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In this paper we study constrained variational problems that are principally
motivated by nonlinear elasticity theory. We examine, in particular, the relationship
between the positivity of the Jacobian det∇u and the uniqueness and regularity of
energy minimizers u that are either twist maps or shear maps. We exhibit explicit
twist maps, defined on two-dimensional annuli, that are stationary points of an
appropriate energy functional and whose Jacobian vanishes on a set of positive
measure in the annulus. Within the class of shear maps we precisely characterize the
unique global energy minimizer uσ : Ω → R

2 in a model, two-dimensional case. We
exploit the Jacobian constraint det∇uσ > 0 a.e. to obtain regularity results that
apply ‘up to the boundary’ of domains with corners. It is shown that the unique
shear map minimizer has the properties that (i) det∇uσ is strictly positive on one
part of the domain Ω, (ii) det∇uσ = 0 necessarily holds on the rest of Ω, and (iii)
properties (i) and (ii) combine to ensure that ∇uσ is not continuous on the whole
domain.
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1. Introduction

In this paper, we consider minimizers of variational problems that are motivated
by nonlinear elasticity theory. The functionals we wish to minimize are of the form

I(u) =
∫

Ω

W (∇u(x)) dx,

where Ω ⊂ R
2 is a domain representing the reference configuration of an elastic

material, W : R
2×2 → [0,+∞] its stored energy function and u : Ω → R

2 a defor-
mation. One of the tenets of the theory is that the noninterpenetrability of matter is
encoded by requiring that det∇u > 0 a.e. in Ω. This is typically imposed by setting
W (F ) = +∞ whenever the 2 × 2 matrix F satisfies detF � 0, so that any defor-
mation having finite energy necessarily satisfies det∇u > 0 a.e. The main purpose
of this paper is to examine, in particular, the relationship between the positivity
of the Jacobian det∇u and the uniqueness and regularity of two different kinds of
stationary point associated with the energy functional I(·).
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The first kind of stationarity results in the so-called Energy-Momentum (EM)
equations

div (∇uTDW (∇u) −W (∇u)1) = 0. (1.1)

These are formally obtained from I(·) by setting ∂ε|ε=0I(uε) = 0 in the case that
uε(x) = u(x+ εϕ(x)), where ϕ is a smooth, compactly supported test function.
Conditions on the stored-energy function W guaranteeing that (1.1) holds in the
sense of distributions can be found in [1,2]. See also [5, § 2] and [4] for explicit
examples of stored-energy functions W to which these conditions apply. The second
type of stationarity results formally in the Euler-Lagrange (EL) equations,

divDW (∇u) = 0, (1.2)

whose derivation from ∂ε|ε=0I(u+ εϕ) = 0, when the latter exists, is well known.
The sorts of stationary point we consider fall into two broad classes: twists and

shears. Twist maps operate on an annulus A = {x ∈ R
2 : a < |x| < b} and act as

the identity on ∂A. Shear maps are of the form u(x) = x+ σ(x)e, where e is a fixed
unit vector and σ a scalar field defined on some domain, which in this paper will
typically be a square Q := [−1, 1]2. We study two types of functional in each of the
twist and shear map classes: both are of the form I(u) =

∫
Ω
W (∇u(x)) dx where

the set Ω is either the annulus, A, or the square, Q, and W is of the form

W (F ) =
1
2
|F |2 + h(detF ) (1.3)

defined on 2 × 2 matrices F . The function h is either (i) of the kind that penalizes
detF → 0 in the sense that h = h0 and h0(s) → +∞ as s→ 0+, h0(s) = +∞ for
s � 0 and h0 is convex where it is finite1, or (ii) of the form

h∞(s) =

{
0 if s � 0
+∞ if s < 0.

Type (i) functions h0 penalize compression to zero area, while type (ii) functions
h∞ ensure that maps u with finite energy obey det∇u � 0 almost everywhere
in Ω.

Thus there are effectively four permutations, and together they generate the
range of behaviours summarized in table 1.

The non-uniqueness of solutions to the Euler-Lagrange equations of elasticity
problems with mixed boundary conditions is a well-known phenomenon, such as
in the buckling of a rod or beam. However, for pure displacement boundary condi-
tions, things are not so clear. Indeed, it is still an open question whether sufficiently
smooth equilibrium solutions to pure displacement boundary-value problems for
homogeneous bodies with strictly polyconvex stored energy function W are unique
if the domain Ω is homeomorphic to a ball (see Problem 8, [2]). Much work has
been done in this area: see [6,11,14–16] and [10]. F. John showed in [10] that a
twice continuously differentiable equilibrium of sufficiently small strain is unique.

1See § 2.2 for details of additional hypotheses imposed on h0.
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Table 1. The four permutations (A summary of results within the twist and shear map
classes in the presence of weak and strong Jacobian constraints.)

W (F ) = (1/2)|F |2 + h0(det F ) W (F ) = (1/2)|F |2 + h∞(det F )

Twist Maps • infinitely many solutions of (EL)
(see [13])

• infinitely many solutions of (EM)

• Jacobian bounded away from 0 on
Ā

• Jacobian vanishes on set of posi-
tive measure

• solutions belong to the class
C3(A) (see [13])

• solutions are explicit and of class
C1(A)

Shear Maps • solution of (EL) unique • solution of (EL) unique
• Singularities at boundary can
form

• Jacobian vanishes on set of posi-
tive measure

• solution cannot be of class C1(Q)
for appropriate boundary data

In the same paper, the author formally suggested that multiple solutions to
the Euler-Lagrange equations might be found among the twist maps of a two-
dimensional annulus (cf. Problem 8, [2]). Solutions of this kind were subsequently
discovered by Post and Sivaloganathan2 in [13] in the case that h = h0, in the
notation introduced above, and led to Francfort and Sivaloganathan’s exploration
of the case h = h∞ in [7]. When h = h0, our contribution is to improve the regular-
ity of the twist maps they found and to deduce that the Jacobian of each solution
of the Euler-Lagrange equations is bounded away from zero, in contrast to the sit-
uation encountered when compression to zero area is not penalized, that is when
h = h∞. This is done by using techniques of Baumann, Owen and Phillips [4,5] to
show that auxiliary functions d = det∇u and z = (1/2)|∇u|2 + f(det∇u), where
f(d) = h′0(d)d− h0(d), are, respectively, monotonically increasing and decreasing
along the radius of the annulus. As an additional property, we also present a
maximum principle for the function ρ/r := |u(x)|/|x|, where r = |x|. It remains
an open question whether the global energy minimizers, in this case, are necessarily
rotationally symmetric.

In the case that h = h∞, we obtain infinitely many explicit3 rotationally sym-
metric solutions to the Energy-Momentum equations, which are parametrized by
the number of times N , say, that the outer boundary Sb := {x ∈ R

2 : |x| = b} of the
annulus A is twisted around the inner boundary Sa (using similar notation). All
these solutions share the property that an annular region {x ∈ R

2 : a � |x| � k}
around the inner boundary Sa of A is mapped onto Sa, thereby compressing that
region to ‘zero area’. This region, which we call the ‘hedgehog region’ for reasons
explained later in the paper, is where most of the twisting happens: at most one-
quarter of the twist is performed outside the hedgehog region, regardless of the size
of N . See § 2.2 for details. It is interesting to note that our explicit solutions do not
solve the Euler-Lagrange equations4, the proof of which relies on an observation of

2These authors also extended their arguments to the torus in 3 dimensions.
3These examples seem to be very rare in the literature.
4To be precise, these take the form of a variational inequality.
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[7]. We also show that our equilibrium solutions are local minimizers in suitably
restricted classes of twist maps: see proposition 2.5 and corollary 2.6.

In the context of shear maps, the results of § 3 focus on the relationship between
the regularity of global energy minimizers and the positivity of the Jacobian, among
other things. Minimizing shear maps uσ are unique because the map σ �→ I(uσ) is
strictly convex as a functional and, as is explained in § 3, the class of admissible
functions is convex as a set. The former is obvious when h = h∞ and surprising
when h = h0: see lemma 3.8 for details. Using the same notation as above, we
find a condition that characterizes the shear map minimizer of I∞ and which, in
conjunction with a carefully chosen type of boundary condition, provides conditions
under which the global shear map minimizer, uσ,∞, say, is not of class C1. The
boundary condition, which can easily be generalized, ensures that det∇uσ,∞ = 0
on a set of positive measure in Q, something it has in common with the twist
solutions of § 2.1.

In the final part of the paper, we prove that, under certain mixed boundary
conditions, which again can be generalized, the shear map minimizer uσ,0, say, of
I0 is such that ∇uσ,0 is not continuous at the ‘corners’ of Q. This happens under
the additional assumption that det∇uσ,0 � c > 0 a.e., which would normally be
thought of as a regularizing condition, but which here seems to focus discontinuities
in ∇uσ,0 at points on ∂Q where the character of the boundary condition changes
from mixed to traction-free. The analysis relies on results from elliptic regularity
theory that are applicable precisely because σ �→W (∇uσ) is strongly convex.

1.1. Notation

We denote the 2 × 2 real matrices by R
2×2, and unless stated otherwise we sum

over repeated indices. The tensor product of two vectors a ∈ R
2 and b ∈ R

2 is
written a⊗ b; it is the 2 × 2 matrix whose (i, j) entry is aibj . The inner product
of two matrices X,Y ∈ R

2×2 is X · Y = tr(XTY ). This obviously holds for vectors
too. For points x = (r, θ) in plane polar coordinates and belonging to a domain
Ω ⊂ R

2, the gradient of ϕ : Ω → R
2 is

∇ϕ = ϕ,r ⊗ er(θ) +
1
r
ϕ,θ ⊗ eτ (θ),

where er(θ) = (cos θ, sin θ)T and eτ (θ) = (− sin θ, cos θ)T . Throughout the paper,
we write ϕ,r = ∂rϕ, ϕ,θ = ∂θϕ and ϕ,τ = 1/r∂θϕ. In this notation the formula

det∇ϕ = Jϕ,r · ϕ,τ

holds, where J is the 2 × 2 matrix corresponding to a rotation of π
2 radians in the

plane, that is,

J =
(

0 −1
1 0

)
.

The two most useful properties of J are that (i) JT = −J , so that in particu-
lar a · Jb = −Ja · b for any two a, b ∈ R

2, and (ii) cof A = JTAJ for any 2 × 2
matrix A. We denote the identity matrix by 1. Derivatives with respect to carte-
sian coordinates xi for i = 1, 2 will be usually be written ϕ,xi

, and occasionally
∂xi

ϕ.
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A function f : R
2×2 → R ∪ {+∞} is said to be polyconvex if there exists a convex

function φ : R
2×2 × R → R ∪ {+∞} such that

f(A) = φ(A,detA)

for all 2 × 2 real matrices A. The function space setting for all the problems we
consider will be W 1,2(Ω; R2), which we will abbreviate to W 1,2(Ω) whenever it is
unambiguous to do so. As usual,⇀ represents weak convergence in both the Sobolev
space W 1,2(Ω) and the Lebesgue space L2(Ω). Since Ω ⊂ R

2, the appropriate notion
of boundary measure, as generated by the boundary integrals in Green’s theorem,
for example, is one-dimensional Hausdorff measure, which we write either as dH1

or, in the case of a circular boundary, dS.
Other, standard notation includes B(a, r) for the ball in R

2 centred at a with
radius r and Sr for the circle centred at 0 of radius r. We write A(p, q) for the annu-
lus B(0, q) \B(0, p), where p < q, and when it causes no confusion, we abbreviate
A(a, b) to A.

2. Minimizers in the class of twist maps

We begin by recalling the technical setting of twist maps first proposed in [13]. Let
A = {x ∈ R

2 : a < |x| < b} and set

A = {u ∈W 1,2(A) : u = id on ∂A}. (2.1)

Following [13, § 2], one now selects subclasses of A by means of the winding number.
Formally, for each integer N we restrict attention to maps u : A→ R

2 which rotate
the outer boundary {x ∈ R

2 : |x| = b} N times relative to the inner boundary
{x ∈ R

2 : |x| = a}. More precisely, changing to polar coordinates and applying the
ACL property of Sobolev functions, it is the case that for a.e. θ ∈ [0, 2π] the curve

γθ :=
{
u(r, θ)
|u(r, θ)| : a � r � b

}
is closed and continuous. The winding number for such curves is defined by
approximation using C1 curves in the plane. We recall that the winding num-
ber of a closed C1 curve in the plane, that is, γ : [a, b] → R

2 with γ(a) = γ(b) and
γ(r) = (x(r), y(r)), is defined by

wind #γ =
1
2π

∫ b

a

x(r)y′(r) − x′(r)y(r)
x2(r) + y2(r)

dr. (2.2)

For each integer N let

AN = {u ∈ A : wind #γθ = N for a.e. θ ∈ [0, 2π]}. (2.3)

By [13, lemma 2.7] each class AN is closed with respect to weak convergence in
W 1,2(A). The existence of a minimizer of I(u) =

∫
A
W (∇u) dx then follows easily

by applying the direct method of the calculus of variations. We will apply this
procedure both in the case that compression to zero area is penalized and when it
is not, corresponding respectively to the choice h = h0 and h = h∞ in the stored-
energy function W . We turn first to the case h = h∞.
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2.1. The case h = h∞: twist minimizers without area compression
energy

The problem we consider here was raised in Francfort and Sivaloganathan [7]
and is illustrative of the case where the Euler-Lagrange equations are not satisfied
by minimizers. Using the framework of [13], our approach is to seek solutions of
the Energy-Momentum equations for the functional

I∞(u) =
∫

A

1
2
|∇u|2 + h∞(det∇u) dx

in the class

AN = {u ∈ A : wind #γθ = N for a.e. θ ∈ [0, 2π]}, (2.4)

where the class A is given by (2.1). This is clearly equivalent to minimizing a
Dirichlet energy

D(u) :=
∫

A

|∇u|2 dx (2.5)

on the set

ÃN = {u ∈ Ã : wind #γθ = N for a.e. θ ∈ [0, 2π]}, (2.6)

where

Ã = {u ∈W 1,2(A) : u = id on ∂A and det∇u � 0 a.e. in A}. (2.7)

Proposition 2.1. Let I∞ and AN be as above. Then there is a minimizer of I∞
in AN .

Proof. We apply the direct method of the calculus of variations to the formulation
of the problem in terms of the Dirichlet integral D(u). Note that ÃN contains the
map

U(x) = r

(
cos
(
θ + 2Nπ

(
r − a

b− a

))
, sin

(
θ + 2Nπ

(
r − a

b− a

)))
,

where x = r(cos θ, sin θ), so that ÃN is in particular nonempty. To show that it is
weakly closed we appeal first to [13, lemma 2.7] to ensure that the weak limit u, say,
in W 1,2(A) of any sequence u(j) in ÃN obeys the winding number constraint and
boundary conditions. Moreover, from [12, corollary 1.2], it follows that det∇u �
0 a.e. in A when det∇u(j) � 0 a.e. holds for all j and ∇u(j) ⇀ ∇u in L2(A).
Hence ÃN is weakly closed. A straightforward argument using the convexity of the
Dirichlet energy implies that D(·) is sequentially weakly lower semicontinuous, from
which the existence of a minimizer follows. �

We expect the minimizer uN of I∞ in ÃN for N 
= 0 to be degenerate in the
sense that det∇uN cannot be bounded away from 0. This is because if there exists
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c > 0 such that det∇uN � c in A then the Euler-Lagrange equations for I∞ are
equivalent to {

Δu = 0 in A

u = id on ∂A,
(2.8)

which, by standard theory, has the unique solution u = id, and which does not obey
the winding number condition (u = id clearly has winding number zero). One way
in which det∇uN could fail to be a.e. bounded away from 0 is for it to vanish on a
set of positive measure in A: this is certainly the case for the symmetric minimizers
which we detail later.

It is straightforward to check that the Energy-Momentum equations associated
with I∞ are, in a distributional sense,⎧⎪⎨⎪⎩ div

(
1
2
|∇u|21 −∇uT∇u

)
= 0 in A

u = id on ∂A.
(2.9)

We seek a rotationally symmetric solution of this system, that is, a solution from
the set

ÃN, sym = {u ∈ ÃN : u(x) = QTu(Qx) for all Q ∈ SO(2) and a.e. x ∈ A}.
(2.10)

That such a solution exists follows from the same argument used in the proof of
proposition 2.1. To be precise, a short calculation shows that the mapping U(x)
belongs to the class ÃN, sym, and so the latter is nonempty. Moreover, since propo-
sition 2.1 implies the class ÃN defined in (2.6) is weakly closed, all that remains
to show is that the weak limit of any sequence of rotationally symmetric maps is
also rotationally symmetric. In other words, we must check that if u(j) ⇀ u and
u(j)(x) = QTu(j)(Qx) holds for all Q ∈ SO(2) and a.e. x ∈ A and all j ∈ N, then
the same holds for the weak limit u. But this is a straightforward consequence of the
Sobolev embedding theorem, and so we can conclude that ÃN, sym is weakly closed.
The direct method of the calculus of variations now provides us with a global min-
imizer u, say, of I∞ in ÃN, sym, and, by a standard argument, u will satisfy (2.9).
The argument is spelled out in detail in the appendix of [4].

Rotationally symmetric solutions can be represented in polar coordinates as

u(r, θ) = ρ(r)er(θ + ψ(r)) (2.11)

where er(θ) = (cos θ, sin θ). For brevity, we shall henceforth write er for er(θ) and
ẽr for er(θ + ψ(r)). Similarly, we define eθ(θ) = (− sin θ, cos θ) and use the abbre-
viations eθ and ẽθ analogously. We call ρ the radial map and ψ the angular map.
In this notation, we have the following result.
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Lemma 2.2. Let N ∈ N. Then the radial map ρ of a minimizer of I∞ in ÃN, sym is
differentiable and satisfies the ODE

ρ̇ =
1
r

√
ρ2 − ω2

ρ2
− a2 +

ω2

a2
(2.12)

ρ(a) = a, ρ(b) = b. (2.13)

for some ω ∈ (0,+∞). Furthermore, the angular map ψ is differentiable with

ψ̇ =
ω

Rρ2
(2.14)

and ψ(a) = 0 and ψ(b) = 2πN .

Proof. To prove this, we test the weak form of (2.9) with a rotationally symmetric
test function φ. We can express φ as

φ(r, θ) = ρ̂(r)er + q̂(r)eθ. (2.15)

with ρ̂, q̂ ∈ C∞
c ((a, b)). Furthermore,

∇u = ρ̇ẽr ⊗ er + ρψ̇ẽθ ⊗ er +
ρ

r
ẽθ ⊗ eθ, (2.16)

∇φ = ˙̂ρer ⊗ er + ˙̂qeθ ⊗ er +
1
r

[ρ̂eθ ⊗ eθ − q̂er ⊗ eθ] , (2.17)

and

|∇u|2 = ρ̇2 + ρ2ψ̇2 +
ρ2

r2
. (2.18)

Therefore,

1
2
|∇u|2I −∇uT∇u =

1
2

(
ρ̇2 + ρ2ψ̇2 +

ρ2

r2

)
I −

(
(ρ̇2 + ρ2ψ̇2)er ⊗ er

+
ρ2ψ̇

r
(er ⊗ eθ + eθ ⊗ er) +

ρ2

r2
eθ ⊗ eθ

)
, (2.19)

so that

0 =
∫

A

[
1
2
|∇u|2I −∇uT∇u

]
· ∇φdx

= 2π
∫ b

a

r

2

(
ρ̇2 + ρ2ψ̇2 +

ρ2

r2

)(
˙̂ρ+

ρ̂

r

)

− r

(
(ρ̇2 + ρ2ψ̇2) ˙̂ρ+

ρ2ψ̇

r

(
˙̂q − q̂

r

)
+
ρ2

r2
ρ̂

r

)
dr
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= 2π
∫ b

a

r

2

(
ρ̇2 + ρ2ψ̇2 − ρ2

r2

)(
ρ̂

r
− ˙̂ρ
)

+ r
ρ2ψ̇

r

(
q̂

r
− ˙̂q
)

dr

= −2π
∫ b

a

r2

2

(
ρ̇2 + ρ2ψ̇2 − ρ2

r2

)(
ρ̂

r

)·
+ rρ2ψ̇

(
q̂

r

)·
dr. (2.20)

Since ρ̂ and q̂ are arbitrary this implies that there exist constants c and ω s.t.

r2
(
ρ̇2 + ρ2ψ̇2 − ρ2

r2

)
= c in (a, b) (2.21)

and

rρ2ψ̇ = ω in (a, b). (2.22)

Furthermore, since
∫

A
|∇u|2 dx <∞, it follows that ρ ∈W 1,2((a, b)), which in turn

yields ρ ∈ C([a, b]). Therefore ψ̇ = ω/rρ2 ∈ C([a, b]) as well. That ω > 0 simply fol-
lows from the fact that, by (2.22), ψ is a monotonic function and we want to achieve
a positive winding number, that is, ψ(b) = 2πN > 0 and ψ(a) = 0. Substituting ψ̇
back into (2.21) we obtain

r2ρ̇2 +
ω2

ρ2
− ρ2 = c (2.23)

which also implies that the weak derivative ρ̇ is continuous and is, therefore, the
classical derivative. Since det∇u = ρρ̇/r � 0, we find that ρ2 is monotonically
increasing. Therefore ρ � a > 0 which in turn implies ρ̇ � 0. Hence we can solve
for ρ̇ in (2.23) to obtain (2.13).

Now we want to prove that c = −a2 + (ω2/a2). In view of (2.23), this is equivalent
to showing that ρ̇(a) has to be zero. This is done in two steps: first, we show that
if ρ̇ vanishes then it can only do so at r = a, and then we prove that ρ̇(a) > 0 is
impossible, which, since ρ̇ is nonnegative, leaves only the possibility that ρ̇(a) = 0.

Assume for a contradiction that there is a point r̄ ∈ (a, b] s.t. ρ̇(r̄) = 0 and ρ̇(r) >
0 for r ∈ (r̄ − δ, r̄) for some δ > 0, meaning that we suppose ρ̇ has a zero at the
rightmost point of an interval where it is strictly positive. Let z(r) = f(ρ(r)) where
f(ρ) = ρ2 − ω2/ρ2 + c and note that, by (2.23), z(r) > 0 if r̄ − δ < r < r̄ and z(r̄) =
0. On the other hand, a short calculation shows that ż(r) > 0 on (r̄ − δ, r̄), and
hence that z(r) < 0 on the same interval, a contradiction. Thus the only possibility
is that ρ̇(a) = 0 if ρ̇ vanishes at all.

Now assume for a contradiction that ρ̇(a) > 0. Then, since ρ̇ ∈ C([a, b]) and by
the reasoning above, it is bounded away from zero on the whole of [a, b], that is,
ρ̇ � ε > 0 for some ε > 0. But in this case, by the remark following proposition 2.1,
u solves the Euler-Lagrange equations{

Δu = 0 in A

u = id on ∂A,
(2.24)

which admit only the identity as a solution, corresponding to N = 0. This
contradicts the winding number condition in force on ÃN . Hence ρ̇(a) = 0. �
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In short, the preceding lemma implies that we can reduce the Energy-Momentum
equations for ρ and ψ to an ODE in ρ with the initial condition ρ(a) = a. It might
seem strange that there is only one parameter ω left to fit both the boundary
condition ρ(b) = b and to ensure that ψ(b) = 2πN . However, the lack of Lipschitz
continuity of the right-hand side of (2.12) means that there are infinitely many
solutions for each ω that differ qualitatively only by the point k ∈ (a, b) where ρ̇ first
departs from zero, and which is therefore an additional, hidden parameter. A rather
unusual result is that this system of ODEs, and therefore the Energy-Momentum
equations from which they are derived has an explicit solution.

Theorem 2.3. Let N ∈ N. Then there exist ω > 0 and k ∈ [a, b) s.t.

ρ(r) =

⎧⎪⎪⎨⎪⎪⎩
a, r ∈ [a, k]

1
2

((
a2 +

ω2

a2

)
r2

k2
+
(
a2 +

ω2

a2

)
k2

r2
+ 2

(
a2 − ω2

a2

))1/2

, r ∈ (k, b]

(2.25)

is a solution to the ODE

r2ρ̇2 +
ω2

ρ2
− ρ2 = −a2 +

ω2

a2

derived in lemma 2.2. Furthermore, ω and k ∈ (a, b) are uniquely determined. The
corresponding angular map is

ψ(r) =

⎧⎪⎪⎨⎪⎪⎩
ω

a2
ln
( r
a

)
r ∈ [a, k]

ω

a2
ln
(
k

a

)
+ tan−1

((
a2+ ω2

a2

)
r2

k2 +a2−ω2

a2

2ω

)
− tan−1

(
a2

ω

)
r ∈ (k, b].

(2.26)

Proof. It is easy to directly verify that the map ρ given above solves the ODE. The
existence of ω and k is ensured by the existence of the minimizer. It remains to
check that the boundary conditions ρ(b) = b and ψ(b) = 2πN are met. Now, the
condition ρ(b) = b fixes ω > 0 as a function of k:

ω2 =
4b4k2a2 − a4(b2 + k2)2

(b2 − k2)2
. (2.27)

Inserting this into (2.26), we find that ψ(b) is then a continuous function of k. Let
us briefly write ψ(b; k) to make the dependence on the parameter k explicit. We
seek k ∈ (a, b) such that ψ(b; k) = 2πN . It can easily be checked that k �→ ψ(b; k)
has a pole at k = b, i.e. ψ(b; k) → ∞ as k → b, and that ψ(b; k) is monotonically
increasing in k for k < b. Moreover, by defining ψ(b; a) := limk→a+ ψ(b, k), we find
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u

Figure 1. Sketch of the solution for N = 1. The grey region H - the hedgehog region - is
mapped onto the circle Sa.

that

tanψ(b; a) =
b2 − a2

b2 + a2

ω(a)
a2

,

where ω(a) satisfies

ω(a)
a2

=

√
4b4 − (a2 + b2)2

b2 − a2

and is obtained by evaluating (2.27) at k = a. Putting these together gives

tanψ(b; a) =

√
4b4

(a2 + b2)2
− 1,

from which it follows that 0 < tanψ(b; a) <
√

3, and hence that 0 < ψ(b; a) < π/3.
Since π/3 is strictly smaller than 2Nπ for any natural number N , we can conclude
that there is a unique k in (a, b) such that ψ(b, k) = 2πN . We also note that since

1
2ω

[(
a2 +

ω2

a2

)
b2

k2
+ a2 − ω2

a2

]
>
a2

ω
> 0,

less than a quarter of a twist is performed in the image of the annulus A(k, b), that
is ψ(b) − ψ(k) < π/2. �

The solution obtained for N = 1 is sketched in figure 1. We define the set H =
{x ∈ R

2 : a � |x| � k} ⊆ A to be the region that is mapped onto the circle Sa,
and refer to it as the hedgehog region. The reason for this name is that the map
x �→ x/|x| is commonly referred to as the hegdehog map, and in the region H the
solution corresponds to a scaled version of this map with an added twist.

So far we have only considered rotationally symmetric maps and, for each N ∈ N,
we have found a unique minimizer uN

∗ , say, in ÃN, sym, where the asterisk subscript
refers to the rotational symmetry of the map. At the moment it is not clear whether
uN
∗ is also a global minimizer of I∞ in the full class ÃN . A natural step towards

obtaining such a result would be to prove that the global minimizer of I∞ in ÃN is
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rotationally symmetric, but we are currently unable to do this. What we can say,
however, is that uN

∗ is an energy minimizer with respect to variations belonging
to the larger class ÃN and which obey certain conditions. Before stating these
conditions, a short technical lemma is required.

Lemma 2.4. Let ϕ ∈ C2
0 (A). Then for each R ∈ (a, b)∫
A(a,R)

det∇ϕdx =
1
2

∫
SR

Jϕ · ϕ,τ dS. (2.28)

Proof. In the following, we make use of the identity det∇ϕ = Jϕ,r · ϕ,τ , where
φ,τ = (1/r)(∂ϕ/∂θ) and (r, θ) are standard polar coordinates in two dimensions. It
may also help to recall at this point that the 2 × 2 matrix J is antisymmetric. For
any R in the interval (a, b)∫

A(a,R)

det∇ϕdx =
∫ R

a

∫ 2π

0

Jϕ,r · ϕ,θ dθ dr

= −
∫ R

a

∫ 2π

0

(Jϕ,r ),θ · ϕdθ dr

= −
∫ 2π

0

∫ R

a

(Jϕ,θ ),r · ϕdr dθ

= −
∫ 2π

0

Jϕ,θ (R, θ) · ϕ(R, θ) dθ +
∫ 2π

0

∫ R

a

Jϕ,θ · ϕ,r dr dθ

= −
∫

SR

Jϕ,τ · ϕdS −
∫

A(a,R)

ϕ,τ · Jϕ,r dx.

We recognize the integrand of the rightmost term in the final line as det∇ϕ,
whereupon (2.28) follows by rearranging the terms and observing that −Jϕ,τ · ϕ =
ϕ,τ · Jϕ. �

Proposition 2.5. Let N ∈ N and let uN
∗ minimize I∞ in ÃN, sym.

(i) Let T+ÃN = {ϕ ∈W 1,2
0 (A) : uN

∗ + εϕ ∈ ÃN for all sufficiently small ε >
0}. Then for each ϕ in T+ÃN

I∞(uN
∗ + εϕ) � I∞(uN

∗ ) (2.29)

for all sufficiently small and positive ε.

(ii) Let v ∈ ÃN be such that ϕ := v − uN
∗ satisfies∫

H

|∇ϕ|2 + 2
(

1 +
ω2

a2

)(
1
k
− 1
r

)
det∇ϕdx � 0.

Then

I∞(v) � I∞(uN
∗ ).
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Proof. For brevity, let uN
∗ = u in the following, and recall that D(u) =

∫
A
|∇u|2 dx.

The proof of parts (i) and (ii) have a common beginning which relates the quan-
tity

∫
A
∇u · ∇ϕdx to terms involving cof ∇u · ∇ϕ. The former term is clearly of

importance when one considers the expansion

D(u+ ϕ) = D(u) + 2〈∇u,∇ϕ〉 +D(ϕ) (2.30)

and where one looks for conditions guaranteeing that (at least) one of 〈∇u,∇ϕ〉
and D(ϕ) + 〈∇u,∇ϕ〉 is nonnegative. Here 〈·, ·〉 is the L2(A) inner product.

First, observe that since u is smooth on H and A \H and its first derivatives are
continuous across the boundary Sk, Green’s theorem implies that∫

A

∇u · ∇ϕdx = −
∫

H

Δu · ϕdx (2.31)

Notice that, since u is harmonic on A \H, the domain of integration of the right-
hand side is the set H. Next, the specific form of the solution u implies that Δu =
−((a)/(r2))(((ω2)/(a2)) + 1)ẽr, so that∫

A

∇u · ∇ϕdx = a

(
ω2

a2
+ 1
)∫

H

1
r2
ẽr · ϕdx. (2.32)

Now, using the same notation as in the previous lemma, we can integrate cof ∇u ·
∇ϕ on A(a,R) for each fixed R ∈ (a, b) to obtain∫

A(a,R)

cof ∇u · ∇ϕdx =
∫

SR

(cof ∇u)n · ϕdS = a

∫
SR

ẽr · ϕdS. (2.33)

Here, the specific form of the solution u has been used again: to be precise,
one uses (2.16) to calculate cof ∇u = ρ/rẽr, which together with Piola’s identity
div (cof ∇u) = 0 and Green’s theorem yields the stated expression. The point we
exploit below is that the quantity ẽr · ϕ appears in both (2.32) and (2.33), enabling
us to control the term 〈∇u,∇ϕ〉 using information about cof ∇u · ∇ϕ.

Proof of (i). Let ϕ belong to T+ÃN . Then for all sufficiently small ε > 0

det∇u+ ε cof ∇u · ∇ϕ+ ε2 det∇ϕ � 0

a.e. in A, and since det∇u = 0 on H it is in particular true that

ε cof ∇u · ∇ϕ+ ε2 det∇ϕ � 0

on H. Dividing by ε > 0 and letting ε→ 0 yields cof ∇u · ∇ϕ � 0 pointwise a.e. in
H. From this and (2.33) it follows that

a

∫
SR

ẽr · ϕdS � 0

for R ∈ (a, k). Replacing R by r, multiplying the latter inequality by

ζ(r) :=
(
ω2

a2
+ 1
)

1
r2

and integrating with respect to r over (a, k) implies, by (2.32), that 〈∇u,∇ϕ〉 � 0.
Hence, by replacing ϕ with εϕ in (2.30), we must have D(u+ εϕ) � D(u) for all
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sufficiently small ε > 0. It follows that (2.29) must hold, which concludes the proof
of part (i). �

Proof of (ii). Let v ∈ ÃN be admissible and let ϕ = v − u. Since v is admissible
and det∇u = 0 a.e. on H, we can argue as above that

cof ∇u · ∇ϕ+ det∇ϕ � 0

a.e. on H. Inserting this into (2.33) yields for each R ∈ (a, k) that

a

∫
SR

ẽr · ϕdS � −
∫

A(a,R)

det∇ϕdx.

By a straightforward density argument, we can suppose that ϕ is of class C2
0 (A).

In particular, we can apply lemma 2.4 to deduce that

a

∫
SR

ẽr · ϕdS � −1
2

∫
SR

Jϕ · ϕ,τ dS.

Changing R to r, multiplying both sides by ζ(r) , integrating with respect to r over
(a, k) and recalling (2.32), it follows that

2〈∇u,∇ϕ〉 � −
∫

H

ζ(r)Jϕ · ϕ,τ dx. (2.34)

The function ζ is a constant multiple of 1/r2, so we focus now on proving that∫
H

− 1
r2
Jϕ · ϕ,τ dx = 2

∫
H

(
1
k
− 1
r

)
det∇ϕdx.

This can be seen as follows:∫
H

− 1
r2
Jϕ · ϕ,τ dx =

∫ 2π

0

∫ k

a

(
1
r

)
,r

Jϕ · ϕ,θ dr dθ

=
1
k

∫
Sk

Jϕ · ϕ,τ dS −
∫

H

1
r
Jϕ,r · ϕ,τ dx

−
∫ k

a

∫ 2π

0

1
r
Jϕ · (ϕ,r ),θ dθ dr

=
2
k

∫
H

det∇ϕdx−
∫

H

1
r

det∇ϕdx+
∫

H

1
r
Jϕ,τ · ϕ,r dx

= 2
∫

H

(
1
k
− 1
r

)
det∇ϕdx.

Hence

−
∫

H

ζ(r)Jϕ · ϕ,τ dx � 2
(

1 +
ω2

a2

)∫
H

(
1
k
− 1
r

)
det∇ϕdx,
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so that, by (2.34),

2〈∇u,∇ϕ〉 � 2
(

1 +
ω2

a2

)∫
H

(
1
k
− 1
r

)
det∇ϕdx.

Inserting this into (2.30) gives

D(v) � D(u) +
∫

H

|∇ϕ|2 + 2
(

1 +
ω2

a2

)(
1
k
− 1
r

)
det∇ϕdx+

∫
A\H

|∇ϕ|2 dx,

from which the proof of part (ii) of the proposition can easily be concluded. �

This leads naturally to the following result that uN
∗ is a minimizer of I∞ with

respect to perturbations with suitably located support.

Corollary 2.6. Let N ∈ N and let uN
∗ minimize I∞ in ÃN, sym. Let v ∈ ÃN be

such that ϕ := v − uN
∗ has support in the annulus A(r∗, b) ⊂ A, where

1
r∗

=
1
k

+
a2

a2 + ω2
.

Then I∞(v) � I∞(uN
∗ ).

Proof. If sptϕ lies in A(r∗, b) as defined then a simple calculation shows that∣∣∣∣(1 +
ω2

a2

)(
1
k
− 1
r

)∣∣∣∣ � 1

for any r � k such that Sr meets sptϕ. Hence, by Hadamard’s inequality, which in
the 2 × 2 case is 2|detF | � |F |2, the quantity

|∇ϕ|2 + 2
(

1 +
ω2

a2

)(
1
k
− 1
r

)
det∇ϕ

is pointwise nonnegative, and hence part (ii) of proposition 2.5 implies that
I∞(uN

∗ + ϕ) � I(uN
∗ ). �

2.2. The case h = h0: twist minimizers with area compression energy

We now return to the case also considered by Post and Sivaloganathan [13]. We
seek a minimizer of the functional

I0(u) =
∫

A

1
2
|∇u|2 + h0(det∇u) dx (2.35)

for each N ∈ N, but where this time the local invertibility condition det∇u > 0 a.e.
is encoded in the function h0 via the properties

(H1) h0 is convex with h0 � 0

(H2) h0 ∈ C3((0,+∞)) and for some positive constants s, c1, c2 and d0, c1d−s−k �
(−1)kh

(k)
0 (d) � c2d

−s−k for 0 < d < d0 and k = 0, 1, 2
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(H3) h0(d) = +∞ for d � 0

(H4) For some real number τ and positive constants c3, c4 and d1 c3d
τ � h′′0(d) �

c4d
τ for d � d1.

Again, instead of looking at the whole of ÃN , we focus on those functions in ÃN

that are rotationally symmetric, that is, we minimize I0 on the set ÃN, sym defined
in (2.10). Using the same notation as in the previous section, and by following [13],
we conclude that the rotationally symmetric minimizer uN

∗ of I0 in ÃN, sym has
radial and angular parts ρ, ψ of class C2(a, b) and, moreover, that uN

∗ solves the
Euler-Lagrange equations, which for rotationally symmetric maps simplify to

[rρ̇+ ρh′0(d)]
′ =

ρ

r
+ rρψ̇2 + ρ̇h′0(d)

and

rρ2ψ̇ = ω. (2.36)

In fact, since we assume slightly stronger conditions on h0 than Post and Sivalo-
ganathan do, we actually obtain that ρ ∈ C([a, b]) ∩ C3(a, b). Since I0(uN

∗ ) < +∞,
it is impossible for det∇uN

∗ to vanish on a set of positive measure. However, it may
still be possible for ρ̇(r) = 0 for some r (where r = a+ is understood on the inner
boundary and r = b− on the outer), which would correspond to det∇uN

∗ (x) = 0
on the circle Sr. This was the case for each r ∈ [a, h], for example, in the previous
section of the paper. The following lemma is motivated by the well-known works
[4,5].

Lemma 2.7. Let N ∈ N, let uN
∗ minimize I0 in ÃN, sym and define the function

f : (0,∞) → R by f(s) := sh′0(s) − h0(s). Define the functions d := det∇uN
∗ and

z := (1/2)|∇uN
∗ |2 + f(d) on the annulus A. Then d and z depend only on the radial

variable r, and d is strictly monotonically increasing on (a, b) while z is strictly
monotonically decreasing on (a, b).

Proof. A direct calculation using the form of the solution uN
∗ shows that d = ρρ̇/r,

which is clearly independent of the angular variable θ. The same is true of z, as
is shown in (2.39) below. From the remarks above (concerning the regularity of ρ,
essentially applying [13]) the quantities d and z are differentiable. Now assume for
a contradiction that ḋ � 0. Then

ρ̈ � 1
ρ
(d− ρ̇2). (2.37)

The Euler-Lagrange equations (2.36) are equivalent to

ρ̈

(
r +

ρ2

r
h′′0(d)

)
=

1
r

(
ρ+

ω2

ρ3

)
− ρ̇+

ρ

r
(d− ρ̇2)h′′0(d). (2.38)
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The factor r + (ρ2/r)h′′0(d) is always positive, so we can use (2.37) on the left-hand
side to obtain

ρ̇+
r

ρ
(d− ρ̇2) � 1

r

(
ρ+

ω2

ρ3

)
Multiplying this through by ρ/r we deduce that

−
(
ρ̇− ρ

r

)2

� ω2

r2ρ2
,

which is impossible since ω 
= 0.
For z we have, by direct calculation,

z =
1
2

(
ρ̇2 + ρ2ψ̇2 +

ρ2

r2

)
+ f(d) =

1
2

(
ρ̇2 +

ω2

r2ρ2
− ρ2

r2

)
+ f(d) +

ρ2

r2
(2.39)

Differentiating and using (2.36) we find

ż = −1
r

(
ρ̇2 +

ω2

r2ρ2
− ρ2

r2

)
+ 2

ρρ̇

r2
− 2

ρ2

r3

= −1
r

(
ρ̇2 +

ω2

r2ρ2
+
ρ2

r2
− 2

ρρ̇

r

)
= −1

r

((
ρ̇− ρ

r

)2

+
ω2

r2ρ2

)
< 0.

�

Now we are in the position to prove the following result, which asserts that
det∇uN

∗ is bounded strictly away from 0 on A.

Lemma 2.8. Let N ∈ N and let uN
∗ minimize I0 in ÃN, sym. Then if uN

∗ is expressed
in the form

uN
∗ (r, θ) = ρ(r)er(θ + ψ(r))

it holds that ρ̇ ∈ C([a, b]) with ρ̇(a) > 0 and ρ̇(b) <∞.

Proof. Since d is monotonic on (a, b), the limits limr→a+ d(r) and limr→b− d(r) exist
(possibly +∞ for r → b−). Therefore, the limits limr→a+ ρ̇(r) and limr→b− ρ̇(r)
also exist, with the same qualification for the case r → b−. If ρ̇(r) were to vanish
as r → a+ then we would have d→ 0+ as r → a+, and hence f(d) = dh′0(d) −
h0(d) would tend to −∞ as r → a+. Recalling (2.39), it follows that z(r) → −∞
as r → a+. On the other hand, z(r) is decreasing on (a, b) and certainly finite
on that interval, implying in particular that limr→a+ z(r) is not −∞, which is a
contradiction. Hence ρ̇(a+) is strictly positive. The argument needed to show that
ρ̇(b−) <∞ is similar. �

We remark, in passing, that we are able to derive the following maximum
principle.
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Theorem 2.9. Let uN
∗ satisfy the hypotheses of lemma 2.8. Then the function ρ/r

attains no interior local maximum. In particular, (ρ/r)·· changes sign only once
and a/b � ρ/r < 1 in (a, b) with ρ/r = 1 at a, b.

Proof. Assume there exists an r ∈ (a, b) s.t. (ρ/r)· = 0 and (ρ/r)·· � 0. Then

0 �
(ρ
r

)··
= −2

r

(ρ
r

)·
+

1
r
ρ̈ =

1
r
ρ̈. (2.40)

However, by theorem 2.7 we have

0 < ḋ =
1
r

(
ρ̇2 + ρρ̈− d

)
=
ρ

r
ρ̈+ ρ̇

(ρ
r

)·
=
ρ

r
ρ̈ (2.41)

which contradicts (2.40). �

3. Shear maps

Given a domain D ⊂ R
n, a shear map uσ : D → R

n takes the form

uσ(x) = x+ σ(x)e,

where e is a fixed unit vector in R
n and the function σ is real-valued. We echo some

of the constructions of § 2 by posing and then solving variational problems first in
the case that the weak constraint det∇uσ � 0 is required to hold, that is when
h = h∞, and then in the case that compression to zero ‘area’ is energetically penal-
ized, corresponding to h = h0. In the former case, and still in a two-dimensional
setting, we find conditions which imply that the unique minimizer of a Dirichlet
energy among shear maps necessarily satisfies det∇uσ = 0 on a specified subdo-
main (cf. § 2.1 and the ‘hedgehog map’). Moreover, we establish conditions under
which the global energy minimizer fails to be C1 at interior points of the domain.
The conditions are based on verifiable boundary behaviours of functions harmonic
on certain subdomains of D. See § 3.1 for details.

Where the stronger constraint det∇uσ > 0 a.e. is required to hold, via I0(uσ) <
+∞, we find that even if compression is strongly energetically penalized5, circum-
stances arise in which the unique energy minimizing shear map fails to be C1. In
this case, the gradient is discontinuous ‘at’ certain boundary points. See § 3.2 for
details.

Our chief ally in proving these assertions is the fact that the Jacobian of any
shear map uσ is linear in ∇σ, viz.

det∇uσ = 1 + e · ∇σ.
Consequently, the Jacobian of a convex combination of any two shear maps uσ1

and uσ2 satisfies

det∇uλσ1+(1−λ)σ2 = λdet∇uσ1 + (1 − λ) det∇uσ2 ,

where 0 � λ � 1. In particular, it follows that if the maps uσi
obey the constraint

det∇uσi
� 0 for i = 1, 2 then any convex combination must also obey that con-

straint. Moreover, inserting F = ∇uσ into the general form stored-energy function

5This is achieved by requiring in addition that det∇uσ � c > 0 a.e. in the domain.
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W (F ) = (1/2)|F |2 + h0(detF ), we find that

W (∇uσ) = (1/2)|1 + e⊗∇σ|2 + h0(1 + e · ∇σ)

is in fact convex in ∇σ. This convexity turns out to be useful in both the weak
and strong constraint cases (corresponding, respectively to the choice h = h∞ and
h = h0). When the weaker constraint det∇σ � 0 a.e. holds, it means that all we
need do to establish that a given admissible map is a minimizer is to prove that it
solves a variational problem associated with the energy functional

Iw(σ) :=
∫

Ω

|∇uσ|2 dx, (3.1)

whereas when the strong constraint det∇uσ > 0 is in force the convexity of
W (∇uσ) in ∇σ allows us to apply elliptic regularity theory under certain con-
ditions, an important intermediate step in determining the behaviour of ∇uσ near
the boundary.

3.1. The case h = h∞: shear minimizers without area compression
energy

For definiteness, we now restrict attention to shear maps applied to the square
Q = [−1, 1]2 in two dimensions, and we define

uσ(x) = x+ σ(x)e2 if x ∈ Q, (3.2)

where e2 = (0, 1). Define

σ0(x1, x2) =

⎧⎨⎩
0 if − 1 < x1 � 0
−2x1x2 if 0 < x1 <

1
2−x2 if 1

2 � x1 < 1.
(3.3)

Formally speaking, the effect of uσ0 is to project the region P := {x ∈ Q : 1/2 �
x1 < 1} onto that part of the x1 axis which it contains. At the same time, uσ0 acts
as the identity map on the region M := {x ∈ Q : −1 < x1 � 0}. In the region N :=
{x ∈ Q : 0 < x1 < 1/2} the map uσ0 brings about a narrowing (in the x2-direction)
of Q. Note that, in this notation, Q = M ∪N ∪ P . Figure 2 below illustrates both
the subdivision of Q and the effect that (a slightly smoothed version of) uσ0 has
on Q.

We remark that the procedure described below easily adapts to more general
boundary conditions than σ0: we use σ0 mainly as a convenient means of illustration.
Now define the class of admissible shear maps in the weak constraint case by

Aw = {σ ∈W 1,2(Q; R) : uσ = uσ0 on ∂Q, det∇uσ � 0 a.e. in Q}. (3.4)

Here, the boundary conditions are meant in the sense of trace.

Lemma 3.1. Let Iw and Aw be defined by (3.1), (3.4), respectively. Then Iw has a
unique global minimizer, σw, in Aw, which is characterized by:∫

Q

∇σw · ∇η dx � 0 (3.5)

for all η ∈W 1,2(Q; R) such that σw + η belongs to Aw.
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Figure 2. The boundary ∂Q is subjected to the (slightly smoothed) displacement uσ0 .
The regions N and P correspond respectively to ‘narrowing’ and ‘pinching’

respectively.

Proof. To prove that a global minimizer σw exists it suffices to show that Aw is
nonempty and closed under weak convergence in W 1,2(Q,R), and then to apply the
direct method of the calculus of variations.

A short calculation shows that

det∇uσ0(x) =

⎧⎨⎩
1 if x ∈M
1 − 2x1 if x ∈ N
0 if x ∈ P,

where M , N and P are as defined above. Therefore det∇σ0 � 0 a.e. in Q, and so
σ0 is admissible. In particular, Aw is nonempty.

Now let σ(j) be a sequence in Aw converging weakly to σ. Properties of the
trace imply that σ satisfies the same boundary conditions as all the σ(j), and since
det∇uσ(j) = 1 + σ(j)

,2 � 0 a.e. in Q for all j, it easily follows that det∇uσ � 0 a.e.
in Q also. Thus Aw is weakly closed. The convexity of Iw with respect to σ coupled
with the direct method then yields the existence of σw minimizing Iw in Aw. The
minimizer is unique because the functional Iw is strictly convex and the class Aw

is convex.
We now prove that (3.5) is necessary and sufficient for σ to minimize Iw in Aw.

Let η ∈W 1,2(Q; R) be such that σ + η ∈ Aw, and let σ minimize Iw in Aw. Then
by writing

σ + εη = ε(σ + η) + (1 − ε)σ

and noting that the right-hand side clearly belongs to Aw provided 0 � ε � 1, it
follows by minimality that I(σ + εη) � Iw(σ) for all such ε. Now,

Iw(σ) =
∫

Q

|1 + e2 ⊗ (∇σ)|2 dx,

so that

∂ε|ε=0Iw(σ + εη) � 0
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yields the inequality ∫
Q

η,2 + ∇σ · ∇η dx � 0 (3.6)

for all such η. Applying the boundary condition η|∂Q = 0 to this gives (3.5). Note
that (3.5) is a sufficient condition for the minimality of σ in Aw. This follows
immediately from the identity

Iw(σ + η) = Iw(σ) +
∫

Q

|∇η|2 + 2η,2 + 2∇σ · ∇η dx.

�

The next result shows that any element σ of Aw satisfies det∇uσ(x) = 0 a.e.
on P , which is in accordance with physical intuition where the region is severely
‘pinched’.

Lemma 3.2. Let σ belong to Aw. Then

σ0(x1,−1) − 1 − x2 � σ(x) � σ0(x1, 1) + 1 − x2 (3.7)

for a.e. x in Q. In particular, σ(x) = −x2 for a.e. x in P , so that det∇uσ = 0 a.e.
on P .

Proof. For a.e. x1 in (−1, 1) it holds that

σ(x1, 1) − σ(x1, x2) =
∫ 1

x2

σ,2(x1, t) dt

for a.e. x2 in (−1, 1). Applying the constraint σ,2 � −1 and the boundary condition
gives

σ(x) � σ0(x1, 1) + 1 − x2

a.e. x in Q. Arguing similarly, using the boundary condition at points of the form
(x1,−1), we obtain the left-hand inequality in (3.7). The last assertion of the lemma
follows by observing that σ0(x1,±1) ± 1 = 0 when x1 ∈ (1/2, 1). �

There is an interesting and quite subtle interaction between the solution σ(x) =
−x2 on the region P with its possible behaviour elsewhere on the domain. This
yields a test for whether the constraint 1 + σ,2 � 0 a.e. becomes an equality on a
set of positive measure in the subdomain Q \ P . In other words, it is possible to test
whether det∇uσ = 0 holds on a set of positive measure away from the pinched part
P of the domain Q, where, by lemma 3.2, the vanishing of the Jacobian is automatic
for all competitors σ in Aw. In the following, it may help to think of the set Ω :=
Q \ P as the ‘unpinched’ part of the square Q, which can be visualized with the
aid of figure 2.
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Lemma 3.3. Let σ minimize Iw in Aw and define

Ω = Q \ P. (3.8)

Then at most one of the following conditions is true:

(i) ess inf{1 + σ,2(x) : x ∈ U} > 0 for all U ⊂ Ω with measU > 0;

(ii)
∫ 1

−1
φ(x2)σ,1(1/2, x2) dx2 = 0 for all φ ∈ C1

c ((−1, 1)).

Proof. Suppose for a contradiction that both (i) and (ii) hold. Let B(y, δ) ⊂ Ω
and take ϕ ∈ C1

c (B(y, δ),R). Then, since by hypothesis there is c > 0 such that
1 + σ,2(x) � c for a.e. x in B(y, δ), it is the case that σ + εϕ belongs to Aw for all
sufficiently small ε. Arguing as in the prelude to (3.5), it follows that∫

Ω

∇ϕ · ∇σ dx = 0, (3.9)

and hence by standard theory, that σ is harmonic on the open set Ω.
Next, let Φ ∈ C1

c (Q,R) and note that, since the set K := ∂P ∩ ∂Ω has (two-
dimensional) Lebesgue measure zero, it follows from (3.9), the final assertion of
lemma 3.2 (which implies that σ = −x2 on P ) and Green’s theorem that∫

Q

∇Φ · ∇σ dx =
∫

K

Φ(1/2, x2)σ,1 (1/2, x2) dx2 −
∫

P

Φ,2 dx.

Since Φ has compact support in Q, the second integral on the right-hand side
vanishes. Therefore, since we are assuming that (ii) holds, the previous line implies
that

∫
Q
∇Φ · ∇σ dx = 0 for all Φ ∈ C1

c (Q), and hence that σ is harmonic on Q.
But σ = −x2 on P by lemma 3.2 and hence, since σ is harmonic on Q ⊃ P and P
has a nontrivial interior, it follows that σ = −x2 on all of Q. But this violates the
boundary conditions, which is a contradiction. �

The following result is the main point of § 3.1. Under the constraint det∇uσ � 0
a.e. in Q, we precisely identify the shear map minimizer of the Dirichlet6 energy
subject to the displacement boundary condition uσ = uσ0 on ∂Q. Lemmas 3.1 and
3.3 suggest that in order for a map σ to be an energy minimizer of Iw in Aw it is
enough for it to be both (a) admissible and (b) harmonic wherever 1 + σ,2 > 0. We
know by lemma 3.2 that σ ≡ −x2 on the pinched region P , and finding a harmonic
extension of σ0 on the set Q \ P is straightforward. The difficulty lies in proving
that this harmonic extension, which we call Σ in the proof below, also satisfies
1 + Σ,2 > 0 in Q \ P . This ultimately relies on a technical result, lemma 3.5, which
improves the regularity of Σ,2 up to the boundary of Ω, including ‘corners’, and
locally on sets of the form E := {x ∈ Ω : Σ,2 + 1 < 0}. The key to that argument
lies in the construction of suitable test functions which rely on inequality (3.7) near
the boundary.

6Generalizations to other elliptic operators are clearly possible, but we do not pursue them here.
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Proposition 3.4. Let σ0 be as defined in (3.3) and let Σ be the unique harmonic
function agreeing with σ0 on ∂Ω, where Ω = Q \ P is defined in (3.8). Then

σ(x) =
{

Σ(x) if x ∈ Ω
−x2 if x ∈ P

is the unique global minimizer of Iw in Aw and det∇uσ > 0 everywhere in Ω. It
also holds that σ,1 cannot vanish H1-a.e. along the set K = {y ∈ Q : y1 = 1/2}. In
particular, the global minimizer does not belong to the class C1(Q).

Proof. The first part of the proof consists in showing that σ is admissible and that
det∇uσ > 0 in Ω: this is done in Steps 1–3. Steps 4 and 5 deal respectively with
the last two sentences in the statement of the proposition.
Step 1 By standard results in the theory of harmonic functions, σ agrees with σ0 in
the sense of trace on ∂Q, so it only remains to prove that 1 + σ,2 � 0 a.e. in Ω, this
fact being immediate in P . Consider z1(x) = 1 − x2 and note that Σ(x) � z1(x)
for all x ∈ ∂Ω. Since z1 is harmonic and both functions belong to W 1,2(Ω), the
weak maximum principle implies that Σ(x) � z1(x) for all x ∈ Ω̄. In particular,
Σ(x1, 1 + h) � −h for −1 < h < 0 and −1 � x1 � 0. Therefore, since Σ(x1, 1) = 0
for −1 � x1 < 0, we have

Σ(x1, 1 + h) − Σ(x1, 1)
h

� −1

for this range of x1 and h, so that letting h→ 0 gives Σ,2(x1, 1) � −1. A similar
argument using the harmonic function −1 − x2, which satisfies z2(x) � Σ(x) for
x ∈ ∂Ω, implies that Σ,2(x1,−1) � −1 for −1 � x1 � 0. The derivatives Σ,2(x1, 1)
and Σ,2(x1,−1) for 0 � x1 � 1/2 can be bounded below by −1 in a similar fashion,
the only differences being that the comparison function z1 should be replaced by
z1(x) − 2x1 in the first case and z2(x) by z2(x) − 2x1 in the second. It is immediate
from the boundary condition that 1 + Σ,2(±1, x2) � 0, so that, in summary, 1 +
Σ,2 � 0 on all of ∂Ω.
Step 2 Now note that 1 + Σ,2 is harmonic in Ω, so that if Σ,2 were to belong to
W 1,2(Ω) then the weak maximum principle would apply. This, together with the
previously established fact that 1 + Σ,2 � 0 on ∂Ω would then imply 1 + Σ,2 � 0
on Ω, and hence that σ belongs to Aw as desired. By [9, theorem 8.12], Σ belongs
to W 2,2(Ω′), where Ω′ is any subset of Ω whose closure does not contain the corners
(−1,±1), (1/2,±1) or the points (0,±1). The reason is that away from these points
the boundary condition Σ = σ0 is smooth and the (flat) boundary is sufficiently
regular. In particular, it follows that Σ,2 belongs to W 1,2(Ω′) for such Ω′ and the
weak maximum principle will apply. We have already established that 1 + Σ,2 � 0
on ∂Ω, but it could still be that, for some c > 0, 1 + Σ,2 < −c occurs in Ω and
persists ‘up to the corners’: the argument we give below rules this out.

To fix ideas, let ε > 0, let C = {(−1,±1), (1/2,±1), (0,±1)} and define Ωε =
Ω \ ∪a∈CB(a, ε). Thus Ωε is a version of Ω with small neighbourhoods of the set C
removed. Each point a in C has now given rise to two distinct corners a1 and a2,
say, on ∂Ω, but it is easy to smoothen ∂Ωε near the newly created corners, thereby
producing a new subset Ω′

ε, say, of Ωε with the properties that (i) ∂Ω′
ε is smooth
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and (ii) ∂Ω′
ε agrees with ∂Ω except possibly inside sets of the form B(a, 2ε), where

a lies in C. Thus

∂Ω \ ∂Ω′
ε =

⋃
a∈C

Γε
a

where each Γε
a is a smooth curve whose maximum distance from ∂Ω is of order 2ε.

Claim. for each a in C it is the case that

lim inf
ε→0

inf
Γε

a

(1 + Σ,2) � 0.

Proof of claim. Let E = {x ∈ Ω : Σ,2(x) + 1 < 0}. Without loss of generality let
a = (−1, 1) and let z ∈ Γε

a be such that |z2 − 1| � |z1 + 1|, that is, z is closer to
the ‘top’ of Ω than the leftmost part of ∂Ω. Consider points y in the ball B(z, r),
where 0 < r < dist(z, ∂Ω) = |z2 − 1|. If y ∈ E then, since Σ is smooth on compact
subsets of Ω, there exists the first point y∗ = (y1∗, y2∗), say, on the line joining y
and (y1, 1) where

F : = Σ,2 + 1

satisfies F (y∗) = 0. In particular, [y, y∗) ⊂ E. For any y /∈ E we automatically have
F (y) � 0. Therefore

F (y) � χE(y)
∫ y2

y2∗
F,2(y1, ȳ2) dȳ2. (3.10)

Integrating both sides of (3.10) over B(z, r) and applying the mean value theorem
to the harmonic function F , we obtain

F (z) � 1
πr2

∫
B(z,r)

χE(y)
∫ y2

y2∗
F,2(y1, ȳ2) dȳ2 dy1 dy2

� − 1
πr2

∫ z2+r

z2−r

(∫
A(z,y,r)

χE(y)|∇F (y1, ȳ2)|2 dȳ2 dy1

)1/2

(2r(1 − y2))1/2dy2.

Here, the set A(z, y, r) is given by A(z, y, r) = [z1 − r, z1 + r] × [y2, y2∗], and
it obeys the elementary estimate L2(A(z, y, r)) � 2r(1 − y2). Next, let the set
A(z, r) = [z1 − r, z1 + r] × [z2 − r, 1] and note that∫

A(z,y,r)

χE(y)|∇F (y1, ȳ2)|2 dȳ2 dy1 � ||∇F ||2L2(A(z,r)∩E).

Hence,

F (z) � −23/2

π
||∇F ||L2(A(z,r)∩E)

(
1 − (z2 − r)

r

)1/2

,

which, on choosing r = (1 − z2)/2, gives the lower bound

F (z) � −2||∇F ||L2(A(z,(1−z2)/2)∩E).
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Recall that z ∈ Γε
a, so that as ε→ 0 the measure of the set A(z, (1 − z2)/2) ∩ E

also tends to zero. By lemma 3.5, ∇F lies in L2(Ω̄ ∩ E), so that in particular
||∇F ||L2(A(z,(1−z2)/2)∩E) → 0 as ε→ 0. The claim now follows.

To conclude Step 2 we apply the weak maximum principle to the domain Ω′
ε

defined above, giving for each a ∈ C

Σ,2(x) + 1 � min
{

0, inf
Γε

a

(1 + Σ,2)
}

∀x ∈ Ω′
ε.

Letting ε→ 0 and applying the claim above, we see that Σ,2(x) + 1 � 0 for any
x ∈ Ω. �

Step 3 We apply the strong maximum principle to establish that Σ,2(x) + 1 > 0 in
Ω. Suppose for a contradiction that there is x∗ in Ω such that Σ,2(x

∗) + 1 = 0. Pick a
subdomain Ω̂ = (−1, 1/2) × (1 − s,−1 + s) containing x∗ and where s > 0. Notice
that Σ,2(1/2, x2) + 1 = 0 for |x2| < 1, so that x∗ would be an interior minimum
for Σ,2 + 1 and Σ lies in W 2,2(Ω̂). By the strong maximum principle, this is only
possible if Σ,2 + 1 = 0 throughout Ω. But this violates the boundary condition
Σ(−1, x2) = 0 for |x2| < 1.
Step 4 Next, we show that σ as defined satisfies inequality (3.5), which, by lemma
3.1, is both necessary and sufficient for Ω to minimize Iw in Aw. Let η ∈W 1,2

0 (Q) be
such that σ + η ∈ Aw. Let η(j) approximate η in W 1,2 norm, where η(j) ∈ C∞

c (Q)
for all j. By construction, σ is harmonic on each of the subsets Ω and P , so that,
arguing as in the proof of lemma 3.3,∫

Q

∇η(j) · ∇σ dx =
∫

K

η(j)σ,1 dH1 −
∫

P

η(j)
,2 dx

The second integral on the right-hand side vanishes trivially. To deal with the
integral along K = ∂P ∩ ∂Ω we note that, by lemma 3.2, we must have η|Lx1

= 0
on almost every part line Lx1 = {x1} × [−1, 1] in P . Therefore, without loss of
generality, we may assume that η|K = 0. Moreover, since η(j) → η in particular in
W 1,2(Ω), properties of the trace imply that η(j) → 0 in L2(K). By construction, σ,1

is bounded on Q, so it follows that
∫

K
η(j)σ,1 dH1 → 0 as j → ∞. Hence inequality

(3.5) holds as an equality, and it follows from lemma 3.1 that σ as constructed is
the global minimizer of Iw in Aw.
Step 5 The final assertion of the proposition follows by applying lemma 3.3. Indeed,
alternative (i) of that lemma holds because, as we have seen, det∇uσ is strictly
positive and continuous on Ω. Therefore alternative (ii) cannot hold, meaning that
σ,1 is not zero when viewed as the trace of σ,1 |Ω along K. Since σ,1 clearly vanishes
in P , it cannot be that ∇σ is continuous across K. This concludes the proof. �

We remark that the last line of the statement of the proposition could be
anticipated by noting that σ maps the set K to a point. Therefore in any left-
neighbourhood of K, with obvious notation, the derivative σ,1 could not possibly
agree with the same derivative in the region P .

Here is the technical lemma alluded to above: without it we would not be able
to apply the weak maximum principle to prove that Σ, the harmonic extension of
σ0 in Ω, is ‘admissible’. �
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Lemma 3.5. Let Ω = (−1, 1/2) × (−1, 1) and define σ0 as per (3.3). Let Σ be
the unique harmonic function agreeing with σ0 on ∂Ω, and let E = {y ∈ Ω :
1 + Σ,2(y) < 0}. Then ∇Σ,2 belongs to L2(B(a, γ) ∩E), where 0 < 2γ < 1/4 and
a is any point in the set C := {(−1,±1), (1/2,±1), (0,±1)}.
Proof. We deal first with the case that a is a corner of Ω, and without loss of
generality take a = (−1, 1). Since Σ(x) = 0 for x ∈ B(a, 2γ) ∩ ∂Ω, we may extend
Σ by zero outside Ω. Let η ∈ C1

c (B(a, 2γ)) and define the test function

ϕ(x) = η2(x)min{Δ2,hΣ(x) + 1, 0} (3.11)

for x ∈ Ω and h ∈ (−h0, h0), where h0 is suitably small. Here,

Δ2,hΣ(x1, x2) =
Σ(x1, x2 + h) − Σ(x1, x2)

h

is the difference quotient in the e2 = (0, 1) direction. According to the proof
of proposition 3.4, Σ(x1, 1 + h) − Σ(x1, 1) � −h for h < 0, so that in particular
Δ2,hΣ(x1, 1) + 1 � 0. For positive h the difference quotient is zero, so it fol-
lows that Δ2,hΣ(x1, 1) + 1 � 0 for −h0 < h < h0 and hence that ϕ(x) = 0 for
x ∈ B(0, 2γ) ∩ ∂Ω. Thus ϕ ∈W 1,2

0 (B(0, 2γ) ∩ Ω) and, since Σ is harmonic in this
set, we must have 〈∇Σ,∇ϕ〉 = 0, where 〈·, ·〉 is the L2(Ω) inner product. The
standard procedure is now to ‘difference’ this inner product, which leads to∫

Ω

Δ2,h(∇Σ) · ∇ϕdx = 0.

Inserting ϕ and applying standard inequalities (see, e.g., the proof of [9, theorem
8.12]), we obtain∫

Ω

η2|Δ2,h(∇Σ)|2χ2
Eh dx � C

∫
Ω

|∇η|2|Δ2,hΣ + 1|2χ2
Eh dx (3.12)

for some constant C that is independent of Ω, h and Σ, and where Eh = {y ∈ Ω :
Δ2,hΣ(y) + 1 < 0} and χEh its characteristic function.

Now let y ∈ E. Since Σ is harmonic it is smooth in Ω, so it follows that there
is ρy > 0 and hy > 0 such that B(y, ρy) ⊂ Eh for all h ∈ (−hy, hy). In particular,
χEh → χE pointwise almost everywhere in B(0, 2γ) ∩ Ω. Take η to be a cut-off
function satisfying η(z) = 1 if z ∈ B(a, γ) and |∇η| � c/γ for some fixed constant
c. Using this and Nirenberg’s lemma (see, e.g., [9, lemma 7.24]), we obtain from
(3.12) that ∫

E

η2|∇Σ,2 |2 dx � C ′

γ2

∫
B(a,2γ)\B(a,γ)

1 + |∇Σ|2 dx.

This proves the lemma in the case that a is a corner of Ω.
Now suppose a = (0, 1), let η be as above and extend Σ by zero outside Ω in the

region {x ∈ R
2 : x1 < 0} and by −2x1 in the region {x ∈ Ω : x1 > 0}, that is we let

Σ(x1, x2) = σ0(x1, 1) if x2 > 1. Using the same test function as defined in (3.11)
together with the fact established in proposition 3.4 that Σ(x1, 1 + h) − σ0(x1, 1) �
−h for h < 0, it again follows that ∇Σ,2 ∈ L2(B(a, γ) ∩E). This concludes the proof
of the lemma. �
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3.2. The case h = h0: shear minimizers with area compression energy

We now examine the effect of imposing the constraint det∇uσ > 0 a.e. in Q by
focussing in particular on a problem where a displacement boundary condition is
applied across a strict subset

∂Q1 = {x ∈ ∂Q : x = (±1, x2), |x2| � 1} (3.13)

of ∂Q. On the ‘free boundary’ ∂Q \ ∂Q1 a natural so-called traction-free condition
should arise, but this is not straightforward since it involves the first derivatives of σ
and these are not necessarily defined even in the sense of trace on ∂Q. We make sense
of this by imposing on the minimizing σ the additional condition 1 + ∂2σ � c > 0
a.e. in Q for some constant c, that is we strengthen det∇uσ > 0 a.e. in Q to
det∇uσ � c > 0 a.e. in Q. The convexity of W (∇uσ) in ∇σ then allows us to
apply a bootstrapping argument to improve the regularity of σ to W 2,2(Q), so that
the natural boundary condition is well-defined via the trace theorems for Sobolev
functions.

One outcome of this is that σ satisfying these assumptions cannot be C1(Q̄): the
‘corner’ of the domain together with the natural and imposed boundary conditions
combine to form a discontinuity in the gradient ‘at’ the corner. On closer inspection,
the same phenomenon could be induced by considering a suitable Neumann problem
for the Dirichlet energy on the same domain and with the same boundary conditions.
More interesting is its interpretation in the original nonlinear elasticity setting,
namely that if a minimizer is such that det∇uσ is bounded away from zero a.e. then
it is not C1(Q̄). This seems strange because one normally thinks of the condition
det∇uσ � c > 0 a.e. as being ‘regularizing’, and indeed we shall see that it is so at
interior points of the domain. We have to conclude that the free boundary ∂Q2 :=
∂Q \ ∂Q1 plays a significant role in producing the discontinuity in ∇σ ‘at’ the
boundary.

We now give the details of the results alluded to above. Let

Is(σ) =
∫

Q

1
2
|∇uσ|2 + h0(det∇uσ) dx, (3.14)

where, for concreteness, we assume that h0 satisfies hypotheses (H1)–(H3). Let
∂Q± = {(±1, t) : −1 � t � 1} denote the left (-) and right (+) sides of Q, and let
σ1 be any W 1,2(Q; R) map such that Is(σ1) < +∞. Finally, define the class of
admissible maps in the strong constraint case by

As = {σ ∈W 1,2(Q; R) : uσ = uσ1 on ∂Q+ ∪ ∂Q−, Is(σ) < +∞}. (3.15)

Note that, in the notation introduced above, ∂Q1 = ∂Q+ ∪ ∂Q−.

Proposition 3.6. Let Is and As be defined as in (3.14) and (3.15) respectively.
Then there exists a minimizer of Is in As.

Proof. By hypothesis, As contains σ1 and is thus nonempty. The integrand of the
functional Is is polyconvex and, moreover, satisfies the hypotheses of [3, theorem
6.1] in the two dimensional case. Hence I(u) :=

∫
Q
W (∇u) dx is sequentially lower
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semicontinuous with respect to weak convergence in W 1,2(Q; R2). Let uσ(j) be a
minimizing sequence which without loss of generality we can suppose to be weakly
convergent to u, say. It is straightforward to show that u = uσ for some σ, that is,
u is a shear map, and, by the sequential weak lower semicontinuity of I(·), that σ
minimizes Is in As. �

For concreteness we fix σ1 = 0, so that σ = 0 (in the sense of trace) on ∂Q1 for
any σ in As. This corresponds to applying the boundary condition uσ = id on ∂Q1.
It is clear that σ1 is such that I(σ1) < +∞.

We also impose a further condition on the convex function h0: namely, that the
upper bound in condition (H4) defined in § 2.2 holds with the parameter τ0 = 0.
Alternatively, we can (and do) impose the following condition:

∀μ > 0 ∃Cμ > 0 ∀s ∈ [μ,+∞) |h′′0(s)| � Cμ. (3.16)

This, together with the next lemma, will allow us to apply some elliptic regularity
theory techniques.

Lemma 3.7. Let the C2 function h0 satisfy hypothesis (3.16). Then for each μ > 0
there is C ′

μ > 0 such that |h′0(s)| � C ′
μs for all s � μ.

Proof. Using hypothesis (3.16) and the assumption that h0 is C2, it is straightfor-
ward to check that

|h′0(s)| � |h′0(μ)| + Cμ|s− s0|
provided s � μ. Therefore

|h′0(s)| �
(

2Cμ +
|h′0(μ)|
μ

)
s

for all s � μ, and the lemma follows. �

We are now in a position to improve the regularity of the minimizing map σ. In
the rest of this section it will be convenient to switch notation, writing ∂1σ in place
of σ,1 , and so on.

Lemma 3.8. Let W be given by (1.3) with h = h0 and assume that h0 is
strongly convex, C2 where it is finite, and that it satisfies (H1)–(H3) and (3.16).
Then the function

∇σ �→W (∇uσ)

is strongly convex and the minimizer σ of Is in As is unique. Moreover, if there
exists c > 0 such that

1 + ∂2σ(x) � c a.e. x ∈ Q (3.17)

then σ belongs to W 2,2(Q \ V ), where V is any compact set whose interior contains
the corners {(±1,±1)} of Q.
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Proof. The first assertion of the lemma is straightforward when we see that the
convexity of

W (∇uσ) =
1
2
|1 + e2 ⊗∇σ|2 + h0(1 + ∂2σ)

with respect to ∇uσ is equivalent to the strong ellipticity of the system (3.18)
introduced below, so in anticipation of that result we do not prove strong convexity
here.

If there were two distinct minimizers of Is in As, σ and σ̄, say, with Is(σ) =
Is(σ̄) = m, then the strict convexity of W (∇uσ) in ∇σ coupled with the convexity
of the class As clearly implies that

Is(σ/2 + σ̄/2) < m,

a contradiction. Thus σ is unique.
Now suppose that condition (3.17) holds. Then if η is any smooth function with

compact support in Q it follows that σ + εη is admissible provided ε is sufficiently
small. Hence, on using a suitable dominated convergence theorem, it can be checked
that ∂εIs(σ + εη) vanishes at ε = 0, leading to∫

Q

L(∇σ) · ∇η dx = 0, (3.18)

where

L(p) = (p1, 1 + p2 + h′(1 + p2)) ∀p ∈ R
2.

The hypotheses on h together with assumption (3.17) imply that (3.18) is an ellip-
tic system satisfying controllable growth conditions. To see this, note that by the
convexity of h0 and (3.17),

ξTDL(p)ξ = ξ21 + (1 + h′′0(1 + p2))ξ22 � λ|ξ|2

for some λ > 0 and all ξ ∈ R
2. Moreover, by (3.17) and lemma 3.7, |L(p)| � C|p|

for all p such that 1 + p2 � c. A differencing argument, such as the one given in the
course of the proof of [8, theorem 1.1, Chapter II], can now be employed to prove
that D2σ ∈ L2

loc. In fact, the argument leading to [8, proposition 3.1, Chapter VI]
shows that σ belongs to W 2,q(Q,R) for some q > 2 (this makes use of reverse Hölder
inequalities derived from the elliptic system (3.18)). In particular, ∇σ is Hölder
continuous on any compact subset of Q. Moreover, (3.18) can now be written as

∂2
1σ + (1 + h′′0(1 + ∂2σ))∂2

2σ = 0 a.e. in Q. (3.19)

It will be useful below to note that the strong convexity of h together with lemma
3.7 and assumption (3.17) imply that there are positive constants c1 and c2 such
that c1 � h′′0(1 + ∂2σ(x)) � c2 holds on Q.

The regularity asserted in the lemma is W 2,2(Q \ V ), where V is described above,
so we must consider the behaviour near boundary points. Let x0 ∈ ∂Q be such that
x0 /∈ V . If x0 ∈ ∂Q1 where the boundary condition σ = 0 is applied, then one can
proceed as in the proof of [9, theorem 8.12]. Specifically, differencing shows that
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both ∂2∂1σ and ∂2
2σ belong to L2(B(x0, r) ∩Q) for all sufficiently small r. Equation

(3.19) then implies that ∂2
1σ also belongs to L2(B(x0, r) ∩Q). The argument needed

when x0 belongs to ∂Q2 = ∂Q \ ∂Q1 is similar. A covering argument now implies
that D2σ belongs to L2(Q \ V ), as required. �

Proposition 3.9. Let W be given by (1.3) satisfy all the assumptions of lemma
3.8, and in addition, suppose that 1 + h′0(1) 
= 0. Let σ be the unique minimizer of
Is in As and suppose there is a constant c > 0 such that 1 + ∂2σ(x) � c for a.e. x
in Q. Then ∇σ is not continuous at the corners of Q.

Before giving the proof we remark that the condition 1 + h′0(1) 
= 0 is tailored
to the choice of Dirichlet boundary condition σ = 0 on ∂Q1. In general, one could
easily adapt the condition on h′0, which is not especially restrictive, to reflect a
different choice of boundary condition.

Proof. By lemma 3.8 and properties of the trace for Sobolev functions, the trace
of ∇σ belongs to L2(A) where A is any measurable subset of ∂Q whose closure
does not contain the corners of Q. Green’s theorem can now be applied to (3.18),
yielding ∫

∂Q2

L(∇σ) · ν η dH1 = 0

for any η whose compact support does not meet ∂Q1, where ν = ±e2 are the only
two possible outward pointing normals. In particular, it follows that

L2(∇σ) = 0 a.e. on ∂Q2,

that is

1 + ∂2σ(x1,±1) + h′0(∂2σ(x1,±1) + 1) = 0 a.e. x1 ∈ (−1, 1). (3.20)

On the other hand, the boundary condition on ∂Q1 implies

1 + ∂2σ(±1, x2) + h′0(∂2σ(±1, x2) + 1) = 1 + h′0(1) a.e. x2 ∈ (−1, 1). (3.21)

Therefore if ∇σ were continuous at the corner (1, 1), say, then

lim
x1→1

1 + ∂2σ(x1, 1) + h′0(∂2σ(x1, 1) + 1) = lim
x2→1

1 + ∂2σ(1, x2) + h′0(∂2σ(1, x2) + 1)

would necessarily hold, which is impossible because the left-hand side is 0 by (3.20)
and the right-hand side is 1 + h′0(1) 
= 0 by (3.21) and the hypothesis on h′0(1). �
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