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ABSTRACT

We consider the multivariate Value-at-Risk (VaR) and Conditional-Tail-
Expectation (CTE) risk measures introduced in Cousin and Di Bernardino
(COUSIN, A. and DI BERNARDINO, E. (2013) Journal of Multivariate Analysis,
119, 32–46; COUSIN, A. and DI BERNARDINO, E. (2014) Insurance: Mathemat-
ics and Economics, 55(C), 272–282). For absolutely continuous Archimedean
copulas, we derive integral formulas for the multivariate VaR and CTE
Archimedean risk measures. We show that each component of the multivariate
VaR and CTE functional vectors is an integral transform of the corresponding
univariate VaR measures. For the class of Archimedean copulas, the marginal
components of the CTE vector satisfy the following properties: positive homo-
geneity (PH), translation invariance (TI), monotonicity (MO), safety loading
(SL) and VaR inequality (VIA). In case marginal risks satisfy the subadditiv-
ity (MSA) property, the marginal CTE components are also sub-additive and
hitherto coherent risk measures in the usual sense.Moreover, the increasing risk
(IR) or stop-loss order preserving property of the marginal CTE components
holds for the class of bivariate Archimedean copulas. A counterexample to the
(IR) property for the trivariate Clayton copula is included.

KEYWORDS

multivariate risk, coherent risk measure, increasing risk, Archimedean copula,
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1. INTRODUCTION

The univariate risk measures of Value-at-Risk (VaR) and Conditional-Tail-
Expectation (CTE) are well-known mathematical notions used in quantitative
risk measurement (e.g. Albrecht, 2004; McNeil et al., 2005). In recent years,
various efforts have been undertaken to extend these risk measures to the multi-
variate context. Extensions formultivariate VaR have been discussed by Tibiletti
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(1993), Embrechts and Puccetti (2006) and Nappo and Spizzichino (2009), and
formultivariate CTE by Landsman and Valdez (2003), Hürlimann (2004a), Cai
and Li (2005) and Bargès et al. (2009). Cousin and Di Bernardino (2013, 2014)
have proposed multivariate VaR and CTE risk measures in a rather parsimo-
nious and synthetic way by assigning to the risk of a multi-dimensional port-
folio two vector valued functional risk measures. These authors have shown
that many properties satisfied by the univariate VaR and CTE risk measures
translate to the multivariate setting under some conditions. For example, these
risk measures satisfy positive homogeneity (PH) and translation invariance (TI)
properties, which are parts of the classical axiomatic approach to coherent risk
measures by Artzner et al. (1999). In fact, Cousin and Di Bernardino (2014)
contains all the properties required to imply that the marginal CTE compo-
nents of multivariate risks with independent components are coherent risk mea-
sures, as observed in Section 5. In view of these promising results, we follow
this most recent vector-valued approach to multivariate risk measures. To be
specific, our contribution includes some new properties that are not discussed
in previous papers. The marginal CTE components of multivariate risks under
a fixed Archimedean copula satisfy the additional properties of safety loading
(SL) andVaR inequalities (VIA) (see Theorem 5.2). Themarginal VaRandCTE
Archimedean risk measures are coherent risk measures, provided the marginal
risk components are subadditive, the so-called (MSA) property. The increasing
risk (IR) property or stop-loss order preserving property holds for the marginal
CTE components of bivariate risks with an Archimedean copula (see Corollary
5.1). Main tools in the derivation of these results are two representations of the
multivariate VaR and CTE Archimedean risk measures as integral transforms
of the corresponding univariate VaR measures (see Theorem 4.2).

The content is organized as follows. Section 2 gathers the required prelimi-
naries on copulas, Kendall’s distribution and stochastic orders. Section 3 intro-
duces the multivariate VaR and CTE functional vectors and recalls two general
formulas for their evaluation.

Section 4 is devoted to a brief treatment of multivariate VaR and CTE for
an important class of Archimedean copulas. Based on the explicit expressions
of Kendall’s distribution and its density function by Barbe et al. (1996), and a
conditional distribution formula for absolutely continuous Archimedean cop-
ulas, we derive integral representation formulas for the considered multivariate
risk measures. In particular, we show that each component of the multivariate
VaR or CTE vector is an integral transform of the associated univariate VaR
measure.

Section 5 reviews some main properties of multivariate CTE (Theorem 5.1),
and derives new properties for the class of Archimedean copulas. Altogether, the
marginal CTE components for this class satisfy the following properties: (PH),
(TI), monotonicity (MO), (SL) and (VIA) (Theorem 5.2). In case marginal risks
satisfy the (MSA) property, the marginal CTE components are also subaddi-
tive and hitherto coherent risk measures. Moreover, the (IR) or stop-loss or-
der preserving property of the marginal CTE components holds for the class of
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bivariate Archimedean copulas (Corollary 5.1). A counterexample to the (IR)
property for the trivariate Clayton copula is constructed in Example 5.2. In
general, examples involving Archimedean copulas can be derived based on the
material of Barbe et al. (1996), Nelsen (2006) and Cousin and Di Bernardino
(2013, 2014), among others.

2. PRELIMINARIES ON COPULAS, KENDALL’S DISTRIBUTION AND
STOCHASTIC ORDERS

Roughly speaking, a d-dimensional copula Cd(u), u = (u1, . . . , ud) ∈ [0, 1]d , is a
d-dimensional distribution function with uniform [0,1] univariate margins. The
Theorem of Sklar (1959) establishes the following fundamental link between
an d-dimensional distribution function F(x), x = (x1, . . . , xd) ∈ Rd and its
univariate marginal distribution functions Fi (xi ), i = 1, . . . , d. For continuous
margins there exists a uniquely determined copula Cd(u) such that

F(x) = Cd(F1(x1), . . . , Fd(xd)), x ∈ Rd . (2.1)

Each copula is the sum of an absolutely continuous component AC(u) and a sin-
gular component SC(u) such that Cd(u) = AC(u) + SC(u), where these compo-
nents are defined by

AC(u) =
∫

(0,u]

cd(x)dx, SC(u) = AC(u) − Cd(u), (2.2)

with cd(u) being the Radon–Nikodym derivative with respect to the Lebesgue
measure on [0, 1]d . If Cd(u) = AC(u), then the copula is absolutely continuous,
whereas ifCd(u) = SC(u), the copula is singular. In the present work, we mainly
focus on absolutely continuous Archimedean copulas whose density function is
explicitly known (see Theorem 4.1).

Consider now a d-dimensional random vector X = (X1, . . . , Xd) on some
probability space with multivariate distribution F(x). The multivariate risk
measures introduced in Section 3 strongly rely on the key notion of multivariate
probability integral transform, ormultivariate PIT, defined to be the univariate
random variable Z= F(X), whose corresponding distribution function, which
is defined and denoted by Kd(z) = P(Z ≤ z), is called the Kendall distribution.
The survival distribution function of Z = F(X) is also used. It is defined and
denoted by K̄d(z) = P(Z > z). In contrast to the univariate case, the distribu-
tion Kd(z), d ≥ 2, is in general not uniform on [0,1], even if F(x) is continuous.
The random vector U = (U1, . . . ,Ud) denotes throughout a vector of uniform
[0,1] random variables. As a consequence of Sklar’s theorem, the Kendall dis-
tribution is a function of the dependence structure only, that is, on the cop-
ula Cd(u) that belongs to X. In particular, one has Kd(z) = P(Cd(U) ≤ z)
with U = (F1(X1), . . . , Fd(Xd)). More information on the multivariate PIT,
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Kendall’s distribution and its applications is found in the papers by Genest and
Rivest (1993, 2001), Capéraà et al. (1997), Ghoudi et al. (1998), Chakak and
Ezzerg (2000), Chakak and Imlahi (2001), Nelsen et al. (2001, 2003), Genest
and Boies (2003), Genest et al. (2002, 2006), Kolev et al. (2006), Belzunce et al.
(2007) and Brechmann (2014), among others. Kendall’s distribution and density
function for Archimedean copulas is summarized in (4.2) and (4.3) in Section 4.

Finally, to study the comparison properties of these risk measures in Sec-
tion 5, we rely on the theory of stochastic orders (e.g. Kaas et al., 1994; Shaked
and Shanthikumar, 1994, 2007; Müller and Stoyan, 2002; Denuit and Müller,
2004; Belzunce, 2010). Let X and Y be two univariate random variables defined
on some probability space with distribution functions FX(x), FY(x), and finite
means μX, μY. Then X is said to be smaller than Y in the usual stochastic or-
der, written as X ≤st Y if for all x ∈ R the inequality FX(x) ≥ FY(x)
holds. On the other hand, X is said to be smaller than Y in the stop-loss or-
der, written as X ≤sl Y if for all t ∈ R the stop-loss transform inequal-
ity E [(X− t)+] ≤ E [(Y− t)+] holds with x+ = max(x, 0). Similarly, X is
said to be smaller than Y in increasing convex order, written as X ≤icx Y, if
E [ f (X)] ≤ E [( f (Y)] for all non-decreasing convex functions f (x) such that
the expectations exist. The stop-loss order and the increasing convex order are
equivalent (e.g. Shaked and Shanthikumar, 2007, Theorem 4.A.2). A sufficient
condition for the stop-loss order is the dangerousness order relation, written as
X ≤D Y, which is defined by the once-crossing condition,

FX(c) ≤ FY(c)∀x < c, FX(c) ≥ FY(c)∀x ≥ c, (2.3)

where c is some real number, and the inequality μX ≤ μY (Karlin and Novikoff,
1963; Ohlin, 1969, Lemma; see also Hürlimann, 1998, Section 2).

3. TWO VECTOR-VALUED MULTIVARIATE VAR AND CTE FORMULAS

The univariate riskmeasures of VaR andCTEarewell-knownmathematical no-
tions used in the context of risk management. A univariate risk is a non-negative
random variable X on a given probability space with a continuous and strictly
monotone distribution function FX(x) with finite mean E [X] < ∞. Its quantile
function is denoted by QX(α) = F−1

X (α), α ∈ (0, 1). The VaR functional to the
confidence level α is defined and denoted by

VaRα [X] = QX(α), α ∈ (0, 1). (3.1)

Similarly, the CTE functional to the confidence level α is defined and denoted
by

CTEα [X] = E [X |X ≥ VaRα [X] ] , α ∈ (0, 1). (3.2)

For a comprehensive treatment of VaR andCTEwe refer toDenuit et al. (2005).
A list of many different possible representations for the CTE functional is given
in Hürlimann (2003). A first extensive review of CTE is Nadarajah et al. (2013).
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In the following, a multivariate risk is a non-negative absolutely continuous
random vector X = (X1, . . . , Xd) (w.r.t. the Lebesgue measure on Rd ) with a
partially increasing multivariate distribution function F : Rd+ → [0, 1] with
finite marginal means E [Xi ] < ∞, i = 1, . . . , d. One says that the random
vector X satisfies the so-called regularity conditions. For any α ∈ (0, 1), let
L(α) = {

x ∈ Rd+ : F(x) ≥ α
}
be the upper α-level set of F , and let ∂L(α) be

its boundary. Then the multivariate VaR functional to the confidence level α is
the d-dimensional vector defined and denoted by Cousin and Di Bernardino
(2013, Definition 2.1, lower-orthant VaR),

VaRα [X] = (
VaR1

α [X] , . . . ,VaR
d
α [X]

)
,VaRiα [X]

= E [Xi |X ∈ ∂L(α)] , i = 1, . . . , d. (3.3)

Similarly, the multivariate CTE functional to the confidence level α is the d-
dimensional vector defined and denoted by Cousin and Di Bernardino (2014,
Definition 2.1, lower-orthant CTE),

CTEα [X] = (
CTE1

α [X] , . . . ,CTE
d
α [X]

)
, CTEi

α [X]

= E [Xi |X ∈ L(α)] , i = 1, . . . , d. (3.4)

It is remarkable that each vector component of multivariate VaR can be rep-
resented as an integral transform of the associated univariate VaR measure.
Indeed, for i = 1, . . . , d, let FXi be the marginal distribution of Xi , and let
Cd(u) be the copula associated with X such that by Sklar’s theorem (1959)
we have F(x1, . . . , xd) = Cd(FX1(x1), . . . , FXd (xd)). Then the random variables
Ui = FXi (Xi ) are uniform [0,1] random variables with joint distribution Cd(u).
From Cousin and Di Bernardino (2013, equation (12)), we borrow the general
formula,

VaRiα [X] = K ′
d(α)−1 ·

∫ 1

α

VaRs [Xi ] · fd(s, α)ds, i = 1, . . . , d, (3.5)

where fd(xi , z) is the density function associated with the bivariate random vec-
tor (Ui ,Cd(U)), i = 1, . . . , d, withCd(U) being the multivariate PIT, and Kd(x)
being the Kendall distribution, both introduced in Section 2. Moreover, each
component of multivariate CTE can be represented as an integral transform
of the corresponding multivariate VaR component. Cousin and Di Bernardino
(2014, equation (8)), derive the following general formula:

CTEi
α [X] = K̄d(α)−1 ·

∫ 1

α

VaRis [X] · K ′
d(s)ds, i = 1, . . . , d. (3.6)
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4. THE ARCHIMEDEAN COPULA FRAMEWORK

According to Nelsen (2006, Definition 4.1.1), an Archimedean generator, or for
short a generator, is a strictly decreasing and continuous function ϕ : [0, 1] →
[0, ∞] such that ϕ(1) = 0. Its pseudo-inverse is denoted by ϕ− (notation of
Embrechts and Hofert, 2013). Let � denote the set of all generators. A d-
dimensional copulaCd is calledArchimedean if it can be represented as (Nelsen,
2006, equation (4.6.1))

Cd(u) = ϕ−(ϕ(u1) + ... + ϕ(ud)), u ∈ [0, 1]d, (4.1)

for some ϕ ∈ �. Early contributions to Archimedean copulas include Schweizer
and Sklar (1961) and Genest and MacKay (1986a). In higher dimensions, it
is often more appropriate to work directly with the pseudo-inverse ϕ− instead
of ϕ (e.g. Joe, 1997; McNeil and Neslehova, 2009). If ϕ is a strict generator,
that is ϕ(0) = ∞, one knows from the Kimberling (1974) theorem that (4.1) is
well defined if and only if ϕ− = ϕ−1 is completely monotone on [0, ∞), that is
(−1)k(ϕ−1)(k)(x) > 0, k = 0, 1, 2, . . . , x ∈ (0, ∞) (see Nelsen, 2006, Theorem
4.6.2). In general, (4.1) is well defined if and only if ϕ−1 is d-monotone on [0, ∞),
as shown by McNeil and Neslehova (2009, Theorem 2) (see also Nelsen, 2006,
p. 154). For simplicity, we assume throughout that ϕ−1 is completely monotone.

We require Kendall’s distribution and its density function for Archimedean
copulas, which have been determined in Barbe et al. (1996) (see also Genest and
Rivest, 2001, Section 5).

Lemma 4.1. (Kendall’s distribution for Archimedean copulas) Under
the technical assumptions (−1)k(ϕ−1)(k)(x) > 0, k = 1, . . . , d, and
lim
x→0+

ϕ(x)k(ϕ−1)(k)(ϕ(x)) = 0, k = 1, . . . , d − 1, one has

Kd(z) = Kd−1(z) + (−1)d−1

(d − 1)!
ϕ(z)d−1(ϕ−1)(d−1)(ϕ(z)), (4.2)

K ′
d(z) = (−1)d−1

(d − 1)!
ϕ(z)d−1 d

dz
(ϕ−1)(d−1)(ϕ(z)). (4.3)

Proof. Define recursively f0(z) = 1/ϕ′(z), fk(z) = d
dz fk−1(z)/ϕ′(z),

k = 1, 2, . . . , d − 1, to see that

fk−1(z) = (ϕ−1)(k)(ϕ(z)), k = 1, . . . , d.

From Barbe et al. (1996, Example 3, p. 205), one knows that

Kd(z) = z+
d−1∑
k=1

(−1)k

k! ϕ(z)k fk−1(z).
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Using the preceding relation, induction and the fact that K1(z) = z, one sees
that this finite series is equivalent with Formula (4.2). Taking derivatives one
obtains

K ′
d(z)

= 1 +
d−1∑
k=1

(−1)k

k!
{kϕ(z)k−1ϕ′(z) fk−1(z) + ϕ(z)kϕ′(z) fk(z)}

= 1 − ϕ′(z) f0(z) −
d−2∑
j=1

(−1) j

j !
ϕ(z) jϕ′(z) f j (z) +

d−1∑
k=1

(−1)k

k!
ϕ(z)kϕ′(z) fk(z)

= (−1)d−1

(d − 1)!
ϕ(z)d−1ϕ′(z)(ϕ−1)(d)(ϕ(z)) = (−1)d−1

(d − 1)!
ϕ(z)d−1 d

dz
(ϕ−1)(d−1)(ϕ(z)),

which is Formula (4.3). �

Multivariate Archimedean copulas, for which Lemma 4.1 applies, include
copula families by Clayton, Frank, Gumbel–Hougaard and Ali–Mikhail–Haq
(see Barbe et al., 1996, pp. 206–207).

According to (3.5)–(3.6), the multivariate VaR and CTE depend upon the
bivariate random vector (Ui ,Cd(U)), i = 1, . . . , d, with distribution function
Fd(xi , z) = P(Ui ≤ xi ,Cd(U) ≤ z) and density fd(xi , z). The latter has the
following closed-form expression.

Theorem 4.1.Let Cd be an absolutely continuous d-dimensional Archimedean cop-
ula with generator ϕ. Then, the density function fd(xi , z) is given by

fd(xi , z) = − (d − 1) · ϕ′(xi )
ϕ(z)

·
(
1 − ϕ(xi )

ϕ(z)

)d−2

· K ′
d(z), 0 < z < xi < 1,

fd(xi , z) = 0, 0 ≤ xi ≤ z ≤ 1. (4.4)

Proof. First of all, since a copula is non-decreasing in each argument, the con-
dition Ui ≤ xi ≤ z implies that Cd(U) ≤ Cd(U1, . . . ,Ui−1, z,Ui+1, . . . ,Ud) ≤
Cd(1, . . . , 1, z, 1, . . . , 1) = z. Therefore, if 0 ≤ xi ≤ z ≤ 1, one has Fd(xi , z) =
P(Ui ≤ xi ,Cd(U) ≤ z) = P(Ui ≤ xi ) = xi . Under absolute continuity this im-
plies in particular that fd(xi , z) = ∂2Fd(xi , z)/∂xi∂z = 0, 0 ≤ xi ≤ z ≤ 1,which
shows the second part of Formula (4.4). On the other hand, for 0 < z < xi < 1,
the conditional distribution of Ui , given Cd(U) = z, is of the simple form (e.g.
Cousin and Di Bernardino, 2013, Formula (8); or Brechmann, 2014, Lemma
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17, special case j = 1)

Fd(xi |z ) = P(Ui ≤ xi |Cd(U) = z ) =
(
1 − ϕ(xi )

ϕ(z)

)d−1

. (4.5)

The first part of (4.4) follows from the fact that fd(xi , z) = d
dxi
Fd(xi |z )· fCd (U)(z)

with fCd (U)(z) = K ′(z). �

Remark 4.1. For a density of the form (4.4), the assumption of absolute con-
tinuity is required. Consider a twice differentiable generator such that ϕ′(x) <

0, ϕ′′(x) > 0 for all x ∈ (0, 1). Then in the bivariate case with xi = x, a density
of the type f2(x, z) = −ϕ′(x) · ϕ′′(z)/ϕ′(z)2 for 0 < z < x < 1 yields through
integration the distribution function

F2(x, z) =
∫ z

0

(∫ x

y
f2(s, t)ds

)
dt = K2(z) − K2(0) + ϕ(x) · (

ϕ′(z)−1 − ϕ′(0)
)
,

K2(z) = z− ϕ(z) · ϕ′(z)−1, K2(0) = −ϕ(0) · ϕ′(0)−1. (4.6)

It is known that whether the bivariate Archimedean copula is absolutely con-
tinuous or not, one always has (Nelsen, 2006, Corollaries 4.3.5 and 4.3.6),

F2(x, z) = K2(z) + ϕ(x) · ϕ′(z)−1, 0 < z < x < 1,

Fd(x, z) = x, 0 ≤ x ≤ z ≤ 1. (4.7)

Through the comparison of (4.6) with (4.7) onemust necessarily have K2(0) = 0
and ϕ′(0) = −∞. If ϕ is a strict generator, that is ϕ(0) = ∞, then K2(0) = 0 im-
plies ϕ′(0) = −∞. If ϕ is a non-strict generator, that is ϕ(0) < ∞, then K2(0) = 0
if and only if one has ϕ′(0) = −∞. It follows that (4.6) and (4.7) are equal if
and only if K2(0) = 0, which is a necessary and sufficient condition for absolute
continuity. Indeed, for twice differentiable generators an Archimedean copula
has a singular component if and only if one has K2(0) = −ϕ(0) · ϕ′(0)−1 
= 0
(Genest andMacKay, 1986b, Theorem 1). An Archimedean copula with singu-
lar component for which Formulas (4.6) and (4.7) differ is the family (4.2.2) in
Nelsen (2006, Table 4.1) with non-strict generator ϕ(x) = (1 − x)θ , θ ∈ [1, ∞),
such that K2(0) = 1/θ > 0, ϕ′(0) = −θ > −∞.

We use Theorem 4.1 to determine the multivariate VaR functional for
Archimedean copulas. Moreover, we show that each component of the multi-
variate CTE functional, similar to its VaR pendant, is also an integral transform
of the associated univariate VaR measure.

Theorem 4.2.Let Cd be an absolutely continuous d-dimensional Archimedean cop-
ula with generator ϕ. Then the components i = 1, . . . , d of the multivariate VaR
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and CTE functional satisfy the following formulas:

VaRiα [X] = d − 1
ϕ(α)d−1

·
∫ 1

α

VaRs [Xi ] · βd(s, α)ds, βd(s, α)

= −ϕ′(s) · (ϕ(α) − ϕ(s))d−2, (4.8)

CTEi
α [X] = Ad(α) ·

∫ 1

α

VaRs [Xi ] · γd(s, α)ds, i = 1, . . . , d,

Ad(α) = [(d − 2)!]−1 · K̄d(α)−1, γd(s, α)

=
∫ s

α

(−1)d−1 d
dt

(ϕ−1)(d−1)(ϕ(t)) · βd(s, t)dt. (4.9)

Proof. To derive (4.8), it suffices to insert (4.4) into (3.5). To derive (4.9) we
use (4.8) and exchange the order of integration in representation (3.6) (using
Formula (4.3) and Fubini’s theorem) to see that

CTEi
α [X] = K̄d(α)−1 ·

∫ 1

α

VaRis [X] · K ′
d(s)ds

= (d − 1) · K̄d(α)−1 ·
∫ 1

α

{∫ 1

s
VaRt [Xi ] · βd(t, s)dt

}
· K ′

d(s)/ϕ(s)d−1ds

= Ad(α) ·
∫ 1

α

{∫ 1

s
VaRt [Xi ] · βd(t, s)dt

}
· (−1)d−1 d

ds
(ϕ−1)(d−1)(ϕ(s))ds

= Ad(α) ·
∫ 1

α

{∫ t

α

(−1)d−1 d
ds

(ϕ−1)(d−1)(ϕ(s)) · βd(t, s)ds
}

· VaRt [Xi ] dt,

which coincides with (4.9) by the definition of γd(s, α). �

Remark 4.2. If for d = 1 one sets A1(α) = K̄1(α)−1 = (1 − α)−1, γ1(s, α) =
1, ∀s ∈ [α, 1], then Formula (4.9) generalizes the well-known univariate formula
CTEα [X1] = (1−α)−1·∫ 1

α
VaRs [X1] ds (e.g.Hürlimann, 2003, Proposition 2.1).

As an application of Formula (4.8), we show that the multivariate VaR com-
ponents are non-decreasing functions of the confidence level, a result used in
the proof of Theorem 5.2.

Corollary 4.1. Let Cd be an absolutely continuous d-dimensional Archimedean
copula with generator ϕ. Then the derivative with respect to the confidence level of
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the multivariate VaR functional is non-negative, that is dVaRiα [X] /dα ≥ 0, i =
1, . . . , d, ∀α ∈ (0, 1).

Proof. We distinguish between the two cases d = 2 and d ≥ 3. If d = 2, one
obtains from (4.8) through straightforward calculation that

dVaRiα [X]
dα

= −ϕ′(α)

ϕ(α)
· {
VaRiα [X] − VaRα [Xi ]

}
.

The derivative is non-negative because the generator ϕ is strictly decreasing and
VaRiα [X]−VaRα [Xi ] ≥ 0 for bivariate Archimedean copulas. In fact, the latter
inequality holds true more generally for quasi-concave distribution functions
defined to be distribution functions with convex upper level sets (Cousin and
Di Bernardino, 2013, Proposition 2.4). Its validity for bivariate Archimedean
copulas follows from Nelsen (2006, Theorem 4.3.2). If d ≥ 3, one obtains from
(4.8) using Leibniz’ rule of differentiation under the integral sign that

dVaRiα [X]
dα

= − (d − 1)ϕ′(α)

ϕ(α)d
·
∫ 1

α

VaRis [X] · (−ϕ′(s))(ϕ(α) − ϕ(s))d−3{ϕ(α)

− ϕ(s) − (d − 2)ϕ′(α)}ds,

which is non-negative because ϕ is strictly decreasing and ϕ(α) − ϕ(s) ≥ 0∀s ∈
[α, 1]. �

To conclude this section, let us illustrate Formula (4.9) for some lower-
dimensional cases.

Examples 4.1. Bivariate and trivariate CTE formulas.

For d = 2 one has γ2(s, α) = −ϕ′(s) · ∫ s
α

d
dt (ϕ

−1)′(ϕ(t))dt = −ϕ′(s) ·
{ϕ′(α)−1 − ϕ′(s)−1} . It follows that for i = 1, 2,

CTEi
α [X] = K̄2(α)−1 ·

∫ 1

α

VaRs [Xi ] ·
{
1 − ϕ′(s)

ϕ′(α)

}
ds. (4.10)

In the special case of uniform margins, one easily gets

CTEi
α [X] = K̄2(α)−1 ·

{
1
2 (1 − α2) + αϕ(α)+∫ 1

α
ϕ(s)ds

ϕ′(α)

}
. (4.11)

For the comprehensive Clayton copula family ϕ(s) = θ−1(s−θ − 1), θ ≥ −1,
which includes the independent copula (θ → 0), the co-monotone copula
(θ → ∞) and the countermonotone copula (θ = −1), one recovers Table 6
in Cousin and Di Bernardino (2014) (use that K2(α) = α − ϕ(α)/ϕ′(α)). For
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d = 3, Formula (4.9) for i = 1, 2, 3 yields

CTEi
α [X]

= K̄3(α)−1 ·
∫ 1

α

VaRs [Xi ] ·
{
1 − ϕ′(s)

ϕ′(α)
− ϕ′′(α)

ϕ′(α)3
ϕ′(s)(ϕ(α) − ϕ(s))

}
ds.

(4.12)

For uniform margins, one obtains the formula

CTEi
α [X]

= K̄3(α)−1 ·
{

1
2 (1 − α2) −

∫ 1

α

{
sϕ′(s)
ϕ′(α)

− ϕ′′(α)

ϕ′(α)3
sϕ′(s)(ϕ(α) − ϕ(s))

}
ds

}
.

(4.13)

5. MARGINAL PROPERTIES OF THE VECTOR-VALUED MULTIVARIATE
CTE FUNCTIONAL

Some main properties of multivariate VaR and CTE are derived in Cousin and
Di Bernardino (2013, 2014). In particular, for multivariate risks with indepen-
dent components, the marginal CTE components are consistent with the desir-
able properties of a coherent riskmeasure. Here we ask for additional conditions
under which the marginal VaR and CTE components are coherent risk mea-
sures, at least for Archimedean copulas. In the more restricted Archimedean
copula framework, we investigate also conditions under which the marginal
CTE components preserve the more stringent stop-loss order instead of the
usual stochastic order (or the (MO) property as stated below). We begin with
some properties, which hold without restriction.

Theorem 5.1. (General marginal properties of multivariate CTE) Let X =
(X1, . . . , Xd) and Y = (Y1, . . . ,Yd) be multivariate risks that satisfy the regu-
larity conditions. Assume that X and Y belong to a fixed absolutely continuous
copula Cd(u) with density cd(u). Then the following properties are fulfilled:

(PH) Positive Homogeneity: ∀(λ1, . . . , λd) ∈ Rd+

CTEi
α [λi · X] = λi · CTEi

α [X] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.1)

(TI) Translation invariance: ∀(λ1, . . . , λd) ∈ Rd+

CTEi
α [λi + X] = λi + CTEi

α [X] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.2)
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(SL) Safety Loading: If VaRiα [X] ≤ VaRiβ [X] , i = 1, . . . , d, ∀0 < α ≤
β < 1, then

CTEi
α [X] ≥ E [Xi ] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.3)

(VIA) VaR Inequality: If VaRiα [X] ≤ VaRiβ [X] , i = 1, . . . , d, ∀0 < α ≤
β < 1, then

CTEi
α [X] ≥ VaRiα [X] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.4)

(MO) Monotonicity: If Xi ≤st Yi , i = 1, . . . , d, then

CTEi
α [X] ≤ CTEi

α [Y] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.5)

Proof. Properties (PH) and (TI) are shown in Cousin and Di Bernardino (2014,
Proposition 2.2). Properties (SL), (VIA) and (MO) are shown in Cousin and Di
Bernardino (2014, Corollary 2.5, Proposition 2.8 and Proposition 2.10). �

If the fixed copula is an Archimedean copula, then (5.3) and (5.4) hold with-
out assumption and the multivariate VaR and CTE are always greater or equal
to univariate VaR.

Theorem 5.2. (General marginal properties of multivariate CTE for Archimedean
copulas) Let X = (X1, . . . , Xd) and Y = (Y1, . . . ,Yd) be multivariate risks that
belong to an absolutely continuous d-dimensional Archimedean copula with gener-
ator ϕ. Then, besides (PH), (TI) and (MO), shown in Theorem 5.1, the following
properties are fulfilled:

(SL) Safety Loading:

CTEi
α [X] ≥ E [Xi ] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.6)

(VIA) VaR Inequalities

CTEi
α [X] ≥ VaRiα [X] ≥ VaRα [Xi ] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.7)

Proof. The proof that the two properties (SL) and (VIA) hold automatically for
Archimedean copulas follows from Corollary 4.1, which states that the multi-
variate VaR components are non-decreasing functions of the confidence level.
Finally, as observed in the proof for d = 2 of Corollary 4.1, the second in-
equality in (VIA) holds true in general for quasi-concave distribution functions,
defined to be distribution functions with convex upper level sets (Cousin and Di
Bernardino, 2013, Proposition 2.3). In particular, this holds for Archimedean
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copulas (Nelsen, 2006, Theorem 4.3.2, for d = 2, and Tibiletti, 1995, for arbi-
trary d). �

Next, we ask whether the marginal CTE components are coherent risk mea-
sures. This is the case, provided (PH), (TI), (MO) in Theorem 5.1 and the fol-
lowing subadditivity property holds:

(SA) CTE Subadditivity:

CTEi
α [X+ Y] ≤ CTEi

α [X] + CTEi
α [Y] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.8)

Cousin and Di Bernardino (2014, Proposition 2.4), shows that (SA) is fulfilled,
provided the components of the multivariate risks are independent. In this situ-
ation, the marginal CTE components are coherent risk measures. On the other
hand, one notes that the (SA) property does not hold for arbitrary margins (e.g.
Lee and Prékopa, 2013, for a counterexample in the multivariate discrete case).

One can ask for additional conditions under which the marginal CTE com-
ponents will be coherent risk measures. In general, the (SA) property of mul-
tivariate CTE for Archimedean copulas is inherited from the VaR subadditive
property for the marginal risk components (use (4.9) and Lemma 5.1 below).

(MSA) Marginal VaR subadditivity:

VaRα [Xi + Yi ] ≤ VaRα [Xi ]+VaRα [Yi ] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.9)

Therefore, if (MSA) holds, then the marginal CTE components for
Archimedean copulas are coherent risk measures. Similarly, if (MSA) holds,
then the marginal VaR components for Archimedean copulas satisfy a subad-
ditivity property similar to (5.8), namely

(SA) VaR Subadditivity:

VaRiα [X+ Y] ≤ VaRiα [X] + VaRiα [Y] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.10)

This follows from the representation (4.8) and the fact ϕ′(s) < 0. In this situ-
ation, the marginal VaR components are also coherent risk measures. This fact
holds because the properties (PH), (TI) and (MO) for the marginal VaR com-
ponents are satisfied by Propositions 2.2 and 2.7 in Cousin and Di Bernardino
(2013). Recall that there are many classes of distributions which satisfy the
(MSA) property. In particular, linear elliptical portfolios, which are used in the
Markowitz mean-variance portfolio theory, satisfy the (MSA) property, pro-
vided α ∈ [0.5, 1) (e.g. Embrechts et al., 2002, Theorem 1). However, no attempt
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has been made so far to construct, if any, multivariate Archimedean risks that
satisfy the (MSA) property.

Lemma 5.1. For each completely monotone inverse generator ϕ−1, function

γd(s, α) =
∫ s

α

(−1)d−1 d
dt

(ϕ−1)(d−1)(ϕ(t)) · βd(s, t)dt (5.11)

is non-negative on the interval [α, 1].

Proof. Since ϕ′(s) < 0, function βd(s, α) = −ϕ′(s) · (ϕ(α) − ϕ(s))d−2 is non-
negative on [α, 1]. Similarly, the first term in the integrand is non-negative be-
cause ϕ−1 is completely monotone. The result is shown. �

In the univariate case, the CTE risk measure, which is a special instance of
a distortion measure, not only satisfies the (MO) property but also preserves
the more stringent stop-loss order (e.g. Hürlimann, 1998). It is interesting to
investigate whether the following (IR) or stop-loss order preserving property
holds for the marginal CTE components:

(IR) Increasing Risk: If Xi ≤sl Yi , i = 1, . . . , d, then

CTEi
α [X] ≤ CTEi

α [Y] , i = 1, . . . , d, ∀α ∈ (0, 1). (5.12)

To establish an (IR) property such as (5.12), it is often sufficient to derive it
for the dangerousness order ≤D, which is a special instance of the stop-loss
order. Then, for a general proof, one uses the dangerousness characteriza-
tion of the stop-loss order and invokes the dominated convergence theorem
as in Hürlimann (1998, Theorem 2.2 and Section 3.2) (see also Hürlimann,
2005, proof of the theorem). Here we study the (IR) property for the class of
Archimedean copulas. A simple sufficient condition for the validity of the (IR)
property is the following one.

Lemma 5.2. If function γd(s, α) is non-decreasing and non-negative in s ∈ [α, 1],
then the (IR) property holds.

Proof. Property (5.12) is shown as in Hürlimann (1998, Section 3.2). For fixed
i = 1, . . . , d, assume first that Xi ≤D Yi . Then one has E [Xi ] ≤ E [Yi ] and there
exists q ∈ (0, 1) such that

VaRs [Xi ] ≥ VaRs [Yi ] , 0 ≤ s < q, VaRs [Xi ] ≤ VaRs [Yi ] , q ≤ s ≤ 1.
(5.13)

Using the representation (4.9), one must show that

Id(α) :=
∫ 1

α

{VaRs [Yi ] − VaRs [Xi ]} · γd(s, α)ds ≥ 0, ∀α ∈ [0, 1] . (5.14)

If α ≥ q, then this is trivial by the second inequality in (5.13). Now, let 0 ≤
α < q < 1. With the non-decreasing assumption and the fact that γd(s, α) is
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non-negative, one obtains

Id(α) = −
∫ q

α

{VaRs [Xi ] − VaRs [Yi ]} · γd(s, α)ds

+
∫ 1

q
{VaRs [Yi ] − VaRs [Xi ]} · γd(s, α)ds

≥ γd(q, α) ·
∫ 1

α

{VaRs [Yi ] − VaRs [Xi ]}ds

≥ γd(q, α) ·
∫ 1

0
{VaRs [Yi ] − VaRs [Xi ]}ds

= γd(q, α) · {E [Yi ] − E [Xi ]} ≥ 0.

Next, we assume that Xi ≤sl Yi , i = 1, . . . , d. For each fixed i = 1, . . . , d
there exists possibly an infinite sequence Zi1, Zi2, . . . , Zin, ... such that Xi =
Zi1, Zik ≤D Zik+1 and Zik → Yi in the stop-loss convergence (convergence
in distribution plus convergence in the mean). For k = 1, 2, ..., set Z1 =
(Z11, . . . , Zd1) = X, . . . , Zk = (Z1k, . . . , Zdk), . . . , Z∞ = Y, where components
may be repeated if necessary. Now, since (4.9) is preserved under the dangerous-
ness order, one has CTEi

α [X] ≤ CTEi
α [Zn] for all n ≥ 1. On the other hand,

the relation Zik ≤D Zik+1 implies min (Zik, x) ≤D min (Zik+1, x) , ∀x, hence
CTEi

α [min(Zn, x)] ≤ CTEi
α [min(Zm, x)] , ∀x, ∀m ≥ n. Using this, the result

follows from the inequality

CTEi
α [Zn] = lim

x→∞CTEi
α [min (Zn, x)]

≤ lim
x→∞

{
lim
m→∞CTEi

α [[min (Zm, x)]]
}

= lim
x→∞CTEi

α [min (Y, x)] = CTEi
α [Y] .

The first and third equalities follow through the continuity of representation
(4.9). The second inequality is an application of the dominated convergence
theorem for risks with finite support. �

By Lemma 5.1 the second assumption in Lemma 5.2 is always fulfilled for
Archimedean copulas.

Corollary 5.1. (Marginal (IR) property of bivariate CTE for Archimedean cop-
ulas) Let X = (X1, X2) and Y = (Y1,Y2) be bivariate risks that belong to an
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absolutely continuous bivariate Archimedean copula with generator ϕ. Then the
(IR) property (5.12) is satisfied.

Proof. If d = 2, one has from Examples 4.1 that γ2(s, α) = 1 − ϕ′(α)−1 · ϕ′(s).
Since ϕ′(α) < 0 and ϕ′′(s) ≥ 0, the result follows from Lemma 5.2. �

In general, the (IR) property (5.12) can be investigated using the following
formula.

Lemma 5.3. For dimension d ≥ 3, function γd(s, α) satisfies the recursion formula

γd(s, α) = (d − 2) · γd−1(s, α)

+ (−1)d−1(ϕ−1)(d−1)(ϕ(α)) · ϕ′(s) · (ϕ(α) − ϕ(s))d−2. (5.15)

Proof. Applying a partial integration to Formula (4.9), one obtains

γd(s, α) =
∫ s

α

(−1)d−1 d
dt

(ϕ−1)(d−1)(ϕ(t)) · βd(s, t)dt

= (−1)dϕ′(s)(ϕ−1)(d−1)(ϕ(t)) · ϕ′(s) · (ϕ(t) − ϕ(s))d−2
∣∣t=s
t=α

+ (d − 2)(−1)d−1 ·
∫ s

α

(ϕ−1)(d−1)(ϕ(t)) · ϕ′(t) · ϕ′(s) · (ϕ(t) − ϕ(s))d−3dt

= (d − 2)(−1)d−2 ·
∫ s

α

d
dt

(ϕ−1)(d−2)(ϕ(t)) · (−ϕ′(s)) · (ϕ(t) − ϕ(s))d−3dt

+ (−1)d−1(ϕ−1)(d−1)(ϕ(α)) · ϕ′(s) · (ϕ(α) − ϕ(s))d−2,

which coincides with (5.15) by the definition of γd−1(s, α). �

Unfortunately, for dimension d ≥ 3, a general proof of the (IR) property
cannot be given on the basis of Lemma 5.3, as demonstrated by the following
example.

Example 5.2. The (IR) property for the trivariate Clayton copula
For d = 3, consider Recursion (5.15), that is

γ3(s, α) = γ2(s, α) − ϕ′′(α)

ϕ′(α)3
· ϕ′(s) · (ϕ(α) − ϕ(s))d−2.

Since γ2(s, α) = 1 − ϕ′(α)−1 · ϕ′(s), the derivativewith respect to s ∈ [α, 1] can
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be recast into the form

d
ds

γ3(s, α) = −ϕ′′(α)

ϕ′(α)
·
{

ϕ′′(s)
ϕ′′(α)

−
(

ϕ′(s)
ϕ′(α)

)2
}

− ϕ′′(α)

ϕ′(α)3
· ϕ′′(s) · (ϕ(α) − ϕ(s)). (5.16)

Obviously, since ϕ′(α) < 0 and ϕ′′(s) ≥ 0, expression (5.16) will be non-negative,
provided the curly bracket is there. Now for the Clayton copula with generator
ϕ(s) = θ−1 · (s−θ − 1), θ ∈ (−1, ∞), one sees immediately that this bracket is
non-negative over the interval s ∈ [α, 1], provided θ ≥ 0, and the (IR) property
holds in this situation. On the other hand, a calculation shows that derivative
(5.16) is negative for θ < 0, and the sufficient criterion from Lemma 5.2 is not
conclusive in this situation. In fact, it is even possible to construct herewith a
counterexample to the (IR) property. Let X = (X1, X2, X3) andY = (Y1,Y2,Y3)
be trivariate risks with marginal exponential components Xi ∼ Exp(μ) and
marginal shifted Pareto componentsYi ∼ Par(μ(λ−1), λ). The VaRmeasures
are given by

VaRs [Xi ] = −μ · ln(1 − s),VaRs [Yi ] = μ(λ − 1)(1 − s)−1/λ, s ∈ (0, 1).

Clearly, the means are equal and one has Xi ≤sl Yi , i = 1, .2, 3 (e.g. Hesse-
lager, 1995, Table 2). A numerical integration with parameters θ = −0.75, α =
0.95, λ = 1.1, μ = 1, 000 shows that

I3(α) :=
∫ 1

α

{VaRs [Yi ] − VaRs [Xi ]} · γ3(s, α)ds = −0.10805 < 0,

which contradicts the (IR) property (5.14).

6. ARCHIMEDEAN RISK CONCLUSIONS AND OUTLOOK

To conclude, it might be helpful to summarize what has been accomplished.
Starting point are the recent multivariate VaR and CTE risk measures intro-
duced by Cousin and Di Bernardino (2013, 2014). Based on a short review of
somemain general properties in Theorem5.1, we ask for conditions underwhich
the marginal VaR and CTE components of multivariate risks define coherent
risk measures. Also, a main emphasis has been put on the study of additional
properties of these risk measures under a fixed Archimedean copula structure.
Several results are worthwhile to be mentioned.

• The marginal CTE components of multivariate risks with independent com-
ponents are coherent riskmeasures in the sense ofArtzner et al. (1999) (all the
required properties (PH), (TI), (MO) and (SA) are already derived in Cousin
and Di Bernardino, 2014).
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• Given a fixed Archimedean copula, the marginal VaR and CTE components
are integral transforms of the corresponding univariate VaR measures. For-
mulas (4.8) and (4.9) are essential ingredients in the derivation of several re-
sults (proof of Corollary 4.1, Examples 4.1, coherent risk measures under the
(MSA) property and Lemma 5.2 used to show Corollary 5.1).

• Themarginal CTE components of multivariate Archimedean risks satisfy be-
sides (PH), (TI) and (MO) the properties of (SL) and (VIA) (Theorem 5.2).

• Under a fixed Archimedean copula, the marginal VaR and CTE components
of multivariate risks are coherent risk measures under the (MSA) property.
An open question is to construct, if any, multivariate Archimedean distribu-
tions that satisfy the (MSA) property.

• The marginal (IR) property of the bivariate CTE under a fixed Archimedean
copula holds (Corollary 5.1). A counterexample to the (IR) property for the
trivariate Clayton copula has been constructed in Example 5.2.

Finally, some further comments and a brief overview on related developments
should be given. The (MO) (respectively (IR)) preserving property tells us that
the CTE components are consistent with ordering of risks in the sense that
profit-seeking (risk-averse) decision makers require higher CTE by increasing
risk in stochastic order (stop-loss order). In the univariate case, the (IR) prop-
erty is a part of Hürlimann (2001, Theorem 1.1), which provides a characteri-
zation of stop-loss order by CTE functional (see also Shaked and Shanthiku-
mar, 2007, condition (4.A.8) and p. 228). The stop-loss (IR) property is weaker
than the (MO) property required in the classical definition by Artzner et al.
(1999). It is not difficult to construct examples of coherent risk measures in
the classical sense that do not satisfy the stop-loss increasing property (e.g. De
Giorgi, 2005). The weaker axiomatic risk measurement system (PH), (TI), (IR),
(SA) and (SL) finds applications in insurance pricing (e.g. Wang et al., 1997;
Hürlimann, 1998, 2002a; Young, 2004), economic capital modelling (e.g. Wirch
and Hardy, 1999; Hürlimann, 2004b; Goovaerts et al., 2012) and the portfolio
theory (e.g. Hürlimann, 2002b; De Giorgi, 2005; Adam et al., 2008; Roman and
Mitra, 2009; Sereda et al., 2009; Feng, 2011; Feng and Tan, 2012). Finally, it is
also worthwhile to mention that if the (PH) property holds, then (SA) is equiv-
alent with the axiom for a convex risk measure (e.g. Föllmer and Schied, 2002,
2010):

(CX) Convexity: ∀0 ≤ λ ≤ 1

CTEi
α [λX+ (1 − λ)Y] ≤ λ · CTEi

α [X]

+ (1 − λ) · CTEi
α [Y] , i = 1, . . . , d, ∀α ∈ (0, 1) (6.1)
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curves and dependence structure for bivariate distributions. Computational Statistics & Data
Analysis, 51(10), 5112–5129.

BRECHMANN, E.C. (2014) Hierarchical Kendall copulas: Properties and inference. Canadian Jour-
nal of Statistics, 42(1), 78–108.

CAI, J. and LI, H. (2005) Conditional tail expectations for multivariate phase-type distributions.
Journal of Applied Probability, 42(3), 810–825.
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