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The purpose of this paper is to give a pricing analysis for the American option in a
jump-diffusion model by PDE arguments. Existence and uniqueness of the solution to the
obstacle problem for the associated model is shown in suitable spaces. We also prove the
unique existence of the solution of the corresponding free boundary problem. Furthermore,
smoothness and monotonicity of the free boundary which is the optimal exercise boundary
of the option are deduced.

1 Introduction

Black & Scholes [1] tackled the problem of pricing a European option on a non-dividend
paying stock. In the Black-Scholes model, the underlying stock price is a continuous
function of time, and is controlled by the following stochastic differential equation:
@ = udt + odW,,
S

where S; is the underlying stock price at time ¢, u, o are respectively drift and volatility
terms, and {W,},> is a standard real-valued Brownian motion. However, many empirical
studies exhibit some biases in this kind of model. Cox & Ross [5] introduced a pure jump
model in which the underlying stock is modeled by a known size jump process without
diffusion term. The market is then complete. Merton [12] developed a jump-diffusion
model in which the ‘normal’ vibration in the price, namely, the diffusion part, is still
modeled by a standard geometric Brownian motion and has a continuous path, and the
‘abnormal’ vibration in the price is modeled by a ‘jump’ process. In such a model the
price is not a continuous function of time. Such a model allows us to take into account
brusque variations in market prices due to some rare events, such as nature disaster in a
major economy, or major political changes, and can be used to explain the bias exhibited
in the Black—Scholes model. Merton [12] established a pricing formula for the European
option assuminng that jump risk is unpriced. Generalizations of his result can be found
in Aase [1] and Naik & Lee [13].

The American option pricing problem has been given much attention in recent economic
and finance literature. Nevertheless, there is no explicit formula for the price of the
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American option. The earliest works on this problem are due to Mckean [11], and further
to Van Moerbeke [15], who transformed the American option pricing analysis into a
free-boundary problem, within the framework of the diffusion model. In addition to the
free-boundary method, the formulation of the optimal-stopping problem by variational
inequalities, as developed by Bensoussan & Lions [2], and applied to the American
option in diffusion models by Jaillet et al. [9], provided numerical computations for the
pricing of American options. This approach was further applied by Zhang [17] to the
American option in Merton’s jump-diffusion model. However variational inequalities lead
to a somewhat less-explicit characterization of the American option price. Using the
free-boundary approach as well as results in probability theory, Pham [14] studied the
behavior of the optimal-stopping boundary for this problem, and proved the continuity
of the corresponding free boundary with some restriction on the size of jump risk.

This paper studies the problem of pricing the American option with dividend in a
jump-diffusion model by a PDE argument. The existence and uniqueness of the solution
to the obstacle problem for the associated model is shown in suitable spaces. We also
prove the unique existence of the solution of the corresponding free boundary problem.
Furthermore, strict monotonicity and regularity of the free boundary which is the optimal
exercise boundary of the considered option are deduced without more restriction. Because
of some technical difficulty, we are merely able to prove the smoothness of the optimal
exercise boundary under some additional condition.

The paper is organized as follows: §1 outlines the problem of pricing the American
option in the jump-diffusion model, and relates this pricing problem to a parabolic
variational inequality. §2 studies a penalized problem corresponding to this variational
inequality. § 3 proves the existence and uniqueness and other properties of the solution to
this variational inequality. § 4 relates this variational inequality to a free boundary problem,
in which the free boundary is the optimal exercise boundary of American options in the
jump-diffusion model, and establishes some basic properties of the free boundary and the
price function. §5 derives further properties of the optimal exercise boundary, such as
continuity, differentiability and strict monotonicity etc.

We consider a financial market where two assets (B, S) are traded continuously up to
some fixed time horizon T, B is a riskless asset, such as a bond, whose price B; at time ¢
is governed by the differential equation

dBt
— =rdt
B

where r is the constant positive interest rate, and S is a risky asset, such as a stock, with
price S; at time t. Here, (S;)>0 is assumed to be a stochastic process and is governed by
the following stochastic differential equation:

9Sc _ (1= )t + 0dW, + d iU-
S[*_ u q t = J s

where coefficients (4, g, ¢ are positive constants, g is a dividend yield, (W,),>¢ is a standard
Brownian motion, (N;)»o is a Poisson process with parameter 4 and (U;);> is a sequence
of square integrable independent, identically distributed random variables, with values
in (—1,400). The parameter 4 of the Poisson process (N;);>0 accounts for the frequency
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of jumps, and the random variable (U;);>; accounts for the relative amplitude of jumps.
The model described above can be interpreted as follows: the underlying stock price in
this model allows a discontinuous path, with jump times controlled by a Poisson process,
which is modeled by a geometric Brownian motion between two jump times, and can
leap a random value at jump times. Here, We assume that processes (W;)=0, (N¢)>0,
(Uj)j>1 are independent.

Similar to the argument in Willmott [16], we can relate the American option pricing
problem concerned here to some obstacle problem by the risk minimizing approach. That
is, the American option price, within the jump-diffusion model, V' = V(S, 1) solves the
following parabolic variational inequality:

{min{—LPV,V—d)} =0, $>00<7t<T,

V(S,T)=¢(S), S>0, (P)

where K > 0 is the striking price in this option, S is the price of the underlying stock,
T is a maturity date, ¢(S) is the payoff of this American option and & is the parabolic
integro-differential operator
oV | a2 L0V oV o
LV =— 752 IS —< —(r+ )V + 4 V(S(1 dN
St TS S =S G — AV 44 [ VIS4 )N
in which N(y) is the distribution function of the random variable U, namely, N(y) is a
nondecreasing function satisfying N(—1) =0, N(4+00) =1, k = fjloc ydN(y).
In this paper, we focus our discussions on put options, so the payoff function is

$(S) = (K —S)".
Lett=T—1,x=1In8S, u(x,t) = V(S,1), p(x) = ¢(S). Then (P) changes into

min{ L ju,u—p} =0,—00 < x <00,0<t < T, (1L.1)
u(x,0) = p(x), —o0 < x < 00, ’
where
ou od%u a’ ou too
Liu= P <r —d— 5= }vk) a—l—ru—i/il [u(x+In(1+y), t)—u(x, t)]dN(y),
or after changing the variable to z = In(1 + y) in the integral on the right,
2A2 2 +o0
L= %—%% —(r—q—%—ik)gfzﬂrﬂ)u—x/% u(x + z,0)dN(z)

with N(z) = N(ez —1); N(z) is a nondecreasing function satisfying N(—o0) = 0, N(+0) =
1, [" &dN(z) =k +1, and
p(x) = (K — €)™
Throughout this paper, we always assume that the constants o, r, ¢, 4 and k are positive,
and N(z) satisfies

/ B eFldN(z) < oo. (A)

In addition, we always denote Hy = R x (0, T], where R = (—o0, o).
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2 Approximation

In this section, we study the penalty problem corresponding to (1.1):

{Qlu + Be(uf — ) =0,—00 < x < o0, >0, 2.1)

u(x,0) = pe(x),—00 < x < 0
with 0 < e < 1, pe(x) = 1. (K — €¥), where f(x), II.(y) satisfy the following conditions:

Be(x) € C(R); fe(x) <05 fe(x) =0, if x> €
Be(0) = —Ce, (Ce = (r + DK +re); Bi(x) =05 B(x) <O;

. 0, x >0,
fim f.(x) = {_OO,

x <0; (A1)

’ ” Yy, )y = €,
I1.(y) € C*(R), 0 < II'(y) < 1; I1/(y) > 0; I.(y) = { (42)

0, y<—e

First, we have a lemma on integro-differential equations, which is similar to the max-
imum principle of parabolic equations in the unbounded region. In financial terms it
states that the value of a non-negative payoft is non-negative, which is clear if the time-t
value is regarded as a risk-neutral expectation of the payoff.

Lemma 2.1 Assume that u(x,t) € C(Ht)(C>'(Hr) satisfies

Lu= %_az( )——l—b( )az (c(x,t)+/1)u—)v/+oou(x+2,t)dN(Z)20,

—00

in which 0 < |a(x,t)] < M, |b(x,t)] < M, c(x,t) = >0, and /., a, M are positive constants.
If u(x,t) = —m, (m > 0 is a constant) in Hy, then u(x,0) = 0 implies u(x,t) = 0.

Proof For any ry > 0, let

SO+ e 4 ulx. ),
0

w(x,t) =

where o, f will be determined later. We have

Lw(x, t)
+00
[ﬁ—i—(x + Bt)e — 2a® + 2bx + (¢ + 2) (x> +/§t)—2/ (x + 2)? + BO)dN(2)]
0
me 12t 2bx 4 (B— 200+ Bt ci—7 | (et 2)2dN(2)]
g 0
'”rez (40 — 24— 1)x2+ (f — 2> —M)+(oc+5)ﬁt—i/ 24N (z)).
0 )

From (A), we can take o, f > 0 so large that Lw > 0 in Hr.

Since w(x,0) = %xz +u(x,0) = 0, wx,t)|jxj=r, = M + u(x,)|jx=, = 0 and w(x,t) >
m + u(x,t) = 0 when |x| > r9, we may assert that w(x,t) = 0 in [—rg,ro] X [0, T]. In
fact, if w(x,t) has a negative minimum at the point (xo, tg) € (—ro, 7o) X (0, T], then, since
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o e
J~.,dN(z) = 1, we have

Lw(xo,to) < (c(xo, to) + A)w(xo, to) — /l/oo w(xo + z, t)dN(z)

< (0, to)w(x0, to) < dw(xo,to) < 0,

which contradicts Lw > 0. For any (&,7) € Hr, we take ryp > 0 so large that (&,7) €
(—ro,70) x (0, T]. From the above argument, we obtain w(&, 1) = 0, ie, %(52 + fr)e* +
u(¢,7) = 0. Letting ry — oo then gives u(&,7) = 0 and the desired conclusion follows
from the arbitrariness of (£,7) € Hr.

Theorem 2.1 For any € € (0,1), the problem (2.1) has a unique solution u(x,t) € C*(Hr)N
L*(Hr).

Proof Uniqueness of the solution to (2.1) is a direct corollary of Lemma 2.1. Now we
prove the existence.

Let B = {u € C*:(H,), H””c*%(ﬁr) < Up}. Then B is a bounded closed convex set in
the space C*2(H,), where H, = R x (0,7] and 1, Uy > 0 will be determined below.

For any v € B, we consider the following Cauchy problem

u—Af U(X+Z [dN(Z) ﬁe(U_l,Ue),
{u(x, 0)= we(x), (22)

where Lu = E — 72% —(r—q—% — Ak) + (r + A)u. It is clear that (2.2) has a unique
solution u = Tv € C*t*'*3(H,). By propertles of the fundemental solution of the operator
L, it is easily proved that for small 7 € (0, T), we have

ot gy < C + 01 s .
where C > 0, 0 € (0,1) are some constants. Therefore, if we choose Uy > % then
u=Tv € B for any v € B.

Denote

+00
g(x,t) = )v/ v(x + z,)dN(z) — (v — pe).
—00
Then
lgles g, < Cllol et gz, + 1
By the standard theory of parabolic equations, we have
“u“C2+11+j(H) HTLHC2+11+7(H) (HUHC1 +1)

which implies that the set B is precompact. Besides, for any v;,v; € B, we have

H T(U] — UZ)HC”"H%(HT) < CHU] - UQHCL%(HT),

which implies the continuity of the operator Tv. Therefore, T has a fixed-point u¢ €
C**t*1+3(H,) by Schauder’s Fixed-Point Theorem.

Since 7 € (0, T) can be choosen depending only on €, A and the bound of the initial
value, we can obtain a solution u¢ of (2.1) in Hr and u¢ € C***!*3(H 7). Using the theory
of parabolic equations, we further conclude that u¢ € C*(Hr).
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For the need of the following sections, we proceed to establish a series of estimates for
uf(x, t) which is always assumed to be the bounded solution of (2.1) in Hrp.
As an immediate corollary of Lemma 2.1, we have

Lemma 2.2 uf(x,t) is bounded uniformly in € € (0,1), more precisely, 0 < u(x,t) < K +e€.

Proof From (A2) and the definition of yp.(x), we have u°(x,0) = y.(x) € [0,K]. From
(A1), there holds
L1 = —P(u —ype) = 0.
Thus we may apply Lemma 2.1 to the operator % to conclude that u(x,t) > 0.
Let w(x,t) = K 4+ ¢ — uf(x,t). Then
Liw = gl(K +€)_$1u6 ZV(K +€)+ﬁs(u€_ll76) 2/36(”5—@06)-
Since y.(x) < K, the definition of f.(x) implies that f.(K + ¢ — p(x) = 0. Hence
Lw + Pe(K +€—pe) — Pe(u —ye) = L1w + ﬁé()w =0,

where the variable of /() is some value between K + ¢ — . and u¢ — y.. Denote
Lw = % 1w+ B.(-)w. Then Lw > 0. Thus we can apply Lemma 2.1 to the operator L to
conclude w(x,t) = 0, ie., u(x,t) < K + € from w(x,0) = K + € — p.(x) = 0. It is to be
noted that, since f.(-) = 0 and hence the coefficients of w in Lw is bounded from below,
Lemma 2.1 can be used to the operator L. O

Lemma 2.3 u€(x,t) = p(x) and f(u¢ — pe) is bounded uniformly in e.

Proof It is obvious from (A2) that |[II.(y) — yII.(y)| < € and

fflu’e(x)

(72 O'2
2 2
+(r+ (K — &) — / (K —e*)dN(z)

—0

2
= S IUK — e + TIUK — e + (r = q — 2k = TTUK = ¢)e*

<rlT(K — e*)e* + (r + D) (K — ¢¥)

=r[Il.(K — ") — (K — (K — )] + rKII[(K — &) + Al (K — &%)

<re+(r+ A)K.
So, if we denote w = u — y,, then

Liw =L — Lpe = —P(uf —p.) — (re + rK + /K)
= ﬁe(o) - ﬁe(Lf - UJG) —(re+rK + )°K) - ﬁs(o)
By the definition of C.,
LW+ Be(u —pe) — Be(0) = L1w + BL(Iw = —Pe(0) — (re + rK + AK) = 0.

Thus using Lemma 2.1, we obtain w(x,t) = 0, i.e. u°(x,t) = p.(x). Besides, by virtue of
the monotonicity of . and Lemma 2.3, we see that S.(u — yp¢) is bounded uniformly
in e. |
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Lemma 2.4 u is bounded uniformly in € € (0, 1), more precisely, —(K + 1) < u <0, and

u; = 0.

€
X

Proof Let w = u$. Then w satisfies

Liw + Blu —pe)(w — ) =0,
{W(x, 0) = ye(x).
From (A2), w(x,0) = —e*II[(K — ¢¥) < 0. Since IT(K —¢¥) = 0 when ¢* > K + €, we
have w(x,0) = —e*I[I(K —¢*) = —(K 4+ €) = —(K + 1). Using Lemma 2.1 to the operator
L1+ BL(u — p.), we obtain —(K + 1) < w(x, 1) = u$(x,1) <O0.
Let v = uf. Then v satisfies

{:fw + BLu — oo =0,
v(x,0) = f(x),

where

2 0_2 0 N
f) = [“Zw: + (r —q— k- 2) Ve etz [ s+ 2 0dNE) — B0

—0
From the proof of Lemma 2.4, v(x,0) = f(x) = L1pe — f(0) = Cc — (re +rK + AK) = 0.
Thus, by Lemma 2.1, we obtain v = uf > 0. O

o%uc B ou¢
0x?2 ox =

Lemma 2.5

Proof Let w= 2% — & Then
{glw + B —we) - w = f(x,1),
w(x,0) = d(x)
where

O t)=—BL W —p)( % + UK — e¥)e")? + BL(uf — p )1/ (K — e¥)e* =0,
d(x)=e> I (K — e¥).

By Lemma 2.1, we have w(x, t) > 0, that is , %27"2 > &, 0

Lemma 2.6 For any a < b, small positive constant 6 € (0,T) and p € (1,00), u(x,t) €
W2(Qr) and

HM‘SHWFZJ(QT) <C
with constant C independent of €, where Q1 = (a,b) X [0, T].

Proof Choose cut-off functions £(t) € C3°(0, T], n(x) € C(a — 1,b + 1) such that 0 <
&n<1,i()=1ift€[6,T], n(x)=1if x € [a,b].
Let w(x,t) = E(t)n(x)uc(x,t). Then

2 a2 ~
&g =f(x0, (xt)€0r

w(x,0) =0, x€@a—1,b+1)
w(x,t) =0, x=a—1,b+1,te(0,T),
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where O = (a—1,b+ 1) x (0, T) and

feet)=(=a%n +&n(r — q = Ik — GNY + (=5 En" +En = (r+ D
280 [ u(x + 2, 0)dN(2) — EnPe(uc — pe).

Using WI,Z’1 estimates for parabolic equations gives

HWHW[}J(QT) < C(HuGHU(Qr) 17 e @))-

Since by Lemmas 2.3-2.5, u¢,u$ and f.(u — y.) are bounded uniformly in e, we have
HuEHWPZJ(QT) < HWHWFZJ(QT) <C,

where C is independent of e. Thus Lemma 2.7 is proved. O

Lemma 2.7 For any small 6 € (0,T) and p € (1,00), u(x,t) € W;"'(Q,e Mdx) and

HuEH szvl(Q,ef\X\dx) <C

with constant C independent of €, where Q = Q1 U Q3, Q1 = (InK + 9,+00) x (0, T],
0> = (—o0,InK — 6) x (0, T] and W} (Q,e"™dx) is the weighted space with weight e™I.

Proof Choose a cut-off function 5(x) € C*(InK + g,N 4+ 1)(InK 4+ 6 < N) such that
nx)y=1lifxe[InK+9,N],nx)=0if x>N+1andlet w= nufe_%‘. Then

P oD —F(x0, (v)€Qi=(nK+3N+1)x(0,T)
w(x,0) = p(x) =0, xE(an—I—%,N—i—l)

w(x, 1) =0, x=InK+34,N+1te(0,T),

where

IxI

J == =5+ (r—q — 2k — TIm%e s
200 / 7 e~
(=50 =+ '+ 5 = (r+ e
IxI

— B — e + ine T 7 u(x + z,1)dN(z)
The same reasoning which leads to Lemma 2.7 then gives

Wiz, < €

Clearly, we can choose #(x) such that #,%’,” have a bound independent of N and hence
the constant C does not depend upon € and N. From this estimate, it follows that

| C,

W Qe S
where él = (InK +,N) x (0, T]. Since C is independent of N, we finally obtain

HUGHan,l(QI,e,‘X‘dX) <C.

Similarly, we can prove

HuEH sz’l(Qz,e*‘x‘dx) <C. ]
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Let P = (InK,0), and Bs(P) be the disc in (x,t) plane with radius J, centered at P.

Remark 2.1 Combining Lemma 2.7 with Lemma 2.8, we can affirm that for any small
6 >0and p € (1,00), u* € W;"'(Hy,e ™dx) and

HM€ H sz’l(Hl,e"x‘dx) < C

with constant C independent of e, where H; = R x [0, T]/Bs(P).

Lemma 2.8 For any a <b, p € [2,00) and almost all t € (0, T],

/b< p)dxsc

with constant C independent of e.

r r

+

o%uf
0x2

ou®
ot

ouc
ox

Proof Differentiating the equation in (2.1) once with respect to t, multiplying by
e~ MEX(n?(x)(-)>=! (n is a positive integer) and integrating over 0, = (a—1,b+1)x(0, 1),
t € (0, T], we obtain
ffe N 0 (x) (L P S dxde ——ffe ME2 (0 (x) (S P S dxd

_(r—q—}uk— )ﬂe—w\é (T)”( )au )Zn lau dxd‘c

+(r+4) ffe_‘x‘é 2(x)(a“ )dxdt

—4 ﬂ e "“‘é (@G e )" (2, G (x + 2, 7)dN(2))dxdr

+ff e_“'é (O ()G B — pe) dxde

—I1+12+I3+I4+I5+I6—0 (2.3)

where £(t) € Ci°(0, T, n(x) € Ci(a—1,b 4+ 1) are cut-off functions such that 0 < (1),
nx)< 1L, E)=1ifte [0,T] (6 >0), n(x)=1if x € [a,b].

Since /(1) < 0 and %&£ > 0, we have Is > 0. Let &(t) = [7F e¥E2(0)n2(x)(%L 2 dx.
Then I4 = (r + A) foz d(1)dr

Integrating by parts and using Lemma 2.7 and Holder’s inequality gives

= [ M@ ()G St dcde
o
= o [ e MO dx = L ] e ME@E (0% dxd
O

> Lot — ¢ [ ®(r)de — Ca.
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Again integrating by parts gives

——fff oM EX 2y (x) (B )t A dde

i fffz(rW(x eI P2 (S P

+ 5 ﬂf (T) )2" 1a¥atn(x)e*|x‘(211’(x)—n(x)sgn(x))dxdr
=1 + 122

Note that I; = 0. Using Lemma 2.7 and Holder’s inequality, we have

1
2| < 121 +C

which implies
2
L=< —C.

3
Similar reasoning leads to

1 t
15| < 121 + G / &(1)dr.
0

Using Holder’s inequality and Young’s inequality, Remark 2.1 and condition (A), we can
easily derive

IIs|=)»f~fe*'X‘éz ()%
—)»f_ (ffe Mé x)

<if7, [fo (@) (i e P (0% (x, 1) )
(S0 e M2 (02 (x + 2, 7))2dx) # de] dN ()

<AL [ fo O 0 + £ [ e M2 (x + 2,7)dx)de] dN (2)

<L) U)o+ L [7 [T ) [UH e M2 () (x + 2, 7)) dxded N (z)

<ALy dde+ 5 [ I fy ) [ eI, 1) dyde) dN(2)

' d(t)dt + Cs.

(7 % (x + z,1)dN(z))dxdr

o ot

9(x + z,7)dxdr)dN(z)

Then combining these estimates for I; (i = 1,---,6) with (2.3), we are led to
t
D(t) < C1/ D(1)dt + C»,
0

which implies
B(t) < Cpe!
by Gronwall’s inequality. So, for any 6 <t < T,

2n
( dx <
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with constant C independent of e. From this, it follows from Lemma 2.4, by using (2.1)
and Lemma 2.5 that

b a2ue P
/ = (x7)| dx<C, 2<p<oo.
a | 0x
Combining these estimates with Lemma 2.5 leads to Lemma 2.9. O

%u¢  du

Lemma 2.9 57, W are bounded uniformly in e € (0,1) in Q% , where Q% = (a,b) X

(0, T)/Bs(P).

Proof By Lemmas 2.5 and 2.6, we have %27“2 = %‘j; > —(K + 1), so it suffices to prove that

%uc ouc

5= has a uniform upper bound in 05. Letw = s+ Then w satisfies

Lw+w- B —yp) = 0.

Denote Lw = 57 — 7267 —(r—q— ik — —)a‘“ + (r + A)w. Use the same notations and
choose a cut-off function n(x,t) € C°(R x (0, T]) such that 0 < n(x,1) < 1, y(x,t) =1 if
(x,t) € 0%, n(x,t) = 0 if (x,t) € Bs (P) x < @ or x > b for some constants &, b. Denote

Or = (a,b) x (0, T). Then

L(nw) +nBi(us —pe) - w
= n(Lw + BLU —pe) - W) — W (G — (1 — g — 2k — Gy — ) — 62wy
= [ wx + 2,0dNE) +w - CEnw + (r — g — ik — D)e +n0) — 022 (7w)
=go +(g1)x
where go = Ay [ w(x +2z,00dN(z) + W+ (LN + (r — g — 2k — S)s + 1), g1 = —0nw.
Since fi. = 0, we have

L(nw) < go + (g1)x-
This means that nw is a subsolution of the problem

Lv=go+(g1)x (x,0) €~QT3
v(x,t) =0, x=4a,b,
€ [a,b

v(x,0) =0, .

Lemma 2.9 implies that |go ¢ + 181l o9,y < C with constant C independent of e.
Therefore, by the theory of para%ohc equations, we obtain
supiw < Cllgol, 5., + 181]17(00)):
Or
where C > 0 is independent of e. This, together with Lemma 2.5, proves the uniform
ou® J
boundedness of - on QF. 2
The uniform boundedness of aa% on Q% then follows from the same property of u¢,

%”5, aa”t and fB(u¢ — y.) and equation (2.1). Lemma 2.10 is proved. O

Lemma 210 For anya<b<InK,0<t; <t <T,

/ / (az ) dxdt < C (2.4)

with constant C independent of e.
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Proof Letv = %i\ Then v satisfies
L+ Pl —yp)v—p) =0.

Choose a cut-off function #(x,t) € C3°((—o0,InK) x (0, T)) such that 5(x,t) = 1 for
x € [a,b],t € [t1,1,], multiply the above equation by 5?v, and integrate over Hy. Then

ffn 2dxdt——ff ain””dxdt—(r— )k—— ff Ly Ldxdr
+(r+2) ff nzva”dxdt-i-ff nBL(u —lpe)(v—we)a"dxdt s
—2 ff ;12@” [ 0(x + 2, t)dN(2))dxdt =
=L+L+1I3+14+1s+1=0.
Integrating by parts gives
L=-% ff g—i‘;n2%dxdt ff P2 dxde + & ff UL GGy
ff Sy dxdt+02ff n%g—;%dxdt——ff g )20 L dxdt

- _Tfo(a natdxdt—l—asz ng—z%%dxdt
T

Lemma 2.10 implies the uniform boundedness in € of ’7% = 17%27“;. Hence

\I|<C+1// 2 (v 2dxdt
2= 4]\ :
Hr
|1|+|1|<C(R)+1// 2 (& 2dxdt
SIS 4]\ :
Hr

Again integrating by parts gives

Similarly, we have

Is= ff *Be(u —pe)(v — i) Srdxdt = 5 ff WL — o) § (v — pl)*)dxde

ff 2B — )3 (v — ) dxdt — ff nSLBL(ue — pe)(v — ) dxdt.

Since /(') < 0 and by Lemma 2.5, aait > 0, the first term of the right side is nonnegative.
Thus, after integrating by parts, we obtain

ff NS BL(ue — pe)(v — ) dxdt

= fo Be(u€ — o) Z[(v — wl)nSLldxdt > —
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Here we have used the uniform boundedness in in e of 7 & = =8 ax2 and ny!”, which follow

from Lemma 2.10 and the definition of II..
Finally, using Lemma 2.3 derives

6 =—1 ff PREC ( f_*ju(xﬂ, z)dN(z)) dxdt > —J(K + 1) ff 0?2 |dxdt

>—C— 1 [, (@) dxd.

Combining these estimates for I; (i = 2,---,6) with (2.5), we deduce

// 2 (o 2dxdt<C
T\ o =
Hr

26
// (6) dxdt < C

where the constant C is independent of e. O

Hence

Lemma 2.11 Foranya<b<InK,0<t; <t <T,

b 5] a2ue 2 b azug 2
Y <
/a / (aﬂ) dXd”/a (6x6t) Condx<C, o te(nn) (2.6)

with constant C independent of e.

Proof Let w = aail Then w satisfies
Lw + BLu —pw = 0.

Multiply by 5?w, and integrate over Q, = (—o0,00) x (0,1) (0 < t < t). Here n(x,t) €
Ci((—oo,InK) x (0, T)) is the same cut-off function as in Lemma 2.10. Then

ﬂ () 2dxdr — = f Zax‘zv %‘; dxdt — (r —q — Ak — %z)g n? g‘t %‘;’dxdr

Ot

r+A)jf17 wawdxdr—}—ffnzﬂ Pe)w %dxdt
(2.7)
Aﬂnm (f ©yw(x + z, AN (z )) dxdz
=L+L+1I:+14,+1s+1s=0.

Integrating by parts gives

__a 28 w ow __a’ 20w 0w 2 31 dw ow
L= 7{{ o ardxdt =% Qf" ox awardxdt + o ffﬂa*xaﬁdm
t

%f_oow ;72(% )2 (x, t)dx — —ffn% 2dxdr+62ﬂng—z%%—fdxdr.
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Using Lemma 2.11, we obtain

7/ < >(xtdx_c_// <6W> dxd.

I; > — 6[[,,’2(6“» 2dxdr
I4>—C—¢ ffnz(a‘“ 2dxdx.

Similarly, we have

To estimate Is, we integrate by parts again and note that f.(-) = 0, f/(-) < 0 and % =0,

Is= ff n?BLuc — peyw Ldxde
/zf LU — p)w(x, t)dx—ff N5LBL(ue — pe)w?dxde
ffna” — p)wldxdr
=— [T 0SB — pew(x, tdx+Jf S w4+ n S8 Be(ue — ye)dxdr

ﬂ‘ ’72(6w 2dxdr.

Finally

I ——/1// 20w /+Oow(x+ t)dN(z) dxdr>—C—1// 2 (o dedr
6 — ’1 a[ e Za z = 6 ’1 at .
Q

t

Combining these estimates with (2.7), we deduce

S (Y aaes g [ (2) oz e
6 )] ot 4 ) T \ox) WHPeEsh 02
Q

and complete the proof of (2.6). O

3 Solutions to the problem (P)

In this section, we return to the problem (P). We first prove the uniqueness of solutions
to (P) or equivalently, (1.1), which is valid for slightly generalized solutions. To introduce
such solutions, as we did in Lemma 2.8, we consider a certain kind of weighted function
spaces with weight e~¥I, denoted by

H=L*R,e™Mdx), V={ucH|u,ecH)

The inner product and the norm in H are denoted by (-,*)y and | - || 5.

https://doi.org/10.1017/50956792505006340 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792505006340

Free boundary and American options in a jump-diffusion model 109

A function u € L*((0, T]; V) with u, € L*([6, T];H) for any 6 € (0, T) is said to be a
generalized solution to (1.1), if

(ug, v —u)y + a(u,v —u) + b(u,v —u) =0, a.e. in (0, T], foranyv € V, v = p(x), (3.1)

lim /R lu(x, t) — w(x)>e Ndx = 0, (3.2)
u(x,t) = yp(x), ae. in R x (0, T], (3.3)

where
a(u,v) =% < ff uvce Mdx + (r + 1) f‘” uve—¥ dx
— [7(Gsgn(x) + 1 —q — 2k — G e Mdx
b(u,v)=—2[" [ [7 u(x+ z,0)dN(z)|ve Ndx

Theorem 3.1 (1.1) admits at most one generalized solution u € L*((0, T]; V).

Proof Suppose that uy,u, are generalized solutions of (1.1). Let v = up + (u; — up)™. Then
v e V,v=y,and from (3.1),

(aauzz’” —ux)g + a(uz, v — uz) + b(uz, v — uy)
= (aai,z: (uy — u2)M)g + aluo, (ug — us)™) + b(uo, (ug — us)™) (3.4)
=0, ae 1in(0,T]

Denote v_ = u; — e(u; — up)",0 < e < 1. It is obvious that v_ € V and v_ > y. Again
from (3.1) by taking v = v_, we obtain

(aa“tl,—e(ul — ) ) + a(uy, —e(uy — up) ) + b(uy, —e(uy — u2)+) =0, ae. in (0, T],

and hence

(aautl (ur — w2) V) + au, (uy — u2)™) + b(uy, (ug — u2)+> <0, aein(0,T].  (3.5)

Combining (3.4) with (3.5) gives

O(uy — .
(2 0 e = = )+ b=, =) )0, e i (0,71
Let w = u; — up. Then

w4 + + ;
E,w +aw,w")+b(w,wT) <0 ae in (0, T]. (3.6)
H
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Now we observe that

0
(5rwr) =33 [ ovrieax= 32 (w1 67)
H

and
o’ 2
a(w,w¥) = a(w*,wh) > HW+HH Clw* I3

In addition,
bw,wh)=—2 [ (Jr wx+z,0)dN(z)) wh(x,1) - e Mdx
> =7 [x Jawh(x + z,0wT(x, t)e XdN(z)dx
== whllg (fr([r whH(x + z, 0)e"dx)dN(z)) :
=AWt (fo(Jr wT(x + z,0)e P Fldx) - e‘z‘dﬂ](z))%

=—AwF 5 [g e"dN(2).

Hence, using condition (A) gives
b(w,w*) = —C|w* . (39)

Combining (3.7), (3.8), (3.9) with (3.6), we derive

2
(\W+|H) *HW?H% —Clw*||f <0, ae in (0, T],

| =
Q..‘&

in particular,

d .
7 (WTIh) < Clw™llh, e in (0, T].

Using (3.2), we see that [wF|}, — 0 as t — 0, so, by Gronwall’s inequality, we obtain
lwt|%, =0 for t € (0, T] and hence u; < uy a.e. in R x (0, T]. Similarly, we can prove that
uy < up a.e. in R x (0, T]. Thus we obtain the uniqueness of solutions to (1.1). O

Corollary 3.1 Suppose that u is a solution to (1.1), u, —” are bounded and continuous and

% a" € LX([6,T],H) for any 6 € (0,T). Then u is a generalized solution to (1.1).

Proof It suffices to verify that u satisfies (3.1) for any v € V with v > y. Since Lu =0
and %yu = 0 whenever u > y, v —u > 0 whenever u = y, we have

(L1u,v —u)y = 0. (3.10)
Integrating by parts gives
Iz %(v — u)e Ndx
v

=7 Jr gx ox a) _MdX—FfRSgn(x ( —u)e_‘x‘dx

Thus from (3.10) it is easy to derive (3.1). O
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As before, let P = (InK,0), and Bs(P) be the disc in (x, t) plane with radius J , centered
at P.

Theorem 3.2 For any a < b and small positive constant 0, there exists a subsequence {€},
as €, — 0, such that the solution u(x,t) of (2.1) converges uniformly in Qr = (a,b) X
(0, T)/Bs(P). The limit function u(x,t) is a solution of (1.1), u(x,t) € sz’l(QT), for any
p € (1,00), and L1u=0, in {u>p}.

Proof By Lemma 2.7, there exists a subsequence {e;} with ¢, — 0 and a function
u € WX (Qr) such that

" in w2y,
Since p € (1,40) is arbitrary, again by Lemma 2.7, there exists o € (0,1) such that

u e C”’“#(Qr) by the imbedding theorem. From Lemmas 2.5 and 2.3, for any x,y €
R,t € (0, T], there holds

|u€(x> t) - ue(ya t)' < C|X - y‘a

where C is independent of e. Using an argument in treating parabolic equations without
nonlocal term, we can obtain

u(x, 5) — u(x, 1) < Cls —t]?

for any x € R, 5, t € (0, T], where C is independent of e. The uniform boundedness
and equicontinuity of {u¢} imply that there exists a uniformly convergent subsequence
{u}(ex — 0) of {u}, supposed to be the same subsequence as above,

¢, uniformly
Fr—u

Now we prove that u(x, t) is a solution of (1.1). Since f. < 0, we have Z;u > 0. Letting
e =e — 0 gives Z1u >0 in Qr in the sense of distributions. Noting that u € W}'(Qr),
we can assert that #u = 0, a.e. in Qr. Since a, b, 0 are arbitrary, Lju = 0, a.e. in Hy. By
Lemma 2.4, u(x,t) = ye(x). Letting € — 0, we find that u(x, t) = y(x). It remains to prove
that #ju =0 in {u > y}. In fact, for any (xo, %) € {u > y}, from the continuity of u, 1,
there exists a neighborhood A" of (xo, tp) such that u(x,t) > y(x) in .4". From the uniform
convergence of u(x,t) and ., (x), there exists 6 > 0 such that u*(x,t) = e, (x) + J for
e small enough. So ., (u* — ) = 0 and L u* =0 in A" Letting e, — 0 and noting
that u € W;»'(Qr), we obtain Zju =0 a.e. in A"

Thus we have proved that as the limit of a uniformly convergent subsequence of {u},
u is a solution of (1.1).

Similar to parabolic equations, we can prove by Bernstein’s Method that

[l arrvg ) < €
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. u du & ;
for any 4" < {u > vy}, where C is independent of e. Therefore, 3t x> ox7 €Xist, are

continuous and Zu =0 in {u > y}. d

Remark 3.1 The solution u obtained in Theorem 3.3 as the limit of a subsequence of u¢
possesses all properties assumed in Corollary 3.2, some properties have been presented
above and others will be given later. So we can further affirm that, for any a < b
and small positive constant J, the whole family {u} is uniformly convergent to u in
Or = (a,b) x (0, T)/Bs(P), as € — 0.

In what follows, we discuss properties of the solution u(x,t) to (1.1) thus obtained. Let
x=1InS,t =T —t,u(x,t) = V(S,7). Then V(S,7) is a solution to (P). We will describe
properties of solutions sometimes in terms of u(x, t), sometimes in terms of V (S, 7).

Theorem 3.3 For any a < b and small positive constant 0, % % € L*(Qr) and % is
continuous in Hr, where Qr = (a,b) x (0, T]/B;s(P),

Proof By Lemma 2.10 , Theorem 3.3 , we can infer % 227‘3 € L*(Qr). Since %% is
uniformly bounded in Q7, we can prove that %6 is uniformly 3-Holder continuous in ¢

and hence infer the continuity of g—;‘( in Hr. I

Theorem 3.4 The solution V(S,t) to (P) possesses the following properties:
(1) V(S,7) is nonincreasing both in S and in t;

(2) For each t € [0, T), V(S,") is a convex function of S;

(3) V(S,7) € [0,K], for any (S,7) € [0,00) x [0, T).

Proof Let x =InS, t =T — 1. Then u(x,t) = V(S,7) is a solution to (1.1).

(1) By Lemma 2.5, we have % <0, % = 0. So u(x,t) is nonincreasing in x and

nondecreasing in t. Since u(x,t) is the limit of u¢(x,t) as € — 0, u(x,t) possesses the same
property.

(2) Denote v°(S,t) = u(InS,t) = u(x,t). Then by Lemma 2.6, %252 =& %1“2 - &) >0,

which implies that v¢(S, ) is a convex function of S. Using Theorem 3.3, we conclude that
so is the limit function V(S, 7).

(3) Since u(x, t) = p(x), we have u(x,t) = 0, so does V(S, 7). By Lemma 2.3, u°(x,t) < K +e,
for any (x,t) € R x (0, T]. Letting ¢ — 0 yields u(x,t) < K, so does V(S,7) for any
(8,7) € [0,+00) X [0, T). O

Lemma 3.1 Assume that $w < 0 in Rt x [0, T) with & being the operator in §1 and E is
a subregion in RT x [0, T) in which w(S,t) = 0. If for some point P € OE, w(P) = 0, the
inward normal vector y at P to OF is not parallel to the © axis and there exists an inscribed
disc B = E such that BNOE = {P} and w > 0 on B/{P}, then %Y;(P) > 0, where a% denotes
the derivative along .

Proof Let (S;,71) and R be the centre and radius of B. Consider a disc B; centered at
P = (So,79) with radius Ry less than |S; — Sy| (since y is not parallet to the t— axis,
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|S1 — So| > 0). Denote C' = 0B; N B, C" = dB N By, and D the region with boundary
C' U C”. Since w > 0 on B/{P}, there exists 7 > 0 such that

w(S,7) =1, (S,7)€ B/B. (3.11)
Consider the auxilliary function

v(S,7) = o R _ pal(S=81)*+(—11)’]

Then a simple calculation shows that

Py = e—oc[(S—Sl)Z—f—(r—rl)z] {_ 20252(5 _ S1)2a2

+al2(t — 1) + 67S% + 2(r — q — JK)S(S — Sp)] + (r + 2)} — re™®
[ SRS N ),

Since Ry < |S1 — Sp|, we have Xv < 0 in D, if o > 0 is chosen appropriately large.
Let w = w + ev(e > 0). Then for large « > 0 and € > 0,

Pw=%Fw+eZLr <0 in D

from which it follows that W can not attain negative global minimum in D. Note that
v=0o0n 0B, sow >0 on C"”. From (3.11), we can take ¢ > 0 so small that w > 0 on
C'. If w < 0 at some point in D, then w will attain negative minimum in D, which is
impossible. Hence w > 0 on D and w(P) = 0. Thus

ow ow ov
—(P)=—(P —(P)=0.
5, (P) =5, (P) +eg ()
Since %f) = —20Re™ R <0, we finally obtain ﬁ\gi(yfﬁ > 0. So the lemma is proved. O

Theorem 3.5 V(S,7) > 0,VY(S,7) € R x [0, T).

Proof Since V(S,1) = ¢(S) = (K —S)"(see the proof of Theorem 3.3), we have V(S,1) > 0
when S < K. So it remains to prove that V(S,7) > 0 when S > K. Since V(S,1) is
decreasing in S, it suffices to prove that V(S,7) > 0 when S > K, 7 € (0, T).

Let @1 = {(S,7)|S > K,t € (0,T),V(S,7r) = 0} and @, = {(S,7)IS > K,t €
(0, T),V(S,7) > 0}. Suppose that Q; is nonempty, namely, there exists (So,70) € Q1.
Denote I' = 0Q;/{t =0, T'}. By the monotonicity of V(S,t) and V(S,7) = 0, there exists
(S1,79) € I' with S; < Sy and (S,79) € 2; when S = §;.

First, we prove that there exist a point P*(S*,7") € Q, and a constant R > 0 such that
Br(P*) = Q> and 0Br(P*)NT is a set of singer point P(S,%) with § > S*, % > 1"

If there exists (Si,71) € I' (11 > 7¢), then from the monotonicity of V(S,t) and
V(S,7) = 0, we have (So,7) € I' when t € (79,71). In this case, the conclusion we want
to prove is trivial. Suppose not. Then for any t; € (19, T'), there exists S, < S; such that
(S2,71) € I'. Denote by [ the segment with endpoints (S;,71) and (Sy,79). Then we treat
the following two cases separately.
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(1) There are points of I" (besides (S, 7;) and (Sy,79)) lying on [ or on the left side of .
In this case, there must be a line I’ parallel to [ such that no point of I' lies on the left
side of I, but there exists a point of I' lying on I, denoted by (S3,12) with 73 € (70, 71).
Hence the existence of the point P*(S*,7") and the constant R > 0 required follows
immediately.

(2) All points of I' except (S, 7o) and (S»,71) lie on the right side of I.

For P(Sp,tp) € [, denote dp = dist(P,I"). Suppose that Q(Sp,7¢9) € I' is a point such
that dp = dist(P,Q). If there exists a point P € [,P + (S,79) and (Sy,71) such that
the corresponding Q(Sg,7g) satisfies Sp > Sp, then we may take (Sp,19) as P(§,7), and
obtain the desired conclusion. Now we prove by contradiction that the contrary case is
impossible. Note that, in the contrary case, for any P € [,S9 = Sp. Since dp is a continuous
function of P, there exists Py(Sp,,Tp,) € [ such that dp, = 11131a>[g dp. Let Qo(So,,Tg,) € I' be
a point such that dp, = dist(Py, Qo). By the definition of Py, we have By, (Py) = o,
Qo € 0By, (Po)NI'. Let Peclbea point with tp, — 75 > 0 small enough and Oer
be a pomt such that dp = dist(P, Q) If O is the intersecting point of 0By, (Po) and the

segment PQ (since dp, < dist(Po, Q), Q exists!), then

Ty — Ty S TQy — TS < Tpy — Tp.-

Therefore, since Sy = Sp, Sg, = Sp,, We obtain

dp =dist(P, Q) = T —Tp = (g, — TR) — (g, — Tp) + (TR, — Tp)
>19, —Tp, = dpy;

which contradicts the definition of dp,.

Summing up, we have proved the conclusion in any cases.

Now we are ready to use Lemma 3.6. Since S > S§*, the inward normal vector y at

P(8,%) to I' is not parallel to the t— axis. Thus, by Lemma 3.6, we have aV(S 7) > 0 and
hence & s Y(S,%) > 0, which contradlcts (S, 7) = 0 following from the fact that V(S,7) =0
in Q. Therefore, Theorem 3.7 is proved. ]

Remark 3.2 It is clear that the value of a non-negative payoff is non-negative if the time-
t value is regarded as a risk-neutral expectation of the payoff. The conclusion presented
in Theorem 3.7 is that the option owns the positive value before the expiry date.

Theorem 3.6 limg_,. . V(S,7) =0, for any 7 € [0, T].

Proof Since the solution u(x, t) is nonnegative and nonincreasing in x , the limit u(4o0, t) =
limy_, 1o u(x, t) exists and u(+oo,t) =0

We prove u(+o0,t) = 0 by contradiction. Suppose that there exists some 7 € (0, T]
such that u(+o0,7) > 0. Since u(x,t) is nonincreasing in x and nondecreasing in t, we
have u(x,7) > 0 for any x € (—o0,+o0) and u(x,t) > 0 for x € (—o0,+0), t € [, T].
Denote ty = inf{f = 0;u(x,t) > 0, x € (—o0,+), t € (f, T]}. Clearly, u(x,t) > 0 when
X € (—o0,4+m), t € (, T], but u(4o0,ty) =0
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Take X > 0 such that yp(x) = (K —e¥)* = 0 when x > X. Then
u(x,t) —p(x) =u(x,t) >0, for xe€ (X,+x), t € (ty, T]-

Hence, by Theorem 3.3, u(x, t) satisfies

2 A2 +o0
,?,Plu:au—aau—(r—q—/lk—>2u+ru+2< /u(x+z,t)dN(z)>=0

for x € (X, 40),t € (to, T].
Choose n(x) € C*(—o0,+0o0) such that

n(x)=0 when x<X;n=1 when x>=2X. (3.12)

Let v = nu. Then v satisfies
Lv = f(x,1) + g(x,1),

where

Lo=% 98 —(r—g—k— )L+,

foot)=—S@n'E +n"w) — (r —q— 2k — Tn'u,

g(x,t) = —n(u— [T u(x + z,0)dN(2)).
From (3.12),
f(x,t)=0 when x>=2X. (3.13)

It is clear that

g(+oo,t) = xl_i)rilwg(x, t)=0, when te€(0,T). (3.14)

Using the fundmental solution I' (x,t;&,7) of the parabolic operator L, we can express v
as

—o0

+o0 t pto
o(x. 1) = / It — 103 £ O)0(, t0)dE — / / Tt —t0: &t —to)(f(E,7) + g(& D)dEd

for x € (—oo,+0o0),t € (to, T].
For I'(x,t; &, 7),the following estimates holds (see Friedman [6]):

Jo(x — &)?
4(t — 1)

where C, 1y are positive constants. So we have

|r(x,z;§,z)|<C(z—r)%exp<— ) x € (=, +0), 0<t<t<T,

lo(x. 1)]
<C 17— 10 exp (—4E=EE jo(&, ) dE
+C [} [ — 1) F exp (A=) (£ (8. 1)| + Ig(8.D)dEdr
—2Cf exp(—Aon )|v(x+2(t—t0) 0, to)ldn
+2C [ [ exp(—Aon®)(|f (x + 2(t — to) 2, 7)] + [g(x + 2(t — to) 21, 7)|)dnde

0
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for x € (—oo,+00), t € (ty, T]. Since v(4o0, ty) = u(+o0,ty) = 0, it is easy to see that

~+0o0
2C/ exp(—ion?)|o(x 4+ 2(t — to)_%n,to)\dn — 0, as x — +o0.

—00

Similarly, from (3.13), (3.14), we have

t p+oo , ,
ZC// exp(—)uonz)(If(x+2(t—t0)_§17,r)|+\g(x+2(t—t0)_7;1,7:)|)d17dr—>0, as x — +oo.
ty J —o0

Hence,
u(+oo,t) = v(+00,t) =0, when € (ty,T).

The contradiction shows that the conclusion of Theorem 3.8 is true. O

Remark 3.3 A put option allows its holder to sell the underlying asset on a specific
date for a precribed amount and a specified price. Whereas the holder of a put option
wants the underlying asset price to fall as low as possible. The conclusion of Theorem 3.8
describe the fact in finance that the put option is of no value when the underlying asset
price is large enough.

The following conclusions about the relationship between the solution V' of (P) and its
related parameters, such as K, o, T, can be similarly proved by the argument in Chaper 6
of Jiang [10]. Dependence upon its related parameters are explicitly indicated, if necessary.

Proposition 3.1 (1) 0 < V(S,1;Ky) — V(S,1;K,) < Ky — K, when Ky > K>;

(2) V(S,7;T,) < V(S,7;T1) when Ty = T,, where t € [0, T3];

(3) V(S,t502) < V(S,7;01) when a1 = 03,

where V(S,7;i) denotes the value of V(S,7) with all parameters unvaried except the
parameter i.

Proof Let w = uf(x,t;K;) —u5(x,t;K>). Then w satisfies

{$1W + ﬁf(ui —P1e) — ﬂf(us —12e) =0,
w(x,0) = pie — Yoo = H(Ky — €¥) — (K, — €%).

Note that
ﬁe(ui - 1Ple) - ﬁe(ug - UJZE)
=B u] —us — II(Ky — €*) — [1.(Ky — e¥)]
=Bu(&O)w — (K1 — K1)l
and

MKy —e*) = [1(Ky —e*) = T(n)(K1 — K2),
where ¢ is some value between uj — i and u§ — yo., and y is between K; — e* and
K2 —e*. Let
w 2 ZW n.2 w
Lw=% -2y (r—q—Jk—3)¥

+(r+ 2+ BUENW — 4 [T w(x + 2, 1)dN(z).
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Then by conditions (A1) and (A2), we have

Lw = B (n)(Ky —K3) =0
whenever K; > K,. Therefore using Lemma 2.1 leads to w(x,t) = 0, ie., uj(x,t;K;) =
u5(x, t; K,) from w(x,0) = 0 and the conclusion (1) is proved.

Similary, we can prove conclusions (2) and (3). O

4 Free boundary problem

In this section, we are concerned with a free boundary problem corresponding to the
problem (P). We first derive a solution of this problem from the solution V'(S,7) to (P),
whose uniquely existence has been established in Theorems 3.3 and 3.1, and then prove
the uniqueness. In addition, some properties of solutions of the free boundary problem
are discussed.

Theorem 4.1 For each t € [0, T), there exists s(t) € [0,K) such that V(S,7) = (K — S)*
when 0 < S < s(t); V(S,1) > (K —S)* when S > s(t). Moreover, s(t) is a nondecreasing
Sfunction of .

Proof Noting that V(S,T) = (K — S)* and using Theorem 3.4, we have (K — S)" <
V(S,7) < V(0,7) for © € [0,T). In particular, V(0,7) = K. Since by Theorem 3.4,
V(S,7) € [0,K], we obtain V' (0,7) = K.

For any 7 € [0, T'), define

si(t) =sup Qi(1), Qi(z) = {SolV(S,7) = (K —S)",0< S < So},
sy(t) = inf 5(1), (1) = {S0|V(S,T) > (K — S)+,S0 <S< -'rOO}

Since V(0,7) = K, we have 0 € Q;(7). On the other hand, by Theorem 3.7, V(S,7) > 0,
for any (S,7) € RT x [0, T), which implies K € Q,(t). Hence Q1(z), 2,(7) are nonempty,
and si(7) , s2(t) are well-defined. From the definitions of si(z) and sy(t), it is clear that
51(7) < s(7). We further prove that sy(t) = s5(7).

Suppose that there exists 7o € [0, T) such that si(t9) < sz(79). Since V(S,7) > 0, for
any (S,7) € RT x [0, T), it is easy to see that s;(tr) < K for any t € [0,T). Also we
have s;(1) < K, for any 7 € [0, T) which follows from the fact K € Q,(tr). Therefore,
at S = sy(19) and S = s3(t0), we have V(S,79) = K — S. This and the convexity of
V(S,7) in S imply that V(S,79) = K — S in (s1(t0), 52(70)), which contradicts the definition
of s1(19). So s1(t) = s2(r) for any t € [0, T). In addition, by the continuity of V(S,1),
V(s(t),7) = (K — s(t))" for any t € [0, T), which implies s(t) < K by Thoerem 3.6.

Denote

s(t) = s1(1) = s2(7).

Since V (S, 1) is nonincreasing in t, we have Q,(t;) < 2(72) and hence s(t1) = s(72) when
T > T2. O
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Remark 4.1 From Theorem 4.1, we see that R* x [0, T) can be divided into two parts
by S = s(7):

e The continuation region:
2 ={(S,0)V(S,1) > (K —95)"} ={(S,7)|S > s(r),0< Tt < T},
e The stopping region:
2 ={(S,0)V(S, 1) =(K—=95)"} ={(5,7)]0< S <s(r),0< 1 < T}
S = s(7) is just the optimal exercise boundary of American options.

Remark 4.2 Theorem 3.3 and 3.4 show that V (S, 1) is a smooth function and £V =0 in
21, %—g is continuous in R* x [0, T) and V(S,7) = K — S in X, 2—?(5(1), 7) = —1. Thus,
from (3) of Theorem 3.4, —1 < %—g <0, for any (S,7) € RT x [0, T).

A similar argument of Lemma 3.6 leads to the following Lemma:

Lemma 4.1 Assume that $w <0 in RT x [0, T) with % being the operator in §1 and E is
a subregion in R™ x [0, T) in which w(S,t) = 0. If w = 0 at some interior point (So,70) € E,
then w(S,7) =0 for any (S,7) € {t = 1} NE.

Proposition 4.1 V; < 0,Vgs > 0 in 2.

Proof Note that #V, =01in X and V; < 0in R x (0, T]. If there exists (Sp, 79) € X1 such
that V;(Sp, 79) = 0, then by Lemma 4.2, we have V,(S,7) = 0, for any S > s(t),7 = 70. So
frT Vi(S,t)dt = V(S,T)—V(S,7) =0, ie. V(S,7) =V(S,T)=(K —S)" in Z; N {t = 10},
which contradicts V(S,7) > (K —S)* in 2. Thus V; < 0in 2.

Using a similar argument, we have Vgs > 0 in 2. O

Theorem 4.2 The free boundary problem

Zw(S,1) =0, S>b(1),0<1<T,

w(b(z),7) = K — b(1), 0<t<T,

& (b(r),7) = —1, 0<t<T, )
w(S,T) = (K —S)*, S >0,

w(oo,7) =0, 0<t<T,

w(S,7) > (K —S)*,S > b(r); w(S,7)=(K —S)",S < b(q).

has a unique solution (w(S,t),b(t)), where w(S,7) is smooth when S = b(r), 0 <t < T,
nonincreasing and convex in S and b(t) € [0,K).

Proof By Theorem 3.3, Problem (P) has a solution V(S,t). Theorem 3.8 shows that

limg_,+ V(S,7) = 0. Let s(t) be the function defined in Theorem 4.1. Then from Remark

4.2, we see that (V(S,7),s(t)) is a solution of (P). Now we prove the uniqueness.
Suppose that (V{(S,1), si(t)) and (V»(S, 1), s2(t)) are two solutions of (P). Let

li(t) = min{si(7), 52(0)}, l(r) = max{si(),s2(7)},
w(S,1) = Vi(S,7) — Va(S, 7).
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Then Vi(S,7) = V»(S,7) = K — S when S < [i(1), 0 < t < T, that is, w(S,7) = 0;
Vi(S,7) > (K —S) , Va(S,1) > (K —S)+, Fw = LV — LV, =0 when S = bL(q),
0<t<T.

To prove the uniqueness, it suffices to show that w(S,7) =0 when S > [1(7), 0 <t < T.
Suppose there exists some point (S, 7) with S > [;(7), 0 < v < T such that w(S, 7) & 0. For
definteness, suppose that at this point w(S,t) > 0. Then since w(li(7),7) =0, w(S,T) =0,
and w(+4oo,7) = 0, w(S,7) will achieve positive maximum at some point (Sp,79) with
So > l1(70), 0 < 19 < T. We consider the following cases separately:

(1) So > L(7o).

Note that ¥w = 0 when S > (1), 0 < 7 < T. In particular, £w(Sy,79) = 0. However,
since (Sp, 7o) is the positive maximum point of w(S,7), we have i“ <0, g‘g =0, gs‘t <0,
at (Sp, 79), from which ZLw(Sy, 79) < —rw(Sp, 79) < 0 and a contradiction is derived.

(2) li(t0) = s1(10) < So < la(70) = s2(70).

In this case, for S € (s1(t0), 52(70)], V2(S,79) = K — S and hence % = —1. Note that
L(asg’”’) = 0. Then ngi‘)’“) = —1. From this and 7‘3‘/1(5(13(;0)‘0) = —1, we obtain L‘ég’m) =—1
for S € [si(t0),So] by the convexity in S of V(S,7). But Vi(si(19),70) = K — s1(19), SO
Vi(S,70) = K — S for S € [s1(t9), So], which contradicts (S, t9) > K — Sp.

(3) li(z0) = s2(70) < So < ha(70) = s1(70)-
Similar reasoning as in the case (2) also derives a contradiction. O

From (2) of Proposition 3.1, we see that as the exipiry T increases, the correspongding
options price V(S,t; T) is getting expensive. V (S, 7;00) is the most expensive price, that
is, V(S,7;T) < V(S,00), where V(S,00) denotes the American options price without
expiration date; such options are called the perpetual American options. V (S, o0) satisfies
the following variational inequality:

min{—% 0,0 — (K —=8)"} =0, 0<S <o, P)
v(0) = K,v(e0) =0, *
where
) d2 dv +00
Loy = —S 52 +(r— }k)Sﬁ —(r+ A+ 2/_1 v(S(1 4 y))dN(y),
The corresponding free boundary problem is to find (V(S, ), s,,) such that

3301) = 0, S > Scos

0(Se0) = K — Sop,

v(e0) = 0, (P)es
/(SOO) = - a

v(S) =K —8S,S <so; 0(S)>(K—8),8 > 5.
Note that the free boundary problem (P)., has no explicit solution. In Jaiellet et al. [9]

and elsewhere, the authors obtain such a solution only in some special cases. In order to
discuss the regularity of s(t) in §5, we need to estimate the lower bound of s(t). For this
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purpose, we consider the following problem for fixed Sy € [0,K]

Liwv=%898 4+ (r—q—2)SL —(r+ 20 +/K =0, S§>5,

U(SO) = K - SO)
4.1
o(0) € (0,K), “D
v(S)=K -8, S < 5.
It is easy to find that the solution of (4.1) is
K S\™ AK
V1i(S;8) = -5 — St
1(5;80) (r—i-/l 0)(50) +r+)v,
where
gtk G =\ — g — k= TP + 202+ 2)
o =
1 ) ,
—r+q+/1k+”72+\/(r—q—ik—%z)2+262(r—|—/l)
Oy = 0_2
Let S35 be the maximum point of V1(S;Sy) in [0, K] as a function of Sy. Then Z—E‘)\SO:S(; =
0. Hence
. rKoy
So=—7"7", 4.2
O 4 Aoy — 1) (4.2)
rK S\ AK
Vi(S;8) = ————— | = + —. 4.3
1(5550) (r+ A)(1 —oy) (so> r+ 2 (43)
Notice that
Vi(Sy:85) = K — S,
3855 = (i (3% ) lsss = —1.

Theorem 4.3 Assume that (V(S,0),s.) is a solution to (P)y. Then V(S,0) < Vi(S;5;),
So < Soo, Where S§, V1(S;Sy) are given by (4.2), (4.3).

Proof First we have V(S;Sy) < K for § > Sy. In fact, since V{(Sy;Sy) = K — Sy < K,
Vi(o0;89) < K, if Vi(S;Sp)(as a function of §) takes maximum K at some point S| €
(So,0), then L;V1(S1;8Sy) < —rK < 0, which contradicts L V(S1;Sy) = 0.
Now, we prove that V(S;00) < Vi(S;55). In fact, w(S) = Vi(S;5,) — V(S ;00) satisfies
00
Zow=1 [ DAS(+ s~ KNG
-1

and w(oo) = 0, w(s,,) = 0. Since V(S;Sy) < K for S > Sy, we have

Low <0 for S > s..
If w(S) attains a negative minimum at S, > s.,, then

Loww(S) = —rw(S;) > 0.

The contradiction shows that w(S) < 0, namely, V(S;00) < Vi(S;Sx).
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By virtue of the definition of Sj, we have V1(S;s5) < V1(S;S;) and hence V(S;00) <
Vi(S;85). If s, < Sg, then since V(S,00) > (K —S)* for § > s, and Vi(S;S5) =K — S
for s, < S < Sy, we have Vi(S;S;) < V(S,0), which is a contradiction. Hence Sj < S..
Theroem 4.5 is proved.

O

5 Further properties of the free boundary

In this section, we prove further properties of the free boundary S = s(t), such as
continuity, strict monotonicity and more regularity, etc. Denote

I ={(x1t|x=x(),0<t< T},

where t = T — 1,x(t) = Ins(t). As before, let u(x,t) and V(S, ) be solutions to (1.1) and
(P), respectively, and S = s(t) be the free boundary defined in Theorem 4.1.

Theorem 5.1 For anya<b<InK,0<t; <t <T,

Ou 0 .l u 2 )
5 €L (tlat2>H (aab))9w €L (t19t29L (avb)) (51)

ui(x,t) is continuous across x = x(t). Hence, uy(x,t) € C((—o0,+0) x (0, T)).

Proof (5.1) follows from Lemma 2.12 and the continuity of u,(x,t) cross x = x(t) follows

from Theorem 4.1 and Simon’s Compactness theorem. O
Remark 5.1 From Theorem 5.1, we see that 2272 is unilateral continuous up to x = x(t).

Coming back to variables (S, ), it follows that V; is continuous in R* x [0, T) , and Vg
is unilateral continuous up to the free boundary S = s(1).

Theorem 5.2 s(t) is continuous in [0, T').

Proof First we prove that for any t € [0, T), s(t*) = s(r). Let {t,} be a sequence such
that t, — t*. Then (s(t,), ;) € 2,, where X is the stopping region defined in Remark 4.1.
Hence, by the continuity of V(S,7), (s(t*),7) € X, which implies that s(t) < s(7).
However, since s(t) is nondecreasing, s(t,) = s(t), and hence s(t™) = s(t). So s(t7) = s(1).

Suppose that s(t) is discontinuous. Then there exists 79 € [0, T) such that s(zj) =
s(to) > s(ty ). Denote Q = {(S,7)[s(ty) < S < 5(19),0 < 7 < 19}. Then Q = X; where 2 is
the continuation region defined in Remark 4.1. Thus

LV =0, (S,1)€0,
{V(S,‘co) =K -8, s(ty)<S <s(t).

From this, one can verify, by using Theorem 3.3 and Theorem 5.1 and noting k =
[*7 ydN(y), that for any s(zy) < S < s(zo),

Va(S,10) =rK — ¢S — /”»ff%&c,l[V(S(l +¥),70) — (K = S(1 + y))ldN(y)

N (5.2)
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Denote f(S) = ¢S —rK + 4 fjff VS + y), ro) (K — S(1 + y))dN(y). Clearly,
f(0) = —rK < 0, f(+0o0) = 0. In addition, since a > —1(see Remark 4.2), we have
f'(S) = q > 0. So there is a unique zero point of f(S) in (0, +o0), which contradicts (5.2).
Thus Theorem 5.2 is proved. O

Define s(T) = lim,_,7- s(z). Then s(t) is continuous in [0, T].
Theorem 5.3 s(T) at t = T is given by

K, if r= +ﬂf " ydN(y);

S(T):min{K’SO}:{So, if r<q+ﬂf ydN(y),

where S is the unique solution of the following equation:

+o0

£(S) =4S — K +/1/K [5(1+9)— KJNG) =0

Proof Since s(t) < K, for t € [0, T), we have s(T) < K.
We consider the following cases seperately:

(1) So =K.

Suppose s(T) < K. Then for small 6 > 0, D(l‘s) ={S,7)s(T)<S <K, T—o<1<T}c
2. Noting that £V =0 in D (%) and V(S,7) = (K —S)* =0 for S > K, which implies
that V(S(14+y),T) =0 for y = & — 1, we have

0 +o0
—aV|T=T=rK—qS—/1/ (S(1+y)—K)AN(y) = —f(S).
T %,1

Since f(0) = —rK < 0,f(4+00) = 400, f'(S) = g > 0, f(S) is strictly increasing in
[0,400) and has a unique zero point Sy. So Sy = K implies f(K) < f(So) = 0. However,
for s(t) < S < K, f(S) < f(K) < 0 and hence %—Z(S, T) > 0. Thus V(S,7) < V(S,T) =
(K —S)* in D\, which contradicts V(S,7) > K — S. Hence s(T) = K.

(2) S <K. ‘
If s(T) > So, then for small 6 > 0, DY) = {(S,7)|So < S < s(1), T—d <1< T} < 3y, in
which V(S,7) = K — S, £V < 0. On the other hand, in D(Z‘S), we have

LV(S,1)=qS —rK + 4 [T [V(S(1 4+ y),7) — (K — S(1 + y)]dN(y)
>qS —rK + 2 [T[(K = S(1 4+ )" — (K = S(1 + y))JdN(y)
=4S — K+ [ (K = S(L 4y — (K = S(1+y))]dN(y)
—qS—rK+,1f “1(S(1 4 y) = K)AN(y) = f(S).

Since f(S) is strictly increasing, we have f(S) > f(Sp) = 0 and hence LV (S,7) = f(S) > 0,
which contradicts #V < 0. This shows that s(T') > Sy is impossible.

https://doi.org/10.1017/50956792505006340 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792505006340

Free boundary and American options in a jump-diffusion model 123

If s(T) < Sy, then a similar argument gives the existence of a region Dgé) ={(S,7)|s(r) <
S <8y, T—06 <t< T} < Xy, in which %‘T:T = —f(S). Since for S < So, f(S) < f(So) =0,
we have %—Z|T=T > 0 and hence V(S,7) < V(S,T) =K—S in Dg&)’ which is a contradiction.
Summing up, we conclude that s(T) = Sy when Sy < K. O

Remark 5.2 From Theorem 4.5 and Theorem 5.2, we have s(t) € (Sj,s(T)], for any
7 € [0, T], where S5 > 0 is given in (4.2).

Theorem 5.4 s(7) is strictly increasing in [0, T).

Proof We prove the conclusion by contradiction. Suppose that thereexists 0 <t; <t < T
such that s(t) = s(t;) for t € [t1,t2]. Choose 179 € (t1,t;) and make a small enough disc
D < (s(t1),+00) X (t1,t2) = X1 tangent with S = s(1) at (s(to), 7o)

Let w = V. Then Yw = 0 in D. From Proposition 4.3, we have w(S,7) < 0 in D.
However, by Theorem 5.1, w(s(tg), 7o) = 0. So w achieves its maximum on D at (s(q), To)

and hence by Lemma 3.6, we obtain g—g(s(ﬂ:o), 79) > 0. On the other hand, %—g(s(r), 7) = —1,
s(t) = s(ty) for t € (t1,13), so g—‘g’(s(r), 1) = 0 for 7 € (t1,t). In particular, g—‘g’(s(ro),ro) =0.
This contradiction shows that s() is strictly increasing. O

Theorem 5.5 Assume that
+o0
r=q+ i/ ydN(y). (A43)
0
Then s(t) € C3([0, T)).

Proof Theorem 5.4 with condition (A3) implies s(T') = K. Since s(t) is strictly increasing,
we have s(t) < K, for any © < T. For any § € (0,T), there exists y > 0 such that
s(T)—s(t) >y for t € [0, T —9]. Since V; <0 and Vg < 0, it is easy to verify that

& 2 Vss(s(1),7) =K — gs(c) — 2 [ [V (s(x)(1 + ), 1) — (K — s(2)(1 + y)IdN ()
>rK — gs(z) = As(v) [, ydN(y)
=rs(T) —gs(t) = As(1) [y ydN()
>s(0)r—q =2 [y ydN () + 7
=yr > 0.
Here we have used the condition (A3) again. This combined with Proposition 4.3 yields
Vss(S,1) > 0 for S > s(z), 7 € [0, T).

Given ¢ € (0, T). Since Vs(s(t),7) = —1, we have Vg(s(t +1),7+1n) = Vs(s(r),7) and for
any { > 0, by the continuity of Vg, there exists € > 0, such that

[Vs(s(t+n) +e1+n) = Vs(s(r) +e1) <
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and hence

s(t+n)+e T+
/ Vss(S,t+n)dS <{ — / Vsi(s(t) + €,0)do. (5.3)
s(t)+e€ T

Let n € (0, %). Then, since for S > s(t), T € [0, T), Vs is continuous and Vsg > 0, there
exists p > 0, such that

s(t+n)+e
/ Vss(S,t+n)dS = p(s(t +n) — s(1)), fort € [0, T — 4]. (5.4)
s(t)+e
Now we combine (5.4) with (5.3) and use

s(t)+e+x

Vedls() + €,6) = Vsa(s(t) + € + x,0) — / Vse(S.0)dS
s(t)+e

to estimate fﬁ" Vs:(s(t) + €, 06)do. Then we obtain

+n +n  ps(t)+e+x
perm—sen <+ [ st terxaidor [ [ asds.oasds
T T s(7)+
Integrating the above inequality over [0, m] with respect to x and gives

mp(s(z + 1) — (7))
<m 4 [ [ Vsels(@) + €+ x 0)ldxdo + [ [ [S [Viso(S, 0)|dS dxdo
<ml +nEmE (7 [ Vse(s(0) + €+ x, 0)Pdxdo)t

([ [ [ Wsse(S.0)PdSdxdo):.

Using Theorem 5.1 and Remark 5.1 on the integral of the right side, we then derive
mp(s(t + 1) — s(z)) < ml + Cpim? + Cpim?,  t€(0,T —5),
where the constant C is independent of small e. Because of the arbitrariness of {, this

implies

mp(s(t + ) — (1)) < Cp2m* + Cp2n?,

namely,
s(t+1n)—s(r) < Cn%m_% + Ciﬁm.
Choose m = 17%. Then we obtain

st+n) —s(t) <Cni,  1€(0, T —0)

Thus s(t) € Ci([0, T)). O

Remark 5.3 The condition (A3) means that the riskless interest rate corrected by dividends
. . ~ " —+o0 . .
and the jump risk, ¥ =r —q — 4 [;" " ydN(y), is nonnegative.

On the basis of the fact s(7) € C%([O, T)), we may further improve the regularity of s(7).
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Theorem 5.6 Under the condition (A3), s(t) € C'([0, T)).

Proof The crucial step is to prove that Vg, is continuous in X; up to S = s(r). To this
purpose, we need to apply a result in Cannon et al. [4] to V,. It is to be noted that this
result proved in Cannon et al. [4] for the heat equation is valid for more general parabolic
equations and hence it can be applied to the present case.

Given 0 € (0,T). Since for S = s(1), T € [0,T — J], Vss is continuous and Vgs > 0,
there exists p > 0, such that, for n € (0, g),

s(t+1)

T+n
pls(z + 1) — s(0)) < / Ves(S,7 +n)dS = — / Vsl o)a, (55

s(t)
where the second equality follows from Vg(s(z),7) = Vs(s(t +1n),7+n) = —1 and

s(t+n)

+n
0= Vs(s(z + 1), + 1) — Vs(s(2),7) = / Ves(S, 7+ m)dS + / Vse(s(0), 0)do

s(t)
Write (5.5) as
_ T+
s(t+n) —s(z) < 1
n PN
and let # — O7. Then we see that s'(t) exists.
Differentiating Vs(s(t),7) = —1 gives 25800 — poq(s(7),7)s'(1) + Vs« (s(c), 1) = 0. Hence

Vs«(s(1), 7)

Vs:(s(t), 0)do

= sy 58)
where
2 +oc
Vas(50,5) = s K —aste) =2 [ V()1 +3).9) = (K =s(2)1 + 3N )L
Continuity of §'(t) then follows from (5.6). O

Theorem 5.7 Under the condition (A3), s(t) € C*([0, T)).

Proof Let z = S — s(t). Then the free boundary S = s(t) changes into the fixed boundary
z = 0. A simple calculation shows that w(z,1) = V.(z + s(t), 7) satisfies, for z > 0,0 < 7 <
T —9,

L+ L+ SOPTE + (=g — )z +5(0) +5/(2) 2

0z2

—(r+ 2w+ Af_l w((z +s(0))(1 +y),1)dN(y) =0 (5.7)

and
w(0,7) =0, (5-8)
w(z, T —0) = h(z), (5.9)

where 6 € (0,T) and h(z) = Vi(z + (T —5), T — ) € C'([0,400)), namely, w is the
solution of the problem (5.7), (5.8), (5.9) in (0,400) x (0, T — §) for any 6 € (0,T). we
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may regard h(z) and f(z,7) = —4 f_°°1 w((z + s(7))(1 + y),7)dN(y) as known functions and
use the theory of parabolic equations to this problem to improve the regularity of V(S, 1)
and hence, of s(t) by (5.6). Once the regularity of s(t) is improved, we may use the theory
of parabolic equations again to further improve the regularity of V(S,1). Repeating this
argument, we finally conclude that s(t) € C*([0, T — 9)) and hence s(t) € C*([0,T)) by
the arbitrariness of 6 € (0, T). ]

6 Conclusions

The pricing and hedging of derivative securities is a subject of much practical importance.
As one basic type of derivatives, options have been around for many years, but it was
only on 26th Apirl 1973 that they were first traded on an exchange. It was then that
The Chicago Board Options Exchange (CBOE) first created standardized, listed options.
Initially there were just calls on sixteen stocks and even no puts. Now worldwide, many
kinds of exotic options are traded in over fifty exchange except for the standard option.

To enter into an option contract, there is cost referred to as premium, corresponding to
the right purchased. As is known to all, the theory of arbitrage-free pricing establishes the
option price. This theory imposes that the prices of different instruments must be related
to one another in such a way that they offer no arbitrage opportunities. In practice to
price the option we make use of a model describing the evolution through time of the
underlying asset price and then impose no arbitrage arguments.

The risk associated with an option contract derives from the unknown evolution of
the underlying asset price on the market. This risk is not reducible and is an intrinsic
feature of the contract itself. Apart from this risk, neither controllable nor reducible, there
is another part of risk which derives from the fact that the option price is an estimated
quantity, potentially affected by an error, such as an error stemed from the evolution
model of the underlying asset price. If for instance the call option price is overestimated,
the option holder faces the risk of losing more money than what he should (in case of
loss). Clearly, the more accurate the price estimate, the less the risk associated with the
option.

Generally, the option price is calculated via a mathematical model (describing the
evolution of the underlying asset) that contains a number of input variables whose values
are affected by uncertainty. In this paper, we assume that the interest rate, the dividend
yield and the volatility of the underlying are constants. Then in the standard option
pricing model, the evolution through time of the underlying asset is described by the
Brownian motion, i.c., the underlying asset price follows the lognormal random walk,
that is, the path of the asset price is continuous in time. But there is plenty of evidence
that such as currencies and equities do not follow the Brownian motion. One of the
striking features of real financial market is that there is a sudden unexpected fall or crash
inevitably. In this case, a jump process with a reasonable volatility is always added in
the evolution model of the asset price. On all but the shortest timescales the movement
looks discontinuous, that is, the prices of the asset have jumped. This is important for the
theory and practice of options because it is usually impossible to hedge through the crash.
So there is seldom a closed-form solution for the European option with jumps. At the
same time, results show that jumps drive most of the uncertainty in the estimated option
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price, thus confirming their key role in the pricing process. The important of jumps is
more evident for higher strike price. In addition, the pricing problem of American options
is more complex than one of European options in virtue of the early exercise. In this
paper, we have strictly proved some properties of the pricing function and the optimal
exercise boundary of American options with dividend in a jump-diffusion model by using
PDE arguments in mathematically. The main difficulty, compared with diffusion models
without jumps, comes from the nonlocal term due to the presence of jump uncertainty in
the stock price dynamics.
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