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An example where lubrication theory
comes short: hydraulic jumps in a
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We examine two-dimensional flows of a viscous liquid on an inclined plate. If the
upstream depth h− of the liquid is larger than its downstream depth h+, a smooth
hydraulic jump (bore) forms and starts propagating down the slope. If the inclination
angle of the plate is small, the bore can be described by the so-called lubrication
theory. In this work we demonstrate that bores with h+/h− < (

√
3 − 1)/2 either are

unstable or do not exist as steady solutions of the governing equation (physically,
these two possibilities are difficult to distinguish). The instability/evolution occurs near
a stagnation point and, generally, causes overturning – sometimes on the scale of the
whole bore, sometimes on a shorter, local scale. The overturning occurs because the
flow advects disturbances towards the stagnation point and, thus, ‘compresses’ them,
increasing the slope of the free surface. Interestingly, this effect is not captured by the
lubrication theory, which formally yields a well-behaved stable solution for all values
of h+/h−.

Key words: interfacial flows (free surface), lubrication theory, wave breaking

1. Introduction

Consider a layer of viscous liquid on a plate inclined at an angle α. If the layer’s
upstream depth h− exceeds its downstream depth h+ (see figure 1), a smooth hydraulic
jump (bore) forms and starts propagating down the slope.

The dynamics of bores have been mostly examined under the assumption that
the slope of the free surface, and sometimes its displacement, are small – in which
case the governing equations can be simplified using the so-called lubrication theory
(Benney 1966; Mei 1966; Homsy 1974; Lin 1974; Nepomnyashchy 1974; Bertozzi &
Brenner 1997; Bertozzi et al. 1998; Nepomnyashchy 1999; Bertozzi & Shearer 2000;
Bertozzi et al. 2001; Chang & Demekhin 2002; Kalliadasis et al. 2003; Saprykin,
Demekhin & Kalliadasis 2005; Mavromoustaki, Matar & Craster 2010). Note that,
in all lubrication models, solutions describing steadily propagating bores exist for all
values of α and h±.

† Email address for correspondence: eugene.benilov@ul.ie
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FIGURE 1. The setting: a smooth hydraulic jump (bore) on an inclined plate.

A different situation has been reported for bores with an order-one slope of the
free surface by Benilov & Lapin (2011), who examined them numerically in the limit
of small Reynolds numbers. It has been shown that, if α is sufficiently large and/or
η= h+/h− is sufficiently small, all bores overturn and no steady solution exists (unlike
the above asymptotic models). A similar result has been obtained for flows on the
inside of a horizontal rotating cylinder by Benilov, Lapin & O’Brien (2012).

The conclusions of Benilov & Lapin (2011) have been generally confirmed by
Benilov (2014), who used a heuristic depth-averaged model to examine steadily
propagating bores with an order-one slope of the free surface. However, even though
Benilov (2014) confirmed the non-existence of steadily propagating bores for large α
and/or small η, the actual region of existence on the (η, α) plane was different from
that of Benilov & Lapin (2011).

In the present paper, we show that simulations carried out by Benilov & Lapin
(2011) lacked accuracy due to an insufficient resolution, resulting in a certain short-
scale behaviour being suppressed.

New, more accurate numerical results lead us to an important physical conclusion:
even though some bores appear to exist as stable steady solutions under the lubrication
theory, they are either unstable or do not exist within the framework of the exact
equations. We also show that this behaviour is caused by a stagnation point located
at the free surface of the liquid.

This paper has the following structure: in § 2, we introduce the governing equations
and, in § 3 and § 4–5, present the numerical and analytical results, respectively.

2. Formulation of the problem
Consider a two-dimensional layer of liquid, of density ρ and dynamic viscosity

µ, on a plate inclined at an angle α. Let the x and z axes be directed along, and
perpendicular to, the plate (see figure 1). The free surface of the layer is described
by the equation z= h(x, t), where h is the layer’s depth and t is the time.

The spatial coordinates and h are implied to be non-dimensionalised by the
characteristic depth H. The time t is non-dimensionalised by µ/Hρg cosα, where g is
the acceleration due to gravity. The x and z components of the velocity, u and w, and
the pressure p are non-dimensionalised by H2ρg cos α/µ and ρgH cos α, respectively.
We also introduce the plate’s slope

s= tan α. (2.1)

In this work, surface tension is neglected, which implies that the spatial scale H of
the flow is much larger than the capillary scale. Given that, for most liquids, the latter
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Hydraulic jumps in a flow down an inclined plate 279

is on the scale of 2–3 mm, this assumption is not very restrictive. Among phenomena
within the scope of our model are bores in medium-scale rivulets, as well as landslides
and avalanches (for the applicability of liquid models to these, see the monograph by
Pudasaini & Hutter (2007)).

2.1. The general case
To describe the flow, we shall use the Stokes equations,

∂p
∂x
= s+ ∂

2u
∂x2
+ ∂

2u
∂z2

,
∂p
∂z
=−1+ ∂

2w
∂x2
+ ∂

2w
∂z2

, (2.2a,b)

∂u
∂x
+ ∂w
∂z
= 0. (2.3)

Let U be the bore’s non-dimensional speed relative to the plate. Then, it is convenient
to have the plate moving in the opposite direction with the matching speed, which
implies the following boundary conditions:

u=−U, w= 0 at z= 0. (2.4a,b)

At the free surface we impose the standard dynamic boundary conditions,

Sn= 0 at z= h, (2.5)

where the stress tensor and the (not necessarily unit) normal are

S=

2
∂u
∂x
− p

∂v

∂x
+ ∂u
∂y

∂v

∂x
+ ∂u
∂y

2
∂w
∂z
− p

, n=
−∂h

∂x
1

. (2.6a,b)

Rewriting condition (2.5) in terms of components, we obtain

∂u
∂z
+ ∂w
∂x
−
(

2
∂u
∂x
− p
)
∂h
∂x
= 0 at z= h, (2.7)

2
∂w
∂z
− p−

(
∂u
∂z
+ ∂w
∂x

)
∂h
∂x
= 0 at z= h. (2.8)

The kinematic boundary condition at the free surface will be written in the form of
the mass conservation law,

∂h
∂t
+ ∂

∂x

∫ h

0
udz= 0. (2.9)

Since we are modelling bores, let

h→ h± as x→±∞, (2.10)

where h− (h+) is the liquid’s upstream (downstream) depth.
Assuming the limit x→±∞ in (2.2)–(2.4), (2.7)–(2.8) and applying the boundary

conditions (2.10), one can obtain

w→ 0, u→ s
(− 1

2 z2 + zh±
)−U as x→±∞. (2.11a,b)
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280 E. S. Benilov and V. N. Lapin

This work is mostly devoted to steady solutions, for which (2.9) becomes∫ h

0
udz= q, (2.12)

where the constant q is the non-dimensional flux of the flow along the plate. Assuming
the limit x→±∞ in (2.12) and applying the boundary conditions (2.10)–(2.11), one
can derive the following expressions for the velocity and flux of a steady bore,

U = s(h2
− + h−h+ + h2

+)
3

, q=−sh−h+(h− + h+)
3

. (2.13a,b)

Note that, without loss of generality, one can set h−= 1 (which implies that the scale
H used in the non-dimensionalisation above is the dimensional upstream depth). One
can also formulate all results in terms of the downstream-to-upstream depth ratio,

η= h+
h−
. (2.14)

2.2. The lubrication theory
The lubrication theory for viscous interfacial flows assumes that the slope of the free
surface relative to the plate is small. It can be further shown that, in the problem at
hand (where surface tension is not taken into account), this requirement holds only if
the hydraulic jump’s amplitude (h−− h+)/h− and/or the inclination angle α are small.
If neither is small, the free surface rapidly develops an order-one slope, even if it was
initially small.

We shall consider the limit of small α,

s� 1, (2.15)

and also assume
∂h
∂x
=O(s), u=O(s), w=O(s2). (2.16a−c)

We shall only need steady lubrication solutions,

u= un(x, z), w=wn(x, z), p= pn(x, z), h= hn(x), (2.17a−d)

where n characterises the solution’s accuracy. Note that un, wn, pn and hn do not
represent the nth terms in the expansions of the corresponding fields, but the series
themselves truncated at the nth term.

For the leading-order approximation, n = 1, the governing equations (2.2)–(2.4),
(2.7)–(2.8) and (2.12) yield

u1 =−U +
(

zh1 − z2

2

)(
s− dh1

dx

)
,

w1 =−z3

6
d2h1

dx2
− z2

2
d
dx

[
h1

(
s− dh1

dx

)]
,

p1 = h1 − z,


(2.18)
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Hydraulic jumps in a flow down an inclined plate 281

−Uh1 + h3
1

3

(
s− dh1

dx

)
= q. (2.19)

As mentioned above, the lubrication theory admits steady-bore solutions (which are
also stable) for all values of the parameters involved. This can be readily verified for
problem (2.19), (2.10), which indeed admits solutions for all values of s and h±. We
conclude that the lubrication theory does not capture overturning.

The specific form of the nth-order equivalents of (2.18)–(2.19) will not be needed,
so we just describe briefly how they can be obtained.

The unknowns u, w and p (but not h) are expanded in powers of s2, and the Stokes
equations are used to relate the first n terms in these series to h. To distinguish the
series from the exact fields, the subscript n, representing the accuracy of the expansion,
is added. Then, the expression for un is substituted in the mass conservation law (2.12),
which yields an equation for hn.

Note that the nth-order lubrication solution satisfies the governing equations with
the following errors of truncation:

∂pn

∂x
= s+ ∂

2un

∂x2
+ ∂

2un

∂z2
+O(s2n+1),

∂pn

∂z
=−1+ ∂

2wn

∂x2
+ ∂

2wn

∂z2
+O(s2n), (2.20a,b)

∂un

∂x
+ ∂wn

∂z
= 0, (2.21)

un =−U, wn = 0 at z= 0, (2.22a,b)

∂un

∂z
+ ∂wn

∂x
−
(

2
∂un

∂x
− pn

)
dhn

dx
=O(s2n+1) at z= hn, (2.23)

2
∂wn

∂z
− pn −

(
∂un

∂z
+ ∂wn

∂x

)
dhn

dx
=O(s2n) at z= hn, (2.24)∫ hn

0
undz= q. (2.25)

Observe that, even though the lubrication solution is not exact, it still satisfies the
continuity equation (2.21) and the mass conservation law (2.25) exactly. For n = 1,
this can be verified by substituting expressions (2.18) into (2.21) and (2.25).

3. Numerical results
Following Benilov & Lapin (2011) and Benilov et al. (2012), we solved the

boundary-value problem (2.2)–(2.4), (2.7)–(2.11) using the COMSOL Multiphysics
package. There was, however, an important modification: the present work employed
an extra fine mesh near the stagnation point (if the flow involved one). The
significance of this modification will be explained later.

In all other respects our numerical approach is the same as that described in Benilov
& Lapin (2011) and, in more detail, in § 4.2 of Benilov et al. (2012).

3.1. Three scenarios of the bore evolution
We have carried out numerous simulations, aiming to determine the region in the
(η, α) plane where stable steady bores exist. The results are shown in figure 2.

Three scenarios of the bore evolution have been identified:
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FIGURE 2. Numerical results on the existence of steady bores on the (η, α) plane (α is
the plate’s inclination angle, η = h+/h− is the downstream-to-upstream depth ratio). The
regions where micro-overturning and overturning proper occur (see figure 3) are labelled
‘MO’ and ‘Overturning’, respectively. The vertical part of the boundary between the
existence/MO regions corresponds to condition (4.1). The four ‘black squares’ correspond
to the solutions presented in figure 3.

(i) If η exceeds a certain threshold value (which depends on α), a stable bore
emerges from a wide range of initial conditions. The region in the (η, α) plane
where this occurs is shown in figure 2 and labelled ‘Steady solutions’. Examples of
these are shown in figure 3: observe that, for large α, the solution has an oscillatory
structure, which is rather unusual for a flow without surface tension (for more details,
see Benilov & Lapin 2011).

Most importantly, none of the existing stable bores involves a stagnation point (SP),
which indicates that SPs either destabilise bores or eliminate them as steady solutions.
This conclusion can be verified by considering a sequence of bores with parameters
approaching the boundary of the existence region: one can observe a rapid decrease of
the velocity in a certain part of the flow, near the free surface (see figure 4) – which
implies that an SP emerges exactly when the solution ceases to exist.

Note that the emergence of the SP at α. 30.7◦ occurs differently from that at α&
30.7◦. In the latter case, the SP appears at the top of the bore’s highest peak (compare
figures 3a,b and 4a,b), whereas, in the former case, the SP emerges at minus infinity
(see figure 4c,d).

Thus, when a stagnation point appears on the surface of the flow, bores either
become unstable or disappear as steady solutions. At this stage, we cannot distinguish
between these two possibilities (this question will be discussed in more detail later).

(ii) If η is sufficiently small, all bores overturn, regardless of the initial condition.
Two kinds of overturning can be distinguished, differing in the dynamics and scale of
the overturning region. The two kinds correspond to two distinct regions in the (η, α)
plane, labelled in figure 2 as ‘MO’ (micro-overturning) and ‘Overturning’ (overturning
proper).

(iia) Overturning proper occurs for smaller values of η and is similar to the usual
wave breaking (see an example in figure 5a).
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FIGURE 3. Examples of steady bores: the depth h of the liquid versus x. The
corresponding points in the (α, η) plane are shown in figure 2 by ‘black squares’.
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FIGURE 4. Examples of steady bores: the surface velocity us (normalised by the plate’s
slope s= tan α) versus x. The corresponding graphs of h(x) are shown in figure 3.
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FIGURE 5. Two patterns of overturning for α = 7◦: (a) overturning proper (η = 0.15),
(b) micro-overturning (η= 0.22). The stagnation points are shown by black dots, the insets
show blow-ups of the regions near the stagnation points (note that the x and y ranges of
inset (a) are approximately 16 and 173 times larger than those of inset (b)). The solutions
shown as solid and dotted lines are separated in time by (a) t = 488; (b) t = 326, with
the dotted line corresponding to the later t. The corresponding points in the (η, α) plane
are shown in figure 6 by ‘black squares’.

(iib) The evolution of bores with α . 30.7◦ and intermediate η is characterised by
a localised burst of short-scale, ‘spiky’ waves (see an example in figure 5b). These
waves contract and grow, eventually developing a singularity (infinite slope of the free
surface). Since the spatial scale of the solution in this case is considerably smaller
than that in the case of overturning proper, this flow pattern will be referred to as
micro-overturning.

The presence/absence of the contracting spatial scale (resulting in spiky waves)
allows one to readily distinguish the two kinds of overturning.

Note also that the troughs of spiky waves do not develop into a corner, i.e. the
curvature of the free surface there may be large, but is still finite. The breakdown
of the solution occurs solely due to overturning (i.e. emergence of a point where the
tangent to the free surface is vertical).

Most importantly, both overturning and micro-overturning bores involve an SP, and
the point of overturning is located near it – which is why a finer mesh is needed in
the near-SP region. This circumstance was not recognised by Benilov & Lapin (2011);
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0
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30

Overturning

Micro-overturning

0.1 0.2 0.3

FIGURE 6. Existence of steady bores on the (η, α) plane (as in figure 2) and the
applicability of the lubrication theory. The thin solid line corresponds to the maximum
slope of the free surface (calculated using expression (3.1)) being 0.6. The two ‘black
squares’ correspond to the solutions presented in figure 5.

as a result, the stagnation region was not properly resolved in their simulations and
micro-overturning did not occur.

3.2. Micro-overturning versus overturning proper
Physically, the main difference between micro-overturning and overturning proper is
that the latter occurs for bores that do not satisfy the lubrication theory (even if α is
small).

Indeed, using the first-order lubrication equation (2.19), one can deduce that the
maximum slope of the free surface in a steady bore is

max
∣∣∣∣dh
dx

∣∣∣∣= s(2+ 3η− 3η2 − 2η3)2

27η2(1+ η)2 . (3.1)

Expression (3.1) indicates that the lubrication theory is applicable when

s(2+ 3η− 3η2 − 2η3)2

27η2(1+ η)2 � 1. (3.2)

One can see that, for a sufficiently small η (i.e. for a large hydraulic jump), the
lubrication theory does not necessarily hold even if α – and, hence, s – are small.

It can now be shown that the boundary between the regions of micro-overturning
and overturning proper on the (η, α) plane happens to be very close to the curve
where the maximum slope of the free surface is equal to 0.6 (see figure 6). This
suggests that overturning proper can occur only for bores with order-one slope.

Thus, the near-SP evolution depends on the slope of the free surface. If it is
sufficiently large, one can conjecture that disturbances generated near the SP slide
down the slope – which is why overturning proper occurs lower than the SP. It can
be further conjectured that, while sliding, short-scale disturbances merge and form a
larger-scale overturning flow.
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4. An existence condition for stagnation points

As conjectured in the previous section, a steady bore exists and is stable only if
it does not involve an SP. Thus, if we prove that, for certain (η, α), the steady bore
must involve an SP, our conjecture would imply that such a bore cannot be observed
in reality (because it either is unstable or does not exist as a steady state).

4.1. The general case
We shall prove the following statement: if

η < 1
2(
√

3− 1), (4.1)

the steady bore (if it exists) involves an SP.
To prove criterion (4.1), we use asymptotics (2.11) for u and expression (2.13) for

U to calculate

[(u)z=h]x→−∞ = sh2
−

6
(1− 2η− 2η2), [(u)z=h]x→+∞ = sh2

+
6

(
1− 2

η
− 2
η2

)
. (4.2a,b)

Given that η < 1, one can readily see that

[(u)z=h]x→+∞ < 0, (4.3)

i.e. the surface flow in front of the bore has the same direction as that of the plate’s
motion. The flow behind the bore, in turn, can be directed either way, depending on
whether or not η falls into the range (4.1). If it does, then

[(u)z=h]x→−∞ > 0 if η < 1
2(
√

3− 1). (4.4)

Conditions (4.3)–(4.4) imply that, if (4.1) holds, there exists xs such that

[(u)z=h]x=xs = 0. (4.5)

Recalling that, at the free surface of a steady flow, the normal velocity is zero, and
that the surface of a steady non-overturning bore cannot be perpendicular to the plate,
equality (4.5) implies that both components of the velocity are zero – hence, xs is a
stagnation point.

Recall that condition (4.1) was conjectured to be a sufficient criterion of non-
existence of stable steady bores – hence, the parameter region it describes should not
overlap with the existence region in figure 2 (and, evidently, it does not).

Note that, if α.30.7◦, our numerical results for existing bores indicate that (u)z=h is
a monotonic function of x (for α� 1, this can also be verified using the lubrication
theory). As a result, when η is decreasing while α is fixed at a value smaller than
30.7◦, an SP can emerge only at x = −∞. Then, using asymptotics (2.11), one can
show that criterion (4.1) in this case becomes both sufficient and necessary.

This conclusion agrees with the fact that, for α . 30.7◦, the boundary of the
existence region in figure 2 is strictly vertical.
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FIGURE 7. The streamlines for steady bores as described by the lubrication theory (2.18)–
(2.19), (2.10). The plate’s inclination angle is α= 5◦, the non-dimensional upstream depth
is h− = 1, the downstream depth is (a) h+ = 0.5 and (b) h+ = 0.2. In (b), observe the
recirculation region (its boundary shown as a dotted line) and the SP shown by a black
dot. Another SP is located infinitely far to the left, so that the two SPs are connected by
the dotted line.

4.2. The lubrication theory
Criterion (4.1) can be illustrated using the first-order lubrication theory (2.18)–(2.19),
(2.10).

First we shall use (2.18) to calculate (u)z=h and then equate it to zero,

h3
1

(
dh1

dx
− s
)
+ 2Uh1 = 0 at x= xs. (4.6)

Then, using (2.19) to substitute for dh1/dx, one can deduce that

(h1)x=xs =−
3q
U
. (4.7)

Since, under the lubrication theory, the bore’s profile is monotonic, an SP exists if
and only if

h+ < (h1)x=xs < h−. (4.8)

Substituting expressions (2.13) for U and q into (4.7), then inserting the resulting
expression for (h1)x=xs into (4.8), one can obtain, as expected, condition (4.1).

Two examples of steady bores, with and without an SP, have been computed using
the first-order lubrication theory and are shown in figure 7.

5. The evolution near the stagnation point
Note that the first-order lubrication equation (2.19) is separable. Solving it with the

boundary conditions (2.10), one can show that solutions exist for all values of s and
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h±. It can be further shown (Bertozzi & Shearer 2000; Bertozzi et al. 2001) that all
the steady solutions, including those with SPs, are stable under the time-dependent
version of the first-order lubrication theory. These two conclusions appear to contradict
the conjecture suggested by our numerical results – that stable steady bores with SPs
do not exist.

In what follows, the contradiction will be resolved by examining the interaction of
a steady lubrication flow and an evolving non-lubrication disturbance localised near
the SP.

5.1. Asymptotic equations for small α
Consider a steady bore with an SP, and a small disturbance superposed on the bore.
Assuming α� 1 and η∼ 1, one can seek a solution in the form

u= u2(x, z)+ ũ(x, z, t),
w=w2(x, z)+ w̃(x, z, t),
p= p2(x, z)+ p̃(x, z, t),

h= h2(x)+ h̃(x, t),

 (5.1)

where the variables with tildes describe the disturbance and (u2, w2, p2, h2) represent
the steady lubrication solution of the second-order accuracy (the reason why the first-
order solution is not used will be explained later). Substituting (5.1) into the exact
governing equations (2.2)–(2.4), (2.7)–(2.9) and taking into account the fact that the
lubrication solution satisfies (2.20–(2.25), we obtain

∂ p̃
∂x
= ∂

2ũ
∂x2
+ ∂

2ũ
∂z2
+O(s5),

∂ p̃
∂z
= ∂

2w̃
∂x2
+ ∂

2w̃
∂z2
+O(s4), (5.2a,b)

∂ ũ
∂x
+ ∂w̃
∂z
= 0, (5.3)

ũ= 0, w̃= 0 at z= 0, (5.4a,b)

∂u2

∂z
+ ∂ ũ
∂z
+ ∂w2

∂x
+ ∂w̃
∂x

−
[

2
(
∂u2

∂x
+ ∂ ũ
∂x

)
− p2 − p̃

](
∂h2

∂x
+ ∂ h̃
∂x

)
=O(s5) at z= h2 + h̃, (5.5)

2
(
∂w2

∂z
+ ∂w̃
∂z

)
− p2 − p̃

−
(
∂u2

∂z
+ ∂ ũ
∂z
+ ∂w2

∂x
+ ∂w̃
∂x

)(
∂h2

∂x
+ ∂ h̃
∂x

)
=O(s4) at z= h2 + h̃, (5.6)

∂ h̃
∂t
+ ∂

∂x

[∫ h2

0
ũdz+

∫ h2+h̃

h2

(u2 + ũ)dz

]
= 0. (5.7)

Let the disturbance be localised near the SP in a region of size ε, and let δ be a
characteristic elevation of the free surface due to the disturbance. The time scale τ , in
turn, should be determined by ‘balancing’ the time derivative in (5.7) with the largest
of the remaining terms – which yields τ = ε−1.
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The above scales imply the following change of variables:

xnew = x− xs

ε
, znew = z− h2(xs)

ε
, tnew = t

ε−1
, (5.8a−c)

ũnew = ũ
δε
, w̃new = w̃

δε
, p̃new = p̃

δ
, h̃new = h̃

δ
, (5.9a−d)

where xs is, again, the coordinate of the SP. We shall further assume that

δ� ε. (5.10)

It turns out that the most general asymptotic model can be derived for the following
distinguished limit:

ε= s2. (5.11)

Substituting (5.8)–(5.9) into (5.2)–(5.7) and taking into account conditions (5.10)–
(5.11), we obtain to leading order (subscripts new omitted)

∂ p̃
∂x
= ∂

2ũ
∂x2
+ ∂

2ũ
∂z2

,
∂ p̃
∂z
= ∂

2w̃
∂x2
+ ∂

2w̃
∂z2

,
∂ ũ
∂x
+ ∂w̃
∂z
= 0, (5.12a−c)

ũ= 0, w̃= 0 as z→−∞, (5.13a,b)
∂ ũ
∂z
+ ∂w̃
∂x
= 0, h̃+ 2

∂w̃
∂z
− p̃= 0 at z= 0, (5.14a,b)

∂ h̃
∂t
+ ∂

∂x

[∫ 0

−∞
ũdz+ βxh̃

]
= 0, (5.15)

where

β =− 1
s2

[
d
dx
(u2)z=h2

]
x=xs

. (5.16)

Equations (5.12)–(5.15) form a closed set describing the dynamics of the disturbance.
The coefficient β is to be determined using the steady lubrication solution. Note
that, since (5.12)–(5.15) were derived to leading order with respect to all small
parameters, β can be calculated using the leading-order lubrication solution as well.
Thus, replacing u2 and h2 with u1 and h1 in expression (5.16), and using the first-order
expressions (2.18)–(2.19), we obtain

β =
(

3q
2s2h2

1

dh1

dx

)
x=xs

. (5.17)

It follows from (2.13) that q is negative, and so is dh1/dx – hence, β > 0 (it will be
seen later that the sign of β is important physically). Eventually, (2.13) can be used
to reduce (5.17) to

β =− U2

54q3s2
(2U3 − 9q2s). (5.18)

Together with (2.13), this expression relates β to the basic parameters (η, α).
Note that, even though the first-order lubrication theory was used for β, the second-

order approximation must be used, strictly speaking, in representation (5.1). If the first-
order lubrication expansion were used, its error in some of the governing equations
would exceed the contribution of the disturbance and, thus, its dynamics would be
described incorrectly.
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5.2. The solution of (5.12)–(5.15)

We shall first use (5.12)–(5.14) to express ũ in terms of h̃ and then substitute the
resulting expression into (5.15).

To do so, we introduce the Fourier transforms (û, ŵ, p̂, ĥ) of the unknowns
(ũ, w̃, p̃, h̃) – e.g.

ĥ(k, t)= 1
2π

∫ ∞
−∞

h̃(x, t)e−ikxdk. (5.19)

Then, applying the Fourier transformation to (5.12)–(5.15), we obtain

ikp̂=−k2û+ ûzz, p̂z =−k2ŵ+ ŵzz, ikû+wz = 0, (5.20a−c)

û= 0 ŵ= 0 at z→−∞, (5.21a,b)

ûz + ikŵ= 0 ĥ+ 2ŵz − p̂= 0 at z= 0, (5.22a,b)

∂ ĥ
∂t
+ ik

(
− β

2π

∫ ∞
−∞

xhe−ikxdx+
∫ 0

−∞
ûdz
)
= 0. (5.23)

(5.20) is a set of linear ordinary differential equations in z and, thus, can be readily
solved. Then, applying the boundary conditions (5.21)–(5.22), one obtains

û= i sgn k
2

ĥze|k|z, ŵ= 1
2

(
− 1
|k| + z

)
ĥe|k|z, p̂= ĥe|k|z. (5.24a−c)

Next, substitution of û into (5.23) yields

∂ ĥ
∂t
+ βk

∂ ĥ
∂k
+ 1

2|k| ĥ= 0. (5.25)

The general solution of this linear partial differential equation can be readily found
by characteristics,

ĥ= ĥ0(ke−βt) exp
(
−eβt − 1

2β|k|
)
, (5.26)

where ĥ0(k) is the Fourier transform of the initial condition h̃(x, 0). Finally, taking the
inverse Fourier transform, we obtain

h(x, t)=
∫ ∞
−∞

ĥ0(ke−βt) exp
(
−eβt − 1

2β|k| + ikx
)

dk. (5.27)

Two examples of this solution, developing from odd and even initial conditions,
are shown in figures 8a and 8b, respectively. One can see that, in both cases, the
disturbance contracts and grows.

This conclusion can also be extracted from the general solution (5.27). Introducing
K = ke−βt, one can rewrite it in the form

h(x, t)= eβt
∫ ∞
−∞

ĥ0(K) exp
(
−1− e−βt

2β|K| + iKeβtx
)

dK. (5.28)
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FIGURE 8. The asymptotic solution (5.25) for η = 0.15, α = 3◦, and two different
initial conditions: (a) h̃(x, 0)=−x exp(−x2/2) and (b) h̃(x, 0)= exp(−x2/2). The curves
labelled 0–2 correspond to t= 0, 0.2, 0.4.

Thus,
h→ eβtf (xeβt) as t→∞, (5.29)

where

f (ξ)=
∫ ∞
−∞

ĥ0(K) exp
[
− 1

2β|K| + iKξ
]

dK. (5.30)

One can now see that the long-term behaviour of h(x, t) is, essentially, self-similar
exponential growth and contraction.

5.3. Discussion
(i) To understand the physical meaning of the contraction and growth of solution
(5.27), observe that, in the short-wave limit (k� 1), the last term of (5.25) can be
omitted and (5.25) becomes

∂ ĥ
∂t
+ βk

∂ ĥ
∂k
≈ 0. (5.31)

Applying the inverse Fourier transformation, one can re-arrange this equation as

∂ h̃
∂t
− βx

∂ h̃
∂x
≈ βh̃. (5.32)

This equation describes waves with local speed −βx (the second term) and growth
rate β (the right-hand side). Most importantly, the wave speed is negative for positive
x and vice versa – hence, the waves always converge onto the point x= 0. This effect
is purely kinematic, but it is the reason for the contraction of disturbances near the
SP.

(ii) Sooner or later the solution’s growth and contraction violate the conditions under
which (5.27) was derived. Even though we have no analytical means of describing
the further evolution, one can conjecture that the developing nonlinearity causes either
overturning or a collapse (closing up) of a wave trough. In either case, the slope of
the free surface becomes infinite.
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(iii) We have tried to use our numerical solution at a certain time as the initial
condition for the asymptotic solution (5.27) and compare the numerical and analytical
solutions at larger times. Unfortunately, this did not work out due to the fact that
the asymptotic solution is valid only at a very early stage of the evolution, while the
disturbance is linear. The numerical solution, on the other hand, is trustworthy only
after the initial mesh-scale noise has decayed (for flows with a free surface, such
noise is inevitably introduced by the COMSOL package due to its use of triangles
to approximate the region occupied by the liquid). As a result, one cannot find a
sufficiently wide ‘window’ where both solutions are reliable.

Thus, even though the asymptotic solution exhibits the same qualitative dynamics
as the numerical one, we have been unable to achieve quantitative agreement.

(iv) As mentioned above, simulations cannot distinguish unstable steady solutions
from non-existent ones. The same is true, albeit less obviously, for our asymptotic
results. On the one hand, representation (5.1) describes a perturbation of a steady
bore, and (5.25) for the former admits the trivial solution, ĥ= 0, corresponding to the
unperturbed bore. On the other hand, the steady-bore part of representation (5.1) is
based on the second-order lubrication theory, which does not guarantee the existence
of an equivalent solution of the exact equations.

In principle, this issue could be resolved by tracking the steady-bore solution when
approaching the boundary of the existence region. If two families of solutions exist
before the boundary is reached, merging at the boundary and then disappearing – this
would indicate that a saddle-node bifurcation occurs. If, however, a single solution
is found, one could explore its stability and see if an eigenmode exists, becoming
neutrally stable when approaching the boundary of the existence region (which should
rather be called the ‘stability region’ in this case).

Unfortunately, neither of these possibilities can be readily explored.
Firstly, a saddle-node bifurcation typically implies that one of the two merging

solutions is unstable – hence, it cannot be found by simulating the evolution equations
(which is what we do in this work). Secondly, stability analysis of a free-surface flow
is one of the most complicated problems in computational fluid dynamics and, thus,
is beyond the scope of the present paper.

This issue, however, was explored by Benilov (2014) using a relatively simple depth-
averaged model (instead of the Stokes equations). It was shown that, in the framework
of this model, SPs do eliminate bores as steady solutions. Even though this conclusion
cannot be regarded as rigorous, all other results obtained using Benilov’s (2014) model
turned out to be relatively accurate. In particular, it yields an existence region for
steady bores which agrees very well with that in our figure 2 – suggesting that the
reason why steady bores are not observed in the rest of the parameter space might
also be identified correctly.

(v) Note that surface tension can weaken the effect of SPs. This conclusion is
suggested by the results of Joseph et al. (1991), Jeong & Moffatt (1992), Pozrikidis
(1998) and Peixinho, Mirbod & Morris (2012), who observed stable capillary flows
with SPs and/or obtained the solutions describing them. Benilov & Lapin (2011), in
turn, observed that increasingly strong surface tension extended the existence region
of steady bores to bores with SPs – i.e. it can stop the emergence of singularities in
a certain part of the parameter space, but not in all of the parameter space. ‘Spiky
waves’, in turn, are affected by capillarity much stronger than overturning, as even
weak surface tension can make them significantly smoother.

We also note the results by Pozrikidis (1998) and Thoroddsen & Tan (2004),
who observed (numerically and experimentally, respectively) formation of cusps
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and collapse of troughs of short-scale surface waves similar to our ‘spiky waves’.
Interestingly, the latter paper reports the collapse of wave troughs and the resulting
entrainment of bubbles only if a surfactant was used – which agrees with our
conjecture about the stabilising effect of surface tension.

Finally, the collapse of wave troughs cannot occur without an infinite slope of the
interface and, thus, can be interpreted as a kind of micro-overturning.

(vi) Generally, the destabilising effect of SPs on steady flows (when they exist) is
well known (Friedlander & Vishik 1991; Lifschitz 1991; Lifschitz & Hameiri 1991;
Lifschitz 1995; Lebovitz & Lifschitz 1996; Bayly, Holm & Lifschitz 1996; Leblanc
1997). It has been established, among other things, that steady flows with SPs are
unstable, except the cases where the streamlines are circular in the vicinity of the
SP (Friedlander & Vishik 1991; Lifschitz 1991; Lifschitz & Hameiri 1991). Since the
streamlines near the SP in the problem at hand are not circular (see figure 7b), our
setting seems to be within the scope of the existing theory.

There are four important differences, however.
Firstly, the unstable disturbances considered in all of the above papers are three

dimensional – whereas, in our case, instability occurs in two dimensions.
Secondly, Friedlander & Vishik (1991), Lifschitz (1991) and Lifschitz & Hameiri

(1991) considered ideal fluids, whereas we examine viscous fluids. This difference is
important – as, in principle, viscosity could dampen the effect (but it does not).

Thirdly, the SP in our case is located on the free surface – and we claim that,
in principle, this circumstance could make it a stabilising influence even though the
streamlines are not locally circular. It all depends on whether the flow at the surface
is directed towards the SP (as in our case) or away from it. In the latter case, the
equivalent of (5.32) is

∂ h̃
∂t
+ βx

∂ h̃
∂x
≈−βh̃ (5.33)

(where β is still positive). It can be readily verified that all solutions of equation (5.33)
spread out and decay – simply because the flow pulls the perturbations away from
the SP, while the negative term on the right-hand side of (5.33) causes an exponential
decay. A flow with such a geometry of the stagnation point has been computed by
Mekias & Vanden-Broeck (1991).

Fourthly, an SP with non-circular streamlines inside the liquid’s bulk destabilised the
flow, whereas ‘our’ SP is likely to eliminate the steady state altogether (as discussed
above).

6. Summary and concluding remarks
Thus, we have examined smooth hydraulic jumps (bores) on an inclined plate.

Depending on the inclination angle α and the downstream-to-upstream depth ratio η,
three scenarios have been identified, corresponding to three parameter regions in the
(η, α) plane (see figure 2):

(i) The flow settles down into a stable steady bore without stagnation points (see
examples in figure 3).

(iia) The bore overturns (see an example in figure 5a).
(iib) A highly localised cluster of short waves is generated in a certain region of the

free surface (see figure 5b). Eventually, one of the waves develops an infinite slope
of the interface. This scenario was dubbed ‘micro-overturning’.

Both micro-overturning and overturning proper occur near the flow’s SP, which
happens to be located at the free surface. An asymptotic equation (5.25) has been
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derived for the near-SP dynamics of surface waves, which indicates that they grow
and become steeper (because the background flow advects them towards the SP,
compressing them in the process).

The results obtained suggest that the effect of free-surface SPs can be different from
that of SPs in the bulk of the liquid. Even though some studies do discuss the former
(e.g. Scheid et al. 2010), their effect on the flow’s stability has not been examined
and, thus, deserves further investigation.

Note that the lubrication theory yields a stable steady solution for all values of
(α, η), including those in regions (iia) and (iib), where the bores should overturn.
The problem with region (iia) can be attributed to the inapplicability of the lubrication
theory there, as the solutions corresponding to (iia) have an order-one slope of the free
surface. The problem with (iib), in turn, is more worrying – as, for a certain part of
this region, the lubrication theory yields solutions that appear to be fully consistent
with the conditions under which they were derived (small slope of the free surface,
etc.).

Finally, note that the present setting is not the first one where the lubrication
approximation has been shown to break down. It is also known to do so for falling
films (Pumir, Manneville & Pomeau 1983; Scheid et al. 2005) and rimming flows
(Benilov, O’Brien & Sazonov 2003; Benilov 2004). In these cases, however, the
lubrication solution blows up in a finite time, which is a different scenario from
both (iia) and (iib).
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