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SUMMARY
Legged robots may become unstable when subjected to unexpected disturbances such as external
pushes and environmental irregularities mostly while moving on natural terrains. To enhance the
mobility performance, legged robots should be able to keep or restore their balanced configuration
when a sudden disturbance is exerted. The aim of this article is to design a controller for a quadruped
robot to restore its balanced configuration despite exerting external pushes. This is achieved based on
developing a full-dynamics model of the robot moving over even and uneven terrains. The proposed
controller is based on a PD module which calculates the required accelerations for restoring the robot
equilibrium. However, these accelerations may make the robot unstable and also cause the slippage
of stance feet. Therefore, an optimization algorithm is used to compute the maximum admissible
accelerations. The constraints of the optimization problem are the conditions which guarantee the
robot stability and the stance feet slippage avoidance. The optimization algorithm is transformed
into a linear constrained least-squares problem to be solved in real-time. The main contributions
of this article are the development of a push recovery algorithm for quadruped robots and also the
introduction of an appropriate condition which guarantees the stability of the robot even on uneven
terrains. This stability condition is developed based on a full-dynamics model of the robot. The
proposed algorithm is applied on an 18-DOF quadruped robot when the robot is standing over
both even and uneven terrains. The obtained results show that the robot can successfully restore its
balanced configuration by precise adjustment of the position and orientation of its main body while
a massive external disturbance is exerted.

KEYWORDS: Quadruped robots, Push recovery, Dynamic stability, Whole-body dynamics, Uneven
terrains.

1. Introduction
Quadruped robots should be able to maintain and recover their stability against external pushes when
these robots move over natural irregular environment. These disturbances may be imposed from an
external push or environmental irregularities. The external push should be recognized immediately,
and proper reactions to maintain the system stability should be performed. Quadruped Robots usually
change their posture or take one or several steps to regain their balanced configuration. In general,
there are three different strategies confronting to an unexpected disturbance. The ankle or hip strategy
in the field of humanoid robots, restores the stability of the robot by adjusting the position and
orientation of its main body.1−3 This strategy is mostly effective when the robot is pushed by a small
disturbance force. When the magnitude of the external push increases so that the robot cannot handle
the disturbing effects by just using the balance controller, stepping strategy should be used.4,5 In
the case of large pushes, fall control approach should be used to reduce the damage effects due to
falling.6,7 Most of previous researches have focused on how to solve the balance recovery problem
for humanoid robots and only few works were devoted to quadruped robots.8,9
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There are two different approaches to study the push recovery problem for legged robots. In
the first approach, to overcome the computational complexities of the push recovery problem for a
real robot which has a large number of DOFs, the reduced models such as LIPM (linear-inverted
pendulum model) are considered.10,11 These models provide considerable insights into the push
recovery problem. The ZMP compensation method by using an inverted pendulum,12 and the MPC-
based push recovery algorithm by employing the LIPM,13,14 have been proposed to study the push
recovery problem. In order to increase the capabilities of the model, a two link inverted pendulum
was also presented.15 A combination of biped models for a quadruped robot was introduced to study
the balance recovery problem for such robots.8 The Angular Momentum Pendulum Model (AMPM)
was used to design a balance controller to confront rotational perturbations.16,17 The main drawback
of all these models is that they cannot include complete effects of the motion of main body and legs
on recovering the robot balance, whereas biological counterparts exploit all motion capabilities in
recovering their balance. In the second approach, a full-dynamics model of the robot is used for the
push recovery problem to fully exploit the motion capabilities of the robot.18−20 In this work, such a
model will be derived to design the balance recovery algorithm.

In a few researches, the balance recovery algorithm has been proposed based on the regulation
of contact forces by using a constrained optimization problem.21 The optimization of contact forces
combined with the Model Predictive Control approach is another solution of the balance recovery
problem.22 The momentum-based balance controller was introduced based on the regulation of
angular and linear momentums, since one way to keep the robot balance is to control the momentum
of the robot. Kajita et al. developed a method to produce the whole-body motion for given linear and
angular momentums.23 Through the definition of a constrained optimization problem, admissible joint
accelerations were computed to obtain the desired angular and linear momentums.24 In an attempt to
improve previous results, a balance controller with considering the stability and friction conditions
has been proposed through the definition of a constrained optimization problem.25,26 The maximum
admissible joint accelerations have been computed through a constrained optimization problem to
recover the stability of a biped robot.27 In this approach, the stability and friction conditions are
formulated as few equality and inequality constraints of the optimization problem. Henceforth, in this
article, the push recovery problem is solved by computing the main body admissible accelerations.
Compared to previous studies, a stability condition will be proposed to assure the robot balance
moving over even and uneven terrains. Besides, the stability condition will be expressed in terms of
the optimization variables in appropriate form as linear constraints.

Few researches have addressed the push recovery problem for quadruped robots. The BigDog9

and recently the Spot have shown excellent performance in response to external pushes, but there are
mainly some video clips which report these performances rather than published articles. To study
the push recovery for a quadruped robot, a reactive controller has been proposed.28 A distributed
control system, which is made of four independent leg controllers, was proposed to realize the stable
dynamic walking of a quadruped robot and also is able to counteract to small disturbances.29 A
controller which uses an active compliance was introduced to achieve the disturbance rejection for a
quadruped robot.30

The focus of this article is to design a balance controller for a quadruped robot under an unknown
external push in the standing posture over even and uneven terrains. In order to compare this work to
other recent researches, the work by Gehring et al. is chosen. They have investigated the push recovery
for a quadruped robot based on the regulation and distribution of contact forces while the algorithm is
applied to the robot only over even terrains.31 However, in this article, the push recovery is performed
by regulating the main body accelerations. Besides, using the proposed stability condition makes it
possible to use the algorithm for recovering the robot balance in motion over uneven terrains. To this
end, the explicit dynamics equations will be formulated by using a computationally efficient method.
Then, free-constraint dynamics equations will be derived with a constraint elimination method. The
balance controller will be defined based on a PD controller which computes the desired accelerations.
Then, an optimization problem will be defined to compute the admissible accelerations. Next, the
stability condition for tumbling prevention will be obtained and expressed as a linear function of the
optimization variables. Besides, the friction and joint torques saturation limits will be defined and
expressed as linear functions of the optimization variables. So, the resultant optimization problem
for computing the admissible accelerations can be solved with a linear least-squares algorithm. To
recover the robot balanced configuration, these accelerations are applied to the robot by using an
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Fig. 1. The model of the quadruped robot.

inverse dynamics controller. Finally, the merits of the proposed algorithms will be confirmed through
simulation studies on a quadruped robot standing over even and uneven terrains.

2. Whole-Body Dynamics Modelling
To obtain the robot dynamics equations, explicit dynamics derivation method is employed.32

Considering the quadruped robot shown in Fig. 1, its configuration can be defined as

q = [
qT

B qT
L

]T
, (1)

where qB ∈ R6×1 represents the vector of main body positions and orientations. In addition, qL ∈ Rn

denotes the vector of joint positions and n is the whole number of the joints of legs. The dynamics
equations of the robot can be expressed as

M(q)q̈ + V(q, q̇) + G(q) =[
O1×6 τT

]T + JTFLeg, (2)

where M(q) ∈ R(n+6)×(n+6) denotes the mass matrix, V(q, q̇) ∈ R(n+6)×1 is the vector of Coriolis and
centrifugal forces, G(q) ∈ R(n+6)×1 represents the gravitational forces. In addition, τ ∈ Rn×1 defines
the joint torques, J represents the Jacobian matrix associated with contact points and FLeg is the
contact forces are applied on the tip of stance feet at contact points. The last term in above equation
is added to the dynamics equations due to the contact of stance feet with environment. All terms of
the dynamics equations can be calculated by the formulations presented in ref. [32].

2.1. Constraint elimination method
In order to compute the joint torques or the joint angles in inverse or forward dynamics problems,
respectively, the contact forces should be exactly known. To tackle this problem, there are two
different approaches: the direct measurement of the contact forces by means of force sensors and the
elimination of the contact forces from the dynamics equations by using kinematic constraints. Since
the output signals of the force sensors are very noisy, the measured contact forces are not accurate
and thus the performance of the first method is poor. However, in the second method, the term
associated with the contact forces are cancelled by using kinematic constraints.33,34 In the following,
the constraint elimination method will be introduced.

Since legged robots are in contact with environment, some constraints are imposed on the dynamics
equations. Assuming that the stance legs remain stationary during motion due to existing sufficient
friction between these legs and the ground, the linear velocities of the tip of these legs will be zero.
However, these legs can rotate about all directions at the contact points. Therefore, the kinematic
constraints can be written as

Xtip,i = Ci or Vtip,i = O3×1 for i = 1,...,4 when ith leg is in the stance phase, (3)
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where Xtip,i and Vtip,i denote the vectors of position and velocity of the tip of ith stance leg,
respectively. Also, Ci is a constant parameter which represents the position of the ith stance leg with
respect to the world frame. The above equation can be stated in the Jacobian form as follows:

Jq̇ =O3p×1, (4)

where P denotes the number of the stance legs. The goal of the constraint elimination method is that
to transform Eq. (2) into free-constraint equations by using kinematic constraints. In other words,
the contact forces will be dropped from the dynamics equations. To this end, a new space called
as independent joint space is defined. Another characteristic of this space is that the control of the
variables of this space is sufficient for tracking the desired path as long as the stance legs remain
stationary on the ground and also the robot motion are consistent with the constraints. Assuming
that K constraints are applied on the robot due to the contact of the stance legs with the ground, the
dimension of this space will be n + 6–k. As defined earlier, n is the number of the joints of all legs.
Also, it is assumed that the degree of freedom of main body is six. The variables of this space are
the position and orientation of main body as well as the joint positions of swing legs. For instance,
in walking gait, which at least three legs are in contact with the ground, for a quadruped robot with
twelve joints (i.e., each leg with three DOFs), the dimension of this space is nine. The independent
joint space can be defined as follows:

β = [
qT

B qT
SL

]T
, (5)

where qSL denotes the joint angles of swing legs. In the following, the dynamics equations will
be rewritten in terms of β such that the term related to the contact forces is cancelled from the
dynamics equations. The relationship between the whole-body configuration and the variables of the
independent joint space in the velocity level can be written as follows:

q̇ = Sβ̇, (6)

where S is a mapping matrix and can be obtained from the kinematic constraints as follows:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I6×6 O6×3 . . . O6×3

K1,1 K2,1 O3×3 . . . O3×3

K1,2 O3×3 K2,2 ...
O3×3

K1,4 O3×3 . . . O3×3 K2,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where K1,i and K2,i are given by

K1,i =
{

−J−1
L,iJb,i when ith leg is in the stance phase

O3×6 when ith leg is in the swing phase
,

K2,i =
{

O3×3 when ith leg is in the stance phase

I3×3 when ith leg is in the swing phase
,

(8)

where Jb,i and JL,i are the Jacobian matrices of the main body and the ith stance leg, respectively.
They can be computed as

Jb,i = ∂XL,i

∂qb

, JL,i = ∂XL,i

∂qL,i

(9)

where XL,i represents the position of the tip of the ith stance leg. Since legged robots are under-
actuated intrinsically due to its floating main body, joint angles are split into underactuated and
actuated parts. This division is motivated by the fact that there are no control efforts on the
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underactuated joints i.e., the position and orientation of main body. For this purpose, Eq. (6) can
be rewritten as

[
q̇ua

q̇a

]
=

[
Sua

Sa

]
β̇, (10)

where the subscript “a” stands for the actuated joints and the subscript “ua” represents the
underactuated joints. Time differentiation of Eq. (10) yields

[
q̈ua

q̈a

]
=

[
Ṡua

Ṡa

]
β̇ +

[
Sua

Sa

]
β̈. (11)

The dynamics equations can be decomposed into actuated and underactuated parts as follows:

[
M1ua M2ua

M1a M2a

] [
q̈ua

q̈a

]
+

[
Vua

Va

]
+

[
Gua

Ga

]
=

[
O6×1

τa

]
+

[
JT

ua

JT
a

]
FLeg. (12)

Above equation can be rewritten into two independent equations as follows:

M1uaq̈ua + M2uaq̈a + Vua + Gua = JT
uaFLeg (a)

M1aq̈ua + M2aq̈a + Va + Ga = τ + JT
a FLeg (b).

(13)

By left-multiplying Eq. (13)-a by the term of ST
ua and Eq. (13)-b by the term of ST

a and finally the
sum of resultant equations, we have

Muaq̈ua + Maq̈a + ST
uaVua + ST

a Va + ST
uaGua + ST

a Ga = ST
a τ + (

JaSa+JuaSua

)T
FLeg

Mua = ST
uaM1ua + ST

a M1a; Ma = ST
uaM2ua + ST

a M2a.
(14)

From the definition of Sa and Sua , we can easily prove that

JaSa+JuaSua = O. (15)

In the following, this claim will be proved in standing posture which all legs are in contact with the
ground. Similar procedure can be used to prove this claim for other gaits such as walking and trotting.
When all legs are in contact with the ground, the Jacobian matrix, J, can be defined as follows:

J =

⎡
⎢⎢⎢⎢⎣

JB,1 JL,1 . . . O3×9

JB,2 O3×3 JL,2 O3×6

JB,3 O3×6 JL,3 O3×3

JB,4 O3×9 . . . JL,4

⎤
⎥⎥⎥⎥⎦ . (16)

Based on Eqs. (10) and (16), Ja and Jua are defined as

Jua =

⎡
⎢⎢⎢⎢⎣

JB,1

JB,2

JB,3

JB,4

⎤
⎥⎥⎥⎥⎦ , Ja =

⎡
⎢⎢⎢⎢⎣

JL,1 O3×9

O3×3 JL,2 O3×6

O3×6 JL,3 O3×3

O3×9 JL,4

⎤
⎥⎥⎥⎥⎦ . (17)

https://doi.org/10.1017/S0263574716000394 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000394


Push recovery of a quadruped robot on challenging terrains 1675

On the other hand, based on the definition of the matrix of S i.e., Eqs. (7) and (8), Sa and Sua can
be defined as follows:

Sua = I6×6, Sa =

⎡
⎢⎢⎢⎢⎣

−J−1
L,1JB,1

−J−1
L,2JB,2

−J−1
L,3JB,3

−J−1
L,4JB,4

⎤
⎥⎥⎥⎥⎦ . (18)

Now, by substituting of Eqs. (17) and (18) in Eq. (15), the proof will be completed

JaSa+JuaSua =

⎡
⎢⎢⎢⎢⎣

JB,1

JB,2

JB,3

JB,4

⎤
⎥⎥⎥⎥⎦ × I6×6 +

⎡
⎢⎢⎢⎢⎣

JL,1 O3×9

O3×3 JL,2 O3×6

O3×6 JL,3 O3×3

O3×9 JL,4

⎤
⎥⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎣

−J−1
L,1JB,1

−J−1
L,2JB,2

−J−1
L,3JB,3

−J−1
L,4JB,4

⎤
⎥⎥⎥⎥⎦ = O. (19)

By using Eq. (15), the contact forces can be cancelled from Eq. (14) as follows:

Muaq̈ua + Maq̈a + ST
uaVua + ST

a Va + ST
uaGua + ST

a Ga = ST
a τ.

(20)

To complete the procedure of the derivation of the free-constraint dynamic equations, above equation
should be expressed in terms of the variables of the independent joint space. By substituting Eq. (11)
in Eq. (20) we can get

Mβ β̈ + Vβ + Gβ = ST
a τ, (21)

where

Mβ = MuaSua + MaSa

Vβ = ST
uaVua + ST

a Va + MuaṠuaβ̇ + MaṠa β̇
Gβ = ST

uaGua + ST
a Ga.

(22)

The dynamics equation has some unique characteristics. First, the term associated with the contact
forces are cancelled from the dynamics equations. Second, the dynamics equations are expressed in
terms of the variables of the independent joint space.

In the following, the contact force will be computed. On the basis of Eq. (13a), there are nine
unknown contact forces and only six equations, for instance, in the walking gait. Therefore, there
are more constraint forces than the number of equations and the contact forces cannot be computed
uniquely. To calculate the contact forces, the moore–penrose pseudoinverse will be used. Using this
inverse will calculate the minimum norm constraint forces vector that will achieve the desired motion.
Now, the contact forces can be calculated from Eq. (13a) and Eq. (11) as follows:

FLeg=
(
JT

ua

)# (
M1uaSua β̈ + M2uaSa β̈ + M1uaṠua β̇ + M2uaṠa β̇ + Vua + Gua

)
. (23)

In above equation, (.)#represents moore–penrose pseudoinverse.

3. Push Recovery Controller
The aim of this section is the design of an appropriate controller in order to recover the desired posture
of a quadruped robot when it is pushed. To do so, some assumptions are made. First, the direction and
the magnitude of external push are assumed to be unknown. Second, it is assumed that, without loss of
generality, all legs are in contact with the ground. However, the algorithm can be used to recover the
balanced configuration with some modifications even when the robot uses other gait such as walking
and trotting. Since all legs are in the stance phase, the elements of the independent joint space are
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the position and the orientation of the main body. When an external disturbance is applied on the
robot, the robot accelerates and it causes the robot deviates from the desired posture. Therefore, the
position and velocity errors increase. To counteract this push, the appropriate joint torques should be
exerted on the robot. However, the main question is that how much torques should be provided by
actuators. To calculate the appropriate torques, we first compute proper accelerations. To oppose to
the push, the main body accelerations in the opposite direction of the applied push should be acted on
the robot. Higher main body accelerations are required for greater position error and rate of errors.
Therefore, a proportional-derivative (PD) controller is used to calculate the required accelerations.
The connection between the external disturbance and the main body accelerations is the main body
position and velocity errors because the effect of the external push appears in the position errors and
the rate of errors. In other words, larger external pushes produce higher errors and thus higher main
body accelerations are needed to be applied on the robot. In brief, in the proposed controller, the
main body accelerations are adjusted preciously in order to handle external disturbances. The desired
accelerations can be computed as follows:

β̈d = KP

(
βd − β

) + Kv

(
β̇d − β̇

)
. (24)

In fact, a virtual set of spring-damper elements between the desired and actual values is used to
return the robot to its desired posture in the presence of an external push. If the desired accelerations
are applied on the robot, the robot can restore its balance in confronting external disturbances. These
accelerations are applied on the robot through the joint torques calculated by Eq. (21). However, there
is a major problem in applying these torques. Since these robots are in contact with environment, the
high accelerations cause the slippage of the stance feet or losing the robot stability due to tumbling. In
other words, the applied accelerations are restricted by the robot stability and the friction constraints.
Therefore, a certain amount of external pushes can be compensated by using the balance controller.
In order to improve the performance of the push recovery algorithm and also speed up recovering
the robot balance, the admissible accelerations should be used. They are the maximum accelerations
which hold the limitations. Therefore, we use an optimization problem to calculate the appropriate
accelerations under the stability and friction constraints. In previous works, the ZMP or COP criteria
are used to maintain the stability. In these criteria, the point-mass model is used to develop a stability
constraint. However, in this article, we will introduce a stability condition for the full-dynamics model
of the robot which takes the masses of legs into consideration and it can guarantee the robot stability
in motion on uneven terrains.

3.1. The stability condition
In the following, an appropriate stability condition will be presented and it will be formulated such
that a linear constraint in terms of the main body accelerations is achieved. To keep the robot
stability in motion on even or uneven terrains, the tumbling moments about all support edges must
be positive. More precisely, the moments of inertial and gravitational forces about the support edges
must reinforce the contact between the stance legs and the ground. The model of the robot with all
inertial and gravitational forces exerted on the COG of the main body and also the COG of all legs is
shown in Fig. 2. When all legs are in the support phase, based on this model, the stability condition
is defined as

Mstab > 0
Mstab = min

{
M41 M34 M23 M12

}
,

(25)

where, for instance, M41 is the moment of external forces about the support edge which is composed
of the tips of the leg 1 and leg 4. The direction of each support edge is determined so that the support
polygon goes around in a clockwise sense. In other words, the direction of the resultant moment and
the unit vector of the support edge must be the same. This is due to the fact that the moment along
this direction enforces the contact between the stance legs and the ground. For instance, to calculate
M41, the direction of the tumbling moment should be along the line connecting the tip of leg 1 to the
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Fig. 2. The support polygon of the stance legs (red lines) as well as the inertial and gravitational forces exerted
on the COG of the main body and the COGs of legs.

tip of leg 4. The moment about the support edges, for instance, M41 can be computed as

M41 = eT
41

⎛
⎝(PG − Pi) × (−mP̈G + mg

) +
m∑

i=1

n∑
j=1

((
Pij

G − Pi

)
×

(
−mij P̈ij

G + mij g
))⎞

⎠ , (26)

where Pi is an arbitrary point on the support edge which is composed of supporting leg 1 and leg 4.
In addition, PG and P̈G are the vector of the position and the linear acceleration of the main body,
respectively and Pij

G and P̈ij

G are the position and the linear acceleration of the j th segment of the ith
leg, respectively. In addition, e41 is the unit vector of the support edge composed of supporting leg 1
and leg 4 which is calculated as

e41 = P4−P1

‖P4−P1‖ . (27)

It is assumed that the robot has m legs and each leg is composed of n segments. For our quadruped
robot, we have m = 4, n = 2. It is noted that the angular accelerations of main body and legs is
completely ignored in the derivation of the stability condition.

Since the optimization variables are the accelerations of main body and also the stability condition
should be added to the optimization problem as its constraint, the stability condition should be
expressed in terms of the main body accelerations. The accelerations of the COGs of main body and
all legs can be expressed in terms of the main body accelerations as follows:

P̈G = [
I3×3 O3×3

]
β̈, P̈ij

G = Jij

B β̈ + J
ij

L q̈i
L + J̇ij

B β̇ + J̇
ij

L q̇i
L. (28)

By the substitution of Eq. (28) in Eq. (26), we have

M41 = eT
41

⎛
⎝(PG − Pi) × (−m

[
I3×3 O3×3

]
β̈ + mg

) +
m∑

i=1

n∑
j=1

((
Pij

G − Pi

)

×
(
−mij

(
Jij

B β̈ + J
ij

L q̈i
L + J̇ij

B β̇ + J̇
ij

L q̇i
L

)
+ mij g

)) )
> 0, (29)
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The above stability condition can be rearranged and stated as a linear function of the variables of
optimization problem i.e.,β̈ as follows:

M41 = L1
41β̈ + L2

41

L1
41 = eT

41

(
(PG − Pi) × −m

[
I3×3 O3×3

] +
m∑

i=1

n∑
j=1

((
Pij

G − Pi

)
× −mij Jij i

BL

))

L2
41 = eT

41

(
(PG − Pi) × mg +

m∑
i=1

n∑
j=1

((
Pij

G − Pi

)
×

(
−mij Jij

B q̈i
L − J̇ij

B β̇ − J̇ij

L q̇i
L + mij g

)))
.

(30)
The same procedure can be used to obtain the similar equations for other support edges. Therefore,

the stability conditions for all support edges can be defined as

L1
T β̈ + L2

T > O

L1
T =

[
L1

41
T L1

34
T L1

23
T L1

12
T

]T

L2
T = [

L2
41 L2

34 L2
23 L2

12

]T
.

(31)

The above equation introduces the inequality linear constraints in terms of the position and
orientation of main body which should be added to the optimization problem as the stability condition.

3.2. The friction constraint
The robot can restore its balance as long as the stance feet remain stationary on the ground. In the
following, friction condition for the stance legs will be proposed and expressed as a linear function of
the main body accelerations. When large pushes are applied on the robot, the contact forces increase
very much and the stance legs may slip. Therefore, a constraint should be defined in terms of the
accelerations of main body to restrict these accelerations. To describe the friction properties at the
contact points, the coulomb’s friction model is used. This model defines a condition on the contact
forces, ft ≤ μfn, to avoid the slip occurring at the stance feet. ft and fn are the magnitude of the
tangential and the normal contact forces, respectively and μ is the friction coefficient. In order to
avoid the slip and maintain the contact, the admissible contact forces should satisfy below conditions

√
f 2

tx + f 2
t,y ≤ μfn, fn ≥ 0. (32)

In addition, to avoid the separation between the stance legs and the ground, the normal contact
forces at the contact points must be positive. In other words, the normal contact forces should be along
the outward normal unit vector at the contact points. This condition is defined due to the fact that each
leg can only push the ground and cannot pull it. The friction conditions impose some restrictions on
the contact forces. However, these conditions are very non-linear and if they are used in this form, the
complexity of the problem increases. To simplify the friction condition, we approximate the friction
cone with an inscribed pyramid. In this case, the friction condition is expressed as

|ftx | ≤ μnfn,
∣∣fty

∣∣ ≤ μnfn, fn ≥ 0, (33)

where μn is the approximated friction coefficient and its value is μn = μ√
2
. The linear function of the

friction constraint in terms of the contact forces can be expressed as

C1
ASfi ≤ C2

AS

fi = [
f i

tx f i
ty f i

n

]T
, C2

AS =

⎡
⎢⎢⎢⎣

1 0 −μn

−1 0 −μn

0 1 −μn

0 −1 −μn

0 0 −1

⎤
⎥⎥⎥⎦ , C2

AS = O5×1.
(34)
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In above equation, fi is the contact force of the ith stance leg which is defined in the local coordinate
system located at the contact point. When the robot is located on an even terrain, the directions of
local contact forces are exactly along the unit vectors of the world frame. However, in motion over
uneven terrains, this relationship is not valid. Therefore, the mapping from the local frame to the
world frame is defined as

Fi = RW
i fi , (35)

where RW
i is the rotation matrix between the local frame attached to the contact point and the world

frame and Fi is the contact force of ith leg expressed in the world frame. For four-leg support phase,
the friction condition is given by

C1
AS,T FLeg ≤ C2

AS,T

C1
AS,T =

⎡
⎢⎢⎢⎢⎣

(
C1

AS,1RW
1

)
O5×3 O5×3 O5×3

O5×3
(
C1

AS,2RW
2

)
O5×3 O5×3

O5×3 O5×3
(
C1

AS,3RW
3

)
O5×3

O5×3 O5×3 O5×3
(
C1

AS,4RW
4

)

⎤
⎥⎥⎥⎥⎦ ,

FLeg = [
f1 f2 f3 f4

]T
, C2

AS,T = O20×1. (36)

By substituting of Eq. (23) in Eq. (36), the friction constraint will be expressed in terms of the
main body accelerations as follows:

C1
AS β̈ ≤ C2

AS, (37)

where

C1
AS = C1

AS,T

(
JT

ua

)#
(M1uaSua + M2uaSa)

C2
AS = C2

AS,T − (
JT

ua

)# (
M1uaṠua β̇ + M2uaṠa β̇ + Vua + Gua

)
.

(38)

As seen, the friction constraint is also a linear function of main body accelerations. This makes
the problem very simple and consequently reduces the required time for finding the solution of the
optimization problem. Therefore, the algorithm can be used in real-time implementation.

3.3. The joint torques limitations
Since each actuator cannot supply an unlimited amount of torque to each joint of the robot, saturation
constraints should be taken into account. Therefore, a constraint should be defined to impose these
limitations on the joints of the robot in the push recovery algorithm. This is due to the fact that higher
torques should be applied on joints to produce higher joint accelerations. Additionally, this condition
affects the push recovery performance and may restrict the maximum push which may handle with
the balance controller. The saturation constraint on the joint torque is stated as

τmin ≤ τ ≤ τmax, (39)

where τmin and τmax are the minimum and maximum available torques. Since above condition will be
considered as a constraint of the optimization problem, it should be expressed in terms of optimization
variables i.e., the accelerations of main body. The substitution of Eq. (21) in Eq. (39) yields

τmin ≤ (
ST

a

)# (
Mβ β̈ + Vβ + Gβ

) ≤ τmax. (40)

In above equation, (.)# denotes the Moore–Penrose pseudoinverse. As seen in Eq. (40), this equation
leads to the linear constraints which are the functions of main body accelerations. Therefore, the torque
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saturation constraints can be given by

Aτ β̈ ≤ Bτ

Aτ =
[

Aτmax

Aτmin

]
, Bτ =

[
Bτmax

Bτmin

]

Aτmax = (
ST

a

)#
Mβ, Aτmin = −(

ST
a

)#
Mβ

Bτmax = τmax − (
ST

a

)# (
Vβ + Gβ

)
Bτmin = (

ST
a

)# (
Vβ + Gβ

) − τmin

. (41)

Three main constraints were defined and also expressed as the linear functions of variables of
the optimization problem. Now, we can introduce the push recovery strategy. It is based on an
optimization problem which computes the admissible accelerations meeting those constraints. The
admissible accelerations are the output of the optimization problem. In the case where the desired
accelerations hold the constraints, the admissible and desired accelerations are the same. However,
when the desired accelerations violate the constraints, the admissible accelerations are computed by
using the optimization problem.

4. The Push Recovery Strategy
As explained earlier, the main objective of the push recovery algorithm is to determine the maximum
admissible main body accelerations which recover the robot balance after an unexpected push.
However, the maximum accelerations of the main body are restricted by the constraints introduced
in previous sections. To resolve this problem, we define an optimization problem. The cost function
of the optimization problem is given by

J = (
β̈ − β̈d

)T
W

(
β̈ − β̈d

)
, (42)

where W is a diagonal weight matrix. Also, β̈ and β̈d are the admissible and desired accelerations,
respectively. The weighted errors of the main body acceleration are selected as the cost function due
to the fact that the ideal case is to use the desired acceleration for the push recovery. To obtain the
main body accelerations i.e., β̈, above cost function is minimized such that Eq. (31), Eq. (37), and
Eq. (41) are held. Therefore, the optimization problem is summarized as follows:

min J
β̈

s.t. C1
AS β̈ ≤ C2

AS, L1
T β̈ + L2

T > O, Aτ β̈ ≤ Bτ .
(43)

The optimization problem is easily transformed into a linear Least Squares problem. This is due
to the fact that the constraints are formulated as the linear functions of the optimization variables.
The main advantage of the defined optimization problem is its computational efficiency. The push
recovery algorithm is shown in Fig. 3. The desired position and velocity of the main body and also
the position of the stance legs are considered as the inputs of the algorithm. The desired accelerations
of main body are computed by using the PD controller. Next, the optimization algorithm calculates
the admissible accelerations of the main body. Finally, the admissible accelerations are applied to the
robot through the joint torques obtained by the inverse dynamics controller.

5. Obtained Results
To show the merits of the proposed balance recovery algorithm, it is examined on a quadruped robot,
as depicted in Fig. 4, in the standing posture on even and uneven terrains through performing several
simulations and the obtained results are discussed. The robot is composed of four legs. Each leg has
three degrees of freedom to be able the robot to place its tip of leg freely anywhere in the 3D space.
The joints of each leg consist of two hip joints about pitch and roll axes and a knee joint about pitch
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Fig. 3. The push recovery block diagram.

Fig. 4. The model of the Quadruped robot.

axis. In addition, the main body of the robot is free to move along all axes of the coordinate system
and also rotate about all three axes. Therefore, the overall degree of freedom of the robot is 18 where
the six DOFs of main body are passive. The specifications of the robot and the controller parameters
are summarized in Table I. The link lengths and also the mass properties of the robot are similar to
the StarlETH quadruped robot.35

The validity of the proposed algorithm will be examined in three different case studies i.e., in
standing over an even terrain, an uneven terrain, and a soft terrain.

5.1. Case A. the push recovery on an even terrain
To show the effectiveness of the proposed algorithm, this algorithm first will be tested on the quadruped
robot in the standing posture over an even terrain. It is assumed that the robot is standing at rest on a
flat terrain and a push of the magnitude of 250 N at 0.5 s is exerted on the robot from the middle of
the back in the forward direction i.e., along x-axis. The applied push lasts for 0.1 s.
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Table I. The mass properties and link lengths and the controller parameters.

Symbol Value (unit) Definition

mb 40 (kg) Robot’s body Mass
l1 0.2 (m) length of thigh
l2 0.22 (m) length of shank
m1 2 (kg) Mass of thigh
m2 0.5 (kg) Mass of shank
Lb 0.5 (m) Length of body
Wb 0.37 (m) width of body
hb 0.1 (m) height of body
lc1 0.02 (m) Distance between the hip joint and the COG of thigh
lc2 0.08 (m) Distance between the knee joint and the COG of shank
μ 0.25 friction coefficient
Kp diag([10 1 10 1 10 1]) proportional gain matrix
Kv diag([1 0.1 1 0.1 1 0.1]) damping gain matrix
[ τmin τmax ] [ −30 30 ](N.m) Minimum and Maximum available torques

Table II. The properties of the position tracking errors.

RMS Maximum values

The position error of main body along x-axis(m) 0.0943 0.1943
The position error of main body along z-axis(m) 0.0041 0.0094
The orientation error of main body about Pitch axis (rad) 0.0094 0.0248

When the robot is pushed along x-axis, we expect that the robot moves forward and upward and
also rotates about the pitch axis. Therefore, the gains for those axes are selected more than the gains
of the rest of the joints of main body. Additionally, the selection of the higher gains is equivalent
to employ the stiffer compliance elements. In this case, the movement of the robot is restricted but
higher torques are required and actuators may go beyond the saturation limits. Here, to better show
the movement of the robot during the push recovery, low gains are selected. These gains are shown in
Table I. As seen, the gains along x- and z-axes and also about y-axis are higher than the gains along
y-axis and also about x- and z-axes. The effect of the gains on the performance of algorithm will be
considered at the end of this section.

A series of snapshots representing the robot when an external push is applied on the robot is shown
in Fig. 5. The response of the robot to the push is shown in Fig. 6(a)–(c). As seen in the figure, the
robot exploits the motion along z-axis and also the rotational motion about the pitch axis to restore its
balance. The properties of the position tracking errors are shown in Table II. As seen, the error along
x-axis is higher than the errors along other axes because the robot is pushed along x-axis. Besides, the
robot uses the rotation about the pitch axis in recovering its balance because the rotation of the robot is
more effective in the balance recovery than its motion along z-axis. This means that the robot uses the
regulation of its angular momentum to recover its balance instead of regulating its linear momentum.
Also, the linear momentum of main body along x-axis helps the robot to regain its balance. Since
the applied push is exerted only along x-axis, other DOFs of main body remain unchanged and thus
they are not shown in the figure. To prove that the robot remains stable during the push recovery, the
minimum value of the tumbling moments about all support edges is computed and shown in Fig. 6(f).
The robot maintains its stability because the minimum value of the moments about all support edges
is always greater than zero. After that the robot is pushed, the tumbling moment begins to decrease
due to increasing the accelerations of the main body. However, the tumbling moment never reaches
below zero due to using the optimization algorithm. The normal components of the contact forces for
the front and hind legs are shown in Fig. 6(d). It can be observed in this figure that the stance legs do
not lose their contact with the ground. However, when an external push is exerted, the contact forces
of the rear legs decrease whereas the contact forces of front legs increases. This is due to the fact
that the robot moves forward. Therefore, the hind are more likely to be separated from the ground.
To consider whether the slip in the stance legs occurs or not during the push recovery, the tangential
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Fig. 5. The snapshots of the robot when an external push of 250 N is applied on the robot over an even terrain.

forces and the limits of the slip of the front and hind legs are shown in Fig. 6(h) and (L). As seen
in these figures, the tangential components of the contact forces are kept within the safe region and
it guarantees a slip-free motion. Since the push is applied along x-axis, the tangential forces along
y-axis are negligible and only x-directional tangential contact forces are shown in the figure. Since
the normal component of contact force of this leg decrease, the bounds of the slippage decrease.
Meanwhile, the tangential component of contact force of this leg grows due to increasing the main
body accelerations. Consequently, the hind leg i.e., the leg 2 reaches its slip limits after the push as
depicted in the figure. The desired accelerations and their admissible values are shown in Fig. 6(d)
and (e). As seen, the maximum accelerations are not achievable at some instants of time due to the
constraints. The joint torques and the saturation limits are shown in Fig. 6(m) and (n). The saturation
of joint torques does not happen during the push recovery because the joint torques always lie within
the saturation limits. However, the joint torques raise after exerting the push due to increasing the
main boy accelerations. Therefore, the joint torques reach close to the saturation limits. It is noted
that in this case the applied energy to the robot due to the push will be absorbed by the energy
consumed by the actuators. The effect of the selection of the proportional and damping gains on the
performance of push recovery has been considered and shown in Fig. 7. Two different sets of gains
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Fig. 6. The trajectory of important properties of the simulation when a push with the magnitude of 200 N is
applied on the robot while standing over an even terrain.

Fig. 7. The effect of the selection of the controller gains on the performance of the proposed algorithm.

i.e., low gains and high gains were chosen and the simulations were performed with those gains. The
low and high gains are selected as Kp = diag([10 1 10 1 10 1]) and Kv = diag([1 0.1 1 0.1 1 0.1]),
Kp = diag([100 10 100 10 100 10]) and Kv = diag([10 1 10 1 10 1]), respectively. As seen in the
figure, when the gains are high, the motion of the robot is restricted. This is due to the fact that the
robot should overcome a stiff set of virtual spring-damper elements to be able to move. However, as
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Fig. 8. The comparison between the point mass model and the full-dynamics model in the push recovery of the
robot.

Fig. 9. The snapshots of the robot when an external push of 200 N is applied on the robot over an inclined
terrain.

shown in the figure, higher torques are required for restoring the robot balance in the case of high
gains.

The obtained results in this paper were compared to the algorithm which the ZMP criterion based
on a point-mass model was used as its stability condition. In the simulation, the friction coefficient is
assumed to be high so that the slip of the stance legs is prevented and also the robot is pushed along
y-axis. The results for two models are shown in Fig. 8. As seen, using the full-dynamics model gives
better performance and the robot fully exploits all their motion capabilities to recover its balance.
Compared to the point mass model, the robot uses the motion along z-axis and also the rotation about
the pitch axis to recover its balance whereas the motion along x-axis decreases.

5.2. Case B. The push recovery on uneven terrains
As mentioned earlier, the proposed balance controller can be used to recover the robot balance in
standing on uneven terrains. Thus, the robot is assumed to be located on an inclined terrain with
the slope of 10◦ and a push of 200 N at 0.5 s is exerted on the back of the robot in the forward
direction. The applied push continues till 0.6 s. The proportional and damping gain matrices are
selected as Kp = diag([20 20 20 20 20 20]) and Kv = diag([15 15 15 15 15 15]), respectively. The
snapshots depicting the robot motion during the balance recovery are shown in Fig. 9. To consider
the performance of the algorithm on this terrain, the simulation results of the motion of the robot
over this terrain and also other important properties of the balance recovery are depicted in Fig. 10.
The robot comes back to the desired posture quickly because the gains are higher than the gains for
previous case. Due to the usage of the optimization algorithm, the maximum accelerations are not
available during the balance recovery. In the standing over uneven terrain, important matter is the
robot stability. As seen, the balance of the robot also is kept because the tumbling moments about
all support edges are positive. The slippage of stance foot and also the saturation of actuators do not
occur during the balance recovery.

5.3. Case C. The push recovery on a soft terrain
Finally, the effectiveness of the balance controller is tested on the robot while standing over a soft
terrain. To model the soft terrain, spring-damper elements are used under the tips of the stance feet.
It is assumed that these elements act only along z-axis. The stiffness and damping coefficients of the
terrain are selected as K = diag([ 105 105 105 105 ]) and C = diag([ 50 50 50 50 ]), respectively. The
proportional and damping gain matrices are similar to the gains which were selected for the uneven
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Fig. 10. The trajectory of the important properties of the simulation when a push with the magnitude of 200 N
is applied on the robot while standing on an inclined terrain with the slope of 10◦.

Fig. 11. The snapshots of the robot motion when an external push of 200 N is applied on the robot while standing
over a soft terrain.

terrain. Here, it is assumed that a push of 200N is applied on the robot at 0.5 s. The push duration is
0.1 s. The snapshots of the robot after exerting an external push are shown in Fig. 11. As expected,
when the push is exerted on the robot, since the contact forces of front legs increase, the front legs
move down and the hind legs move up. The variation of the position and orientation of main body
and also the important properties of the push recovery are shown in Fig. 12. As seen in the figure,
the robot moves forward and increase its height in confronting a push. At the same time, the main
body of the robot rotates about the pitch axis. Finally, the robot returns to the desired posture which
here is equal to the initial configuration. Using the optimization algorithm restricts the main body
accelerations as seen in Fig. 12. Additionally, the stability of the robot is kept. This issue can easily
be proven form the minimum tumbling moment which remains positive during the balance recovery.
The stance legs do not slip and also do not leave the ground. Consequently, the obtained results prove
the effectiveness of proposed algorithm in order to recover the robot balance on the soft terrain.

6. Conclusions
The design of a balance controller for a quadruped robot under external pushes was investigated in this
article. The explicit dynamics equations were formulated by using a computationally efficient method.
Then, the free-constraint dynamics equations were developed with the proposed constraint elimination
method. The stability condition to avoid tumbling was introduced and expressed as a linear function of
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Fig. 12. The important properties of the simulation of the robot when a push with the magnitude of 200 N is
exerted on the robot while standing on a soft terrain.

the optimization variables. A PD controller was used to compute the desired accelerations to recover
the robot balance. Next, an optimization problem was defined to calculate the admissible accelerations
so that the robot remains stable and the stance feet do not slip. The constrained optimization was
solved with a linear constrained least-squares algorithm and the admissible accelerations which do not
violate the friction, stability, and torque saturation conditions were obtained. To examine the proposed
algorithm, the simulation studies were conducted in three different cases. First, this algorithm was
tested on a quadruped robot while standing over an even terrain. The obtained results revealed that
the robot can come back to the desired posture with the adjustment of the position and orientation
of its main body. In the second case study, this algorithm was implemented on the robot located on
an inclined terrain. The obtained results verified the merits of the applied algorithm for recovering
the robot balance over such terrain. Finally, the balance controller was examined on the robot in the
standing on a soft terrain. The results showed that the effectiveness of the proposed algorithm to
restore the robot balance on this terrain.
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