
Combinatorics, Probability and Computing (2015) 24, 490–520. c© Cambridge University Press 2014

doi:10.1017/S0963548314000534

Improved Bounds for Incidences

Between Points and Circles

MICHA SHARIR1, ADAM SHEFFER1 and JOSHUA ZAHL2 †

1School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

(e-mail: michas@tau.ac.il, sheffera@tau.ac.il)
2Department of Mathematics, UCLA, Los Angeles, CA 90024, USA

(e-mail: jzahl@mit.edu)

Received 1 July 2013; revised 16 June 2014; first published online 2 October 2014

We establish an improved upper bound for the number of incidences between m points and

n circles in three dimensions. The previous best known bound, originally established for the

planar case and later extended to any dimension � 2, is O∗(m2/3n2/3 + m6/11n9/11 + m + n),

where the O∗(·) notation hides polylogarithmic factors. Since all the points and circles may

lie on a common plane (or sphere), it is impossible to improve the bound in R
3 without

first improving it in the plane.

Nevertheless, we show that if the set of circles is required to be ‘truly three-dimensional’

in the sense that no sphere or plane contains more than q of the circles, for some q � n,

then for any ε > 0 the bound can be improved to

O
(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22 + m + n

)
.

For various ranges of parameters (e.g., when m = Θ(n) and q = o(n7/9)), this bound is

smaller than the lower bound Ω∗(m2/3n2/3 + m + n), which holds in two dimensions.

We present several extensions and applications of the new bound.

(i) For the special case where all the circles have the same radius, we obtain the improved

bound O(m5/11+εn9/11 + m2/3+εn1/2q1/6 + m + n).

(ii) We present an improved analysis that removes the subpolynomial factors from the

bound when m = O(n3/2−ε) for any fixed ε > 0.

(iii) We use our results to obtain the improved bound O(m15/7) for the number of mutually

similar triangles determined by any set of m points in R
3.

Our result is obtained by applying the polynomial partitioning technique of Guth and Katz

using a constant-degree partitioning polynomial (as was also recently used by Solymosi and
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Tao). We also rely on various additional tools from analytic, algebraic, and combinatorial

geometry.

2010 Mathematics subject classification: Primary 52C10

1. Introduction

Recently, Guth and Katz [24] presented the polynomial partitioning technique as a major

technical tool in their solution of the famous planar distinct distances problem of Erdős

[18]. This problem can be reduced to an incidence problem involving points and lines in

R
3 (following the reduction that was proposed in [17]), which can be solved by applying

the aforementioned polynomial partitioning technique. The Guth–Katz result prompted

various other incidence-related studies that rely on polynomial partitioning (e.g., see

[9, 19, 22, 29, 30, 44, 45, 50]). One consequence of these studies is that they have led to

further developments and enhancements of the technique itself (evidenced for example by

the use of induction in [45], and the use of two partitioning polynomials in [29, 50]). Also,

the technique was recently applied to some problems that are not incidence related. It was

used to provide an alternative proof of the existence of spanning trees with small crossing

number in any dimension [30], and to obtain improved algorithms for range searching

with semi-algebraic sets [2]. Thus, it seems fair to say that applications and enhancements

of the polynomial partitioning technique form an active contemporary area of research

in combinatorial and computational geometry.

In this paper we study incidences between points and circles in three dimensions. Let

P be a set of m points and let C be a set of n circles in R
3. We denote the number

of point–circle incidences in P × C as I(P , C). When the circles have arbitrary radii, the

current best bound for any dimension d � 2 (originally established for the planar case in

[3, 8, 34], and later extended to higher dimensions by Aronov, Koltun and Sharir [7]) is

I(P , C) = O∗(m2/3n2/3 + m6/11n9/11 + m + n
)
. (1.1)

The precise best known upper bound (see [34]) is

O
(
m2/3n2/3 + m6/11n9/11 log2/11(m3/n) + m + n

)
.

Since the three-dimensional case also allows P and C to lie on a single common

plane or sphere,1 the point–circle incidence bound in R
3 cannot be improved without

first improving the planar bound (1.1) (which has been an open problem for about ten

years). Nevertheless, as we show in this paper, an improved bound can be obtained if

the configuration of points and circles is ‘truly three-dimensional’ in the sense that no

sphere or plane contains too many circles from C. (Guth and Katz [24] impose a similar

assumption on the maximum number of lines that can lie in a common plane or regulus;

see also Sharir and Solomon [44].) Our main result is given in the following theorem.

1 There is no real difference between the cases of coplanarity and cosphericality of the points and circles, since

the latter case can be reduced to the former (and vice versa) by means of the stereographic projection.
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Theorem 1.1. Let P be a set of m points and let C be a set of n circles in R
3, let ε be an

arbitrarily small positive constant, and let q � n be an integer. If no sphere or plane contains

more than q circles of C, then

I(P , C) = O
(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22 + m + n

)
,

where the constant of proportionality depends on ε.

Remarks. (1) In the planar case, the best known lower bound for the number of point–

circle incidences is Ω∗(m2/3n2/3 + m + n) (e.g., see [39]). Theorem 1.1 implies that for

certain ranges of m, n, and q, a smaller upper bound holds in R
3. This is the case, for

example, when m = Θ(n) and q = o(n7/9).

(2) When m > n3/2, we have m3/7n6/7 < m and m6/11n15/22q3/22 < m2/3n1/2q1/6. Hence, we

have

I(P , C) = O
(
m2/3+εn1/2q1/6 + m1+ε

)
.

In fact, as the analysis in this paper will show, the first term in this bound only arises from

bounding incidences on certain potentially ‘rich’ planes or spheres. For q = O(m2/n3) we

have I(P , C) = O(m1+ε). Informally, for such small values of q, when the number of points

is Ω(n3/2), a typical point can lie in only a small (nearly constant) number of circles.

(3) When m � n3/2, any of the terms except for m can dominate the bound. However, if

in addition q = O((n3/m2)3/7), then the bound becomes

I(P , C) = O
(
m3/7+εn6/7 + n1+ε

)
,

for any ε > 0. Note also that the interesting range of parameters is m = Ω̃(n1/3) and

m = Õ(n2), where the Ω̃(·) and Õ(·) notations hide terms of the form mε and nε; in the

complementary ranges both the old and new bounds become (almost) linear in m + n.

In the interesting range, the new bound is asymptotically smaller than the planar bound

given in (1.1) for q sufficiently small (e.g., when q = O((n3/m2)3/7) as above), and as noted,

it is also smaller than the best known worst-case lower bound in the planar case for

certain ranges of m and n.

(4) Interestingly, the ‘threshold’ value m = Θ(n3/2) where a quantitative change in the

bound takes place (as noted in remarks (2) and (3) above) also arises in the study of

incidences between points and lines in R
3 [16, 23, 24]. See Section 6 for a discussion of

this threshold phenomenon.

The proof of Theorem 1.1 is based on the polynomial partitioning technique of Guth

and Katz [24], where we use a constant-degree partitioning polynomial in a manner similar

to that used by Solymosi and Tao [45]. (The use of constant-degree polynomials and the

inductive arguments it leads to are essentially the only similarities with the technique of

[45], which does not apply to circles in any dimension since it cannot handle situations

where arbitrarily many curves can pass between any specific pair of points. Constant

degree partitioning polynomials were also recently used in [22, 44].) The application of
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this technique to incidences involving circles leads to new problems, involving the handling

of points that are incident to many circles that are entirely contained in the zero set of

the partitioning polynomial. To handle this situation we turn these circles into lines using

an inversion transformation. We then analyse the geometric and algebraic structure of

the transformed zero set using a variety of tools such as flecnode polynomials (as used in

[24]), additional classical nineteenth-century results in analytic geometry from [42] (mostly

related to ruled surfaces), a very recent technique for analysing surfaces that are ‘ruled’ by

lines and circles [38], and some traditional tools from combinatorial geometry. We note

that while our results refer to the real affine case, part of our analysis considers the setup

in complex projective spaces, in which more classical results from algebraic geometry can

be brought to bear. By transporting the results back to the real affine case, we obtain the

properties that we wish to establish. See Section 4 for details.

Removing the epsilons. One disadvantage of the current use of constant-degree partition-

ing polynomials is that it leads to an upper bound involving ε in some of the exponents

(as stated in Theorem 1.1). In Section 3.1 we present an alternative approach, which

uses partitioning polynomials of higher degree but requires a more involved analysis, for

partially removing ε. It yields the following theorem.

Theorem 1.2. Let P be a set of m points and let C be a set of n circles in R
3, let q � n

be an integer, and let m = O(n3/2−δ), for some fixed arbitrarily small constant δ > 0. If no

sphere or plane contains more than q circles of C, then

I(P , C) � Am,n

(
m3/7n6/7 + m2/3n1/2q1/6 + m6/11n15/22q3/22 log2/11 m + m + n

)
, (1.2)

where

Am,n = A
� 3

2
· log(m/n1/3)

log(n3/2/m)
�+1

,

for some absolute constant A > 1.

Note that Am,n grows slowly with the quantity log(m/n). For example, it is A for m � n1/3,

A2 for n1/3 < m � n4/5, and A3 for n4/5 < m � n.

Recently, several other situations in which ε can be removed were described in [51].

Our alternative technique seems to be sufficiently general, and we hope that appropriate

variants of it could yield similar improvements of other bounds that were obtained with

constant-degree partitioning polynomials, such as the ones in [45].

Unit circles. In the special case where all the circles of C have the same radius, we derive

the following improved bound.

Theorem 1.3. Let P be a set of m points and let C be a set of n unit circles in R
3, let ε

be an arbitrarily small positive constant, and let q � n be an integer. If no plane or sphere

contains more than q circles of C, then

I(P , C) = O
(
m5/11+εn9/11 + m2/3+εn1/2q1/6 + m + n

)
,

where the constant of proportionality depends on ε.

https://doi.org/10.1017/S0963548314000534 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000534


494 M. Sharir, A. Sheffer and J. Zahl

This improvement is obtained through the following steps.

(i) We use the improved planar (or spherical) bound O(m2/3n2/3 + m + n) for incidences

with coplanar (or co-spherical) unit circles (e.g., see [46]).

(ii) We show that the number of unit circles incident to at least three points in a given

set of m points in R
3 is only O(m5/2).

(iii) We use this bound as a bootstrapping tool for deriving the bound asserted in the

theorem. The full details are presented in Section 5.

Here too we can refine the bound of Theorem 1.3 and get rid of the ε in the exponents, for

m = O(n3/2−ε) for any ε > 0. The resulting refinement, analogous to that of Theorem 1.1,

is given in Section 5.

An application: similar triangles. Given a finite point set P in R
3 and a triangle Δ, we

denote by F(P ,Δ) the number of triangles that are spanned by points of P and are similar

to Δ. Let

F(m) = max
|P |=m,Δ

F(P ,Δ).

The problem of obtaining good bounds for F(m) is motivated by questions in exact pattern

matching, and has been studied in several previous works (see [1, 4, 6, 12]). Theorem 1.2

implies the bound F(m) = O(m15/7), which slightly improves upon the previous bound

of O∗(m58/27) from [6]; see also [1]. The new bound is an almost immediate corollary

of Theorem 1.2, while the previous bound requires a more complicated analysis. This

application is presented in Section 6.

2. Algebraic preliminaries

We briefly review in this section the machinery needed for our analysis, including the

polynomial partitioning technique of Guth and Katz and several basic tools from algebraic

geometry.

Polynomial partitioning. In what follows, we regard the dimension d of the ambient space

as a (small) constant, and we ignore the dependence on d of the various constants of

proportionality in the bounds. Consider a set P of m points in R
d. Given a polynomial

f ∈ R[x1, . . . , xd], we define the zero set of f to be Z(f) = {p ∈ R
d | f(p) = 0}. For 1 <

r � m, we say that f ∈ R[x1, . . . , xd] is an r-partitioning polynomial for P if no connected

component of R
d \ Z(f) contains more than m/r points of P . Notice that there is no

restriction on the number of points of P that lie in Z(f).

The following result is due to Guth and Katz [24]. A detailed proof can also be found

in [30].

Theorem 2.1 (polynomial partitioning [24]). Let P be a set of m points in R
d. Then,

for every 1 < r � m, there exists an r-partitioning polynomial f ∈ R[x1, . . . , xd] of degree

O(r1/d).
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To use such a partitioning effectively, we also need a bound on the maximum possible

number of cells of the partition. Such a bound is provided by the following theorem.

Theorem 2.2 (Warren’s theorem [48]; see also [5]). For a polynomial f ∈ R[x1, . . . , xd] of

degree k, the number of connected components of R
d \ Z(f) is O((2k)d).

Consider an r-partitioning polynomial f for a point-set P , as provided in Theorem 2.1.

The number of cells in the partition is equal to the number of connected components of

R
d \ Z(f), which, by Theorem 2.2, is O((r1/d)d) = O(r) (recall that f is of degree O(r1/d)

and that d is treated as a fixed constant, in our case 3). It follows that the bound on the

number of points in each cell, namely m/r, is asymptotically best possible.

We will also rely on the following classical result, somewhat similar to Warren’s theorem

(the following formulation is taken from [5]).

Theorem 2.3 (Milnor–Thom theorem [36, 47]). Let V be a real variety in R
d, which is

the solution set of the real polynomial equations

fi(x1, . . . , xd) = 0 (i = 1, . . . , m),

and suppose that the degree of each polynomial fi is at most k. Then the number of connected

components of V is at most k(2k − 1)d−1.

Since this paper studies incidences in a three-dimensional space, we will only apply the

above theorems for d = 3.

Real and complex varieties. Let F = R or C be the underlying field, and let I ⊂ F[x1, x2, x3]

be an ideal. We define Z(I) ⊂ F3 to be the variety corresponding to I; this is the common

vanishing locus of all the polynomials f ∈ I . When it is not clear from the context

whether F = R or C, we resolve the ambiguity by writing ZR(I) or ZC(I), respectively.

If f ∈ F[x1, x2, x3], we will abuse notation and write Z(f) instead of Z((f)) (where (f) is

the ideal generated by f). If Z ⊂ F3 is a variety, we define I(Z) ⊂ F[x1, x2, x3] to be the

ideal of polynomials vanishing on Z (we will use bold typeface I to distinguish it from

the inversion transform I : R
3 → R

3 that will appear in Section 4).

Let R = R[x1, . . . , xd], and let I ⊂ R be an affine ideal. We say that I is a real ideal if

for every set g1, . . . , gt ∈ R, we have

g2
1 + . . . + g2

t ∈ I =⇒ gi ∈ I for i = 1, . . . , t.

Intuitively, algebraic geometry over the reals tends to be more pathological than

algebraic geometry over C. Many of the problematic cases do not occur if we only work

with real ideals. For example, the following theorem presents two properties of real ideals.

Theorem 2.4.

(i) Let J ⊂ R[x1, . . . , xd] be an ideal. Then J = I(ZR(J)) if and only if J is a real ideal.

(ii) Let f ∈ R[x1, . . . , xd] be an irreducible polynomial. Then (f) is a real ideal if and only

if dimZ(f) = d − 1.
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A nice introduction to real ideals can be found in [11]. The two parts of the above

theorem are Theorems 4.1.4 and 4.5.1 of [11], respectively.

Given a variety Z ⊂ R
3, the complexification Z∗ ⊂ C

3 of Z is the smallest complex

variety that contains Z (in the sense that any other complex variety that contains Z also

contains Z∗, e.g., see [41, 49]). As shown in [49, Lemma 6], such a complexification always

exists, and Z is precisely the locus of real points of Z∗. More specifically, Z∗ = ZC(I(Z)).

According to [49, Lemma 7], there is a bijection between the set of irreducible

components of Z and the set of irreducible components of Z∗, such that each real

component is the real part of its corresponding complex component. Specifically, the

complexification of an irreducible variety is irreducible.

Bézout’s theorem. We also need the following basic property of zero sets of polynomials

in the plane (for further discussion see [14, 15]).

Theorem 2.5 (Bézout’s theorem). Let f, g be two polynomials in R[x1, x2] or C[x1, x2] of

degrees Df and Dg , respectively.

(i) If Z(f) and Z(g) have a finite number of common points, then this number is at most

DfDg .

(ii) If Z(f) and Z(g) have an infinite number of (or just more than DfDg) common points,

then f and g have a common (non-trivial ) factor.

The following result, also used below, is somewhat related to Bézout’s theorem, and

holds in complex projective spaces of any dimension (e.g., see [21]; for a formal definition

of three-dimensional complex projective space CP3, in which we will apply the following

theorem and other tools, see Section 4, and recall the comments made earlier concerning

the passage between the real and complex setups).

Theorem 2.6. Let Z1 and Z2 be pure-dimensional varieties (every irreducible component

of a pure-dimensional variety has the same dimension) in d-dimensional complex projective

space, with codimZ1 + codimZ2 = d. Then, if Z1 ∩ Z2 is a zero-dimensional set of points,

this set is finite.

The following lemma is a consequence of Theorem 2.5. Its proof is given in Guth and

Katz [23, Corollary 2.5] and in Elekes, Kaplan and Sharir [16, Proposition 1].

Lemma 2.7 (Guth and Katz [23]). Let f and g be two polynomials in R[x1, x2, x3] (or in

C[x1, x2, x3]) of respective degrees Df and Dg , such that f and g have no common factor.

Then there are at most DfDg lines on which both f and g vanish identically.

Flecnode polynomial. A flecnode of a surface Z in C
3 is a point p ∈ Z for which there

exists a line that passes through p and agrees with Z at p to order three. That is, if

Z = Z(f) and the direction of the line is v = (v1, v2, v3), then

f(p) = 0, ∇vf(p) = 0, ∇2
vf(p) = 0, ∇3

vf(p) = 0, (2.1)
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where ∇vf,∇2
vf,∇3

vf are, respectively, the first-, second-, and third-order derivatives of f

in the direction v.

If Z = Z(f) is a surface in R
3, we say that p ∈ Z is a flecnode of Z if p is a flecnode

of the corresponding complex surface (Z(f))∗.

The flecnode polynomial of f, denoted by FLf , is the polynomial obtained by eliminating

v from the last three equations in (2.1). Note that the corresponding polynomials of the

system are homogeneous in v (of respective degrees 1, 2, and 3). We thus have a system

of three equations in six variables. Eliminating the variables v1, v2, v3 results in a single

polynomial equation in p = (x1, x2, x3), which is the desired flecnode polynomial. By

construction, the flecnode polynomial of f vanishes on all the flecnodes of Z(f). The

following results, also mentioned in [24, Section 3], are taken from Salmon [42, Chapter

XVII, Section III].

Lemma 2.8. Let Z ⊂ R
3 be a surface, with Z = Z(f) for a polynomial f ∈ R[x1, x2, x3]

of degree d � 3. Then FLf is a real polynomial (i.e., an element of R[x1, x2, x3]), and it has

degree at most 11d − 24.

Definition. An algebraic surface S in three-dimensional space (we restrict our attention

to R
3, C

3, and CP3) is said to be ruled if every point of S is incident to a straight line

that is fully contained in S . Equivalently, S is a (two-dimensional) union of lines.2 We

say that an irreducible surface S is triply ruled if for every point on S there are (at least)

three straight lines contained in S and passing through that point. As is well known, the

only triply ruled surfaces are planes (e.g., see [20, Lecture 16]; while this reference only

provides proofs for the case of R
3, proofs for the cases of C

3 and CP3 are also known).

We say that an irreducible surface S is doubly ruled if it is not triply ruled and for every

point on S there are (at least) two straight lines contained in S and passing through that

point. It is well known that the only doubly ruled surfaces are the hyperbolic paraboloid

and the hyperboloid of one sheet (again, see [20, Lecture 16]). Finally, we say that an

irreducible ruled surface is singly ruled if it is neither doubly nor triply ruled.

Lemma 2.9. Let Z ⊂ R
3 be a surface with Z = Z(f) for a polynomial f ∈ R[x1, x2, x3] of

degree d � 3. Then every line that is fully contained in Z is also fully contained in Z(FLf).

Proof. Every point on any such line is a flecnode of Z , so FLf vanishes identically on

the line.

Theorem 2.10 (Cayley–Salmon [42]). Let Z ⊂ R
3 be a surface with Z = Z(f) for a poly-

nomial f ∈ R[x1, x2, x3] of degree d � 3. Then Z is ruled if and only if Z ⊆ Z(FLf).

2 We do not insist on the more restrictive definition used in differential (or in algebraic) geometry, which

requires the ruling lines to form a smooth one-parameter family; see [10, Chapter III] and [26, Section V.2].
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Corollary 2.11. Let Z ⊂ R
3 be a surface with Z = Z(f) for an irreducible polynomial f ∈

R[x1, x2, x3] of degree d � 3. If Z contains more than d(11d − 24) lines then Z is a ruled

surface.

Proof. Lemmas 2.7 and 2.9 imply that in this case f and FLf have a common factor.

Since f is irreducible, f divides FLf , and Theorem 2.10 completes the proof.

A modern treatment of the Cayley–Salmon theorem can be found in a more recent

work by Landsberg [32]. (The results in [32] are considerably more general, but we state

here only the special case related to the Cayley–Salmon theorem.)

Theorem 2.12 (Landsberg [32]). Let Z be a surface in C
3, and let Z = Z(f) for a poly-

nomial f of degree d � 3. Then Z is ruled if and only if Z ⊆ Z(FLf).

3. The main theorem

In this section we prove Theorem 1.1, which we restate for the convenience of the the

reader.

Theorem 1.1. Let P be a set of m points and let C be a set of n circles in R
3, let ε be an

arbitrarily small positive constant, and let q � n be an integer. If no sphere or plane contains

more than q circles of C, then

I(P , C) = O
(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22 + m + n

)
,

where the constant of proportionality depends on ε.

Proof. The proof proceeds by induction on m + n. Specifically, we prove by induction

that, for any fixed ε > 0, there exist constants α1, α2 such that

I(P , C) � α1

(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22

)
+ α2(m + n).

Let n0 be a constant (whose concrete choice will be made later). The base case where

m + n < n0 can be dealt with by choosing α1 and α2 sufficiently large.

We start by recalling a well-known simple, albeit weaker bound. The incidence graph

G ⊆ P × C, whose edges are the incident pairs in P × C, cannot contain K3,2 as a subgraph,

because two circles have at most two intersection points. By the Kővári–Sós–Turán

theorem (e.g., see [35, Section 4.5]), I(P , C) = |G| = O(n2/3m + n). This immediately implies

the theorem if m = O(n1/3) (the resulting bound is O(n) in this case). Thus we may assume

that n = O(m3).

We next apply the polynomial partitioning technique. Specifically, we set r as a

sufficiently large constant (whose value depends on ε and will be determined later),

and apply the polynomial partitioning theorem (Theorem 2.1) to obtain an r-partitioning

polynomial f. According to the theorem, f is of degree D = O(r1/3) and Z(f) partitions

R
3 into maximal connected cells, each containing at most m/r points of P . As already

noted, Warren’s theorem (Theorem 2.2) implies that the number of cells is O(r).
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Let C0 denote the subset of circles of C that are fully contained in Z(f), and let

C ′ = C \ C0. Similarly, set P0 = P ∩ Z(f) and P ′ = P \ P0. Notice that

I(P , C) = I(P0, C0) + I(P0, C ′) + I(P ′, C ′). (3.1)

The terms I(P0, C ′) and I(P ′, C ′) can be bounded using techniques (detailed below) that

are by now fairly standard. On the other hand, bounding I(P0, C0) is the main technical

challenge in this proof. Other works that have applied the polynomial partitioning

technique, such as [29, 30, 45, 50, 51], also spend most of their efforts on incidences with

curves that are fully contained in the zero set of the partitioning polynomial (where these

curves are either original input curves specified in the statement of the problem, or the

intersections of input surfaces with the zero set of a partitioning polynomial).

Bounding I(P0, C′) and I(P ′, C′). For a circle C ∈ C ′, let ΠC be the plane that contains

C , and let fC denote the restriction of f to ΠC . Since C is not contained in Z(fC), fC
and the irreducible quadratic equation of C within ΠC do not have any common factor.

Thus by Bézout’s theorem (Theorem 2.5), C and Z(fC ) have at most 2 · deg(fC ) = O(r1/3)

common points. This immediately implies

I(P0, C ′) = O(nr1/3). (3.2)

Next, let us denote the cells of the partition as K1, . . . , Ks (recall that s = O(r) and that

the cells are open). For i = 1, . . . , s, put Pi = P ∩ Ki and let Ci denote the set of circles in C ′

that intersect Ki. Put mi = |Pi| and ni = |Ci|, for i = 1, . . . , s. Note that |P ′| =
∑s

i=1 mi, and

recall that mi � m/r for every i. The above bound of O(r1/3) on the number of intersection

points of a circle C ∈ C ′ and Z(f) implies that each circle enters O(r1/3) cells (a circle has

to intersect Z(f) when moving from one cell to another). This implies
∑s

i=1 ni = O(nr1/3).

Notice that

I(P ′, C ′) =

s∑
i=1

I(Pi, Ci),

so we proceed to bound the number of incidences within a cell Ki. From the induction

hypothesis, we get

I(P ′, C ′) �
s∑

i=1

(
α1

(
m

3/7+ε
i n

6/7
i + m

2/3+ε
i n

1/2
i q1/6 + m

6/11+ε
i n

15/22
i q3/22

)
+ α2(mi + ni)

)

�
s∑

i=1

(
α1

((
m

r

)3/7+ε

n
6/7
i +

(
m

r

)2/3+ε

n
1/2
i q1/6 +

(
m

r

)6/11+ε

n
15/22
i q3/22

))

+ α2

(
|P ′| +

s∑
i=1

ni

)
. (3.3)

https://doi.org/10.1017/S0963548314000534 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000534


500 M. Sharir, A. Sheffer and J. Zahl

Since
∑s

i=1 ni = O(nr1/3), Hölder’s inequality implies

s∑
i=1

n
6/7
i = O

(
(nr1/3)6/7 · r1/7

)
= O(n6/7r3/7),

s∑
i=1

n
1/2
i = O

(
(nr1/3)1/2 · r1/2

)
= O(n1/2r2/3),

s∑
i=1

n
15/22
i = O

(
(nr1/3)15/22 · r7/22

)
= O(n15/22r6/11).

(3.4)

By combining (3.3) and (3.4), we obtain

I(P ′, C ′) � α1 ·
c
(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22

)
rε

+ α2(|P ′| + cnr1/3),

for a suitable constant c > 0. Notice that the bound in (3.2) is proportional to the last

term in this bound, and that this term is dominated by O(m3/7n6/7) since we assume that

n = O(m3) and that r is constant. Choosing r to be sufficiently large, so that rε > 4c, and

choosing α1 � α2r
1/3, we can ensure that

I(P0 ∪ P ′, C ′) � α1

3

(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22

)
+ α2|P ′|. (3.5)

Bounding I(P0, C0): handling shared points. We are left with the task of bounding the

number of incidences between the set P0 of points of P that are contained in Z(f) and

the set C0 of circles of C that are fully contained in Z(f). We call a point of P0 shared

if it is contained in the zero sets of at least two distinct irreducible factors of f, and

otherwise we call it private. We first consider the case of shared points; in this argument

it is simplest to work over C.

Let Ps denote the subset of points in P0 that are shared, and put ms = |Ps|. Let f1 be

the square-free (over C) part of f, so in particular ZC(f) = ZC(f1). If p ∈ Ps is a shared

point, then p lies in at least two distinct irreducible (over R) components of ZR(f), and

thus p lies in at least two irreducible (over C) components of ZC(f1). Thus p lies in the

singular set of ZC(f1), and in particular p ∈ ZC(f1) ∩ ZC(f′
1), where f′

1 = e · ∇f1 and e is

a generically chosen unit vector (i.e., f′
1 is a partial derivative of f1 in a generic direction).

Note that degf1, degf′
1 � D, so γ = ZC(f1) ∩ ZC(f′

1) is an algebraic space curve of degree

at most D2 (e.g., see [25, Exercise 11.6]). The curve γ contains at most D2 irreducible

components, and thus γ contains at most D2 (complex) circles. We conclude that there

are at most D2ms incidences between points from Ps and circles whose complexification

is contained in ZC(f1) ∩ ZC(f′
1).

It remains to bound the number of incidences between points in Ps and circles of

C0 whose complexification is not contained in ZC(f1) ∩ ZC(f′
1) (that is, circles that are

contained in ZR(f) but whose complexification is not fully contained in ZC(f′
1)). Let C

be a circle whose complexification C∗ is not contained in ZC(f′
1), and let Π ⊂ C

3 be the

2-plane containing C∗. If we identify Π with C
2, then the restriction of f′

1 to Π is a

polynomial f̃′
1 ∈ C[x1, x2]. By Bézout’s theorem (Theorem 2.5), C∗ and ZC(f̃′

1) intersect in
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at most 2D points. Thus C∗ and ZC(f′
1) intersect in at most 2D points. This in turn implies

that |C ∩ Ps| � 2D. Therefore, by taking α2 (and consequently also α1) to be sufficiently

large, we have

I(Ps, C0) � 1

2
D2ms + 2Dn � α2(ms + n/3). (3.6)

Bounding I(P0, C0): handling private points. Let Pp = P0 \ Ps denote the set of private

points in P0. Recall that each private point is contained in the zero set of a single

irreducible factor of f. Let f1, f2, . . . , ft be the factors of f whose zero sets are planes or

spheres. For i = 1, . . . , t, set P (1)
p,i = Pp ∩ Z(fi) and mp,i = |P (1)

p,i |. Put

P (1)
p =

t⋃
i=1

P (1)
p,i and m(1)

p = |P (1)
p | =

t∑
i=1

mp,i.

Let np,i denote the number of circles of C0 that are fully contained in Z(fi). Notice that (i)

t � D = O(r1/3), (ii) np,i � q for every i, and (iii)
∑t

i=1 np,i � n (we may ignore circles that

are fully contained in more than one component, since these will not have incidences with

private points). Applying (1.1) and using the fact that there are no hidden polylogarithmic

terms in the linear part of (1.1), we obtain3

I(P (1)
p , C0) =

t∑
i=1

(
O∗(m2/3

p,i n
2/3
p,i + m

6/11
p,i n

9/11
p,i

)
+ O(mp,i + np,i)

)

=

t∑
i=1

(
O∗(m2/3

p,i n
1/3
p,i q

1/3 + m
6/11
p,i n

5/11
p,i q4/11

)
+ O(mp,i + np,i)

)

= O∗(m2/3n1/3q1/3 + m6/11n5/11q4/11
)

+ O(m(1)
p + n),

where the last step uses Hölder’s inequality; it bounds (twice)
∑

i mp,i = m(1)
p by m. Since

q � n, it follows that when α1 and α2 are sufficiently large, we have

I(P (1)
p , C0) � α1

3

(
m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22

)
+ α2(m

(1)
p + n/3). (3.7)

Let P (2)
p = Pp \ P (1)

p be the set of private points that lie on the zero sets of factors of

f that are neither planes nor spheres, and put m(2)
p = |P (2)

p |. To handle incidences with

these points we require the following lemma, which constitutes a major component of

our analysis and which is proved in Section 4 (somewhat similar results can be found in

[28, 33]). First, a definition.

Definition. Let g be an irreducible polynomial in R[x1, x2, x3] such that Z(g) is a two-

dimensional surface. We say that a point p ∈ Z(g) is popular if it is incident to at least

44(deg g)2 circles that are fully contained in Z(g).

3 Notice that the dependency of this bound on n and q is better than the one in the bound of the theorem.

This latter worse bound is the one that is preserved under the partition-based induction.
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Lemma 3.1. An irreducible algebraic surface that is neither a plane nor a sphere cannot

contain more than two popular points.

The lemma implies that the number of incidences between popular points of P (2)
p

(within their respective irreducible components of Z(f), whose number is at most D/2)

and circles of C0 is at most 2(D/2)n = Dn � α2n/3 (the latter inequality holds if α2 is chosen

sufficiently large with respect to D). The number of incidences between non-popular points

of P (2)
p and circles of C0 is at most m(2)

p · 44D2 � α2m
(2)
p (again for a sufficiently large value

of α2). Combining this with (3.1), (3.5), (3.6), and (3.7), we get

I(P , C) � α1

(
m3/7+εn6/7 + m2/3+εn1/2q1/6 + m6/11+εn15/22q3/22

)
+ α2(m + n).

This establishes the induction step, and thus completes the proof of the theorem.

Remarks. (1) Note that we have actually shown that

I(P0, C0) = O(mD2 + nD),

regardless of the degree D of f. It is the term mD2 that becomes too large when D itself is

too large. In this part of the analysis we addressed this issue by taking D to be a constant.

In the refined analysis given in the next subsection we use non-constant, albeit still small,

values for D, thereby slightly refining the bound.

(2) To see why m3/7+εn6/7 is the best choice for the leading term, let us denote the leading

term as ma+εnb and observe the following restrictions on a and b.

(i) For r to cancel itself in the analysis of the cells of the partition (up to a power of ε),

we require a � 1 − 2b/3.

(ii) For n = O(m3) to imply n = O(manb), we must have a + 3b � 3.

Combining both constraints, with equalities, results in the term m3/7+εn6/7.

(3) We believe that the terms in our bounds that depend on q can be significantly

improved by using a more careful analysis. The exponents in these terms are chosen so as

to make them satisfy the induction step. However, in doing so, in each cell of the partition,

we use the same bound q on the maximum number of coplanar or cospherical circles

among those that cross the cell. Since the number of circles that cross a cell goes down,

the bound q should also decrease. We do not know how to handle this issue rigorously,

and leave it as an open problem for further research.

3.1. Removing the epsilons

In this section we will show that, for any δ > 0, when n = O(m3/2−δ), the epsilons from

the bound of Theorem 1.1 can be removed. This is what Theorem 1.2 asserts; we repeat

its statement for the convenience of the reader.

Theorem 1.2. Let P be a set of m points and let C be a set of n circles in R
3, let q � n

be an integer, and let m = O(n3/2−δ), for some fixed arbitrarily small constant δ > 0. If no

sphere or plane contains more than q circles of C, then

I(P , C) � Am,n

(
m3/7n6/7 + m2/3n1/2q1/6 + m6/11n15/22q3/22 log2/11 m + m + n

)
,
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where

Am,n = A
� 3

2
· log(m/n1/3)

log(n3/2/m)
�+1

,

for some absolute constant A > 1.

Proof. We define P , P0, C, C ′, etc., as in the proof of Theorem 1.1. The proof is similar

to the one of Theorem 1.1, except that it works in stages, so that in each stage we enlarge

the range of m where the bound applies (with an appropriate larger constant Am,n).

At each stage we construct a partitioning polynomial as before, but of a non-constant

degree. We then use the bound obtained in the previous stage to control the number

of incidences inside the cells of the polynomial partitioning. Finally, we use a separate

argument (essentially the one given in the second part of the proof of Theorem 1.1) to

bound the number of incidences with the points that lie on the zero set of the polynomial.

Each stage increases the constant of proportionality in the bound by a constant factor,

which is why the ‘constant’ Am,n increases as m approaches n3/2. For j = 1, 2, . . . , the

jth stage asserts the bound specified in the theorem when m � nαj . The sequence of

exponents {αj} increases from stage to stage, and approaches 3/2. Each stage has its

own constant of proportionality A(j). The specific values of the exponents αj (and the

constants of proportionality) will be set later. For the 0th, vacuous stage we use α0 = 1/3,

and the bound O(n) that was noted above for m � nα0 , with an implied initial constant of

proportionality A(0).

In handling the jth stage, we assume that nαj−1 < m � nαj ; if m � nαj−1 there is nothing

to do as we can use the (better) bound from the previous stage. We construct an r-

partitioning polynomial f, just as in the proof of Theorem 1.1, except that its degree is

not required to be a constant. Put α = αj−1. To apply the bound from the previous stage

uniformly within each cell, we want to have a uniform bound on the number of circles

entering a cell. The average number of circles entering a cell is proportional to n/r2/3

(assuming that the number of cells is Θ(r), an assumption made only for the sake of

intuition). A cell that intersects tn/r2/3 circles, for t > 1, induces �t� subproblems, each

involving all the points in the cell and up to n/r2/3 circles. It is easily checked that the

number of subproblems remains O(r), with a somewhat larger constant of proportionality,

and that each subproblem now involves at most m/r points and at most n/r2/3 circles.

Moreover, in cells that have strictly fewer than n/r2/3 circles, we will assume that there

are exactly n/r2/3 circles, e.g., by adding dummy circles. This will not decrease the number

of incidences.

We assume that the number of cells is at most br, for some absolute constant b. To

apply the bound from the previous stage, we need to choose r that will guarantee that

m

r
�

(
n

r2/3

)α

, i.e. r1−2α/3 � m

nα
, i.e. r � m3/(3−2α)

n3α/(3−2α)
.

We choose r to be equal to the last expression. We note that (i) r � 1, because m is

assumed to be greater than nα and α < 3/2, and (ii) r � m, because m � n3/2. Because of

the somewhat weak bound that we will derive below on the number of incidences with

points that lie on Z(f) (the same bound as in the proof of Theorem 1.1), this choice of
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r will work only when m is not too large. The resulting constraint on m, of the form

m � nαj , will define the new range in which the bound derived in the present stage applies.

In more detail, the number of incidences within the partition cells is

I(P ′, C ′) � A(j−1)
br∑
i=1

(
(m/r)3/7(n/r2/3)6/7 + (m/r)2/3(n/r2/3)1/2q1/6

+ (m/r)6/11(n/r2/3)15/22q3/22 log2/11(m/r) + m/r + n/r2/3
)

� bA(j−1)
(
m3/7n6/7 + m2/3n1/2q1/6 + m6/11n15/22q3/22 log2/11 m + m + nr1/3

)
.

We claim that our choice of r ensures that nr1/3 � m3/7n6/7. That is,

r1/3 =
m1/(3−2α)

nα/(3−2α)
� m3/7

n1/7
.

Indeed, this is easily seen to hold because 1/3 � α < 3/2 and m � n3/2. Recall that we

also have I(P0, C ′) � A′nr1/3 for some constant A′ (see (3.2)). By choosing A(0) > A′ (so

that A(j−1) > A′ for every j), we have

I(P , C ′) = I(P0, C ′) + I(P ′, C ′)

� 3bA(j−1)
(
m3/7n6/7 + m2/3n1/2q1/6 + m6/11n15/22q3/22 log2/11 m + m

)
. (3.8)

As proved in Theorem 1.1,

I(Ps, C0) + I(P (2)
p , C0) = O(mr2/3 + nr1/3). (3.9)

This follows by substituting D = O(r1/3) in the bounds in the proof of Theorem 1.1, which

are

I(Ps, C0) � mD2/2 + 2nD and I(P (2)
p , C0) � 44mD2 + nD.

It remains to bound I(P (1)
p , C0). For this, we again use an analysis similar to the one in

Theorem 1.1. Let f1, f2, . . . , ft be the factors of f whose zero sets are planes or spheres.

For i = 1, . . . , t, set P (1)
p,i = Pp ∩ Z(fi) and mp,i = |P (1)

p,i |. Let np,i denote the number of circles

of C0 that are fully contained in Z(fi) (ignoring, as before, circles that lie in more than

one of these surfaces). Put

P (1)
p =

t⋃
i=1

P (1)
p,i .

Notice that (i) t = O(r1/3), (ii) np,i � q for every i, and (iii)
∑

i np,i � n. Applying (1.1), we

obtain

I(P (1)
p , C0) =

t∑
i=1

O
(
m

2/3
p,i n

2/3
p,i + m

6/11
p,i n

9/11
p,i log2/11(m3

p,i/np,i) + mp,i + np,i
)

=

t∑
i=1

O
(
m

2/3
p,i n

1/3
p,i q

1/3 + m
6/11
p,i n

5/11
p,i q4/11 log2/11(m3

p,i) + mp,i + np,i
)

= O
(
m2/3n1/3q1/3 + m6/11n5/11q4/11 log2/11 m + m + n

)
, (3.10)

where the last step uses Hölder’s inequality.
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We would like to combine (3.8), (3.9), and (3.10) to obtain the bound asserted in

Theorem 1.2. All the elements in these bounds add up to the latter bound, with an

appropriate sufficiently large choice of A(j), except for the term O(mr2/3), which might

exceed the bound of the theorem if m is too large. Thus, we restrict m to satisfy

mr2/3 � m3/7n6/7, i.e. r � n9/7

m6/7
.

Substituting the chosen value of r, we thus require that

m3/(3−2α)

n3α/(3−2α)
� n9/7

m6/7
.

That is, we require

m � n
9+α

13−4α .

Recalling that we write the (upper bound) constraint on m at the jth stage as m � nαj , we

have the recurrence

αj =
9 + αj−1

13 − 4αj−1
.

To simplify this, we write αj = 3/2 − 1/xj , and obtain the recurrence

xj = xj−1 +
4

7
,

with the initial value x0 = 6/7 (this gives the initial constraint m � n1/3). In other words,

we have xj = (4j + 6)/7, and

αj =
3

2
− 7

4j + 6
.

The first few values are α0 = 1/3, α1 = 4/5, α2 = 1, and α3 = 10/9. Note that every

m < n3/2 is covered by the range of some stage. Specifically, given such an m, it is covered

by stage j, where j is the smallest integer satisfying

m � n3/2−7/(4j+6),

and straightforward calculations show that

j =

⌈
3

2
· log(m/n1/3)

log(n3/2/m)

⌉
.

Inspecting the preceding analysis, we see that the bound holds for the jth stage if we

choose A(j) = A · A(j−1), where A is a sufficiently large absolute constant. Hence, for m

in the jth range, the bound on I(P , C) has Aj+1 as the constant of proportionality. This

completes the description of the stage, and thus the proof of Theorem 1.2.

Remarks. (1) The analysis holds for any m < n3/2. However, when m is very close to

n3/2, say it is proportional to n3/2, then j = Θ(log n), and the ‘constant’ A(j) is no longer

a constant. The requirement m � n3/2−δ in the theorem is made to ensure that Am,n does

not exceed some constant threshold (which depends on δ).
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(2) The case m > n3/2 is not considered for this improvement, but we believe that it

too can be handled by similar techniques. Note that m3/7n6/7 = O(m) when m > n3/2, so,

ignoring the terms that depend on q, the overall bound is O(m1+ε), for any ε > 0. One

should be able to remove this dependence on ε, as we did in the case m < n3/2.

4. The number of popular points in an irreducible variety

It remains to prove Lemma 3.1. To do so, we will use the three-dimensional inversion

transformation I : R
3 → R

3 about the origin (e.g., see [27, Chapter 37]). The transformation

I(·) maps the point p = (x1, x2, x3) �= (0, 0, 0) to the point p̄ = I(p) = (x̄1, x̄2, x̄3), where

x̄i =
xi

x2
1 + x2

2 + x2
3

, i = 1, 2, 3.

A proof for the following lemma can be found in [27, Chapter 37].

Lemma 4.1.

(a) Let C be a circle incident to the origin. Then I(C) is a line not passing through the

origin.

(b) Let C be a circle not incident to the origin. Then I(C) is a circle not passing through

the origin.

(c) The converse statements of both (a) and (b) also hold.

Proof of Lemma 3.1. Consider an irreducible surface Z = Z(g) which is neither a plane

nor a sphere, and let E = deg(g). Assume, for contradiction, that there exist three popular

points z1, z2, z3 ∈ Z . By translating the axes we may assume that z1 is the origin. We

apply the inversion transformation to Z . Since I is its own inverse, I(Z) can be written

as Z(g ◦ I). To turn g ◦ I into a polynomial, we clear the denominators resulting from

this transformation by multiplying g ◦ I by a suitable (minimal) power of x2
1 + x2

2 + x2
3.

This does not change the (real) zero set of g ◦ I (except for possibly adding the origin

0 to the set). We refer to the resulting polynomial as ḡ. Notice that the degree of ḡ is

strictly smaller than 2E, since to clear denominators we need to multiply g ◦ I by at most

(x2
1 + x2

2 + x2
3)

E , and the highest-degree terms will be the ones that were previously the

linear terms (if they exist; since Z(g) contains the origin, g has no constant term). Since

we have multiplied g ◦ I by the minimum power of x2
1 + x2

2 + x2
3, we may assume that ḡ

is not divisible by x2
1 + x2

2 + x2
3. If some other polynomial divided ḡ, then after applying

the inversion again and clearing denominators we would obtain a non-trivial polynomial

different from g that divides g. Thus, since g is irreducible, we conclude that ḡ is also

irreducible.

By assumption, Z(g) contains 44E2 circles incident to the origin z1. Lemma 4.1(a) thus

implies that Z(ḡ) contains at least 44E2 lines. We claim that Z(ḡ) is a ruled surface.

If deg(ḡ) = 2, then we can consider all types of quadratic trivariate polynomials and

observe that the ones whose zero sets may contain more than 44E2 = 176 lines are all

ruled (namely, they are pairs of planes, cones, cylinders, one-sheeted hyperboloids, or

hyperbolic paraboloids). (If deg(ḡ) = 1, Z(ḡ) is a plane.) If deg(ḡ) � 3, then since ḡ is
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irreducible of degree at most 2E and Z(ḡ) contains at least 44E2 > 2E(11 · 2E − 24) lines,

Corollary 2.11 implies that Z(ḡ) is ruled. Since no regulus contains a point and more than

two lines through that point, Z(ḡ) is not a regulus. Moreover, Z(ḡ) is not a plane since

Z(g) is neither a plane nor a sphere. That is, Z(ḡ) is singly ruled.

Thus, Z = Z(g) can be written as the union of a set of circles and a (possibly empty) set

of lines, all of which are incident to z1; these are the images under the inverse inversion of

the lines spanning Z(ḡ) (see Lemma 4.1(c), and observe that lines through z1 are mapped

to themselves by the inversion). By a symmetric argument, this property also holds for z2

and for z3. This implies that, for i = 1, 2, 3, every point u in Z is incident to a circle or a

line that is also incident to zi. These three circles or lines are not necessarily distinct, but

they can all coincide only when u lies on the unique circle or line γ that passes through

z1, z2, z3, and then all the above three circles or lines coincide with γ.

The original surface Z may or may not be ruled. Recall that the only doubly ruled

surfaces are the hyperbolic paraboloid and the hyperboloid of one sheet. Since both of

these surfaces do not contain a point that is incident to infinitely many lines or circles

contained in the surface, we conclude that Z is not doubly ruled. Since we have assumed

that Z is not a plane, it is not triply ruled either. Thus Z is either not ruled or only singly

ruled.

We define a point u ∈ Z to be exceptional if there are infinitely many lines contained

in Z that pass through u (think, for example, of the case where Z(g) is a cone with this

point as an apex). By Corollary 3.6 from [24], if Z is singly ruled, then Z contains at

most one exceptional point. According to Corollary 2.11, if Z is not ruled, it contains

only finitely many lines, and thus it cannot contain any exceptional points. (Corollary 2.11

does not apply to quadratic surfaces, but it can be verified that the above property also

holds in this case, by checking all the possible types of quadratic surfaces.) Therefore,

Z contains at most one exceptional point, and in particular we may assume that z2, z3

are not exceptional points. Since z2 (resp. z3) is popular but not exceptional, there are

infinitely many circles passing through z2 (resp. z3) and contained in Z . On the other

hand, as already observed, at most one circle can pass through the triplet z1, z2, z3.

Thus, after possibly interchanging the roles of z1, z2 and z3, we may assume that there

exists an infinite collection of circles contained in Z that are incident to z2 but not

to z1.

Consider the image Z(ḡ) ⊂ R
3 of Z after applying the inversion transform around the

point z1 (which we have translated to become the origin) and let z̄2 = I(z2). According

to Lemma 4.1(b), the infinite family of circles contained in Z that are incident to z2 but

not to z1 are transformed into an infinite family of circles that are contained in Z(ḡ) and

incident to z̄2. We denote the latter family as C̄.

Consider a plane Π and notice that Π ∩ Z(ḡ) is an algebraic curve of degree at most

2E. This implies that Π contains at most E circles of C̄. Since this holds for any plane,

there exists an infinite subset C̄ ′ ⊂ C̄ such that no two circles in C̄ ′ are coplanar. (Π cannot

be contained in Z(ḡ) since the latter surface is irreducible, and if it is a plane then Z is

either a sphere or a plane.)

Since Z(ḡ) is two-dimensional, by Theorem 2.4 we have (ḡ) = I(Z(ḡ)). Since Z(ḡ)

is ruled, Theorem 2.10 implies Z(ḡ) ⊂ Z(FLḡ) ⊂ R
3. Hence I(Z(FLḡ)) ⊂ I(Z(ḡ)), and in
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particular FLḡ ∈ I(Z(ḡ)) = (ḡ). That is, ḡ divides FLḡ in R[x1, x2, x3], and thus also in

C[x1, x2, x3]. In particular, this means that ZC(ḡ) ⊂ ZC(FLḡ). By Theorem 2.12 this implies

that Z∗ is also ruled.

In the remainder of the proof we will work mainly in complex projective 3-space CP3

instead of real affine space, which we have considered so far.

Projectivization. The projectivization of a point p = (p1, p2, p3) ∈ C
3 is obtained by passing

to homogeneous coordinates, and by assigning p to p† = (1, p1, p2, p3) (where all non-zero

scalar multiples of p† are identified with p†). To distinguish between such homogeneous

coordinates and coordinates in the affine spaces R
3 and C

3, we write them as [x0 : x1 : x2 :

x3] (a rather standard notation: see [37]), and we will also use a similar notation for the

projective Plücker 5-space of lines in 3-space. The space of all points [x0 : x1 : x2 : x3] �= 0

is denoted as CP3. As noted, two points [x0 : x1 : x2 : x3], [x′
0 : x′

1 : x′
2 : x′

3] ∈ CP3 are

considered to be equivalent if there exists a non-zero constant λ ∈ C such that x0 =

λx′
0, x1 = λx′

1, x2 = λx′
2, and x3 = λx′

3. Given a point [p0 : p1 : p2 : p3] with p0 �= 0, its

dehomogenization with respect to p0 is the affine point (p1/p0, p2/p0, p3/p0) ∈ C
3. For more

details, see [15, Chapter 8].

If h ∈ C[x1, x2, x3] is a polynomial of degree E, we can write

h =
∑
I

aIx
I ,

where each index I is of the form (I1, I2, I3) with I1 + I2 + I3 � E, and xI = xI11 x
I2
2 x

I3
3 .

Define

h† =
∑
I

aIx
E−I1−I2−I3
0 xI11 x

I2
2 x

I3
3 .

Then h† is a homogeneous polynomial of degree E, referred to as the homogenization of

h. We define the projectivization of the complex surface Z(h) to be the zero set of h† in the

three-dimensional complex projective space CP3. We define the complex projectivization

of a real surface S = Z(h) to be the projectivization of the complexification S∗ of S .

Let Ẑ ⊂ CP3 be the complex projectivization of the surface Z(ḡ). For the next steps of

the analysis, we introduce the so-called absolute conic in CP3 (e.g., see [38])

Γ = {[x0 : x1 : x2 : x3] | x0 = 0, x2
1 + x2

2 + x2
3 = 0}.

Notice that Γ is contained in the plane at infinity x0 = 0, and does not contain any real

point (a point all of whose coordinates are real).

We will need the following simple lemma.

Lemma 4.2. Let f ∈ C[x0, x1, x2, x3] be a homogeneous polynomial of degree D, and let

S = Z(f) ⊂ CP3. Let p be a point in S , let v be a direction in CP3, and let � be the line

incident to p with direction v. If all partial derivatives of f of order at most D vanish at p

in the direction v, then � ⊂ S .
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Proof. Let f0 be the restriction of f to the line �, and notice that f0 is a univariate

polynomial of degree at most D. Since all derivatives of f0 of degree at most D vanish at

p, f0 must be identically 0.

Lemma 4.3. Ẑ ⊂ CP3 is irreducible and singly ruled.

Proof. According to the above discussion, the complexification Z∗ of Z(ḡ) is irreducible

and ruled. It is singly ruled since otherwise Z∗ would be a complex plane or regulus, and

it cannot be that the real part of a complex plane or regulus is a singly ruled surface. It

remains to consider the projectivization Z∗ of the complexification.

If the homogenization f† of a non-constant polynomial f is divisible by a polynomial

f0, then f is divisible by the polynomial obtained by substituting x0 = 1 in f0. Moreover,

f† is not divisible by any polynomial of the form xa0, for an integer a > 0 (since f is not a

constant). Thus, if f is irreducible, then so is f†. This in turn implies that Ẑ is irreducible.

By definition, for every point p in the complexification Z∗ of Z(ḡ), there exists a line �

that is incident to p and fully contained in Z∗. Notice that the projective point p† ∈ Ẑ is

incident to the projective line �† ⊂ Ẑ (i.e., the locus of the projectivizations of the points of

�). Thus, for any point p = [p0 : p1 : p2 : p3] ∈ Ẑ for which p0 �= 0, there is a line incident

to p and fully contained in Ẑ . It remains to consider points p = [p0 : p1 : p2 : p3] ∈ Ẑ for

which p0 = 0. Since Ẑ is irreducible and cannot be the plane Z(x0), then Ẑ ∩ Z(x0) is a

one-dimensional curve. Since p must have at least one non-zero coordinate, we may assume

without loss of generality that p3 �= 0. Let Z0 ⊂ C
3 be the dehomogenization Ẑ\{x3 = 0}

with respect to x3, and note that the image of p is contained in Z0. Notice that every

projective line that is fully contained in Z but not contained in Z(x3) corresponds to a

line fully contained in Z0. Since Ẑ contains a line through every point with a non-zero

x0-coordinate (and the set of points with zero x0-coordinate form a proper sub-variety

of Ẑ), Z0 contains infinitely many lines. Applying Theorem 2.12 implies that Z0 is ruled.

Thus, Z0 contains a line �0 incident to p. The projectivization of �0 is fully contained in

Ẑ and incident to p. In conclusion, Ẑ is ruled; it remains to show that it is singly ruled.

Notice that there is a bijection between the lines in affine space and the lines in

projective space that are not fully contained in the plane Z(x0). Consider a projective

point p† ∈ Z(ḡ†) \ Z(x0) and its corresponding dehomogenized affine point p. If p† is

incident to two lines that are fully contained in Z(ḡ†), then the two corresponding affine

lines are incident to p and are fully contained in Z(ḡ). Thus, Z(ḡ†) is singly ruled, since if

Z(ḡ†) were doubly or triply ruled then Z(ḡ) would also have to be doubly or triply ruled,

which is not the case.

Using the Plücker representation of lines. With all these preparations, we reach the

following scenario. We have an irreducible singly ruled surface Ẑ in CP3 (the complex

projectivization of Z(ḡ)), which contains an infinite family Ĉ of circles (the complex

projectivization of the circles of C̄), no pair of which are coplanar. The following arguments

are based on the recent work of Nilov and Skopenkov [38] concerning surfaces that are

‘ruled’ by lines and circles. Before taking the circles into account, we first probe deeper

into the structure of our ruled surface Ẑ by considering the Plücker representation of
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lines in 3-space. Specifically, let

Λ = {[x0 : . . . : x5] | x0x5 + x1x4 + x2x3 = 0} ⊂ CP5 (4.1)

be the Plücker quadric. Given a point p = [x0 : . . . : x5] ∈ Λ, at least two of the four

‘canonical’ points [0 : x0 : x1 : x2], [x0 : 0 : −x3 : −x4], [x1 : x3 : 0 : −x5], and [x2 : x4 :

x5 : 0] cannot be the undefined point [0 : 0 : 0 : 0] because each of the six coordinates

x0, . . . , x5, not all zero, appears as a coordinate of two of these points. Then there exists a

unique line �p in CP3 that passes through all non-zero canonical points of p. We refer to

the map p → �p as the Plücker map, and observe that it is a bijection between the points

p ∈ Λ and the lines �p ⊂ CP3. Further details about the Plücker map and the Plücker

quadric can be found, for example, in [15, Section 8.6].

Let ΛẐ = {p ∈ Λ | �p ⊂ Ẑ}; that is, ΛẐ is the set of all points in Λ that correspond

to lines that are fully contained in Ẑ . We claim that ΛẐ is an algebraic variety in CP5

that is composed of a single one-dimensional irreducible component, possibly together

with an additional finite set of points. Example 6.19 of [25] establishes that ΛẐ is a

projective variety (indeed, it is an example of a Fano variety). We must now show that

an irreducible two-dimensional surface in CP3 that does not contain any planes cannot

contain a two-dimensional family of lines. This implies that ΛẐ is a one-dimensional set.

Lemma 4.4. Let S ⊂ CP3 be a ruled surface that does not contain any planes and let

γ ⊂ CP5 be the set of points on the Plücker quadric that correspond to lines contained in S .

Then γ is one-dimensional.

Proof. Assume, for contradiction, that γ contains a two-dimensional irreducible compon-

ent γ2, and let Π ⊂ CP3 be a generic plane. Since we are in projective space, Π intersects

every line of γ2. Each line contained in S whose corresponding point is in γ2 intersects

the curve σ = S ∩ Π. Since the singular points of S are contained in a one-dimensional

variety (this follows, for example, from Sard’s lemma [43]), and since Π is a generic plane,

we may assume that Π contains only finitely many singular points of S . Let F : γ2 → σ

be a mapping that sends each point p ∈ γ2 to the intersection point of σ with the line

corresponding to p.

We claim that σ contains a non-singular point q of S such that F−1(q) is infinite (i.e.,

infinitely many lines that correspond to points of γ2 are incident to q). Indeed, first notice

that it is impossible for F−1(q) to be two-dimensional, for any q ∈ σ. Indeed, if F−1(q)

were two-dimensional, then the intersection of the corresponding lines with any sphere

around q would also be two-dimensional, contradicting the fact that S is two-dimensional.

Therefore, for every point q ∈ σ, F−1(q) is either one-dimensional or zero-dimensional.

Moreover, it cannot be that all of these pre-images are zero-dimensional, since a one-

dimensional set of zero-dimensional varieties cannot cover the entire two-dimensional

family of lines; see, e.g., [26, Exercise 3.22(b)]. Thus, there are infinitely many points

q ∈ σ, such that F−1(q) is infinite. Since there are finitely many singular points of S in σ,

there are non-singular points with such an infinite pre-image.

We can now complete the proof of Lemma 4.4. We have a smooth point q of S such

that there are infinitely many lines that pass through q and are contained in S . These lines
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must also be contained in the tangent plane TqS . Thus by Lemma 2.7, S must contain

the tangent plane TqS . This contradicts the fact that S does not contain any planes.

The above proof still holds when assuming that the dimension of γ is larger than 2.

Notice that γ cannot be zero-dimensional, since then the higher-dimensional extension

of Bézout’s theorem (Theorem 2.6) would imply that it is finite, and the union of the

corresponding lines will not be two-dimensional.

Lemma 4.4 implies that ΛẐ is one-dimensional. To prove that it consists of a single

one-dimensional irreducible component (possibly with additional zero-dimensional com-

ponents), we shall first require the following two lemmas.

Lemma 4.5. Let γ ⊂ CP5 be a projective subvariety of the Plücker quadric Λ.

Then
⋃

p∈γ �p ⊂ CP3 is also a projective variety.

Lemma 4.5 is a special case of Proposition 6.13 from [25].

Lemma 4.6. Let � ⊂ CP3 be a projective line, and let V ⊂ CP5 be the set of points on the

Plücker quadric Λ that correspond to lines that intersect �. Then V is a projective variety.

Lemma 4.6 is a special case of Example 6.14 from [25].

Let γ be an irreducible one-dimensional component of ΛẐ . According to Lemma 4.5,⋃
p∈γ �p is a two-dimensional algebraic variety that is fully contained in Ẑ . Since Ẑ is

irreducible, ⋃
p∈γ

�p = Ẑ ,

and γ corresponds to a generating family of Ẑ . Let q ∈ CP5 be a point of ΛẐ \ γ, and let

�q ⊂ CP3 be the line that corresponds to q. According to Lemma 4.6, the set Vq ⊂ CP5,

of points that correspond to lines that intersect �q , is a variety. Note that γ ∩ Vq is infinite,

because every point on �q lies on some generator line �p for p ∈ γ. Since γ is irreducible,

then γ ⊂ Vq . That is, every line in the generating family {�p}p∈γ of Ẑ intersects �q . If

there are at least three points in ΛẐ \ γ, then each line in the generating family of Ẑ

intersects three given lines, which implies that Ẑ is either a regulus or a plane.4 Since

reguli and planes are not singly ruled, it follows that ΛẐ is composed of an irreducible

one-dimensional curve, and at most two other points (the additional points correspond

to non-generating lines that are fully contained in Ẑ).5

Adding Γ to the analysis. Consider a line � whose pre-image under the Plücker map

is the point [p0 : . . . : p5] ∈ Λ, such that � does not lie in the plane at infinity. Then

� intersects Γ if and only if p2
0 + p2

1 + p2
2 = 0. Indeed, recall that � contains the point

[0 : p0 : p1 : p2], and this is the only point of � on the plane at infinity Z(x0), for otherwise

4 A nice proof for this claim, which holds in R
3,C3, and CP3, can be found in

http://math.mit.edu/∼lguth/PolyMethod/lect10.pdf (version of June 2013).
5 This also implies that the reguli are the only doubly ruled surfaces in CP3.
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� would be fully contained in that plane. (It cannot be that p0 = p1 = p2 = 0, since then

all four points [0 : p0 : p1 : p2], [p0 : 0 : −p3 : −p4], [p1 : p3 : 0 : −p5], and [p2 : p4 : p5 : 0]

would have a zero x0-coordinate, implying that � is contained in Z(x0).) Thus, the

set ΓΛ = {p ∈ Λ | �p ∩ Γ �= ∅} is an algebraic variety of codimension 1 in Λ. Since the

irreducible one-dimensional component of ΛẐ is also a variety, either it is fully contained

in ΓΛ, or the intersection ΛẐ ∩ ΓΛ is a zero-dimensional variety, and therefore finite

according to the higher-dimensional extension of Bézout’s theorem (Theorem 2.6). If the

former case occurs, then at most two lines in Ẑ do not intersect Γ. However, since Ẑ

is the complex projectivization of a real ruled surface, Ẑ contains infinitely many real

lines (lines whose defining equations involve only real coefficients) that are not contained

in the plane Z(x0), and if � is such a line then � ∩ Z(x0) consists of real points. This

is a contradiction since the curve Γ contains no real points. Therefore, the intersection

ΛẐ ∩ ΓΛ is finite.

Lemma 4.7. Every line intersects Γ in at most two points.

Proof. By Bézout’s theorem (Theorem 2.5), applied in the plane at infinity h = Z(x0), Γ

has at most two intersection points with any line that is not fully contained in Γ (clearly,

lines not contained in h can meet Γ at most once). Thus, it suffices to prove that no line

is fully contained in Γ.

Regard h as the standard complex projective plane CP2, with homogeneous coordinates

[x1 : x2 : x3]. A line � ∈ h has an equation of the form a1x1 + a2x2 + a3x3 = 0, and there

exists at least one coordinate, say x3, with a3 �= 0. This allows us to write the equation of

� as x3 = αx1 + βx2, so its intersection with Γ satisfies the equation

x2
1 + x2

2 + (αx1 + βx2)
2 = 0, or (1 + α2)x2

1 + 2αβx1x2 + (1 + β2)x2
2 = 0.

This is a quadratic equation, whose coefficients cannot all vanish, as is easily checked.

Hence it has at most two solutions, which is what the lemma asserts.

Lemma 4.7 implies that Γ ∩ Ẑ is a finite set. Indeed, if this were not the case, then there

would exist infinitely many points of Γ that lie in Ẑ and each of them is therefore incident

to a line contained in Ẑ . Since every line meets Γ in at most two points, Γ would have

intersected infinitely many lines contained in Ẑ . This is a contradiction since, as argued

above, ΛẐ ∩ ΓΛ is a finite intersection.

Adding the circles to the analysis. Let C̄ ′ be the collection of circles described earlier; that

is, an infinite set of pairwise non-coplanar circles that are fully contained in Z(ḡ) and

incident to z̄2. Let Ĉ ′ be the corresponding collection of the complex projectivizations of

these circles. As just argued, all of the intersection points between the circles of Ĉ ′ and Γ

must lie in the finite intersection Γ ∩ Ẑ .

Lemma 4.8. Each circle Ĉ in Ĉ ′ intersects Γ in precisely two points.

Proof. Each circle Ĉ in Ĉ ′ is the complex projectivization of a real circle C . Consider C

as the intersection of its supporting plane, whose equation is ax0 + bx1 + cx2 + dx3 = 0,
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for appropriate parameters a, b, c, d, with some suitable sphere whose equation is (x1 −
a′x0)

2 + (x2 − b′x0)
2 + (x3 − c′x0)

2 = d′x2
0, for appropriate parameters a′, b′, c′, d′. Since C

is real, all coefficients of these equations can be assumed to be real, and d′ > 0.

By combining these equations of C with the equations x0 = 0 and x2
1 + x2

2 + x2
3 = 0 of

the absolute conic Γ, we obtain the system

bx1 + cx2 + dx3 = 0, x2
1 + x2

2 + x2
3 = 0

(where the second equation arises twice), which always has two distinct solutions when

b, c, d are real. Indeed, using the notation in the proof of Lemma 4.7, the intersection

points satisfy a quadratic equation of the form

(1 + α2)x2
1 + 2αβx1x2 + (1 + β2)x2

2 = 0

(or a similar, symmetrically defined equation in another pair of variables), where α and β

are real. The discriminant of this equation is

4α2β2 − 4(1 + α2)(1 + β2) = −4(α2 + β2 + 1),

which is always non-zero (and strictly negative) when α and β are real. Also, the coefficients

of x2
1, x

2
2 are both non-zero, and thus the equation has exactly two (complex conjugate)

solutions.

The final stretch. Since Ĉ ′ contains infinitely many circles and Γ ∩ Ẑ is finite, by the

pigeonhole principle there must exist two circles C1, C2 in Ĉ ′ such that the sets C1 ∩ Γ

and C2 ∩ Γ are identical (each being a set of two points). By construction, C1 and C2 are

contained in two distinct planes Π1 and Π2. Consider the line � = Π1 ∩ Π2 and notice

that it contains C1 ∩ C2. Thus, � contains the two intersection points of C1, C2 with Γ.

Since these two points are contained in the plane {x0 = 0}, � is also contained in this

plane. However, this is impossible, since � also contains z̄2 (common to all circles of Ĉ ′),

which is not in the plane {x0 = 0}. This contradiction completes, at long last, the proof

of Lemma 3.1.

5. Unit circles

In this section we consider the special case where all circles in C have the same radius,

say 1. The analysis is very similar to the general case, except for two key issues.

(a) In the general case we have used the fact that the incidence graph in P × C does

not contain K3,2 as a subgraph, to derive the weaker ‘bootstrapping’ bound I(P , C) =

O(n2/3m + n). Here, in Lemma 5.1 below, we replace this estimate by an improved

one, exploiting the fact that all circles are congruent.6

6 If all our circles were coplanar or cospherical, life would have been simpler, since then the incidence

graph does not contain K2,3 as a subgraph, which is the basis for deriving the improved planar bound

I(P ,C) = O(m2/3n2/3 + m + n). In three dimensions the incidence graph can contain K2,q for any value of q,

making the analysis more involved and subtler.
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(b) When considering the case of circles that lie in a common plane or sphere, we use

the improved planar bound for unit circles I(P , C) = O(|P |2/3|C|2/3 + |P | + |C|) (e.g.,

see [46]).

These two improvements result in the sharper bound of Theorem 1.3, which we restate

here for the convenience of the reader.

Theorem 1.3. Let P be a set of m points and let C be a set of n unit circles in R
3, let ε

be an arbitrarily small positive constant, and let q � n be an integer. If no plane or sphere

contains more than q circles of C, then

I(P , C) = O
(
m5/11+εn9/11 + m2/3+εn1/2q1/6 + m + n

)
,

where the constant of proportionality depends on ε.

Proof. We first establish the following lemma, which improves the weaker bound on

I(P , C), as discussed in (a) above.

Lemma 5.1. Let P be a set of m points in R
3 and let C be a collection of unit circles in

R
3, so that each circle of C is incident to at least three points of P . Then |C| = O(m5/2).

A stronger statement is that the number of circles of C that pass through any fixed point

o ∈ P and through at least two other points is O(m3/2).

Proof. It clearly suffices to establish only the second claim of the lemma. Fix one point

o of P and let P ′ = P\{o}. For each a ∈ P ′, let σa be the locus of all points w ∈ R
3

such that o, a, and w lie on a common unit circle. The set σa is an algebraic surface of

revolution, obtained by taking any unit circle passing through o and a and by rotating

it around the line oa. If o and a are diametral, that is, if |oa| = 2, then σa is a sphere.

If |oa| > 2 then σa is empty. Otherwise, σa is easily seen to be an irreducible surface of

degree 4; the ‘outside’ portion of σa resembles a sphere pinched at o and a, which are the

only singular points of σa; the ‘inner’ portion resembles a pointy (American) football.

Let S = {σa : a ∈ P ′}. In order to prove the second claim of the lemma, it suffices to

show that I(P ′,S) = O(m3/2). We require the following lemma.

Lemma 5.2. There exists an absolute constant s such that for all triples a, b, c ∈ P ′, we

have |σa ∩ σb ∩ σc| � s

Proof. If |σa ∩ σb ∩ σc| is finite, then Milnor’s theorem (Theorem 2.3) implies that this

number is at most some constant E. By setting s to be, say, E + 1, we ensure that the

intersection must be infinite.

Consider then the case where σa ∩ σb ∩ σc is a one-dimensional curve γ (it cannot be

two-dimensional because σa, σb, σc are distinct irreducible varieties, no pair of which can

overlap in a two-dimensional subset), and let w be a smooth point on γ. Let τ be the

tangent to γ at w. Then τ is orthogonal to the three respective normals na, nb, nc to σa, σb,

σc at w. In other words, these normals must be coplanar. Now, because σa is the surface

of revolution of a circle, na lies on the ray �ξaw, where ξa is the centre of the unit circle
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ξa

w

a

na

o

Figure 1. The normal na to σa lies on the ray �ξaw, where ξa is the centre of the unit circle passing through o,

a, and w.

passing through o, a, and w; an illustration is provided in Figure 1. Symmetric properties

hold for σb and σc, with respective centres ξb, ξc.

In other words, the argument implies that w, ξa, ξb, and ξc all lie in a common plane

h. However, all three centres ξa, ξb, and ξc must lie on the perpendicular bisector plane

π of ow, which does not contain w, so π �= h, and these centres then have to lie on the

intersection line � = h ∩ π. This is impossible if ξa, ξb, and ξc are distinct, because it is

impossible for three distinct collinear points to be at the same distance (namely, 1) from o.

Assume then that ξa = ξb, say. That is, we have two distinct unit circles passing through

o and w with a common centre ξ = ξa = ξb, which is possible only when |ow| = 2 (that

is, ow is a diameter of both circles). Moreover, ξ lies at distance 1 from o, a, and b, so it

is the centre of a unit ball that passes through these points. There can be at most two

such balls, so there are only two possible locations for ξ. Since ξ is the midpoint of ow

(recall that ow is a diameter of the sphere σa), it follows that there are only two possible

locations for w. That is, γ has at most two smooth points, which is impossible, as follows,

say, from Sard’s theorem (e.g., see [43]).

We can now apply Theorem 2 from [50] to conclude that

I(P ′,S) � |P ′|3/4|S|3/4 + |P ′| + |S|.

Since |P ′| = O(m) and |S| = O(m), Lemma 5.1 follows.

Consider pairs of the form (p, c) where p ∈ P and the circle c ∈ C is incident to p and

to at least two other points of P . By Lemma 5.1, every point of P can participate in

at most O(m3/2) such pairs, and thus the number of pairs is O(m5/2). This implies that

I(P , C) = O(m5/2 + n), so it is O(n) for m = O(n2/5) (recall that in the general case this

could be claimed only for m = O(n1/3)).

The proof of Theorem 1.3 now proceeds in complete analogy with the proof of

Theorem 1.1, except for the modifications mentioned in (a) and (b) above. Specifically, we

construct an r-partitioning polynomial, of degree O(r1/3), for a sufficiently large constant

parameter r, and consider separately points of P in the cells of the partition, and points

on Z(f). The bound for the former kind of points is handled via induction, in much the

same way as before, except that we replace the term O(n), towards the derivation of (a

bound analogous to the one in) (3.5), by O(m5/11n9/11), which holds for n = O(m5/2). We

also remove the terms of the form O(m6/11+εn9/11) (see below for a justification). This
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results in the modified bound

I(P0 ∪ P ′, C ′) � α1

3

(
m5/11+εn9/11 + m2/3+εn1/2q1/6

)
+ α2|P ′|. (5.1)

This ‘explains’ why we can use here the improved exponents 5/11 and 9/11 instead of the

weaker respective ones 3/7 and 6/7.

The second modification is in handling incidences involving private points on Z(f) that

lie in planes or spheres that are zero sets of respective irreducible factors of f. Here, in

the derivation of a bound analogous to the one in (3.7), we use the sharper planar bound

I(P , C) = O
(
|P |2/3|C|2/3 + |P | + |C|

)
,

which also holds when the points and circles are all cospherical. This replaces (3.7) with

the sharper bound

I(P (1)
p , C0) � α1

3
m2/3+εn1/2q1/6 + α2(m

(1)
p + n/3). (5.2)

The rest of the analysis remains unchanged, and leads to the bound asserted in the

theorem.

By applying the techniques presented in Section 3.1, we obtain the following theorem.

Theorem 5.3. Let P be a set of m points and let C be a set of n unit circles in R
3, let q � n

be an integer, and let m = O(n3/2−δ), for some fixed arbitrarily small constant δ > 0. If no

sphere or plane contains more than q circles of C, then

I(P , C) � Am,n

(
m5/11n9/11 + m2/3n1/2q1/6 + m + n

)
,

where

Am,n = A
� log (m5/n2)

3 log (n3/2/m)
�+1

,

for some absolute constant A > 1.

Since the proof of Theorem 5.3 is almost identical to the proof of Theorem 1.2, we

omit it.

6. Applications

High-multiplicity points. The following is an easy but interesting consequence of Theor-

ems 1.1 and 1.3.

Corollary 6.1.

(a) Let C be a set of n circles in R
3, and let q � n be an integer so that no sphere or plane

contains more than q circles of C. Then there exists a constant k0 (independent of C)

such that for any k � k0, the number of points incident to at least k circles of C is

Õ

(
n3/2

k7/4
+

n3/2q1/2

k3
+

n3/2q3/10

k11/5
+

n

k

)
. (6.1)
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In particular, if q = O(1), the number of such points is

Õ

(
n3/2

k7/4
+

n

k

)
.

(b) If the circles of C are all congruent the bound improves to

Õ

(
n3/2

k11/6
+

n3/2q1/2

k3
+

n

k

)
. (6.2)

In particular, if q = O(1), the number of such points is

Õ

(
n3/2

k11/6
+

n

k

)
.

Proof. Let m be the number of points incident to at least k circles of C, and observe that

these points determine at least mk incidences with the circles of C. Comparing this lower

bound with the upper bound in Theorem 1.1 (for (a)), or in Theorem 1.3 (for (b)), the

claims follow.

Remarks. (1) It is interesting to compare the bounds in (6.1) and (6.2) with the various

recent bounds on incidences between points and lines in three dimensions [16, 23, 24]. In

all of them the threshold value m = Θ(n3/2) plays a significant role. Specifically, we have

the following.

(i) The number of joints in a set of n lines in R
3 is O(n3/2), a tight bound in the worst

case [23].

(ii) If no plane contains more than
√
n lines, the number of points incident to at least

k � 3 lines is O(n3/2/k2) [24].

(iii) A related bound where m = n3/2 is a threshold value, under different assumptions, is

given in [16].

The bounds in (6.1) and (6.2) are somewhat weaker (because of the extra small factors

hidden in the Õ(·) notation, the rather restrictive constraints on q, and the constraint

k � k0) but they belong to the same class of results. It would be interesting to understand

how general this phenomenon is. For example, does it also show up in incidences with

other classes of curves in R
3? We tend to conjecture that this is the case, under reasonable

assumptions concerning those curves. Similar threshold phenomena should exist in higher

dimensions. ‘Extrapolating’ from the results of [31, 40], these thresholds should be at

m = nd/(d−1).

(2) The bounds can be slightly tightened by using Theorem 1.2 or Theorem 5.3 instead

of Theorem 1.1 or Theorem 1.3, respectively, but we leave these slight improvements to

the interested reader.

Similar triangles. Another application of Theorem 1.1 (or rather of Theorem 1.2) is an

improved bound on the number of triangles spanned by a set P of t points in R
3 and

similar to a given triangle Δ. Let F(P ,Δ) be the number of triangles spanned by P that
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are similar to Δ, and let F(t) be the maximum of F(P ,Δ) as P ranges over all sets of t

points and Δ ranges over all triangles. We then have the following result.

Theorem 6.2.

F(t) = O(t15/7) = O(t2.143).

Proof. Let P be a set of t points in R
3 and let Δ = uvw be a given triangle. Suppose that

pqr is a similar copy of Δ, where p, q, r ∈ P . If p corresponds to u and q to v, then r has to

lie on a circle cpq that is orthogonal to the segment pq, whose centre lies at a fixed point

on this segment, and whose radius is proportional to |pq|. Thus, the number of possible

candidates for the point r, for p, q fixed, is exactly the number of incidences between P
and cpq . There are 2

(
t
2

)
= t(t − 1) such circles, and no circle arises more than twice in

this manner. It follows that F(t) is bounded by twice the number of incidences between

the t points of P and the t(t − 1) circles cpq . We now apply Theorem 1.2 with m = t and

n = t(t − 1). (The theorem applies for these values, which satisfy m ≈ n1/2, much smaller

than the threshold n3/2; in fact, m lies in the second range [n1/3, n4/5].) It remains to show

that the expression (1.2) is O(t15/7).

The first term of (1.2) is O(t15/7). To control the remaining terms, it suffices to show

that at most O((n3/m2)3/7) = O(t12/7) of the circles lie on a common plane or sphere. In

fact, we claim that at most O(t) circles can lie on a common plane or sphere. Indeed, let

Π be a plane. Then for any circle cpq contained in Π, pq must be orthogonal to Π, pass

through the centre of cpq , and each of p and q must lie at a fixed distance from Π (the

distances are determined by the triangle Δ and by the radius of cpq). This implies that

each point of P can generate at most two circles on Π. The argument for cosphericality

is essentially the same. The only difference is that one point of P may lie at the centre

of the given sphere σ, and then it can determine up to 2(t − 1) distinct circles on σ.

Still, the number of circles on σ is O(t). As noted above, this completes the proof of the

theorem.

As mentioned in the Introduction, this slightly improves a previous bound of O∗(n58/27)

in [6] (see also [1]).
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[18] Erdős, P. (1946) On sets of distances of n points. Amer. Math. Monthly 53 248–250.

[19] Fox, J., Pach, J., Sheffer, A., Suk, A. and Zahl, J. A semi-algebraic version of Zarankiewicz’s

problem, arXiv:1407.5705.

[20] Fuchs, D. and Tabachnikov, S. (2007) Mathematical Omnibus: Thirty Lectures on Classical

Mathematics, AMS.

[21] Fulton, W. (1998) Intersection Theory, Springer.

[22] Guth, L. Distinct distance estimates and low degree polynomial partitioning. arXiv:1404.2321.

[23] Guth, L. and Katz, N. H. (2010) Algebraic methods in discrete analogs of the Kakeya problem.

Adv. Math. 225 2828–2839.
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