
Organised Sound 8(3): 321–330 © 2003 Cambridge University Press. Printed in the United Kingdom. DOI: 10.1017/S135577180300030X

Live coding in laptop performance

NICK COLLINS,1 ALEX McLEAN, JULIAN ROHRHUBER and ADRIAN WARD
1St. John’s College, Cambridge, CB2 1TP
E-mail: nick@sicklincoln.org, alex@state51.co.uk, rohrhuber@uni-hamburg.de, adrian@signwave.co.uk
URL: http://www.sicklincoln.org, http://www.slab.org, http://swiki.hfbk-hamburg.de:8888/MusicTechnology/6, http://www.slub.org

Seeking new forms of expression in computer music, a small
number of laptop composers are braving the challenges of
coding music on the fly. Not content to submit meekly to the
rigid interfaces of performance software like Ableton Live or
Reason, they work with programming languages, building
their own custom software, tweaking or writing the programs
themselves as they perform. Often this activity takes place
within some established language for computer music like
SuperCollider, but there is no reason to stop errant minds
pursuing their innovations in general scripting languages
like Perl. This paper presents an introduction to the field of
live coding, of real-time scripting during laptop music
performance, and the improvisatory power and risks involved.
We look at two test cases, the command-line music of slub
utilising, amongst a grab-bag of technologies, Perl and
REALbasic, and Julian Rohrhuber’s Just In Time library for
SuperCollider. We try to give a flavour of an exciting but
hazardous world at the forefront of live laptop performance.

1. INTRODUCTION – LIVE PATCH BUILDING
AND PROGRAMMING

There is a continuum of changes of state possible in
computer music performance that stretches from
simple play and stop buttons to the building of a
low-level DSP engine from scratch. On the level of
least interest to this paper is the manipulation of
graphical interfaces built for you by a third party.
In graphical programming languages, where one has
access to an infinite grammar of possible construc-
tions, the capacity for live rejigging and construction
is more readily apparent. Whether in the process of
creation and experimentation, or to correct an error
spotted at the last minute or temporarily bypass some
processing alley, Reaktor, PD or MAX/MSP users
have edited the structure of the signal graph as their
patches run. Moving beyond graphical programming
languages to the command-line antics of interpreted
text-based programming languages, the abstract
potential of the system, along with its difficulty of use,
continues to grow. It is the domain of text-based,
scripted and command-line control of audio that fits
most with the investigations in this article.

Whilst it is perfectly possible to use a cumbersome C
compiler, the preferred option for live coding is that of
interpreted scripting languages, giving an immediate

code and run aesthetic. We do not formally set out in
this article the choice between scripting languages like
Perl, Ruby or SuperCollider, believing that decision to
be a matter for the individual composer/programmer.
Yet there is undoubtedly a sense in which the language
can influence one’s frame of mind, though we do not
attempt anything so ambitious as to track the influ-
ence on artistic expression of a language’s representa-
tional mind set. No program can be free of a priori
strictures and assumptions and this has been discussed
in detail in the literature (Flores and Winograd 1995).
There is a cult to coding itself, evidenced even in
popular culture by movies about hackers and virtual
reality or designer’s appropriation of computer
iconography for record sleeves or T-shirts, and we
may even tackle the issue of an aesthetic to generative
coding (Cox, McLean and Ward 2001).

We are not advocating a situation in which the
programmer/composer rewrites man- years’ worth of
support libraries. It is hard to imagine beginning
entirely from scratch to write a driver or DSP engine
unless you’re working in the background in a venue
over a number of nights, before finally emerging with
a perfect heartfelt bleep on Sunday evening. Some
custom coders will want to write their own libraries
for standard DSP functions well before they get on
with the compositional algorithms at a gig. Many will
work with an established language for computer
music, which comes ready specialised to the audio
domain. There have been many computer music
languages over the years (Loy 1989; Roads 1996:
781–818; Lyons 2002) and we shall not enter into a
discussion of their relative merits for live coding,
most honestly because many of them are strictly
non-real-time, and others remain virgin territory for
live coding experiments, at least to the authors’
knowledge. Our two test cases, however, will contrast
the use of general programming languages and
work with the audio-specific programming language
SuperCollider.

2. THE PRACTICE OF LIVE CODING

There are readers who are no doubt wondering
why they would ever wish to attempt live coding in

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

322 Nick Collins et al.

performance, and we might riposte immediately that
live coding allows us to keep a sense of challenge
and improvisation about electronic music-making.
With commercial tools for laptop performance like
Ableton Live and Radial now readily available, those
suspicious of the fixed interfaces and design decisions
of such software turn to the customisable computer
language. Why not explore the interfacing of the
language itself as a novel performance tool, in stark
contrast to pretty but conventional user interfaces?
We certainly contend that music-making is more
compelling with elements of risk and reference to the
performance environment, and that the human
participant is essential to social musical activities.
Yet we do not wish to be restricted by existing instru-
mental practice, but to make a true computer music
that exalts the position of the programming language,
that exults in the act of programming as an expressive
force for music closer to the potential of the machine –
live coding experiments with written communication
and the programming mind-set to find new musical
transformations in the sweep of code.

We confront this issue by looking at some of the
power and the drawbacks of this inchoate artform in
the table.

These cons and pros are in no way a final say on
the matter. For the glitch aesthetic, the sense of danger
is probably quite appealing, and destructive reworking
of patches and the entering of illegitimate code is
in itself the process of the composition. For testing
before running, one could imagine using separate
audio outs, or two laptops in the style of DJ audition-
ing. There are some tests that can be applied to code
during interpretation to check validity of structures
and reduce the risks of setting up an impossible unit
generator network. The science of computability

places limits on this capacity, especially in spotting
such errors as infinite loops. In the worst case, the
computer will crash or lock, though often mistakes are
simple syntax errors, which just pop up error messages
and allow one to make immediate corrections without
any loss of sound.

Because of the danger of running very complicated
new code live, in practice most composers would
content themselves with modifying pre-tested snip-
pets. They’d go to a gig with a library of prefabricated
and tested code. Certain functional aspects of their
engine will already be in place; for instance, some
sort of time server or scheduler, and shortcuts for
running, managing and killing sound agents. This is
not to say that in advanced code one cannot make a
massive change to the sound synthesis structure just by
changing a few characters.

An area of further great potential is collaborative
or competitive coding. Performers can pass code to
each other to modify, allowing a very abstract sense of
musical transformation, and even work in a Chinese
whisper style remix circle. Games might be set up
where coders have a fixed time limit to complete some
goal with a restricted set of tools. One could even
imagine a live coding version of the rap ‘dis’ battle
where coders compete to aurally insult one another, or
a hacker style ‘root war’ in which they subvert each
other’s computer systems.

The live sharing of information between computer
music performers is already familiar from the experi-
ments of ensembles like The Hub. That network
band’s programmer/composers usually wrote their
sound processing programs before performance to an
interfacing protocol restricted to three control streams
output and input (Dean 2003: 88–93). There was,

Table. Pros and cons of live coding performance.

Pros and potential Cons and dangers

Flexibility; the next section can be anything You forget the current audio or just take too long while you prepare
the next section

A great intellectual challenge Your concentration halves with the adrenalin/stress/beer of a gig

Arbitrarily complex changes of structure at It’s risky to just run code! No debugging or testing is available
performance time

A new form of improvisation You must accept some failures and ugly moments of sound; there is
a trade-off between preparation and gig specificity

Normal performance programs like Reason Deliberate obfuscation is no great criteria for art!
look dull if the screen is projected – but the
arcane text coding systems have allure

It’s rewarding to see real efforts translated You apply lots of effort for little payback; you must have back-up
into sound code in case inspiration is not forthcoming

Computer languages are immensely rich Typing is hardly the most visually exciting interfacing method – you’ll
infinite grammars be bent over a screen for the night unless you code in further external

controllers

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

Live coding in laptop performance 323

however, an element of live coding in their rehearsal
preparations, and an occasional attempt to modify the
running code in live performance. Tim Perkis (2003)
notes that:

There was certainly quite a bit of command-line control
going on in performance in the early days. Several of us,
including myself, were running FORTH, and from time
to time I remember putting together new little word
definitions defining particular behaviours and/or
sequences and letting ’em fly in performance.

Things were usually pretty stable by the time we got to
an actual performance, but rehearsals most generally
consisted of continuous hacking by everyone involved,
without shutting down the musical network interaction,
everyone working in new pieces of code that would
modify the overall network behaviour on the fly. I
remember that Phil Stone, as the only one using a
compiled language, – C – would take a certain amount of
flak from everyone about going dead from time to time
as he ran a compile. The rest of us just continuously
modified our FORTH or LISP programs as we sort of
‘sculpted’ the piece.

. . . in particular on the piece ‘Waxlips’, my machine’s
behaviour was controlled by a hunk of code newly
auto-generated on my command at the beginning of
each section. There was also a certain amount of
fooling around with self-modifying code; at the time
we were much more interested in finding weird and
uncontrollable behaviour than in clarity, reliability,
maintainability and other such outmoded concepts!

Ensemble complexities leading to emergent behavi-
our were very much a part of The Hub’s explorations,
though even in limited laptop jams one encounters
the interesting tendency to lose the sense of who
is contributing what. Aside from involved multiple-
player scenarios with information exchange, basic
collaborative performance is still extremely helpful
to live coders: a partner in creation can take over
the focus while you prepare your next sequence of
actions. A powerful situation occurs when multiple
performers are rhythmically synchronised, duos
usually working extremely well, though more complex
group arrangements can suffer the ‘too many cooks’
syndrome without sympathetic handling of the
rhythmic aggregate desired.

3. TEST CASE 1 – SLUB

Slub are Alex McLean and Adrian (Ade) Ward, a
London-based laptop music duo who write custom audio
software in languages like Perl and REALbasic, and
perform with great adaptability live, synced via a TCP/
IP tick server. Alex is well known for projecting his
laptop screen to show a torrent of bash shell command-
line antics (McLean 2001, McLean 2003) as he starts
and kills all manner of subroutines and controls the
running audio processes. Ade has subverted idiomatic
music interfaces to his own creative ends. The slub

sound ranges from relentless techno to meditative sonic
studies. The common thread throughout their music is a
human, home-made quality, borne by the expressive
control they have over their software.

3.1. A tour of the slub system

Here we will first describe the slub system, starting
with the user interface and going down into the
compositional processes and network protocol, and
finishing with the sound synthesis.

Slub control their music using user interfaces
created by and for themselves. These vary from the
apparently conventional to the abstract, and from
graphical to entirely textual. We’ll skip this for now, as
two of the slub interfaces will be described in detail
later in this section. Figure 1 is a screenshot of some
of the messier slub applications in action on Alex’s
laptop.

Behind the slub interfaces lie the ‘compositional’ or
‘musical’ processes – many separate pieces of code
written as explorations of musical ideas. Each piece
of code describes an experiment in such areas as
combinatorial mathematics, chordal progressions,
sonified models of dancing people, morphing metres,
algorithmic breakbeats, and so on. In any case, the
code engine is creating patterns, melodies and stranger
musical components.

These compositional processes send messages to
one another across a TCP/IP network using a line-
based protocol. The messages travel via a central
server, which also manages time sync between all
the slub processes. This architecture allows many
hundreds of compositional processes to run in parallel,
and new processes can be introduced at any time, and
may run from either of the laptops.

The network protocol solves a problem which might
otherwise be unsolvable: Adrian and Alex often take
very different approaches to making music. However,
they don’t have to argue about how the music is made.
Because they agreed upon and implemented a network
protocol between their programs, they are free to
make music however they like, knowing that their
programs will synchronise with each other. In this way
disparate ideas may slot together seamlessly, and lock
together to make music.

Finally, a hybrid software sampler and synthesizer
(named ‘MSG’) receives messages that are either
turned into sound, or affect sounds that are currently
playing. At this point the distinctions between compo-
sition and synthesis blur, as experiments in synthesis
lead to unexpected but reproducible effects.

This whole network of software was written by slub
to fulfil their individual needs, forming an environ-
ment ideal to their methods of working. This brings us
to an important point – that the code is not just running
in the computer. To explain; when programmers are

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

324 Nick Collins et al.

watching a computer execute their own programs,
the code is also executing in their minds. They have
intimate knowledge of the process, and so can imagine
it running. In this way, the code is alive in slub and in
their computers, and hopefully also in their sound and
the audience too. The music is also alive in these four
places. As far as slub are concerned, code is music.

3.2. Interfaces

Slub often project their laptop screens to give some
impression of the processes in motion that form the
music. This allows the audience to see the live quality
of the code as well as hear it. This quality is at times
polished and professional, at other times wild and
uneven, but always particular to slub.

And so here, we explore two slub interfaces. They
only tell part of the story, but are particularly relevant
to this article in that they involve live manipulation of
code. Both of these applications were written in
REALbasic by Adrian.

The first, called Map, responds to those who
might refer to Max, and the entire ethos of graphical

patching, as programming. Map is itself a graphical
patcher, with data flowing through patch cables
between blocks. But this similarity is turned into direct
abuse; these blocks contain chunks of code, which can
be edited in real time during a performance (figure 2).

The code used here is a home-made interpreted
language sporting assembly-language- like syntax.
Data moves between blocks via patch cables, which
modify values in registers – each block has its own
set of registers which the code can manipulate. There
are language extensions which allow communication
with MSG, and custom patch controls (such as the
sequencer block and number inspectors shown above)
which further enrich the performance capabilities.
Here, the combination of a graphical interface along
with the (somewhat ironic) juxtaposition of an assem-
bly language offer two extremes of live coding possi-
bilities; where the overall flow of data can be modified
by manipulating the graphic interface, and where the
minutiae of the data processing can be modified by
editing the code.

The second piece of software that we describe here is
called Pure Events (figure 3). Pure Events combines

Figure 1. Alex’s messy performance desktop.

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

Live coding in laptop performance 325

Figure 2. Map screenshot.

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

326 Nick Collins et al.

the REALbasic runtime interpreter with the concep-
tual model that every event (be it macro or micro in
scale) in a musical performance can be tied to a piece
of code. Pure Events offers a real-time environment
in which chunks of BASIC code can be scheduled
to execute at any particular time, which may then
schedule other chunks of code, or send instructions to
the slub audio renderer.

Pure Events focuses on code that sequences musical
events, and the manipulation of that code to vary the
musical output. Global properties and UI controls
such as sliders manipulate the data that these routines
operate with, but the important factor in both of these
pieces of software is that the musical code can be
changed at will during a performance.

Neither application allows instant musical creation
– this is not some mythical dystopian device grown

from the idea that software means ultimate automa-
tion. Slub suffers somewhat from this conceptual
extreme in that many think they are trying to depre-
cate the creative role of a performer. On the contrary,
slub is opening up the determinate processes of a
computer in order to generate music. A great deal of
work has to be done before any performance, and any
particular coding that is done during a performance is
always open to problems. Part of slub’s performance is
about allowing those errors and glitches to occur in a
context that works aesthetically. Slub software creates
slub music, whilst the slub music aesthetic nurtures
slub software manipulation.

4. TEST CASE 2 – JUST IN TIME LIBRARY

SuperCollider 2 (McCartney 1998) is a language
for audio programming that has a dedicated user base

Figure 3. Pure Events screenshot.

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

Live coding in laptop performance 327

and is of great facility for real-time generative and inter-
active music. Through classes such as the MixerPlayer,
SuperCollider users have been able to use the interpreter
to run new code blocks as they perform, mixing in
new sound functions they only just completed or edited.1

Extension libraries have given even wider support to this
way of working (though the technicalities may have
been hidden from the average user below the surface),
in particular the extensive Crucial Library. What is
tremendously exciting is that the new version of
SuperCollider, SC Server on Max OS X and Linux
(McCartney 2002), allows any programming language,
not just the Smalltalk-derived SuperCollider language,
to become a front end to the synthesis engine, and
to pass new synthesis graphs to the renderer in real time.
It is almost a call to arms for those interested in live
coding: the proven power of the SuperCollider sound
harnessed to the scripting language of your choice.

Julian Rohrhuber has been a SuperCollider user since
its inception, and maintains the ‘swiki’ site supporting
the SuperCollider community. He is the author of the
Just in Time Library, or jitlib, dedicated to facilitating
live coding in performance.

4.1. Live coding with SuperCollider

When talking about software, be it an application or
a programming environment, it is almost invisibly
implied that we are dealing with some sort of tool. This
tool, as with a programming language, might be itself
designed for creating further software, yet is mostly
seen as a device that aims towards a product. The
underlying time structure is such that the toolmaker
refrains from direct production, scheduling it for later,
perhaps in the hope of being more effective in the
future. So the product of this delay comes together
with this expectation and divides the creative process
in two parts, tool and its use, often even in person,
toolmaker and user. In the arts this is one source of
the division between the technician and the artist
which is mirrored in distinctions of professions and
of the concepts of the theoretical and the applied.
In computer-based arts, designing the program and
finally performing with it shows the same characteris-
tic and fits well (often together with the stage and the
separation of consumers and producers) into a very
common artistic practice.

As long as the program has to be compiled in order
to be able to run and to simulate a user interface, the
time delay between creating the tool and using it seems
to be very dominant – the cycle of testing, writing and
compiling is slow, and the aim is separated from its
description. Because there is no need for postponing

activity, an essential difference comes into play when
interpreted languages allow programs to be written
while they run. This is not a difference in degree, it is a
quantum leap that merges tool and product.

In computer music there used to be a strong distinc-
tion between the program (the instrument) and the
score (the player). The mediation between them was
either a written score or a graphical user interface.
In the case of an interpreted language of which
SuperCollider is one example, this mediation can be
constructed, but essentially the distinction is blurred.
An algorithm can be seen as the controller or the
controlled, one process can control another process,
be it the cursor position, the typing of text, a waveform
or the quarter hour stroke. It is unsure who or what is
the source of a sound – it could be some algorithm,
some recording or some activity of that person behind
that screen.

This world of synthetic cause and effect shifts mean-
ings quickly like the weather. A programming impro-
visation can follow unexpected paths and interplay
with its ensemble or with other circumstances. My
favourite type of programming activity is to comment
conversation or film by writing code, just as a bar
pianist would do it, and as the program unfolds its
own way between cultural and mathematic code, to
discuss or do something else and wait for the next idea
(Pihel 1996 is relevant here, portraying the spontane-
ous and risky situation of a freestyle in hip hop). This
type of ‘drinking while diving’, of flipping the script, of
walking into situations, became possible in this way
in the early versions of SuperCollider 2 (SC2) when,
nearly unnoticed by anyone at first, the interpreter
kept running while synthesis was on.

Despite the fundamental trade-off between varia-
bility and efficiency, James McCartney has always
been working towards offering real-time control of
processes, the basis that made concert programming
more and more realisable. After the fundamental
change mentioned before, in version 2.2 the method
::triggerSynth was introduced (TrigXFade in 2.2.4),
which made it possible to mix in new sound programs
while others were running. Subsequently, Ron Kuivila
wrote a ‘special class’ SC which made parallel
sound processes conveniently controllable. The error
message ‘already playing’ moved further into the
past with the experimental version of SC3d and SC
Server (SC3), opening a more and more neutral field
of possible spontaneous interconnections between
sounds and their controls. The Crucial Library player
system (by Chris Sattinger) neutralised also the sepa-
ration between running sound, a control, and a stored
object, also introducing a more abstract scheme of
reusing code. The introduction of a network layer
(UDP, OSC) in version 2.2.6 that even allows us to
execute code on a remote computer increased the
possibilities of new rules of the game.

1Simple demo code for a minimal set-up based on a TSpawn and the
triggersynth method would look like this:
{t=TSpawn.ar(nil)}.play
t.source.triggerSynth(Synth.new({SinOsc.ar(440,0,0.1)}))

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

328 Nick Collins et al.

4.2. The just in time library

My reason to introduce the just in time programming
library (jitlib) was to make an interface to write code
while playing that removes the distinction between
preparation and action, so that I could more easily
change things and not lose the connection to the
written representation. Probably it has emerged from
my own habit to change things up until the last
moment before the performance and in many cases
even during playing.

SuperCollider 3 is now based entirely on a style of
command-line programming. The sound is controlled
by messages that are sent to the sound server and
all other constructions are built on that. We can
expect these scripts to develop a new style of concert
programming.

//define a synth definition and send it to the server
SynthDef(“iiccicii”, { arg r=1.0; Out.ar(LFClip
Noise.kr(r,0.5,0.5),PinkNoise.ar(SinOsc.kr(r,0,0.1).max(0)))
}).send(s);
s.sendMsg(9,”iiccicii”,6788,1,0); //start a synth
s.sendMsg(15,6788,\r,128); //change a parameter

One of the aims of jitlib here is to be able to
exchange synth definitions and other processes within
a referential environment conveniently so that there is
less need to plan changes beforehand. Symbols are
used to store placeholders (proxy contexts) for sound
objects or processes, which constitute a referentially
transparent system in which parts can be written and
exchanged at runtime without a graphical interface;
it lives from the visibility of code which for me was
always one of the most important features of
SuperCollider. In the sound programming group at
Hamburg art school that I am teaching we have also
made experiments with distributed referential spaces
where changes influence a whole network of com-
puters, on each of which programs run that react in
their own way to a shift of the general ‘data climate’.

In the SuperCollider language, lines or blocks
of code can be evaluated one by one, and functions,
numbers or object instances can be referenced by
assigning them to variables (one-letter interpreter
variables do not need initialisation) or to keys in
the current environment (e.g. ~mrLloyd=78). When
using a ProxySpace as an environment, these assign-
ments are redirected to a system of placeholders that
manage processes like a crossfade from one sound to
another when replacing the sound function.2 This must
not be confused with simply assigning an object to

a variable which does not alter the object itself. To
demonstrate how such a concert program can look,
I go on with a very basic commented code excerpt for
SuperCollider 3:

2This kind of on-the-fly creation is not as efficient in SC3 as it would
be to prepare a performance with all needed sound functions and
then interconnect them, but as long as this is not done twenty times
a second the flexibility is worth the expense. (There are many
techniques that can be used for automated event-based processes
that can be combined with this system.)

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

Live coding in laptop performance 329

My own composition environment is usually a
combination of such lines as well as predefined instru-
ments, routines and patterns that similarly combine
to a referential system. These sheets of code I keep
modifying, and sometimes I save alternate versions.
This has proved useful also in finding new algorithms,
or in doing film sound, as changes can be made as part
of the conversation. When a performance exceeds the
lab or living room context I often project my screen to
a wall but avoid sitting on a stage whenever possible –
I prefer the perspective of driving a car: watch, enjoy
and drive. Watching a computer music performer on
stage might have a rather minimalist thrill, but I
find this deficiency a good opportunity to change the
default set-up. To be able to see the textual changes
that cause the sound to move on is only a consequence
of recognising code as an artistic form. Sometimes this
situation can grow to amusing sonic offline chats when

several people join in and interfere – open source then
turns out to mean simply conversation.

5. CONCLUSIONS

A new area of performance is being opened up by
laptop musicians attempting to work with scripting
languages in live concerts. These live coding perfor-
mances have a great improvisatory potential and
can adapt to the night and venue, as well as great
dangers. They are hardly the best way of solving the
laptop-performer-stuck-behind-the-laptop dilemma,
nor of minimising crashes. Yet they are of sufficient
interest to warrant further attention, and whilst not all
performers would ever wish to tackle a constant set of
text entry, one can use the techniques in integration
with spawned user interfaces, with external controllers
or other more conventional audio programs.

For the interested reader, SuperCollider and
related code (including jitlib and the Crucial Library
work) are available via www.audiosynth.com. Audio
examples for Julian’s work are part of jitlib, and
come complete with a download of SuperCollider
Server. http://swiki.hfbk-hamburg.de:8888/Music
Technology/500 is a page on jitlib.

For slub audio examples see fals.ch, the MEGO
MP3 site, or the slub.org website (for example, http://
slub.org/sounds/20020525.mp3).

ACKNOWLEDGEMENTS

Many thanks to Tim Perkis, Tom Betts, Fabrice
Mogini and the sc-users mailing list for fruitful discus-
sions on these topics. Ade wishes to thank Geoff Cox,
who got him started thinking about code conceptually,
and who has always supported slub in whatever way
he could.

REFERENCES

Cox, G., McLean, A., and Ward, A. 2001. The aesthetics of
generative code. In Proc. of Generative Art.

Dean, R. 2003. Hyperimprovisation: Computer-Interactive
Sound Improvisation. Middleton, WI: A-R Editions, Inc.

Flores, F., and Winograd, T. 1995. Understanding Com-
puters and Cognition: A New Foundation for Design.
Addison Wesley.

Loy, D. G. 1989. Composing with computers – a survey
of some compositional formalisms and programming
languages for music. In M. Mathews and J. Pierce
(eds.) Current Directions in Computer Music Research.
Cambridge, MA: MIT Press.

Lyon, E. 2002. Dartmouth Symposium on the Future of
Computer Music Software: a panel discussion. Computer
Music Journal 26(4): 13–30.

McCartney, J. 1998. Continued evolution of the
SuperCollider real time synthesis environment. In Proc.
of the Int. Computer Music Conf. Ann Arbor, Michigan.

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

330 Nick Collins et al.

McCartney, J. 2002. Rethinking the computer music langu-
age: SuperCollider. Computer Music Journal 26(4): 61–8.

McLean, A. 2001. Hacking sound in context. On the
CD-ROM Proceedings of Music without Walls. De
Montford University, Leicester, UK, 21–3 June 2001.

McLean, A. 2003. ANGRY – usr/bin/bash as a performance
tool. In S. Albert. (ed.) Cream 12, from the

generative.net mailing list. Available online from http://
twenteenthcentury.com/saul/cream12.html

Perkis, T. 2003. Personal communication.
Pihel, E. 1996. A furified freestyle: Homer and hiphop. Oral

Tradition 11(2).
Roads, C. 1996. The Computer Music Tutorial. Cambridge,

MA: MIT Press.

https://doi.org/10.1017/S135577180300030X Published online by Cambridge University Press

https://doi.org/10.1017/S135577180300030X

