ = ∂Ω1/{τ = 0, T }. By the monotonicity of V (S, τ) and V (S, τ) � 0, there exists

(S1, τ0) ∈ Γ with S1 � S0 and (S, τ0) ∈ Ω1 when S � S1.

First, we prove that there exist a point P ∗(S∗, τ∗) ∈ Ω2 and a constant R > 0 such that

BR(P ∗) ⊂ Ω2 and ∂BR(P ∗) ∩ Γ is a set of singer point P̃ (S̃ , τ̃) with S̃ > S∗, τ̃ � τ∗.

If there exists (S1, τ1) ∈ Γ (τ1 > τ0), then from the monotonicity of V (S, τ) and

V (S, τ) � 0, we have (S0, τ) ∈ Γ when τ ∈ (τ0, τ1). In this case, the conclusion we want

to prove is trivial. Suppose not. Then for any τ1 ∈ (τ0, T ), there exists S2 < S1 such that

(S2, τ1) ∈ Γ . Denote by l the segment with endpoints (S2, τ1) and (S1, τ0). Then we treat

the following two cases separately.
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(1) There are points of Γ (besides (S2, τ1) and (S1, τ0)) lying on l or on the left side of l.

In this case, there must be a line l′ parallel to l such that no point of Γ lies on the left

side of l′, but there exists a point of Γ lying on l′, denoted by (S3, τ2) with τ2 ∈ (τ0, τ1).

Hence the existence of the point P ∗(S∗, τ∗) and the constant R > 0 required follows

immediately.

(2) All points of Γ except (S1, τ0) and (S2, τ1) lie on the right side of l.

For P (SP , τP ) ∈ l, denote dP = dist(P , Γ ). Suppose that Q(SQ, τQ) ∈ Γ is a point such

that dP = dist(P ,Q). If there exists a point P ∈ l, P � (S1, τ0) and (S2, τ1) such that

the corresponding Q(SQ, τQ) satisfies SQ > SP , then we may take (SQ, τQ) as P̃ (S̃ , τ̃), and

obtain the desired conclusion. Now we prove by contradiction that the contrary case is

impossible. Note that, in the contrary case, for any P ∈ l, SQ = SP . Since dP is a continuous

function of P , there exists P0(SP0
, τP0

) ∈ l such that dP0
= max

P∈ l
dP . Let Q0(SQ0

, τQ0
) ∈ Γ be

a point such that dP0
= dist(P0, Q0). By the definition of P0, we have BdP0

(P0) ⊂ Ω2,

Q0 ∈ ∂BdP0
(P0) ∩ Γ . Let P̃ ∈ l be a point with τP0

− τP̃ > 0 small enough and Q̃ ∈ Γ

be a point such that dP̃ = dist(P̃ , Q̃). If ˜̃Q is the intersecting point of ∂BdP0
(P0) and the

segment P̃ Q̃ (since dP0
� dist(P0, Q̃), ˜̃Q exists!), then

τQ0
− τQ̃ � τQ0

− τ ˜̃Q
� τP0

− τP̃ .

Therefore, since SQ̃ = SP̃ , SQ0
= SP0

, we obtain

dP̃ = dist(P̃ , Q̃) = τQ̃ − τP̃ = (τQ0
− τP0

) − (τQ0
− τQ̃) + (τP0

− τP̃ )

>τQ0
− τP0

= dP0
,

which contradicts the definition of dP0
.

Summing up, we have proved the conclusion in any cases.

Now we are ready to use Lemma 3.6. Since S̃ > S∗, the inward normal vector γ at

P̃ (S̃ , τ̃) to Γ is not parallel to the τ− axis. Thus, by Lemma 3.6, we have ∂V
∂γ

(S̃ , τ̃) > 0 and

hence ∂V
∂S

(S̃ , τ̃) > 0, which contradicts ∂V
∂S

(S̃ , τ̃) = 0 following from the fact that V (S, τ) = 0

in Ω1. Therefore, Theorem 3.7 is proved. �

Remark 3.2 It is clear that the value of a non-negative payoff is non-negative if the time-

t value is regarded as a risk-neutral expectation of the payoff. The conclusion presented

in Theorem 3.7 is that the option owns the positive value before the expiry date.

Theorem 3.6 limS→+∞ V (S, τ) = 0, for any τ ∈ [0, T ].

Proof Since the solution u(x, t) is nonnegative and nonincreasing in x , the limit u(+∞, t) =

limx→+∞ u(x, t) exists and u(+∞, t) � 0.

We prove u(+∞, t) = 0 by contradiction. Suppose that there exists some t̃ ∈ (0, T ]

such that u(+∞, t̃) > 0. Since u(x, t) is nonincreasing in x and nondecreasing in t, we

have u(x, t̃) > 0 for any x ∈ (−∞,+∞) and u(x, t) > 0 for x ∈ (−∞,+∞), t ∈ [̃t, T ].

Denote t0 = inf {̃t � 0; u(x, t) > 0, x ∈ (−∞,+∞), t ∈ (̃t, T ]}. Clearly, u(x, t) > 0 when

x ∈ (−∞,+∞), t ∈ (̃t, T ], but u(+∞, t0) = 0.
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Take X > 0 such that ψ(x) = (K − ex)+ = 0 when x � X. Then

u(x, t) − ψ(x) = u(x, t) > 0, for x ∈ (X,+∞), t ∈ (t0, T ].

Hence, by Theorem 3.3, u(x, t) satisfies

L1u =
∂u

∂t
− σ2

2

∂2u

∂x2
−

(
r − q − λk − σ2

2

)
∂u

∂x
+ ru+ λ

(
u−

∫ +∞

−∞
u(x+ z, t)dÑ(z)

)
= 0

for x ∈ (X,+∞), t ∈ (t0, T ].

Choose η(x) ∈ C∞(−∞,+∞) such that

η(x) = 0 when x � X; η = 1 when x � 2X. (3.12)

Let v = ηu. Then v satisfies

Lv = f(x, t) + g(x, t),

where

Lv = ∂v
∂t

− σ2

2
∂2v
∂x2 − (r − q − λk − σ2

2
) ∂v

∂x
+ rv,

f(x, t) = − σ2

2
(2η′ ∂u

∂x
+ η′′u) − (r − q − λk − σ2

2
)η′u,

g(x, t) = −λη
(
u−

∫ +∞
−∞ u(x+ z, t)dÑ(z)

)
.

From (3.12),

f(x, t) = 0 when x � 2X. (3.13)

It is clear that

g(+∞, t) = lim
x→+∞

g(x, t) = 0, when t ∈ (0, T ). (3.14)

Using the fundmental solution Γ (x, t; ξ, τ) of the parabolic operator L, we can express v

as

v(x, t) =

∫ +∞

−∞
Γ (x, t− t0; ξ, 0)v(ξ, t0)dξ−

∫ t

t0

∫ +∞

−∞
Γ (x, t− t0; ξ, τ− t0)(f(ξ, τ)+g(ξ, τ))dξdτ

for x ∈ (−∞,+∞), t ∈ (t0, T ].

For Γ (x, t; ξ, τ),the following estimates holds (see Friedman [6]):

|Γ (x, t; ξ, τ)| � C(t− τ)− 1
2 exp

(
−λ0(x− ξ)2

4(t− τ)

)
, x ∈ (−∞,+∞), 0 � τ < t � T ,

where C, λ0 are positive constants. So we have

|v(x, t)|

�C
∫ +∞

−∞ (t− t0)
− 1

2 exp
(
− λ0(x−ξ)2

4(t−t0)
)
|v(ξ, t0)|dξ

+C
∫ t
t0

∫ +∞
−∞ (t− τ)− 1

2 exp
(
− λ0(x−ξ)2

4(t−τ)
)
(|f(ξ, τ)| + |g(ξ, τ)|)dξdτ

= 2C
∫ +∞

−∞ exp(−λ0η
2)|v(x+ 2(t− t0)

− 1
2 η, t0)|dη

+ 2C
∫ t
t0

∫ +∞
−∞ exp(−λ0η

2)(|f(x+ 2(t− t0)
− 1

2 η, τ)| + |g(x+ 2(t− t0)
− 1

2 η, τ)|)dηdτ
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for x ∈ (−∞,+∞), t ∈ (t0, T ]. Since v(+∞, t0) = u(+∞, t0) = 0, it is easy to see that

2C

∫ +∞

−∞
exp(−λ0η

2)|v(x+ 2(t− t0)
− 1

2 η, t0)|dη → 0, as x → +∞.

Similarly, from (3.13), (3.14), we have

2C

∫ t

t0

∫ +∞

−∞
exp(−λ0η

2)
(
|f(x+2(t−t0)− 1

2 η, τ)|+|g(x+2(t−t0)− 1
2 η, τ)|

)
dηdτ→ 0, as x→ +∞.

Hence,

u(+∞, t) = v(+∞, t) = 0, when t ∈ (t0, T ).

The contradiction shows that the conclusion of Theorem 3.8 is true. �

Remark 3.3 A put option allows its holder to sell the underlying asset on a specific

date for a precribed amount and a specified price. Whereas the holder of a put option

wants the underlying asset price to fall as low as possible. The conclusion of Theorem 3.8

describe the fact in finance that the put option is of no value when the underlying asset

price is large enough.

The following conclusions about the relationship between the solution V of (P ) and its

related parameters, such as K , σ, T , can be similarly proved by the argument in Chaper 6

of Jiang [10]. Dependence upon its related parameters are explicitly indicated, if necessary.

Proposition 3.1 (1) 0 � V (S, τ;K1) − V (S, τ;K2) � K1 −K2 when K1 � K2;

(2) V (S, τ;T2) � V (S, τ;T1) when T1 � T2, where τ ∈ [0, T2];

(3) V (S, τ; σ2) � V (S, τ; σ1) when σ1 � σ2,

where V (S, τ; i) denotes the value of V (S, τ) with all parameters unvaried except the

parameter i.

Proof Let w = uε1(x, t;K1) − uε2(x, t;K2). Then w satisfies

{
L1w + βε(u

ε
1 − ψ1ε) − βε(u

ε
2 − ψ2ε) = 0,

w(x, 0) = ψ1ε − ψ2ε = Πε(K1 − ex) −Πε(K2 − ex).

Note that

βε(u
ε
1 − ψ1ε) − βε(u

ε
2 − ψ2ε)

= β′
ε(ξ)[u

ε
1 − uε2 −Πε(K1 − ex) −Πε(K2 − ex)]

= β′
ε(ξ)[w −Π ′

ε(η)(K1 −K2)],

and

Πε(K1 − ex) −Πε(K2 − ex) = Π ′
ε(η)(K1 −K2),

where ξ is some value between uε1 − ψ1ε and uε2 − ψ2ε, and η is between K1 − ex and

K2 − ex. Let

Lw= ∂w
∂t

− σ2

2
∂2w
∂x2 − (r − q − λk − σ2

2
) ∂w

∂x

+ (r + λ+ β′
ε(ξ))w − λ

∫ +∞
−∞ w(x+ z, t)dÑ(z).
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Then by conditions (A1) and (A2), we have

Lw = β′
ε(ξ)Π

′
ε(η)(K1 −K2) � 0

whenever K1 � K2. Therefore using Lemma 2.1 leads to w(x, t) � 0, i.e., uε1(x, t;K1) �
uε2(x, t;K2) from w(x, 0) � 0 and the conclusion (1) is proved.

Similary, we can prove conclusions (2) and (3). �

4 Free boundary problem

In this section, we are concerned with a free boundary problem corresponding to the

problem (P ). We first derive a solution of this problem from the solution V (S, τ) to (P ),

whose uniquely existence has been established in Theorems 3.3 and 3.1, and then prove

the uniqueness. In addition, some properties of solutions of the free boundary problem

are discussed.

Theorem 4.1 For each τ ∈ [0, T ), there exists s(τ) ∈ [0, K) such that V (S, τ) = (K − S)+

when 0 � S � s(τ); V (S, τ) > (K − S)+ when S > s(τ). Moreover, s(τ) is a nondecreasing

function of τ.

Proof Noting that V (S, T ) = (K − S)+ and using Theorem 3.4, we have (K − S)+ �
V (S, τ) � V (0, τ) for τ ∈ [0, T ). In particular, V (0, τ) � K . Since by Theorem 3.4,

V (S, τ) ∈ [0, K], we obtain V (0, τ) = K .

For any τ ∈ [0, T ), define

s1(τ) = supΩ1(τ), Ω1(τ) = {S0|V (S, τ) = (K − S)+, 0 � S � S0},
s2(τ) = inf Ω2(τ), Ω2(τ) = {S0|V (S, τ) > (K − S)+, S0 < S < +∞}.

Since V (0, τ) = K , we have 0 ∈ Ω1(τ). On the other hand, by Theorem 3.7, V (S, τ) > 0,

for any (S, τ) ∈ R+ × [0, T ), which implies K ∈ Ω2(τ). Hence Ω1(τ), Ω2(τ) are nonempty,

and s1(τ) , s2(τ) are well-defined. From the definitions of s1(τ) and s2(τ), it is clear that

s1(τ) � s2(τ). We further prove that s1(τ) = s2(τ).

Suppose that there exists τ0 ∈ [0, T ) such that s1(τ0) < s2(τ0). Since V (S, τ) > 0, for

any (S, τ) ∈ R+ × [0, T ), it is easy to see that s1(τ) � K for any τ ∈ [0, T ). Also we

have s2(τ) � K , for any τ ∈ [0, T ) which follows from the fact K ∈ Ω2(τ). Therefore,

at S = s1(τ0) and S = s2(τ0), we have V (S, τ0) = K − S . This and the convexity of

V (S, τ) in S imply that V (S, τ0) = K − S in (s1(τ0), s2(τ0)), which contradicts the definition

of s1(τ0). So s1(τ) = s2(τ) for any τ ∈ [0, T ). In addition, by the continuity of V (S, τ),

V (s(τ), τ) = (K − s(τ))+ for any τ ∈ [0, T ), which implies s(τ) < K by Thoerem 3.6.

Denote

s(τ) = s1(τ) = s2(τ).

Since V (S, τ) is nonincreasing in τ, we have Ω2(τ1) ⊂ Ω2(τ2) and hence s(τ1) � s(τ2) when

τ1 > τ2. �
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Remark 4.1 From Theorem 4.1, we see that R+ × [0, T ) can be divided into two parts

by S = s(τ):

• The continuation region:

Σ1 = {(S, τ)|V (S, τ) > (K − S)+} = {(S, τ)|S > s(τ), 0 � τ < T },

• The stopping region:

Σ2 = {(S, τ)|V (S, τ) = (K − S)+} = {(S, τ)|0 < S � s(τ), 0 � τ < T }.

S = s(τ) is just the optimal exercise boundary of American options.

Remark 4.2 Theorem 3.3 and 3.4 show that V (S, τ) is a smooth function and LV = 0 in

Σ1,
∂V
∂S

is continuous in R+ × [0, T ) and V (S, τ) = K − S in Σ2,
∂V
∂S

(s(τ), τ) = −1. Thus,

from (3) of Theorem 3.4, −1 � ∂V
∂S

� 0, for any (S, τ) ∈ R+ × [0, T ).

A similar argument of Lemma 3.6 leads to the following Lemma:

Lemma 4.1 Assume that Lw � 0 in R+ × [0, T ) with L being the operator in § 1 and E is

a subregion in R+ × [0, T ) in which w(S, τ) � 0. If w = 0 at some interior point (S0, τ0) ∈ E,

then w(S, τ) = 0 for any (S, τ) ∈ {τ � τ0} ∩ E.

Proposition 4.1 Vτ < 0, VSS > 0 in Σ1.

Proof Note that LVτ = 0 in Σ1 and Vτ � 0 in R+ × (0, T ]. If there exists (S0, τ0) ∈ Σ1 such

that Vτ(S0, τ0) = 0, then by Lemma 4.2, we have Vτ(S, τ) = 0, for any S > s(τ), τ � τ0. So∫ T
τ
Vτ(S, t)dt = V (S, T ) − V (S, τ) = 0, i.e. V (S, τ) = V (S, T ) = (K − S)+ in Σ1 ∩ {τ � τ0},

which contradicts V (S, τ) > (K − S)+ in Σ1. Thus Vτ < 0 in Σ1.

Using a similar argument, we have VSS > 0 in Σ1. �

Theorem 4.2 The free boundary problem


Lw(S, τ) = 0, S > b(τ), 0 � τ < T ,

w(b(τ), τ) = K − b(τ), 0 � τ < T ,
∂w
∂S

(b(τ), τ) = −1, 0 � τ < T ,

w(S, T ) = (K − S)+, S > 0,

w(∞, τ) = 0, 0 � τ < T ,

w(S, τ) > (K − S)+, S > b(τ); w(S, τ) = (K − S)+, S � b(τ).

(P )

has a unique solution (w(S, τ), b(τ)), where w(S, τ) is smooth when S � b(τ), 0 � τ � T ,

nonincreasing and convex in S and b(τ) ∈ [0, K).

Proof By Theorem 3.3, Problem (P ) has a solution V (S, τ). Theorem 3.8 shows that

limS→+∞ V (S, τ) = 0. Let s(τ) be the function defined in Theorem 4.1. Then from Remark

4.2, we see that (V (S, τ), s(τ)) is a solution of (P ). Now we prove the uniqueness.

Suppose that (V1(S, τ), s1(τ)) and (V2(S, τ), s2(τ)) are two solutions of (P ). Let

l1(τ) = min{s1(τ), s2(τ)}, l2(τ) = max{s1(τ), s2(τ)},
w(S, τ) = V1(S, τ) − V2(S, τ).
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Then V1(S, τ) = V2(S, τ) = K − S when S � l1(τ), 0 � τ < T , that is, w(S, τ) = 0;

V1(S, τ) > (K − S)+, V2(S, τ) > (K − S)+, Lw = LV1 − LV2 = 0 when S � l2(τ),

0 � τ < T .

To prove the uniqueness, it suffices to show that w(S, τ) = 0 when S > l1(τ), 0 � τ < T .

Suppose there exists some point (S, τ) with S > l1(τ), 0 � τ < T such that w(S, τ)� 0. For

definteness, suppose that at this point w(S, τ) > 0. Then since w(l1(τ), τ) = 0, w(S, T ) = 0,

and w(+∞, τ) = 0, w(S, τ) will achieve positive maximum at some point (S0, τ0) with

S0 > l1(τ0), 0 � τ0 < T . We consider the following cases separately:

(1) S0 > l2(τ0).

Note that Lw = 0 when S > l2(τ), 0 � τ < T . In particular, Lw(S0, τ0) = 0. However,

since (S0, τ0) is the positive maximum point of w(S, τ), we have ∂w
∂τ

� 0, ∂w
∂S

= 0, ∂2w
∂S2 � 0,

at (S0, τ0), from which Lw(S0, τ0) � −rw(S0, τ0) < 0 and a contradiction is derived.

(2) l1(τ0) = s1(τ0) < S0 � l2(τ0) = s2(τ0).

In this case, for S ∈ (s1(τ0), s2(τ0)], V2(S, τ0) = K − S and hence ∂V2(S,τ0)
∂S

= −1. Note that
∂w(S0 ,τ0)

∂S
= 0. Then ∂V1(S0 ,τ0)

∂S
= −1. From this and ∂V1(s1(τ0),τ0)

∂S
= −1, we obtain ∂V1(S,τ0)

∂S
= −1

for S ∈ [s1(τ0), S0] by the convexity in S of V (S, τ). But V1(s1(τ0), τ0) = K − s1(τ0), so

V1(S, τ0) = K − S for S ∈ [s1(τ0), S0], which contradicts V1(S, τ0) > K − S0.

(3) l1(τ0) = s2(τ0) < S0 � l2(τ0) = s1(τ0).

Similar reasoning as in the case (2) also derives a contradiction. �

From (2) of Proposition 3.1, we see that as the exipiry T increases, the correspongding

options price V (S, τ;T ) is getting expensive. V (S, τ; ∞) is the most expensive price, that

is, V (S, τ;T ) � V (S,∞), where V (S,∞) denotes the American options price without

expiration date; such options are called the perpetual American options. V (S,∞) satisfies

the following variational inequality:

{
min{−L∞v, v − (K − S)+} = 0, 0 < S < ∞,
v(0) = K, v(∞) = 0,

(P )∞

where

L∞v =
σ2

2
S2 d

2v

dS2
+ (r − q − λk)S

dv

dS
− (r + λ)v + λ

∫ +∞

−1

v(S(1 + y))dN(y),

The corresponding free boundary problem is to find (V (S,∞), s∞) such that




L∞v = 0, S > s∞,

v(s∞) = K − s∞,

v(∞) = 0,

v′(s∞) = −1,

v(S) = K − S, S � s∞; v(S) > (K − S)+, S > s∞.

(P )∞

Note that the free boundary problem (P )∞ has no explicit solution. In Jaiellet et al. [9]

and elsewhere, the authors obtain such a solution only in some special cases. In order to

discuss the regularity of s(τ) in §5, we need to estimate the lower bound of s(τ). For this
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purpose, we consider the following problem for fixed S0 ∈ [0, K]



L1v = σ2

2
S2 d2v

dS2 + (r − q − λk)S dv
dS

− (r + λ)v + λK = 0, S > S0,

v(S0) = K − S0,

v(∞) ∈ (0, K),

v(S) = K − S, S � S0.

(4.1)

It is easy to find that the solution of (4.1) is

V1(S; S0) =

(
λK

r + λ
− S0

) (
S

S0

)α1

+
λK

r + λ
,

where

α1 =
−r + q + λk + σ2

2
−

√
(r − q − λk − σ2

2
)2 + 2σ2(r + λ)

σ2
,

α2 =
−r + q + λk + σ2

2
+

√
(r − q − λk − σ2

2
)2 + 2σ2(r + λ)

σ2

Let S∗
0 be the maximum point of V1(S; S0) in [0, K] as a function of S0. Then dV1

dS0
|S0=S

∗
0

=

0. Hence

S∗
0 =

rKα1

(r + λ)(α1 − 1)
, (4.2)

V1(S; S∗
0 ) =

rK

(r + λ)(1 − α1)

(
S

S∗
0

)α1

+
λK

r + λ
. (4.3)

Notice that

V1(S
∗
0 ; S∗

0 ) = K − S∗
0 ,

dV1

dS
(S; S∗

0 )|S=S∗
0

=
(

rK
(r+λ)(1−α1)

( S
S∗

0
)α1 α1

S

)
|S=S∗

0
= −1.

Theorem 4.3 Assume that (V (S,∞), s∞) is a solution to (P )∞. Then V (S,∞) � V1(S; S∗
0 ),

S∗
0 � s∞, where S∗

0 , V1(S; S∗
0 ) are given by (4.2), (4.3).

Proof First we have V1(S; S0) < K for S > S0. In fact, since V1(S0; S0) = K − S0 � K ,

V1(∞; S0) < K , if V1(S; S0)(as a function of S) takes maximum K at some point S1 ∈
(S0,∞), then L1V1(S1; S0) � −rK < 0, which contradicts L1V1(S1; S0) = 0.

Now, we prove that V (S; ∞) � V1(S; s∞). In fact, w(S) = V1(S; s∞) − V (S; ∞) satisfies

L∞w = λ

∫ +∞

−1

[V1(S(1 + y); s∞) −K]dN(y),

and w(∞) = 0, w(s∞) = 0. Since V1(S; S0) < K for S > S0, we have

L∞w � 0 for S > s∞.

If w(S) attains a negative minimum at S2 > s∞, then

L∞w(S2) � −rw(S2) > 0.

The contradiction shows that w(S) � 0, namely, V (S; ∞) � V1(S; s∞).
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By virtue of the definition of S∗
0 , we have V1(S; s∞) � V1(S; S∗

0 ) and hence V (S; ∞) �
V1(S; S∗

0 ). If s∞ < S∗
0 , then since V (S,∞) > (K − S)+ for S > s∞ and V1(S; S∗

0 ) = K − S

for s∞ < S � S∗
0 , we have V1(S; S∗

0 ) < V (S,∞), which is a contradiction. Hence S∗
0 � s∞.

Theroem 4.5 is proved. �

5 Further properties of the free boundary

In this section, we prove further properties of the free boundary S = s(τ), such as

continuity, strict monotonicity and more regularity, etc. Denote

Γ = {(x, t)|x = x(t), 0 < t � T },

where t = T − τ, x(t) = ln s(τ). As before, let u(x, t) and V (S, τ) be solutions to (1.1) and

(P ), respectively, and S = s(τ) be the free boundary defined in Theorem 4.1.

Theorem 5.1 For any a < b < lnK , 0 < t1 < t2 < T ,

∂u

∂t
∈ L∞(t1, t2;H

1(a, b)),
∂2u

∂t2
∈ L2(t1, t2;L

2(a, b)) (5.1)

ut(x, t) is continuous across x = x(t). Hence, ut(x, t) ∈ C((−∞,+∞) × (0, T )).

Proof (5.1) follows from Lemma 2.12 and the continuity of ut(x, t) cross x = x(t) follows

from Theorem 4.1 and Simon’s Compactness theorem. �

Remark 5.1 From Theorem 5.1, we see that ∂2u
∂x2 is unilateral continuous up to x = x(t).

Coming back to variables (S, τ), it follows that Vτ is continuous in R+ × [0, T ) , and VSS
is unilateral continuous up to the free boundary S = s(τ).

Theorem 5.2 s(τ) is continuous in [0, T ).

Proof First we prove that for any τ ∈ [0, T ), s(τ+) = s(τ). Let {τn} be a sequence such

that τn → τ+. Then (s(τn), τn) ∈ Σ2, where Σ2 is the stopping region defined in Remark 4.1.

Hence, by the continuity of V (S, τ), (s(τ+), τ) ∈ Σ2 which implies that s(τ+) � s(τ).

However, since s(τ) is nondecreasing, s(τn) � s(τ), and hence s(τ+) � s(τ). So s(τ+) = s(τ).

Suppose that s(τ) is discontinuous. Then there exists τ0 ∈ [0, T ) such that s(τ+0 ) =

s(τ0) > s(τ−
0 ). Denote Q = {(S, τ)|s(τ−

0 ) < S < s(τ0), 0 < τ < τ0}. Then Q ⊂ Σ1 where Σ1 is

the continuation region defined in Remark 4.1. Thus{
LV = 0, (S, τ) ∈ Q,

V (S, τ0) = K − S, s(τ−
0 ) < S < s(τ0).

From this, one can verify, by using Theorem 3.3 and Theorem 5.1 and noting k =∫ +∞
−1 ydN(y), that for any s(τ−

0 ) < S < s(τ0),

Vτ(S, τ0) = rK − qS − λ
∫ +∞
s(τ0)

S
−1

[V (S(1 + y), τ0) − (K − S(1 + y))]dN(y)

= 0.
(5.2)
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Denote f(S) = qS − rK + λ
∫ +∞
s(τ0)

S
−1

[V (S(1 + y), τ0) − (K − S(1 + y))]dN(y). Clearly,

f(0) = −rK < 0, f(+∞) = +∞. In addition, since ∂V
∂S

� −1(see Remark 4.2), we have

f′(S) � q > 0. So there is a unique zero point of f(S) in (0,+∞), which contradicts (5.2).

Thus Theorem 5.2 is proved. �

Define s(T ) = limτ→T− s(τ). Then s(τ) is continuous in [0, T ].

Theorem 5.3 s(T ) at τ = T is given by

s(T ) = min{K, S0} =

{
K, if r � q + λ

∫ +∞
0 ydN(y);

S0, if r � q + λ
∫ +∞

0
ydN(y),

where S0 is the unique solution of the following equation:

f(S) = qS − rK + λ

∫ +∞

K
S

−1

[S(1 + y) −K]dN(y) = 0.

Proof Since s(τ) < K , for τ ∈ [0, T ), we have s(T ) � K .

We consider the following cases seperately:

(1) S0 � K .

Suppose s(T ) < K . Then for small δ > 0, D(δ)
1 = {(S, τ)|s(T ) < S < K,T − δ < τ < T } ⊂

Σ1. Noting that LV = 0 in D
(δ)
1 and V (S, τ) = (K − S)+ = 0 for S � K , which implies

that V (S(1 + y), T ) = 0 for y � K
S

− 1, we have

∂V

∂τ
|τ=T = rK − qS − λ

∫ +∞

K
S

−1

(S(1 + y) −K)dN(y) = −f(S).

Since f(0) = −rK < 0, f(+∞) = +∞, f′(S) � q > 0, f(S) is strictly increasing in

[0,+∞) and has a unique zero point S0. So S0 � K implies f(K) � f(S0) = 0. However,

for s(τ) < S < K , f(S) < f(K) � 0 and hence ∂V
∂τ

(S, T ) > 0. Thus V (S, τ) < V (S, T ) =

(K − S)+ in D(δ)
1 , which contradicts V (S, τ) � K − S . Hence s(T ) = K .

(2) S0 < K .

If s(T ) > S0, then for small δ > 0, D(δ)
2 = {(S, τ)|S0 < S < s(τ), T − δ < τ < T } ⊂ Σ2, in

which V (S, τ) = K − S , LV � 0. On the other hand, in D(δ)
2 , we have

LV (S, τ) = qS − rK + λ
∫ +∞

−1 [V (S(1 + y), τ) − (K − S(1 + y))]dN(y)

� qS − rK + λ
∫ +∞

−1
[(K − S(1 + y))+ − (K − S(1 + y))]dN(y)

= qS − rK + λ
∫ +∞
K
S

−1
[(K − S(1 + y))+ − (K − S(1 + y))]dN(y)

= qS − rK + λ
∫ +∞
K
S

−1
(S(1 + y) −K)dN(y) = f(S).

Since f(S) is strictly increasing, we have f(S) > f(S0) = 0 and hence LV (S, τ) � f(S) > 0,

which contradicts LV � 0. This shows that s(T ) > S0 is impossible.

https://doi.org/10.1017/S0956792505006340 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792505006340


Free boundary and American options in a jump-diffusion model 123

If s(T ) < S0, then a similar argument gives the existence of a region D(δ)
3 = {(S, τ)|s(τ) <

S < S0, T−δ < τ < T } ⊂ Σ1, in which ∂V
∂τ

|τ=T = −f(S). Since for S < S0, f(S) < f(S0) = 0,

we have ∂V
∂τ

|τ=T > 0 and hence V (S, τ) < V (S, T ) = K−S in D(δ)
3 , which is a contradiction.

Summing up, we conclude that s(T ) = S0 when S0 < K . �

Remark 5.2 From Theorem 4.5 and Theorem 5.2, we have s(τ) ∈ (S∗
0 , s(T )], for any

τ ∈ [0, T ], where S∗
0 > 0 is given in (4.2).

Theorem 5.4 s(τ) is strictly increasing in [0, T ).

Proof We prove the conclusion by contradiction. Suppose that there exists 0 � t1 < t2 < T

such that s(τ) = s(t1) for τ ∈ [t1, t2]. Choose τ0 ∈ (t1, t2) and make a small enough disc

D ⊂ (s(t1),+∞) × (t1, t2) ⊂ Σ1 tangent with S = s(τ) at (s(τ0), τ0).

Let w = Vτ. Then Lw = 0 in D. From Proposition 4.3, we have w(S, τ) < 0 in D.

However, by Theorem 5.1, w(s(τ0), τ0) = 0. So w achieves its maximum on D at (s(τ0), τ0)

and hence by Lemma 3.6, we obtain ∂w
∂S

(s(τ0), τ0) > 0. On the other hand, ∂V
∂S

(s(τ), τ) = −1,

s(τ) = s(t1) for τ ∈ (t1, t2), so ∂w
∂S

(s(τ), τ) = 0 for τ ∈ (t1, t2). In particular, ∂w
∂S

(s(τ0), τ0) = 0.

This contradiction shows that s(τ) is strictly increasing. �

Theorem 5.5 Assume that

r � q + λ

∫ +∞

0

ydN(y). (A3)

Then s(τ) ∈ C
3
4 ([0, T )).

Proof Theorem 5.4 with condition (A3) implies s(T ) = K . Since s(τ) is strictly increasing,

we have s(τ) < K , for any τ < T . For any δ ∈ (0, T ), there exists γ > 0 such that

s(T ) − s(τ) > γ for τ ∈ [0, T − δ]. Since Vτ < 0 and VS < 0, it is easy to verify that

σ2

2
s2(τ)VSS (s(τ), τ) � rK − qs(τ) − λ

∫ +∞
0 [V (s(τ)(1 + y), τ) − (K − s(τ)(1 + y))]dN(y)

� rK − qs(τ) − λs(τ)
∫ +∞

0
ydN(y)

= rs(T ) − qs(τ) − λs(τ)
∫ +∞

0 ydN(y)

>s(τ)(r − q − λ
∫ +∞

0 ydN(y)) + γr

� γr > 0.

Here we have used the condition (A3) again. This combined with Proposition 4.3 yields

VSS (S, τ) > 0 for S � s(τ), τ ∈ [0, T ).

Given δ ∈ (0, T ). Since VS (s(τ), τ) = −1, we have VS (s(τ+ η), τ+ η) = VS (s(τ), τ) and for

any ζ > 0, by the continuity of VS , there exists ε > 0, such that

|VS (s(τ+ η) + ε, τ+ η) − VS (s(τ) + ε, τ)| < ζ
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and hence ∫ s(τ+η)+ε

s(τ)+ε

VSS (S, τ+ η)dS � ζ −
∫ τ+η

τ

VSτ(s(τ) + ε, σ)dσ. (5.3)

Let η ∈ (0, δ
2
). Then, since for S � s(τ), τ ∈ [0, T ), VSS is continuous and VSS > 0, there

exists ρ > 0, such that

∫ s(τ+η)+ε

s(τ)+ε

VSS (S, τ+ η)dS � ρ(s(τ+ η) − s(τ)), forτ ∈ [0, T − δ]. (5.4)

Now we combine (5.4) with (5.3) and use

VSτ(s(τ) + ε, σ) = VSτ(s(τ) + ε+ x, σ) −
∫ s(τ)+ε+x

s(τ)+ε

VSSτ(S, σ)dS

to estimate
∫ τ+η
τ

VSτ(s(τ) + ε, σ)dσ. Then we obtain

ρ(s(τ+ η) − s(τ)) � ζ +

∫ τ+η

τ

|VSτ(s(τ) + ε+ x, σ)|dσ +

∫ τ+η

τ

∫ s(τ)+ε+x

s(τ)+ε

|VSSτ(S, σ)|dSdσ.

Integrating the above inequality over [0, m] with respect to x and gives

mρ(s(τ+ η) − s(τ))

�mζ +
∫ τ+η
τ

∫ m
0

|VSτ(s(τ) + ε+ x, σ)|dxdσ +
∫ τ+η

τ

∫ m
0

∫ s(τ)+ε+x
s(τ)+ε

|VSSτ(S, σ)|dSdxdσ

�mζ + η
1
2m

1
2 (

∫ τ+η
τ

∫ m
0 |VSτ(s(τ) + ε+ x, σ)|2dxdσ)

1
2

+ η
1
2m(

∫ τ+η
τ

∫ m
0

∫ s(τ)+ε+x
s(τ)+ε

|VSSτ(S, σ)|2dSdxdσ)
1
2 .

Using Theorem 5.1 and Remark 5.1 on the integral of the right side, we then derive

mρ(s(τ+ η) − s(τ)) � mζ + Cη
3
2m

1
2 + Cη

1
2m2, τ ∈ (0, T − δ),

where the constant C is independent of small ε. Because of the arbitrariness of ζ, this

implies

mρ(s(τ+ η) − s(τ)) � Cη
3
2m

1
2 + Cη

1
2m2,

namely,

s(τ+ η) − s(τ) � Cη
3
2m− 1

2 + Cη
1
2m.

Choose m = η
3
2 . Then we obtain

s(τ+ η) − s(τ) � Cη
3
4 , τ ∈ (0, T − δ)

Thus s(τ) ∈ C
3
4 ([0, T )). �

Remark 5.3 The condition (A3) means that the riskless interest rate corrected by dividends

and the jump risk, r̃ = r − q − λ
∫ +∞

0
ydN(y), is nonnegative.

On the basis of the fact s(τ) ∈ C
3
4 ([0, T )), we may further improve the regularity of s(τ).
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Theorem 5.6 Under the condition (A3), s(τ) ∈ C1([0, T )).

Proof The crucial step is to prove that VSτ is continuous in Σ1 up to S = s(τ). To this

purpose, we need to apply a result in Cannon et al. [4] to Vτ. It is to be noted that this

result proved in Cannon et al. [4] for the heat equation is valid for more general parabolic

equations and hence it can be applied to the present case.

Given δ ∈ (0, T ). Since for S � s(τ), τ ∈ [0, T − δ], VSS is continuous and VSS > 0,

there exists ρ > 0, such that, for η ∈ (0, δ
2
),

ρ(s(τ+ η) − s(τ)) �

∫ s(τ+η)

s(τ)

VSS (S, τ+ η)dS = −
∫ τ+η

τ

VSτ(s(τ), σ)dσ, (5.5)

where the second equality follows from VS (s(τ), τ) = VS (s(τ+ η), τ+ η) = −1 and

0 = VS (s(τ+ η), τ+ η) − VS (s(τ), τ) =

∫ s(τ+η)

s(τ)

VSS (S, τ+ η)dS +

∫ τ+η

τ

VSτ(s(τ), σ)dσ.

Write (5.5) as

s(τ+ η) − s(τ)

η
� − 1

ρη

∫ τ+η

τ

VSτ(s(τ), σ)dσ

and let η → 0+. Then we see that s′(τ) exists.

Differentiating VS (s(τ), τ) = −1 gives ∂VS (s(τ),τ)
∂τ

= VSS (s(τ), τ)s
′(τ)+VSτ(s(τ), τ) = 0. Hence

s′(τ) = −VSτ(s(τ), τ)

VSS (s(τ), τ)
, (5.6)

where

VSS (s(τ), τ) =
2

σ2s2(τ)
[rK − qs(τ) − λ

∫ +∞

0

[V (s(τ)(1 + y), τ) − (K − s(τ)(1 + y))]dN(y)].

Continuity of s′(τ) then follows from (5.6). �

Theorem 5.7 Under the condition (A3), s(τ) ∈ C∞([0, T )).

Proof Let z = S − s(τ). Then the free boundary S = s(τ) changes into the fixed boundary

z = 0. A simple calculation shows that w(z, τ) = Vτ(z + s(τ), τ) satisfies, for z > 0, 0 � τ <

T − δ,

∂w
∂τ

+ σ2

2
(z + s(τ))2 ∂2w

∂z2 + ((r − q − λk)(z + s(τ)) + s′(τ)) ∂w
∂z

− (r + λ)w + λ
∫ ∞

−1 w((z + s(τ))(1 + y), τ)dN(y) = 0 (5.7)

and

w(0, τ) = 0, (5.8)

w(z, T − δ) = h(z), (5.9)

where δ ∈ (0, T ) and h(z) = Vτ(z + s(T − δ), T − δ) ∈ C1([0,+∞)), namely, w is the

solution of the problem (5.7), (5.8), (5.9) in (0,+∞) × (0, T − δ) for any δ ∈ (0, T ). we
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may regard h(z) and f(z, τ) = −λ
∫ ∞

−1
w((z + s(τ))(1 + y), τ)dN(y) as known functions and

use the theory of parabolic equations to this problem to improve the regularity of V (S, τ)

and hence, of s(τ) by (5.6). Once the regularity of s(τ) is improved, we may use the theory

of parabolic equations again to further improve the regularity of V (S, τ). Repeating this

argument, we finally conclude that s(τ) ∈ C∞([0, T − δ)) and hence s(τ) ∈ C∞([0, T )) by

the arbitrariness of δ ∈ (0, T ). �

6 Conclusions

The pricing and hedging of derivative securities is a subject of much practical importance.

As one basic type of derivatives, options have been around for many years, but it was

only on 26th Apirl 1973 that they were first traded on an exchange. It was then that

The Chicago Board Options Exchange (CBOE) first created standardized, listed options.

Initially there were just calls on sixteen stocks and even no puts. Now worldwide, many

kinds of exotic options are traded in over fifty exchange except for the standard option.

To enter into an option contract, there is cost referred to as premium, corresponding to

the right purchased. As is known to all, the theory of arbitrage-free pricing establishes the

option price. This theory imposes that the prices of different instruments must be related

to one another in such a way that they offer no arbitrage opportunities. In practice to

price the option we make use of a model describing the evolution through time of the

underlying asset price and then impose no arbitrage arguments.

The risk associated with an option contract derives from the unknown evolution of

the underlying asset price on the market. This risk is not reducible and is an intrinsic

feature of the contract itself. Apart from this risk, neither controllable nor reducible, there

is another part of risk which derives from the fact that the option price is an estimated

quantity, potentially affected by an error, such as an error stemed from the evolution

model of the underlying asset price. If for instance the call option price is overestimated,

the option holder faces the risk of losing more money than what he should (in case of

loss). Clearly, the more accurate the price estimate, the less the risk associated with the

option.

Generally, the option price is calculated via a mathematical model (describing the

evolution of the underlying asset) that contains a number of input variables whose values

are affected by uncertainty. In this paper, we assume that the interest rate, the dividend

yield and the volatility of the underlying are constants. Then in the standard option

pricing model, the evolution through time of the underlying asset is described by the

Brownian motion, i.e., the underlying asset price follows the lognormal random walk,

that is, the path of the asset price is continuous in time. But there is plenty of evidence

that such as currencies and equities do not follow the Brownian motion. One of the

striking features of real financial market is that there is a sudden unexpected fall or crash

inevitably. In this case, a jump process with a reasonable volatility is always added in

the evolution model of the asset price. On all but the shortest timescales the movement

looks discontinuous, that is, the prices of the asset have jumped. This is important for the

theory and practice of options because it is usually impossible to hedge through the crash.

So there is seldom a closed-form solution for the European option with jumps. At the

same time, results show that jumps drive most of the uncertainty in the estimated option
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price, thus confirming their key role in the pricing process. The important of jumps is

more evident for higher strike price. In addition, the pricing problem of American options

is more complex than one of European options in virtue of the early exercise. In this

paper, we have strictly proved some properties of the pricing function and the optimal

exercise boundary of American options with dividend in a jump-diffusion model by using

PDE arguments in mathematically. The main difficulty, compared with diffusion models

without jumps, comes from the nonlocal term due to the presence of jump uncertainty in

the stock price dynamics.
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