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Abstract

A linearly polarized laser pulse has been employed as a wiggler in a free-electron laser (FEL) in the presence of a plasma
background for generating short wavelength radiation down to the extreme ultraviolet ray and X-ray spectral regions.
Introducing plasma background in the FEL interaction region would lessen the beam energy requirement and also
enhance both the beam current and the electron-bunching process. This configuration affords the possibility of scaling
the device to more compact FELs and would have a higher tunability by changing the plasma density and the
temperature of the electron beam. Electron trajectories have been analyzed using single-particle dynamics. The effect
of plasma density on electron orbits has been investigated. A polynomial dispersion relation considering longitudinal
thermal motion has been derived, by employing perturbation analysis. Numerical studies indicate that by increasing
plasma density, the growth rate for groups I and II decreases, while the growth rate for group III increases. In addition,
the effect of beam temperature and cyclotron frequency on the growth rate has been discussed. It has been found that
by increasing the thermal velocity of the electron beam, the growth rate for groups I and III trivially decreases, while it
increases for group II orbits. Besides, an increase in cyclotron frequency cause growth enhancement for group I orbits,
while it present a growth decrement for group II and III orbits.
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1. INTRODUCTION

There is an on-going challenge to produce ultra-compact
short-wavelength radiation sources up to the hard X-ray re-
gions (Lawler et al., 2013; Wong et al., 2015). The ability
of plasmas in supporting high-electric fields has drawn a
lot attention over the past few decades leading to a number
of theoretical and experimental efforts in laser–plasma tech-
nology (Corde et al., 2013; Jafari, 2015). Laser-plasma
sciences may have many applications in laser–plasma accel-
erators (Esarey et al., 2009; Malka, 2012), plasma mirrors
(Thaury et al., 2007), manipulating high-intensity laser
pulses (Gizzi et al., 2001), or collimating relativistic elec-
trons (Geddes et al., 2004). Incoherent X-ray sources can
be obtained by injecting an intense laser on plasmas or on
free electrons. It is very desirable to produce high-power ra-
diation at shorter wavelength and higher brightness using
modest energy beams in a free electron laser (FEL). In con-
ventional FELs, a very high-energy beam is required to

produce a short-wavelength and this should be done in large-
scale accelerator facilities with meter-long magnetic undula-
tors and a period of 1–10 cm. The spectral features of the
undulator radiation depend on a large number of effects
such as the modification induced in the undulator brightness
by the inclusion of the betatron contributions that arise when
the electrons are injected off the undulator axis (Couhan &
Mishra, 2003). Considerable attempts have been made to
make it possible to provide short-wavelength radiation with
less expensive and more compact facilities (Bonifacio
et al., 2011; Huang et al., 2012). Therefore, undulators
with periods less than or of the order of a millimeter
become attractive (Rykovanov et al., 2015). Several ideas
for such undulators have been proposed including electro-
static undulators (Papadichev, 1999), crystalline undulators
(Bellucci et al., 2003), rf-based (Tantawi et al., 2014), laser-
plasma based (Corde & Phuoc, 2011; Andriyash et al.,
2014), and optical undulators (Gallardo et al., 1988).

Recent experiments done in FEL center facilities such as
FERMI at ELETTRA (Allaria et al., 2012), LCLS at
SLAC (Amann et al., 2012), and SPring-8 Compact SASE
Source (SCSS) (Oura et al., 2014) test accelerator in Japan
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assist in the performance improvement of FELs in extreme
ultraviolet (XUV) and X-ray spectral regions overcoming
some of the limitations that are typical of systems on the self-
amplified spontaneous emission (SASE) and may be used to
produce soft X-rays. One of the ideas that has been taken into
consideration in these experiments is seeding the FELs with
an initial coherent signal (Deng et al., 2012). In a seeded am-
plifier FEL, a short wavelength radiation pulse (e.g., from a
laser) is co-propagated with an electron bunch in an undula-
tor. This initiates microbunching, which then develops
quickly along the undulator as the electrons within each mi-
crobunch radiate coherently. However, due to lack of external
seeds at X-ray wavelengths, all current and planned X-ray
FELs are SASE FELs, in which the shot noise of the electron
beam itself generates the seed (Geloni et al., 2011; Ratner
et al., 2015). In the SASE mode, the electron beam pulse
of small cross-section and high-peak current passes through
an undulator and interacts with the emitted synchrotron radi-
ation. This interaction leads to microbunching if a resonance
condition is met (depending on the electron beam energy and
the undulator period) so, the electrons in the developing
micro-bunches radiate coherently (Alesini et al., 2004). EM
waves can also generate spontaneous undulator radiation
and can be substituted for magnetostatic undulators. For
this reason, electromagnetically pumped FELs were suggest-
ed, owing to the fact that the Doppler upshift for such a pump
wave was a factor of twice as much as the magnetostatic un-
dulator with comparable periods (Mahdizadeh & Aghamir,
2013). Designing these kinds of undulators got into difficul-
ties experimentally, because in many cases, the pump wave
would act to defocus the beam and also it was difficult to
hold the concentration of the pump wave over a significant
distance to achieve amplification. Introducing plasma into
the interaction region of a FEL, was a solution to these prob-
lems. Miniaturization of the accelerator facilities using laser
undulators with plasma background would greatly reduce
the basic requirements and increase accessibility to X-ray
light sources.
Laser pulse makes plasma electrons to oscillate at laser fre-

quency, which leads to the formation of ponderomotive force
in plasma. The characteristics of this ponderomotive force
strongly depend on the broadness and the energy of the laser
pulse (Abedi et al., 2011). Consider a linearly polarized laser
pulse propagating in a plasma medium with electron density
np. In accordance with the linear dispersion, the group velocity
of a laser wave in a plasma is given by Sazegari et al. (2006):

vg = c 1− ω2
p

ω2
0

( )1/2
≡ cη< c, (1)

where c is the speed of light,ωp= (4πnpe
2/m)1/2 is the electron

plasma frequency, -e and m are the electron charge and mass,
respectively, ω0 is the laser frequency and η is the refractive
index of the plasma. Since an electromagnetic (EM) wave
propagating in a uniform plasma, has a group velocity less

than the speed of light, the ponderomotive potential associated
with a laser pulse can trap the plasma electrons (Liu et al.,
2007; Sprangle & Hafizi, 2014). In fact, a laser pulse propagat-
ing through a plasma medium travels at lower velocities com-
pared with when it propagates in vacuum and it can act as a
slowwave. In other physical interpretation, just the slowed trav-
eling EM wave can provide the satisfaction of conservation
laws of energy–momentum for real radiation–absorption of
photons propagating with group velocity smaller than c by a
free electron (Avetissian, 2016). Hence, the electron beam
can be in synchronism with the injected pulse and lessen the
beam energy requirement as a result (Jafarinia et al., 2013).
Beam current also improves in the presence of plasma in con-
trast with the vacuum (Mehdian et al., 2010; Andriyash et al.,
2012). Furthermore, the laser guiding and axial electron bunch-
ing process can be amplified (Williams et al., 1993). Plasma
waves have relativistic phase velocity, and can sustain large
electric fields in the direction of the laser propagation (Fedele
et al., 1990; Hosokai et al., 2006). These waves can be used
as undulators in FELs. Joshi et al. (1987) were the first who
proposed an electrostatic plasmawave as an undulator. A kinet-
ic theory of thermal properties of a plasma-loaded FEL was
studied by Babaei and Maraghechi (2008). Ganeev (2012)
has studied the generation of harmonics of laser radiation in
plasmas, leading to generation of strong coherent short wave-
length radiations. Recently, plasma effects on the FEL gain
with a plasma wave undulator have been studied by Hedayati
et al. (2015). In addition, plasma undulator based on laser ex-
citation of wakefields in a plasma channel has been investigated
by Rykovanov et al. (2015), lately. In this paper, we consider a
linearly polarized laser pulse propagating parallel to the elec-
tron beam in a plasma medium in concept of plasma based
laser undulator and we want to investigate the thermal effect
of the e-beam and plasma density variation on the growth
rate of a FEL with such undulator. A schematic illustration of
a plasma-based laser undulator is shown in Figure 1. Here,
the existence of an axial guide magnetic field is essential be-
cause it confines the e-beam. This new approach has a higher

Fig. 1. Schematic diagram of the laser undulator with a plasma background.
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tunability by controlling the plasma density and may lead to
more compact FELs. In our physical model, we assume that
the electron beam length is short compared with the time for
ions to neutralize the beam. The electron bunch durations
have been demonstrated to be of femtosecond duration. The ra-
diation pulse generated by the electron beam will have equiv-
alent duration, and hence femtosecond X-ray pulses are
likely to be generated by exchanging energy between the elec-
tron beam and the laser pulse. Besides, when an electron beam
passes through plasma, it quickly induces a return current. This
current which fully neutralizes the beam current is carried by
the plasma electrons, so the resulting system undergoes various
instabilities such as multi-stream, two-stream, filamenation,
and Weibel, that can disrupt beam propagation (Hasanbeigi
et al., 2014). Such instabilities can be neglected in our
model. The organization of this paper is as follows. In Section
2, electron trajectories of the electron beam are given. In
Section 3, the dispersion relation is obtained by solving the
momentum transfer, continuity, and wave equations, analyti-
cally. The results of numerical studies are discussed in Section
4 and finally the conclusions are drawn in Section 5.

2. LASER UNDULATOR AND ELECTRON
TRAGECTORIES

The transverse fields experienced by a single electron propa-
gating parallel to the linearly polarized laser pulse in the pres-
ence of a plasma background can be expressed as

EL = 1
2
EL exp[i(kLz− ωLt)]x̂+ C.C., (2)

BL = 1
2
BL exp[i(kLz− ωLt)]ŷ+ C.C., (3)

where (ωL, kL) is the frequency and the wave number, BL and
EL are the peak field strength of the linearly polarized laser,
and B0 is the axial magnetic field strength, respectively. Be-
sides, C.C. implies the complex conjugate. The orbit equa-
tions for an electron in this combined field are given by

dV
dt

= − e

mγ
I− 1

c2
VV

( )
· EL + 1

c
V × (B0ẑ+ BL)

[ ]
, (4)

where I is the unit dyadic, c is the speed of light, and m and v
are the rest mass and velocity of the electron. The substitution
of Eqs. (2) and (3) into the Lorentz force equation, Eq. (4),
yields

dβx
dτ

= −βpΩL cos(χ3 − βpτ)

−Ω0βy + ΩLβz cos(χ3 − βpτ),
(5)

dβy
dτ

= Ω0βx, (6)

dβz
dτ

= −ΩLβx cos(χ3 − βpτ). (7)

HereΩ0= eB0/γmc
2 kL is the normalized cyclotron frequency,

χ3= kLz, τ= ckLt, and ΩL= eBL/γmc
2kL, βi= vi/c is the

normalized velocity components of the single-particle and
βp=ωL/ckL is the normalized phase velocity of the laser
wave. Since the energy of electron is a constant of motion
when it is averaged over cycles (γ= const.), the steady-state
solution seems to be appropriate here; becausewe are interested
in achieving the steady-state trajectories (Freund & Antonsen,
1992). Therefore the term mVdγ/dt which leads to the term
V(V · EL) has been ignored in the above equations. In this
case, we can find the wiggler-induced transverse velocity. By
solving the above coupled differential equations, the normal-
ized velocity components can be found as

βx =
ΩL(β3 − βp)2

(β3 − βp)2 − Ω2
0

sin(χ3 − βpτ), (8)

βy = − Ω0ΩL(β3 − βp)
(β3 − βp)2 −Ω2

0

cos(χ3 − βpτ), (9)

βz = β3 = const. (10)

The steady-state trajectories βx, βy, and βz are related through
β2x + β2y + β2z = 1− γ−2. By employing normalized trans-
verse velocity, the axial velocity yields as

β23 = 1− γ−2 − 1
2

ΩL(β3 − βp)2
(β3 − βp)2 −Ω2

0

[ ]2

1+ Ω2
0

(β3 − βp)2
( )

. (11)

By inserting the velocity components of electrons of the beam
and of the plasma background into the Maxwell equation, the
phase velocity of the laser pulse is determined in a self-
consistent fashion by dielectric properties of the medium as,

β2p −
ω2
b(β3 − βp)2

(β3 − βp)2 − Ω2
0

− γω2
pβ

2
p

β2p − γ2Ω2
0

− 1 = 0, (12)

where ωb = (4πe2nb/γmc2k2L)1/2 is the normalized beam fre-
quency, ωp = (4πe2np/γmc2k2L)1/2 is the normalized plasma
frequency, nb and np are the density of the electron beam and
plasma, respectively. The graph of normalized electron axial
velocity, β3, versus the normalized cyclotron frequency, Ω0,
for different plasma density has been depicted in Figure 2.
To plot this figure, we solve Eqs. (11) and (12) simultaneously.
By solving these combined equations several answers will be
attained for β3 in terms of Ω0. Plotting these solutions shows
the group orbits of electron trajectories. Here only three an-
swers are desired for axial electron velocity of 0< β3< 1, so
the components of the velocity of the relativistic electron can
be specified by three different groups of classes of trajectories,
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which are due to the three desired answers. Therefore the group
orbits are depicted in separate panels of groups I, II, and III,
respectively.

3. DISPERSION RELATION

An analysis of the wave propagation in the laser–plasma undu-
lator will be based on the electron momentum transfer equation
Eq. (4), and the longitudinal oscillations are expected to be af-
fected by the thermal motion; so the longitudinal component of
the momentum transfer equation can be expressed in terms of

∂
∂t

+ Vz
∂
∂z

( )
V = −e

γm
E− 1

c
V(V · E) + 1

c
V × B

[ ]
− 1

n

∂π
∂z

êz,

(13)

in which π denotes the longitudinal part of the stress tensor.
The full treatment of beam thermal effects can be performed
using the kinetic theory, but some hint of beam temperature ef-
fects can be found within the context of the fluid theory. The
fluid variables will be written in terms of an unperturbed part
plus a small perturbation,V = V0 + V1, n= n0+ n1. The Lo-
rentz relativistic factor will be approximated by

1
γ
−̃ 1
γ0

1− γ20
c2

V0 · V1

[ ]
. (14)

The electric and magnetic fields are given by

E = EL + Er + El, (15)

B = BL + Br + B0, (16)

in which Er and Br are radiation fields, and El is the space-
charge field. The wave equation is obtained by combining
Faraday’s law and Amper–Maxwell’s law,

∇ × (∇ × E) + 1
c2

∂2E
∂t2

+ 4π
c2

∂J
∂t

= 0. (17)

Assuming the transverse oscillations to be small, this equation
reduces to

∂2Ez

∂z2
êz + 1

c2
∂2

∂t2
− ∂2

∂z2

( )
E+ 4π

c2
∂J
∂t

= 0. (18)

The details of the derivation of normalized dispersion relation
are given in the Appendix A. As a result, in the fundamental
mode (n= 0), the dispersion relation, Eq. (A13), can be
written as

Fig. 2. Graph of normalized axial velocity as a function of the normalized cyclotron frequency of (a) group I, (b) group II, (c) group III
orbits for different values of plasma frequencies. The chosen parameters are ωb= 0.08, γ= 40, ΩL= 0.05.
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ω̃2 − k̃
2 − ω̃2

b +
ω̃2
bΩ

2
L(β3 − βp)4

4Γ+[(β3 − βp)2 −Ω2
0]2

{

1
ω̃− βp − kβ3

+ 1
ω̃+ βp − kβ3

( )
+

ω̃2
bΩ

2
L(β3 − βp)2

4Γ+ (β3 − βp)2 − Ω2
0

[ ]
1

ω̃− βp − kβ3
− 1

ω̃+ βp − kβ3

( )}

× ω̃2 − k̃
2 − ω̃2

b +
iω̃2

bΩ
2
LΩ

2
0(β3 − βp)2

4Γ+[(β3 − βp)2 −Ω2
0]2

{

1
ω̃− βp − kβ3

+ 1
ω̃+ βp − kβ3

( )}

= ω̃4
bΩ

4
LΩ

2
0(β3 − βp)6

16Γ2−[(β3 − βp)2 −Ω2
0]4

1
ω̃− βp − kβ3

− 1
ω̃+ βp − kβ3

( )2

+ ω̃4
bΩ

4
LΩ

2
0(β3 − βp)4

4Γ+Γ−[(β3 − βp)2 −Ω2
0]

1

(ω̃− βp − kβ3)2
− 1

(ω̃+ βp − kβ3)2
( )

,

(19)

where

1
Γ±

= k̃ + 1

ω̃− βp − (k̃ + 1)β3 − (3(k̃ + 1)2ṽ2th/γ0)

±
k̃ − 1

ω̃+ βp − (k̃ − 1)β3 − (3(k̃ − 1)2ṽ2th/γ0)
.

(20)

Equation (19) describes the coupling between the transverse
current density and the transverse electric fields of the scat-
tered wave. If the cyclotron frequency equals to the differ-
ence between the electron axial and phase velocity of the
wave (i.e., Ω0 −̃ β3 − βp), then the denominator in the
steady-state transverse velocity [Eqs. (8) and (9)] equals to
zero and there will be a singularity at this point which is
called the magnetoresonance point. This limits the group I
and II trajectories to axial magnetic field below some critical
values (given by the criterion Ω0< 0.9 for group I and Ω0>
0.95 for group II for the chosen parameter ωp= 2.24) and the
trajectory curve breaks down in two distinct groups at this point.
In the vicinity of the magnetic resonance at Ω0 −̃ β3 − βp
the resonant interaction between plasma electrons and laser
pulse occurs which can cause an increase in the kinetic
energy of the plasma electrons, so they can easily ex-
change energy with the propagating laser pulse. In addition,
the energy contained in the plasma electrons could be effec-
tively transferred to the scattered wave through the FEL

coupling process. In order to illustrate the nature of the
growth rate in the free-electron laser (FEL), the dispersion
equation should be solved numerically and the range of
axial magnetic field values should be picked corresponding
to the region of group I and II orbits. Since these orbital trajec-
tories are singular, it should be noted that the growth rate have
a general increase in the resonance frequency. Therefore in a
FEL, the gain, growth rate, and the efficiency are sensitively
dependent on the axial velocity spread of the electrons. The
peak of growth rate would increase to reach its maximum cor-
responding to the vicinity of magnetic resonance frequency
and there would be an overall augmentation and decrement
in the growth before and after the resonance frequency. It
means that the transverse velocity of the electron increases
as the cyclotron frequency approaches the resonance. It
should be noted that such enhancement in the transverse ve-
locity correspond to the decrease in the axial velocity of the
electrons due to the presence of an axial magnetic field, and
therefore correspond to the decrease in the resonant frequency
of interaction.

4. NUMERICAL RESULTS AND DISCUSSION

A numerical analysis of the electron trajectories and the
growth rate of a relativistic electron beam (REB) propagating
parallel to a laser pulse in a plasma medium have been made
in this section. The physical mechanism is as follows: the
transverse electric field of the laser pulse induces a transverse
motion on the beam electrons and also on the plasma back-
ground electrons leading to the formation of a ponderomotive
force and the energy transition of the electrons into the EM
energy of the scattered wave. In fact, the ponderomotive po-
tential is based on the energy of the electron due to its trans-
verse quiver motion in the laser field. Let us consider a test
plasma electron initially at rest far from the peak of the
pulse in the laboratory frame. As the electron goes up the
ponderomotive potential barrier of the laser pulse, its kinetic
energy, namely the part of energy due to its longitudinal
motion, decreases and the potential energy increases until
the electron reaches its maximum height on the potential bar-
rier. In this case, the energy of the electron is transferred
completely to the transverse direction. At this time the elec-
tron energy is purely potential. Since the peak amplitude of
the ponderomotive potential or the peak intensity of the
laser pulse is sufficiently large the electron can be trapped
by the pulse. Since this laser pulse has a group velocity
less than the speed of light in a plasma medium, it can act
as a slow wave undulator, and therefore, the injected electron
beam can be in synchronism the pulse. Besides, an axial
guide magnetic field is employed to confine the transverse
motion of the electron beam near the z-axis. The presence
of the axial magnetic field can substantially modify many
of the characteristics of the interaction. In the first place,
the electron beam becomes more focused while traveling in
the undulator section due to the axial guide magnetic field
and the electrons execute cyclotron oscillations in the
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transverse plane. In the second place, the enhancements in
the gain and growth rate when the Larmor period and undu-
lator periods are comparable are present for the systems.
The graph of the normalized axial velocity of e-beam, β3

versus the normalized cyclotron frequency, is shown in
Figure 2a–2c. The chosen parameters are γ= 40, Ωw=
0.05, ωb= 0.08, and ωp= 0.6, 2.24, 3.46. As seen in these
figures, by increasing plasma frequency or plasma density,
the maximum value of group I orbits decreases and the
width of the curve increases to a higher value of normalized
cyclotron frequencies. For group II orbits, by increasing
plasma frequency, the curve shifts to left, that is, to lower
values of normalized cyclotron frequencies. Finally, for
group III orbits by increasing plasma density the curve
shifts to higher values of normalized frequencies as it is
evident in Figure 2c.
The graph of normalized growth rate, Im ω̃, as a function

of normalized wave number, k̃, has been depicted in Figures
3–11. To plot these figures, the coupled Eqs. of (11) and (12)
have been solved simultaneously to obtain β3 and βp in terms
ofΩ0 and then we substitute them into Eq. (19). By passing a
REB parallel to a laser pulse through background plasma,
high-frequency radiation can be generated by coupling the
EM wave (i.e., laser pulse) to the negative energy beam
modes. The negative energy (or slow wave) electrostatic
beam mode and the positive energy (or fast wave) EM
laser pulse, in the presence of the plasma background, get
strongly coupled together and therefore it leads to instability.
The graph of the normalized growth rate for different values
of plasma frequencies has been shown in Figures 3–5. As
seen in these figures, by choosing higher magnitudes of
plasma frequency for group I orbits, ωp, (ωp= 0.6, 2.24,
and 3.46) the peak of the growth rate greatly decreases and
also shifts to left (to lower magnitudes of k̃ ). For group II
orbits, by increasing the plasma frequency, the peak growth
rate increases, as shown in Figure 4. Finally, for group III
orbits (Fig. 5), increasing the plasma frequency causes an

increase in the growth rate and the curves become smoother
in higher plasma frequencies.
The graph of the normalized growth rate as a function of

the normalized wave number, for different values of cyclo-
tron frequencies Ω0, has been depicted in Figures 6–8. The
peak growth rate for group I orbits by choosing higher
values of cyclotron frequency, (Ω0= 0.32, 0.62, and 0.88)
increases to reach its maximum corresponding to the vicinity
of magnetoresonance frequency (Ω0−̃0.92). As we see in
Figure 6 there is an increase in the peak of the growth rate
for Ω0= 0.88 (which is near to the resonance frequency
for group I orbits). For group II orbits, an increase in the cy-
clotron frequency (Ω0= 1.2, 1.4, and 1.6) causes a decrease
in the peak of the growth rate. For values near to magnetore-
sonance frequency, the peak of the growth rate is much
bigger compared to those far from the resonance value, in
group II orbits. The general increase before and decrease
after the resonance point in the growth rate is apparent in Fig-
ures 6 and 7, respectively. That means the transverse velocity
of the electron beam increases as the cyclotron frequency

Fig. 3. Graph of the normalized growth rate, Im ω̃, versus the normalized
wave number k̃, for group I orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, Ω0= 0.62, ṽth = 0.6.

Fig. 4. Graph of the normalized growth rate, Im ω̃, versus the normalized
wave number k̃, for group II orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, Ω0= 1.4, ṽth = 0.6.

Fig. 5. Graph of the normalized growth rate, Im ω̃, versus the normalized
wave number k̃, for group III orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, Ω0= 0.12, ṽth = 0.6.
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moves toward the resonance due to the decrease in the axial
velocity of the electrons in the presence of an axial guide
magnetic field. When Ω0−̃β3 − βp is approximately satis-
fied, the resonant interaction between plasma electrons and
laser pulse occurs, which can cause an increase in the kinetic
energy of the plasma electrons, so they can easily exchange
energy with the propagating laser pulse. This is why the
FEL instability presents a coupling process. As shown in
Figure 9 by selecting higher values of cyclotron frequency
(Ω0= 0.08, 0.16, and 0.22) the growth rate increases and a
smoother curve has been attained.

Figures 9–11 shows the graph of the normalized growth
rate versus the normalized wave number for cold electron
beam (i.e., ṽth = 0) and warm beams (i.e., ṽth = 0.3, 0.6).
As shown in Figures 9 and 10, by choosing more magnitudes
of normalized thermal velocity, the growth rate for group I
and III orbits trivially decreases because of the thermal
motion of the electrons. In other words, for these groups of
orbits the electrons in a warm beam run out of resonance
with the radiation fields, due to their thermal motion. As

Fig. 6. Graph of the normalized growth rate, Im ω̃, versus the normalized
wave number k̃, for group I orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, ωp = 2.24, ṽth = 0.6.

Fig. 7. Graph of the normalized growth rate, Im ω̃, versus the normalized
wave number k̃, for group II orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, ωp = 2.24, ṽth = 0.6.

Fig. 8. Graph of the normalized growth rate, Im ω̃, versus the normalized
wave number k̃, for group III orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, ωp = 2.24, ṽth = 0.6.

Fig. 9. Graph of the normalized growth rate, Im ω̃, the versus normalized
wave number k̃, for group I orbits with parameters ωb= 0.08, γ= 40,
Ωw= 0.05, ωp = 2.24, Ω0= 0.62.

Fig. 10. Graph of the normalized growth rate, Im ω̃, the versus normalized
wave number k̃, for group II orbits with parameters ωb= 0.08, γ= 40,Ωw=
0.05, ωp = 2.24, Ω0= 1.4.
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can be seen in Figure 10, for group II orbits, by increasing the
values of normalized thermal velocity, both the peak growth
and band width of the curve increase, which means that the
plasma oscillations are coupled to the EM waves through
the transverse component of the magnetic field and perturba-
tion resulting from the thermal motion are more significant.
Therefore the instabilities, tend to be stronger compared
with cold electron beams and consequently the growth rate
for group II orbits becomes bigger.

5. CONCLUSIONS

In this paper, we have presented a theory for FELs in which a
linearly polarized laser pulse propagates parallel to a REB in
the presence of a plasma background. It should be possible to
reach the XUV and X-ray regimes using less expensive and
more compact low γ by decreasing the undulator period
λw. A suitable approach that has been suggested for decreas-
ing λw is to replace the magnetostatic wiggler with a laser un-
dulator. The undulator wavelength at the μm level allows one
to reach the wavelength range from a few nm down to a few Å
with moderately relativistic electrons of kinetic energies of
tens of Mev. Several reasons exist for improvement the
power of the FEL when a background of plasma present in
the interaction region. Firstly, beam current enhances in the
presence of the plasma in contrast with the vacuum-FEL.
Secondly, the electron bunching process can be improved.
Thirdly, the electron trajectory has a transverse drift in the
plasma background while the conventional FELs did not
have such drift, so radiation guiding would be enhanced.
Taking the advantages of the plasma background for FELs,
it may be an interesting way toward producing compact
short wavelength FELs. By passing a relativistic e-beam
through a laser undulator, high-frequency EM radiation is
produced by coupling the EM wave to the negative energy
electrostatic beam modes. This negative beam mode and
the positive energy EM wave can strongly couple together
and therefore leads to an instability, the amplitudes of

beam modes increase and the waves begin to trap the elec-
trons. Because of the relativistic effect on the mass of the
electrons, the bounce period of the electrons trapped in the
electrostatic potential well is long. During the bounce
period, the unstable EM waves continue to grow to over-
shoot. This overshoot of the wave amplitudes results in fur-
ther energy deposition into the EM radiation. By using the
numerical solutions, the graph of electron beam axial veloc-
ity versus cyclotron frequency was obtained. As shown in
Figure 2 the electron trajectories break down into three differ-
ent groups of orbits, namely as G I, G II, and G III orbits, re-
spectively. The group I orbits occur in Ω0< 0.9, the group II
orbits occur inΩ0> 0.95 and the group III is broadened from
about zero to near 2 (for ωp= 2.24). It can be seen that with
changing in the plasma frequency (or plasma density), a con-
siderable change was found in the maximum values of the
group orbits of I, II, and III, respectively. Moreover, chang-
ing in the plasma frequency, results in an important shift in
starting and resonance points of orbits of these three
groups, which do not happen due to variation of other
device parameters such as ωb, Ω0, Ωw, or γ. The dispersion
relation was derived by solving the momentum transfer, con-
tinuity, and wave equations. Numerical studies have shown
that the growth rate is sensitive to plasma density, e-beam
temperature, and cyclotron frequency of the external mag-
netic field. By increasing the plasma frequency the growth
rate for group I and II orbits decreased while for group III
increased. It was found that by increasing the axial guide
magnetic field strength, the growth rate for orbits of group
I increased, while a decrement in growth rate was obtained
for the orbits of groups II and III. Besides, by choosing
more magnitudes of normalized thermal velocity, the peak
growth rate for group I and III orbits trivially decreased,
while for group II increased. Considering these fundamental
parameters will lead higher tunability in FELs relative to con-
ventional ones.
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APPENDIX A

A1. DISPERSION RELATION DERIVATION

The Floquet theorem can be used to derive the dispersion
equation; by using the axial and time dependence of all per-
turbed parameters take the general form,

X =
∑n=+∞

n=−∞

xn exp[i(knz− ωt)], (A1)

with kn= k+ nkL, (n= 0,± 1,± 2, …), ω and kn denote the
frequency and wave number of mixed, radiation, and space
charge waves, respectively. Substituting Eqs. (8)–(10) and
(14)–(16) into Eqs. (4) and (13), assuming small transverse
oscillations (i.e., ∂/∂x and ∂/∂y are ≪ ∂/∂z), and using or-
thogonality relation,

∫l
0
exp[i(kn − km)z]dz = lδmn

and

∫T
0
exp[i(ω− ω′)t]dt = Tδωω′ ,

we obtain the normalized perturbed velocity components as
follows:

βxn =
−ie

γ0mc
2kL

(1− β3(k̃n/ω̃))Exn + B0βyn
Ωn(ω̃)

[

+ iβ3ΩL(β3 − βp)2
2[(β3 − βp)2 −Ω2

0]
Eln−1

Ωn(ω̃− βp)
− Eln+1

Ωn(ω̃+ βp)

( )]

− ie

2γ0mc
2kL

β3 BL(β3 − βp) +
ΩwΩ0(β3 − βp)
[(β3 − βp)2 −Ω2

0]

( )
− BL

γ20

[ ]

βzn−1

Ωn(ω̃− βp)
+ βzn+1

Ωn(ω̃+ βp)

( )
,

(A2)

βyn =
−ie

γ0mc
2kL

(1− β3(k̃n/ω̃))Eyn − B0βxn
Ωn(ω̃) +

[

Ω0ΩL(β3 − βp)
2[(β3 − βp)2 −Ω2

0]
Eln−1

Ωn(ω̃− βp)
+ Eln+1

Ωn(ω̃+ βp)

( )]

+ β3γ
2
0ΩLΩ0(β3 − βp)2

2[(β3 − βp)2 −Ω2
0]

βzn−1

Ωn(ω̃− βp)
− βzn+1

Ωn(ω̃+ βp)

( )
,

(A3)

βzn =
−ieΩ2

n(ω̃)
γ0mc

2kL Ω2
n(ω̃) − (3k̃2nv2th/γ0)

( )
Eln

γ23Ωn(ω̃) −
iΩL(β3 − βp)2

2ω̃[(β3 − βp)2 −Ω2
0]

[

k̃n−1Exn−1

Ωn(ω̃− βp)
− k̃n+1Exn+1

Ωn(ω̃+ βp)

( )

− Ω0ΩL(β3 − βp)
2ω̃[(β3 − βp)2 −Ω2

0]
k̃n−1Eyn−1

Ωn(ω̃− βp)
+ k̃n+1Eyn+1

Ωn(ω̃+ βp)

( )

+ iβ3ΩL(β3 − βp)2
2[(β3 − βp)2 −Ω2
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( )]
,

(A4)

in which we use Faraday’s law (to eliminate the perturbed mag-
netic field) and Ωn(ω̃) = ω̃− β3k̃n, k̃n = kn/kw, ω̃ = ω/ckw,

Ωn(ω̃± βp) = ω̃± βp − β3k̃n, γ−2
3 = 1− β23. Here vth=

(KBT/m)
1/2 is the thermal velocity of the electron beam

(where KB is the Boltzmann’s constant and T is the temper-
ature of the electron beam).
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Using continuity equation and linearizing it yields,

∂n
∂t

+∇ · (nV) = 0, (A5)

nn = k̃nn0β3
Ωn(ω̃). (A6)

The current density has the form J = Jxx+ Jyy+ Jzz, where

Jx
Jy
Jz

⎛
⎝

⎞
⎠ =

∑∞
n=−∞

Jxn
Jyn
Jzn

⎛
⎝

⎞
⎠ exp[i(knz− ωt)]. (A7)

Using Eq. (A6), the current density component amplitudes
can be expressed as

Jxn = −en0cβxn − en0c
ΩL(β3 − βp)2

2i[(β3 − βp)2 − Ω2
0]

k̃n−1

Ωn−1(ω̃− βp)
βzn−1 −

k̃n+1

Ωn+1(ω̃− βp)
βzn+1

( )
,

(A8)

Jyn = −en0cβyn + en0c
Ω0ΩL(β3 − βp)

2[(β3 − βp)2 −Ω2
0]

k̃n−1

Ωn−1(ω̃− βp)
βzn−1 +

k̃n+1

Ωn+1(ω̃− βp)
βzn+1

( )
,

(A9)

Jzn = −en0ω̃

Ωn(ω̃) cβzn. (A10)

With the restrictions ∂/∂x, ∂/∂y≪ ∂/∂z, and assuming the z
and T dependence of Eq. (A1) for Ex,y,z and Jx,y,z this equation
leads to

kn − ω2

c2

( )
Exn

Eyn

( )
− 4πiω

c2
Jxn
Jyn

( )
= 0, (A11)

− ω2

c2
− 4πiω

c2
Jzn = 0. (A12)

The normalized dispersion relation is obtained by substitut-
ing the source currents, Eqs. (A8)–(A10), and the perturbed
velocities (A2)–(A4), into the scalar wave equations; the
result is

ω̃2 − k̃
2
n − ω̃2

b +
ω̃2
bΩ

2
L(β3 − βp)4

4Γn,+[(β3 − βp)2 −Ω2
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2
LΩ
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(A13)

where

1
Γn,±

= k̃n+1

Ωn+1(ω̃− βp) − (3k̃2n+1ṽ
2
th/γ0)

±
k̃n−1

Ωn−1(ω̃+ βp) − (3k̃2n−1ṽ
2
th/γ0)

.

(A14)
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