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Abstract
Rapid estimates of hospital capacity after an event that may cause a disaster
can assist disaster-relief efforts. Due to the dynamics of hospitals, following
such an event, it is necessary to accurately model the behavior of the system. A
transient modeling approach using simulation and exponential functions is pre-
sented, along with its applications in an earthquake situation. The parameters
of the exponential model are regressed using outputs from designed simula-
tion experiments. The developed model is capable of representing transient,
patient waiting times during a disaster. Most importantly, the modeling
approach allows real-time capacity estimation of hospitals of various sizes and
capabilities. Further, this research is an analysis of the effects of priority-based
routing of patients within the hospital and the effects on patient waiting
times determined using various patient mixes. The model guides the patients
based on the severity of injuries and queues the patients requiring critical care
depending on their remaining survivability time. The model also accounts the
impact of prehospital transport time on patient waiting time.

Paul JA, George SK, Yi P, Lin L: Transient modeling in simulation of hospital
operations for emergency response. Prehosp Disast iWet/2006;21(4):223—236.

Introduction
Hospitals and emergency departments (EDs) constitute an important part of
the healthcare system. During a disaster, their role becomes even more criti-
cal. It is vital to provide timely treatment to patients injured in the disaster in
order to minimize the fatalities. When a disaster occurs, the number of
patients who require treatment in EDs may increase 3—5 times the normal
volume,1 which easily could overwhelm the hospitals' resources. Emergency
preparedness helps hospitals cope with this sudden surge of patients by making
temporary room and utilizing resources from other hospital departments. Well-
coordinated, disaster relief efforts are needed to ensure timely treatment of all
injured victims while continuing to treat those patients who normally would
present to the ED and demand immediate attendance.

Hospital capacity estimates can assist disaster mitigation efforts to provide
timely treatment to the injured and ill. The hospital capacity information can
be used to make patient/ambulance routing decisions and resource alloca-
tions. However, obtaining hospital capacity estimates is not a trivial task due
to many factors. First, a postulated, analytical model is of little value due to
the underlying complexity of hospital operations and the dynamic nature of
the problem. Each hospital is different in terms of its resources, capabilities,
and operational efficiency. In addition, capacity estimates are required from
all hospitals in the disaster region, since hospitals in the vicinity of the disas-
ter provide critical medical support. The problem is complicated further by
the fact that capacity estimates must be made in real-time so that they are
useful for disaster management.

The complexity of the modeling task justifies the use of discrete-event
simulation, which is a widely used modeling tool for evaluation of system per-
formance. The performance of the hospital is simulated using historical, rep-
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resentative data. However, the hospital model in disaster
management differs from the model of normal operations
in the characteristics of patient arrivals, which renders the
system essentially transient in nature. Although simulation
is used in hospital studies, there were no reported applica-
tions in the literature on the estimation of transient hospi-
tal capacity, real-time or otherwise.2"5

Simulation of Hospital Operations for Regional Disaster
Relief
In order to provide informational support for coordinated
disaster relief efforts, the hospital model should be able to
represent multiple hospitals in the disaster region. That is,
a generic model must represent various hospitals in the dis-
aster region. A discrete-event simulation model of hospitals
with variable parameters was developed for this purpose.
However, conventional simulation is not feasible for real-
time applications due to the requirements on replications
to establish statistical confidence intervals and the necessi-
ty to model each of the hospitals individually. Therefore,
outputs from off-line simulation runs were used to obtain
a simulation meta-model, which can represent hospitals of
various sizes and capabilities and could be used to estimate
hospital capacity during a disaster.6

Significance of Transient Modeling
The hospital modeling approaches differ in their purpose in
modeling normal operations and modeling in a disaster situ-
ation. In normal situations, hospital modeling generally aims
at improving performance. However, in disaster situations,
modeling is useful to estimate hospital capacity in real-time.
Such estimates assist the Emergency Operations Center
(EOC) to efficiently coordinate disaster relief operations.

During a disaster, patient arrivals to a hospital are
dynamic. After an event caused by natural hazards, such as
an earthquake, it is common to experience a sudden
increase of patients 3-5 times the normal numbers in the
ED.1 Although this sudden surge of patients lasts only for
a short period of time, e.g., a few days, it affects patient flow
time, resulting in serious delays in treating the patients.2

The system is likely to follow a transient period under the
high arrival rates. Consequently, steady-state performance
measures of normal operations are inadequate in disaster
modeling. Thus, transient modeling has presented a unique
challenge to hospital operations modeling during a disaster.
This challenge is compounded further when the transient
behavior must be an integral part of the aforementioned
generic model for hospitals of various sizes and capabilities
in the disaster region.

Needs for Modeling Injury Severity and Prehospital Transport
Time
Patients with different severities of injuries have different
survivability times. Therefore, patients must be classified
according to the severity of injuries/illnesses, and priorities
must be assigned to the patients with lower survivability
time so as to render care to the right patient at the right time.

A hospital's capacity to treat injured/ill patients within
a short period of time, i.e., the so-called "golden hour",

depends on the number of patients, severity of the injuries,
and the hospital's ability to render the medical services.
Thus, the effects of patient mix of various severities must
be studied so that an EOC can best use the information to
direct the ambulances based on which hospitals can accept
the victims and how many patients each can receive.

During a disaster, patients might be in a situation in
which the ambulance transportation to the hospital takes
an extended period of time. If the transport time is too
long, this might change the severity of the patients'injuries,
thereby reducing the available survivability time.

Research Objectives
To meet the needs and research challenges described above,
this research has the following objectives:

1. To develop a set of meta-models to represent the
transient, in-hospital operations for use in disaster
relief efforts;

2. To study the effects of injury/illness severities and a
priority-based, routing system of patients on their
waiting times;

3. To develop a relationship between the change of
patient mix and patient waiting time;

4. To study the effects of prehospital transport time on
patient waiting time and mortality; and

5. To demonstrate the developed meta-models for real-
time estimation of hospital capacity.

This research focuses on dealing with the initial surge of
trauma injuries and other patients in the early stages of a
sudden-onset disaster. The subsequent services, such as
intensive care and inpatient care, are not within the scope
of this paper. Although the results reported here might be
useful for design or improvement of hospital facilities for
disaster planning, follow-up research would be required to
address these issues.

Literature Review
Modeling Hospital Operations
A variety of modeling methods used for hospital operations
modeling are found in the literature. These include: (1) lin-
ear programming;7 (2) dynamic programming;8 (3) queu-
ing models;9 (4) system dynamics;10 and (5) discrete-event
simulation models.2"5 Boyd used linear programming to
optimize resource allocation in hospitals when alternative
methods of treating a patient are available. The dynamic
linear programming resource allocation model, described
by Zon and Kommer, captured the expected improvement
in the patients' future healthcare needs as a result of the
healthcare interventions and improvement of resource allo-
cation.8 Although linear and dynamic programming allow
quantitative analysis, these deterministic, mathematical
models are unable to deal with problems of random nature.
In that regard, queuing models are capable of representing
stochastic processes. For example, Bretthauer and Shetty
used a Jackson network of queues (Poisson external arrivals
and exponential service times at the single server nodes) in
healthcare capacity planning problems.9 Their model tried
to minimize capacity costs while satisfying a constraint on
the expected length-of-stay (LOS) of patients. However,
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queuing models only capture long-term system perfor-
mance. On the other hand, system dynamics models have
applications in a solution-oriented model of a simple sys-
tem and in macroscopic system modeling. An example of a
solution-oriented application for cancer screening has been
described by Royston ef al. In a macroscopic system, it is
useful to understand the relationship between various ele-
ments in the model for developing emergency health and
social i .10

Discrete-Event Simulation Modeling
As quantitative models lack the capability of modeling
complex systems, such as hospital operations and obtaining
capacity estimates in a dynamic environment, discrete-
event simulation is a useful method capable for modeling
detailed functioning of hospitals.

In a survey on the use of discrete-event simulation in
healthcare industries, Jun et al found that the main effort is
concentrated on patient flow and resource allocation.11 For
example, Cote developed a simulation model for an outpa-
tient clinic and studied the influence of examination room
capacity and patient flow on four performance measures:
(1) room utilization; (2) room queue length; (3) examina-
tion rooms' occupancy; and (4) patient flow time.2 The
model only was affected by the arrival rate. Simulation
modeling also was used to find optimal parameters in the
simulation study of a clinic by Weng and Houshmand.5 In
addition to standard performance measures such as
throughput, time in the system, queue times, and queue
lengths, they also measured the total cash flow.

While the above simulation studies were conducted for
specific hospitals, Lowery designed a simulation model of
a hospital's critical care units to represent a variety of dif-
ferent hospitals.3 The results suggest the possibility of
designing a generic critical care model, which could be used
to represent a specified range of hospitals with various
capacity and operational characteristics.

By using factorial design in combination with simulation
modeling, it is possible to find the best operating parame-
ters. Although the examples in the literature are case-spe-
cific and only study the steady-state behavior of hospital
systems, they demonstrate the capability of simulation in
hospital operations modeling.11 It is a promising approach
to create a generic hospital model,3 followed by meta-mod-
eling using experimental design methods.4

Simulation modeling requires multiple replications for
the results to be acceptable statistically. Since real-time
capacity estimation is required for disaster relief, multiple
replications of all of the hospitals in the disaster region
require prohibitively considerable computing effort.
Therefore, the direct use of simulation in real-time appli-
cations for disaster relief is impractical.

Regression and Parametric Models
In a systems study, it is beneficial to establish quantitative
relationships between the input and output variables.
Giraldo ef al developed a parametric model that relates the
number of admission requests and available time at the
operating theaters (surgical suites) to the number of

patients on a waiting list. This offered useful insight into
the system's operating characteristics.12

Chang combined data envelopment analysis with regres-
sion analysis to evaluate hospital efficiency, as a function, to
a number of hospital operating characteristics.13

It is possible to create a generic hospital model by spec-
ifying the hospital characteristics, although hospitals vary
in size and capability.2 Groenendaal and Kleijnen designed
experiments for regression meta-modeling in a simulation
study with uncertain inputs and parameters.14

Transient Modeling Approaches
Transient Modeling by Discrete-Event Simulation
Widely used for their flexibility, discrete-event simulation
models inherently are capable of modeling the transient
behavior.15 In any simulation model, which starts from an
empty and idle state, the system passes through a transient
stage before reaching a steady state. This transient modeling
capability of simulation is demonstrated by many applica-
tions in the literature. For example, a real-time scheduling
algorithm was developed to select a dispatch rule dynami-
cally in Flexible Manufacturing Systems using the tran-
sient modeling by discrete-event simulation.16

By combining simulation and meta-models to study system
transient behavior, Cochran and Lin developed compound,
dynamic event meta-models to approximate the transient by an
exponential process in a manufacturing application.17 This
suggests potential applications of meta-models for modeling
transient dynamics in hospital operations.

Transient Modeling by Control-Theoretic Models
Ortega designed a control-theoretical model to represent
the transient behavior of a manufacturing system.18 He
also used simulation results to estimate the parameters of
the control-theoretic model. However, it is not realistic to
calibrate each individual control-theoretical model for all
possible hospitals, as is required for the generic applicabil-
ity in regional disaster relief efforts.

Significance of Severity Separation/Triaging
In the ED, the use of triage first diagnoses the severity of
patients' injuries in order to identify those patients needing
immediate treatment. This diagnosis is based on urgency of
treatment, likelihood of survival, and available resources.19'20

As earlier research did not consider any priority assignment
to patients depending on the likelihood of survival, patients
were served on a first-come, first-serve basis. Thus, using
available resources to treat patients, based on the severity of
their injuries, was not possible with the previous model. In
this regard, the current model attempts to consider these
factors properly as it is vital for the mass-casualty emergency
preparedness during any disaster.

Saunders ef al developed a simulation model of the
emergency department by incorporating priority for
patients with various levels of needs.21 Severely injured
patients wait less time to see a physician than do those with
less severe injuries, which is desirable in a disaster situation.
Garcia ef al conducted a simulation to study the effects of
patient priority on the waiting time of low priority patients

July-August 2006 http://pdm.medicine.wisc.edu Prehospital and Disaster Medicine

https://doi.org/10.1017/S1049023X00003757 Published online by Cambridge University Press

https://doi.org/10.1017/S1049023X00003757


226 Transient Modeling

and the impact of a fast-track lane.22 As expected, the
results indicate that the higher priority patients experience
shorter waiting time, while the lowest priority patients have
the longest waiting time.

Significance of Patient Mix of Various Severities
Patient mix could affect the use of available resources, and
thus, could affect patient waiting time. Patient mix effect
on a clinic23 has been studied using simulation.3 The
results indicated that clinical environments are highly sen-
sitive to small changes in patient mix and patient schedul-
ing rules. The changes of patient mix greatly impacts physi-
cian utilization and consequently the average, daily clinic
overtime costs. Similarly, intensive care unit (ICU) perfor-
mance is considerably different for various case mixes, in
terms of standardized mortality ratio.23 Standardized mortal-
ity ratio can be defined as the number of actual deaths in a
given year as a percentage of those expected. Expected
deaths depend on the standard mortality of the reference
period, adjusted for age, gender, etc.

Effect of Prehospital Transport Time
Patients during a disaster are classified into several severity
types (levels). Long prehospital transport times can lead to
the development of a more serious severity type. This
would result in a change of patient mix received by the hos-
pital, which might affect patient waiting time and hospital
resource utilization. Therefore, prehospital transport time is
identified as a factor affecting the mortality from traumat-
ic injuries.24'25 In a study on the effect of the prehospital
transport time on the waiting time, the transport time was
assumed to follow a normal distribution.24

Methods
Overview of the Methodology
By combining the design of simulation experiments using
factorials and off-line simulation runs, a generic simulation
model can be developed that can represent any hospital
with various ED patient volumes, hospital size, and operat-
ing efficiency. Using ANOVA in the off-line simulation, a
response surface is obtained. This relates the dependent
variable of hospital performance to hospital characteristics,
which are the independent variables.

The parametric response surface model thus represents
the steady-state behavior of the system. By further com-
bining the transient behavior with this generic hospital
model, a meta-model is prepared to capture the temporal
behavior of hospitals during a disaster.

In this context, hospital capacity was defined as the
number of emergency patients who can be treated within a
certain time period in a timely manner, as demanded by the
necessary medical procedures for various types of injuries.
In this research endeavor, only the initial time for treatment
of patients was modeled. However, after the initial treat-
ment is over, there still could be bed surge capacity issues.
The current research does not address these issues, but a
number of strategies exist that could be used to solve this
problem, for example the work by Davis er al?b In planning
disaster relief, the [US] Federal Emergency Management

Agency (FEMA) uses software systems, such as HAZUS
(NIBS, Washington, DC), to predict the number and
severity of injuries resulting from an earthquake. This
should enable hospitals to prepare for the expected number
and types of patients.27 Such software tools can be used
with this hospital model for the improvement of disaster
relief coordination.

Design of Experiment for the Generic Hospital Model
Since the capability to represent any generic hospital is
needed, parametric modeling of the hospitals is required.
The number of beds, number of operating rooms (OR),
and OR efficiency (average number of surgeries per OR per
year) can be used to adequately model a generic hospital for
disaster mitigation.

In the experimental design, three levels for each of the
factors are used. They are:

1. Number of Beds: 100, 300, or 500;
2. Number of ORs: 5,10, or 15
3. Operating Room Efficiency Index: 600, 900, or 1,200

(surgeries/OR/year)
This 3 x 3 x 3 factorial design leads to 27 combinations.

However, since it is unlikely for a large hospital with 500
beds to have only five ORs or a 100-bed small hospital to
have 15 ORs, such non-feasible combinations were
removed from the experiment. This results in 21 combina-
tions to be simulated. The scope of this design is sufficient
to support the development of a generic hospital model, as
national statistics of all hospitals (for the year 1999) indi-
cate that hospitals with >100 beds comprise 85% of the
total number of beds in the US.28 For any hospital whose
factors'values are within the range of this design, their per-
formance can be obtained by interpolation, by using the
parametric response surface model.

Modeling Steady-State Operations of Hospitals
As discussed, although discrete-event simulation is a valu-
able tool for hospital modeling, real-time simulation runs
for estimating hospital capacity are not feasible for the fol-
lowing reasons:

1. It is not possible to build individual simulation mod-
els for all of the available hospitals in the disaster area,
which may vary in size after the event occurs; and

2. Even when simulation models of all the hospitals
were available, time-consuming multiple runs still
are required for the results to be acceptable statisti-
cally due to the random nature of simulation experi-
ments. This does not support real-time applications.

To overcome these weaknesses, the modeling power
offered by simulation should be used, while avoiding time-con-
suming runs by using off-line simulation and statistically gener-
alized simulation results. Therefore, a meta-model generalized
from the simulation results offers a sound solution method.

Patient waiting time is the response variable of the sim-
ulation meta-model, as it indicate how busy the hospital is,
and directly impact survivability. In other words, the hospi-
tal capacity during a disaster is indicated by how quickly it
can treat the injured patients. Survivability, defined as the
maximum allowable time before the patient is treated to
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Important
Parameters

To

TL

*u

Tu

Linear
Regression

82%

72%

90.5%

74%

Non-linear
Regression

94%

90%

96.5%

85%
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Table 1—R2 values for linear and non-linear regression
(With Severity Separation)
Where

TQ = pre-earthquake steady-state waiting time;
TL = post-earthquake steady-state waiting time cor

responding to the lower bound on arrival rate
("base case" waiting time);

ly _ post-earthquake upper bound of patient arrival
rate that begins to saturates the system ("critical
case" arrival rate); and

Tu = post-earthquake steady-state waiting time cor-
responding to the upper bound on arrival rate
("critical case" waiting time).

avoid fatality, depends on the type and severity of injuries.
Survivability times specific to hospital operations, deter-
mined only when a patient reaches the ED, were used.
Therefore, by requiring the waiting time to be shorter than
the survivability time, the hospital capacity is estimated.

In this model, average daily patient arrival rates prior to
the earthquake are calculated from national statistics.29

Since post-event arrival rates are unknown, a set of various
arrival rates are simulated. This will result either in a steady
state following a certain transient period or a congested
system due to a patient volume that exceeds hospital capac-
ity. Thus, for each of the arrival rates that does not congest
the system, the corresponding waiting times are collected.
Regression equations then are obtained for both pre-earth-
quake and post-earthquake steady-state waiting times.

Transient Modeling of Hospital Operations
Immediately after the earthquake, the system passes through
a transient period. The transient state is of utmost importance.
Shifting from a pre-earthquake waiting time to the post-earth-
quake waiting time, the transient state may have a similar expo-
nential behavior to the dynamic operations in manufacturing
systems as demonstrated by Cochran and Lin.17 Nonetheless,
the exact characteristics depend on the hospital parameters
and patient arrival rates after the earthquake.

The form of the transient is approximated using a single
exponential function.17 This form is used to capture the
transient when there is a sudden increase of patient volume.

The off-line simulations are completed with a constant
arrival rate to obtain the steady-state hospital performance on
patient waiting times. However, in a real-time application that
uses simulation, the arrival rates are dynamic and unknown.
Therefore, patient arrival rates are estimated based on actual

arrivals to the hospital. In this work, the average number of
arrivals in a moving time window is used as the arrival rate.
This rate is updated at fixed, small time intervals, resulting in
a step function. A time window of 30 minutes and increments
of five minutes were suitable for this application.

The general distributions of inter-arrival times do not
have a considerable effect on the waiting times when a con-
stant arrival rate is simulated. This observation supports the
use of pseudo-dynamic rates. However, since the arrival
rates change continuously over time during a disaster
event, a continuously varying arrival rate should be used to
model the patient arrivals with improved fidelity. Estimation
of dynamic arrivals is addressed in ongoing work.

Severity of Injuries and Priority Assignment
Three different severities are considered in the capacity
estimation model. Severity 1 class patients are patients with
minor injuries, e.g., lacerations, cuts, wounds, minor respi-
ratory problems, fractures, who do not require surgery.
Severity 2 patients are patients who arrive with compara-
tively more severe problems, and might not require surgery.
Severity 3 patients are the highest severity patients, arriv-
ing with major issues, e.g., burns, head injuries, fractures,
which require surgery. Since Severity 1 patients do not
require surgery, only Severity 2 and Severity 3 patients are
considered in the queue before entering the OR. In addi-
tion, inpatients also utilize the OR. Their surgery can be
postponed due to the large number of emergency patients
requiring surgery. Therefore, they have the lowest priority
for using the ORs. Only when there are no Severity 2 and
Severity 3 patients are waiting for an OR, can these inpa-
tients be operated on.

Each patient is assigned a survivability time correspond-
ing to his/her severity of injury. The survivability time is the
maximum time that a patient can wait before the treatment
in an OR (for Severity 2 and Severity 3 patients) or ED (for
Severity 1 patients). From interviews with hospital staff, the
following survivability times are established:

Inpatients: Infinitely long period of time
(for the purpose of modeling priority queue)

Severity 1: 390 minutes
Severity 2: 270 minutes
Severity 3: 80 minutes
Severity of injury alone is not enough to determine the

priority of a patient. It also is necessary to consider the
remaining allowable waiting time, which is defined as the dif-
ference between a patient's survivability time and the current
waiting time. The highest priority is given to those patients
with the least remaining allowable waiting time.

Based on the above priorities, a simulation is run for each
of the 21 generic hospitals. Both steady state and transient
state waiting times are collected for Severity 2 patients and
Severity 3 patients separately. Here, the simulation model
still considers an earthquake as a event likely to result in dis-
aster, and it does not incorporate the damage to the facility.
Whenever an OR becomes available, the remaining allow-
able waiting times are updated for all of the patients waiting
in the OR queue. The patient with the least allowable wait-
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Patient arrival rate (number of patients/day)
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Figure la—Relationship between steady-state patient
waiting time and patient arrival rate; steady-state waiting
time vs. patient arrival rate (for a hospital with 500 beds,
15 ORs, 1,200 efficiency index)

Paul © 2006 Prehospital and Disaster Medicine

Figure lb—Relationship between steady-state patient
waiting time and patient arrival rate; logarithmically-
scaled steady-state waiting time vs. patient arrival rate (for
a hospital with 500 beds, 15 ORs, 1,200 efficiency index)

ing time remaining obtains the highest priority and is sent to
the OR.

Modeling Change in Patient Mix
In the previous research, the patient mix was fixed based on
the statistical analysis of historical data.6 While a fixed
patient mix captures the general injury types, it is not flex-
ible to deal with a dynamic patient mix. In this research, the
effect of change in patient mix has been studied. Patient
mix can be of two types: (1) the ratio of the number of OR
patients/total number of patients, denoted by a; and (2) the
ratio of Severity 2 (OR)/(Severity 3 + Severity 2 (OR)),
denoted by p. An ANOVA test determined the signifi-
cance of a and (3 and their interactions with the other fac-
tors on the patient waiting times.

Modeling Effect of Prehospital Transport Time
The patient severity, as identified before transport, may not
remain the same upon arrival to the hospital. The survivabil-
ity time also must be updated based on the transport time.
Here, two possibilities can occur: (1) the patient severity type
remained the same as it was before transport, but the surviv-
ability time has decreased; or (2) the patient severity type has
changed and the survivability time has decreased. This can
have two outcomes: (1) the patient waiting times may be
affected; or (2) the available capacity of the hospital might
change. The input to the simulation model is the updated
survivability time, which is obtained after deducting the
transport time. The transport time is assumed to follow a
normal distribution with a mean, [i, and variance, a2.

Simulation Meta-Model for Steady-State Conditions
Regression of Steady-State Operations
During a disaster, the types of injuries differ from those
during normal times. Therefore, the experiments are made
using historical data compiled from the statistics of five
earthquakes in California from the late 1970s to mid-

Important
Parameters

T0 2

TL2

^•U2

TU2

Linear
Regression

64.2%

77.4%

92.7%

64.2%

Non-linear
Regression

94.6%

96.5%

98.3%

88.1%

Paul © 2006 Prehospital and Disaster Medicine

Table 2—i?2 values for linear and non-linear regression
(Severity 2)
Where:

TQ2 = pre-earthquake steady-state waiting time for
severity two type patient;

T L 2 = post-earthquake steady-state waiting time
corresponding to the lower bound on arrival rate

(base case waiting time) for Severity 2 patient;
1(72 = post-earthquake upper bound of patient arrival

rate that begins to saturates the system (critical
case arrival rate) for severity two patient; and

TU2 = post-earthquake steady-state waiting time
corresponding to the upper bound on arrival rate
("critical case" waiting time) for a Severity 2
patient

1990s.23"27 To capture the steady-state operational behavior
of the generic hospital, the following general parametric
form of quadratic regression was used:

Z=C0 C2O
C0 1 2

C-fiO + CJBE + C9OE

C3E C4B
2 jO2 + C6E

2 +
(Equation 1)

Where:
Z = patient waiting time (before treatment) on which

we are regressing;
B = number of beds in the hospital;
O = number of ORs;
E = OR efficiency index; and
Co, CJ , C2, C3, C4, C5, C6, C7, Cg, C9 are coefficients.
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Figure 2a—Relationship between steady-state patient
waiting time and patient arrival rate; Steady-state waiting
time vs. patient arrival rate (For a hospital with 500 beds,
10 ORs, 1,200 efficiency index)

For the post-earthquake arrival rate, there are two
bounds. The first is a hypothetical arrival rate without
emergency patients injured from the event, and it is equal
to the pre-earthquake arrival rate. This is the minimal
arrival rate called the "base case". The highest arrival rate is
found from simulation runs during which the system will
become over-capacitated with any additional volume. This
corresponds to the maximum number of patients that the
hospital can treat. This scenario is called the "critical case".
The parametric form of patient arrival rate is the same as
in Equation 1.

To capture the steady-state operational behavior of the
generic hospital, the following general parametric form of
linear regression was used:

Case 1: Without severity separation: The R2 values for lin-
ear and non-linear regressions are shown in Table l.The rela-
tionship between steady-state patient waiting time and patient
arrival rate is shown in Figures la and lb.

Case 2: With severity separation:
Severity 2: The R2 values for linear and non-linear

regression are shown in Table 2. The relationship between
steady-state patient waiting time and patient arrival rate is
shown in Figures 2a and 2b. Similar results have been
obtained for Severity 3 patients.

In order to find the waiting time corresponding to an
arrival rate between the base case and the critical case, inter-
mediate patient arrival rates were simulated. The simulation
results show that the waiting time grows nearly exponen-
tially with the increase in arrival rates (Figures la, lb, 2a, 2b,
and 3). Therefore, a regression of logarithmically trans-
formed waiting time is made to obtain a good linear fit:

ln(Ts) = a + fcA (Equation 2)
Where:

A = any patient arrival rate between 1L and ly,
Ts = the steady-state waiting time corresponding to A;

and
a and b = constants for a given hospital configuration.
Equation (2) allows estimation of the steady-state wait-
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Figure 2b—Relationship between steady-state patient
waiting time and patient arrival rate; Logarithmic scaled
steady-state waiting time vs. patient arrival rate (For a
hospital with 500 beds, 10 ORs, 1,200 efficiency index)
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Figure 3—Effect of change of alpha on the waiting time

ing times corresponding to an intermediate patient arrival
rate for any given hospital, in terms of the constants a and
b, which are found by using the data from the base case and
critical case simulations.

Incorporation of the Effect of Change in Patient Mix
Simulations were completed using different values for a
and p. When the patient mix is fixed, let the default value
for a and (3 be ad and Pd-To see the effects of a and (3, an
experiment was designed where the a value was 0.5ctd, ad,
and 1.5ad and where the b value was O.5|3d, Pd, and l-5Pd.
The dynamic patient mix would not deviate drastically
from the default mix; so this design should cover most real-
istic patient mixes. An ANOVA was performed on these
simulation results obtained for the Severity 2 and Severity 3
patients. This showed that a is a major factor while P is not.
Thus, from the simulation results, it can be deduced that the
patient waiting is a time function of number of beds, OR,
Efficiency, and a.
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0.083 0.165 0.248

Waiting Time

6.2446

9.5883

15.6535

2.4919

7.1758

7.1758

2.5607

2.1543

13.3070

1.5356

3.5082

5.3805

1.2577

2.1543

3.4669

1.1358

2.8552

5.0166

1.0484

1.8838

3.0753

12.0523

19.3844

22.0973

3.5381

9.139

9.139

23.7189

4.5374

22.46

3.5381

5.5468

10.2418

1.5354

4.5374

5.8204

4.9027

11.4487

14.517

1.8339

4.539

7.0073

22.0135

28.4813

29.2383

3.8979

9.26

10.2292

20.3459

24.665

27.478

9.2704

9.6877

12.988

3.0138

7.6443

9.1064

16.316

19.211

22.105

5.8515

11.5558

15.66

Table 3—Effect of alpha for different hospital configurations (Severity 2)
Paul © 2006 Prehospital and Disaster Medicine

The relationship between the waiting time and these
factors and their various interactions was found by per-
forming simulations for different combinations of hospitals
for different levels of a (0.083,0.165,0.248) while holding
P constant at 0.503 (generic case).

This is a reasonable result since a determines the propor-
tion of OR patients. The larger the a value, the more
patients who need surgical services, and the heavier the bur-
den on OR resources, the longer the waiting time. While P
determines the patient mix within the operating room
patients, the requirement for surgical services remains rela-
tively constant by varying P under a fixed a value.

The general parametric form of the equation for qua-
dratic regression is:

Z=C0 + CjB + C2O + C3E + C^A + C5B
2 + C6& +

C7E
2 + CgA2 + CgBO + C1QBE + CnBA + C12OE +

COA CEA
7 g g

C13OA + C14EA

Relationship between a and Critical Volume
From the simulation results, the following relationship was
found between the critical volumes at a = 0.165, the fixed
value as taken in, and the critical volumes at the other a val-
ues (0.083, 0.248) considered in the study.6

Log (Cr_Vol at an a value) = Log (Cr_Vol at a = 0.165
value) + (0 .212+0.608(a - 0.083)/0.165) x Log (0.165/a)

Here, the Cr_Vol is the total patient volume. But this
equation holds true for critical volume of specifically both
Severity 2 and 3 type patients.

Significance of /3 Considering Percentage of Patients
Served within Survivability Time
Simulations were run for the 21 hospital combinations for the
different values of p. An ANOVA was performed using the
results and P was found to be insignificant. This result is not
surprising because the patient mix within the patients requir-
ing the surgical services change, but the total number of
patients requiring these services remains the same. An
ANOVA also was performed to check if P was significant
when the percentage of the patients served within the surviv-
ability time is considered and was found to be insignificant.

Sensitivity Analysis
A sensitivity analysis was performed to determine the
effect of changing a, while other factors on the waiting
time of a patient holding constant. All possible hospital
combinations with beds from 100-500, ORs ranging from
5-15 were analyzed.

The sensitivity of the waiting time with respect to a is
given by the following equation:

Waiting time = exp (((k^og (TJ - kjog (Tv)) +
(log (Tuh l (T^U/fr X

Prehospital and Disaster Medicine http://pdm.medicine.wisc.edu Vol. 21, No. 4

https://doi.org/10.1017/S1049023X00003757 Published online by Cambridge University Press

https://doi.org/10.1017/S1049023X00003757


Paul, George, Yi, eta/ 231

Beds

100

100

100

100

100

100

300

300

300

300

300

300

300

300

300

500

500

500

500

Operating
Rooms

5

5

5

10

10

10

5

5

5

10

10

10

15

15

15

10

10

10

15

Efficiency

600

900

1,200

600

900

1,200

600

900

1,200

600

900

1,200

600

900

1,200

600

900

1,200

600

Patient Volume

31

31

31

31

31

31

82

82

82

82

82

82

82

82

82

132

132

132

132

alpha

0.083 0.165 0.248

Waiting Time (minutes)
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10.5023
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2.3212

2.1284

11.5771

1.2986

3.3908

5.2393
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2.1284

3.2383

1.0961

2.5929

4.5248

1.0408

10.8146

15.4255

19.8112

3.0947

8.4955

8.4955

13.9292

3.952

26.4176

3.1649

5.5468

8.7313

1.3984

3.952

5.3244

3.4816
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1.7086

16.5517
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24.7213

4.074
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10.2198
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12.988
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6.5724

7.9636

15.1162

23.0929

22.5292

4.2834

Table 4—Effect of alpha for different hospital configurations (Severity 3)
Paul © 2006 Prehospital and Disaster Medicine

Where:
TQ = pre-earthquake steady-state waiting time;
T L = post-earthquake steady-state waiting time corre-

sponding to the lower bound on arrival rate (base
case waiting time);

Xy = post-earthquake upper bound of patient arrival
rate that begins to saturates the system (critical
case arrival rate);

yi = post-earthquake steady-state waiting time
corresponding to the upper bound on arrival rate
(critical case waiting time);

XQ - the base patient arrival rate; and
\ —> ranging from 1Q to ly.

The sensitivities for Severity 2 and Severity 3 patients
were evaluated. The following equation validated that the
waiting time is sensitive to the change in a:

Sensitivity > A (Waiting time)/A (a) (All other fac-
tors remaining constant).

The waiting times for the Severity 2 and Severity 3 type
patients are shown in the Tables 3 and 4 for the different
values of a.

Transient Modeling for Meta-Models
Models Using Single Exponential Function
The steady-state waiting time regression model represents
the pre-earthquake performance of the hospitals and the

long-term, post-earthquake performance under a constant
patient arrival rate. The steady-state model is used as a
starting point in transient modeling. The shape of the
dynamic responses was examined during the simulation
runs. From the output, an exponential function appears to
be appropriate to describe the transient behavior.

The transient behavior of waiting time shown in Figure 4
is for a hospital with 500 beds, 15 ORs, and a 1,200 efficien-
cy index. The transient is the result of a change in patient
arrival rate from 132 patients per day before the earth-
quake, to 396 per day after the earthquake, which strikes at
2,000 minutes in the simulation.

Using an exponential function, the transient is repre-
sented as:

rr(0-2; + (7>-2;)-a-e^")
(Equation 3)

Where:
Tr(t) = the transient waiting time at (clock) time r,
T. = the initial pre-earthquake steady-state waiting

time;
Tf= the final steady-state waiting time corresponding to

the post-earthquake patient arrival rate;
f = the time when earthquake strikes; and
t = a time constant, which depends on the time it takes

for the system to reach steady state.
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Figure 4—Simulated vs. calculated waiting time from
single exponential function
(For a hospital with 500 beds, 15 ORs, 1,200 efficiency
index)

Double Exponential Function
Although the single exponential form can represent the
waiting times for a given hospital adequately, no common,
underlying function that can represent a relationship
between arrival rates and the time constant, x for all of the
hospital combinations was found. Therefore, instead of
using a single exponential function, a double exponential
function that allows generic modeling of transient waiting
time was considered.

The transient waiting-time behavior of a hospital with
500 beds, 15 ORs, and a 1,200 efficiency index under var-
ious patient arrival rates is shown in Figure 5. The dots are
patient waiting time observed from simulations. To see the
trend of the waiting time more clearly, the solid curves were
drawn using the moving average approach. By 2,000 min-
utes (the designated time of the earthquake), the hospital
had reached a steady state, and the waiting time has stabi-
lized at around 16 minutes. The earthquake strikes at 2,000
minutes, after which a constant patient arrival rate is
assumed. Three curves are shown in the Figure 5, each cor-
responding to a certain arrival rate, with the highest curve
corresponding to the highest rate. The higher the arrival
rate, the longer it takes for the hospital to reach a steady
state after the earthquake. Therefore, under base case, the
hospital will take the shortest time to reach steady state,
while under critical case, the hospital will take the longest
time to be steady, and any other case will be between these
two cases.

This suggests these two cases can be combined to rep-
resent any transient behavior in between. The form of dou-
ble exponential function is:

Ti + (1- p){Tf - 7;.)(1 - e T' ) + p{Tf - 7;.)(1 - e r> )

(Equation4)
Where:

Tj and %2 = the time constants associated with the "base
case" and the "critical case" respectively; and

it = weighing factor between 0 and 1. In the "base case",
p = 0, and in the critical case, p = 1.

60O0 6000 1000Q 12000

Simulation Time (min)
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Figure 5—Temporal waiting time corresponding to dif-
ferent patient arrival rates (For a hospital with 500 beds,
15 ORs, and a 1,200 efficiency index)

Let Tr^t) and Tr2(t) represent the transient waiting time
for base case and critical case from Equation 3.That is:

(Equation 5)

(Equation 6)
Then Equation 4 can be seen as a weighted sum of Tr^t)
and Tr2(t):

Tr(t) = 1 - aTJt) + aTJt)
(Equation 7)

For the base case (p = 0) and the critical case (p = 1),
Equation 7 reduces to the form of Equation 3. For an arrival
rate close to base case, the value of p is close to 0; while for an
arrival rate close to critical case, p will be close to 1.

For dynamic post-earthquake arrival rates, a similar relation-
ship is established by assuming that the arrival rate is constant
within a period of time. That is, if at time tp the waiting time is
Tp the patient arrival rate X,, is a constant during the time peri-
od from t1 to tp die steady-state waiting time T2 can be calcu-
lated corresponding to A. from Equation 2as T^ = ea + tl + A.
Then the transient waiting time Tf (t) at time t is:

Tr(t) = 7; + (1 - p){T2 - 7J)(1 - e p(T2 -

for t1 <T <t2

(Equation 8)

where Tj , x2, and p are the same as before.

Regression of Parameters of the Double Exponential Function
Model
To apply Equations 4 and 8, time constants x^ and x2 must
be estimated first. For each of the generic hospital config-
urations, Equation 5 is used to obtain constant tj by mini-
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Figure 6—Logarithmic scaled p vs. patient arrival rate Fig^e 8—Transient behavior for Severity 3 patients (for
a hospital with 500 beds, 15 ORs, 1,200 efficiency index)
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Figure 7—Transient behavior for Severity 2 patients (for Figure 9—Transient behavior without considering
a hospital with 500 beds, 15 ORs, 1,200 efficiency index) patients' severity

mizing the sum of squared deviations from the simulation
results as follows:

Find Tj that minimizes the objective function Z(Wti - Tojjfcj))?
Where:

W(j = the ith observation of waiting time during transient
period, from simulation for "base case";

Twj _ the ith value obtained from Equation 5, which is
a function of rl

In case of T2, Equation 6 is applied instead of Equation 5.
Using optimization software GAMS 31 (GAMS
Development Corporation, Washington, DC), the values for
Tj and T2 are obtained for each of the hospital configurations.
The non-linear regression equations of these two constants are

Tj = 2291.16 + 4.85B - 2.8190 - 2.71E + 0.002B2 +
10.79O2 + 0.002E2 - 0.17BO + 0.004BE =
0.07OE

z2 = 1531.42 - 6.73B + 526.060 - 5.9E - 0.009B2 -
0.89O2 + 0.01E2 + 0.59BO + 0.01BE - 0.81OE

The R2 values of the regression are 96% and 79% respectively.

Estimation ofp
To determine the value for p, several simulations with dif-
ferent post-earthquake patient arrival rates for selected

hospital configurations were performed. Similar to the
approach used to estimate Tj and T2, the p values obtained
under each of the simulated patient arrival rates by mini-
mizing the squared deviations.

The relationship between patient arrival rate and p is
shown in Figure 6 for a hospital with 500 beds, 15 ORs,
and a 1,200 efficiency index. The higher the patient arrival
rate, the larger the value of p. The logarithmically scaled p-
value is proportional to patient arrival rate with R2 value
equal to 96%:

ln(p) = c + dk
(Equation 9)

Where:
c and d are constants for a particular hospital; and
\ = patient arrival rate.

Hospital-specific coefficients c and c/can be determined
using the "base case" (p = 0 and A = AL) and "critical case"
values (p = 1 and A = Ay), for any hospital. Notice that
when p = 0, h\(p) does not exist. However, as seen in Figure 7,
asp approaches zero, \n(p) approaches -3.2.Therefore,\n(0) =
—3.2 is used as an approximation in the calculations.

To compare the accuracy of double exponential function
and single exponential function, the time constants were
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Parameters

Severity 2 x,

Severity 2 x2

Severity 3 T,

Severity 3 x2

R2 (Linear
Regression)

59.7%

53.2%

59.2%

53.3%

R2 (Quadratic
Regression)

82.0%

75.6%

75.6%

83.8%

Paul © 2006 Prehospital and Disaster Medicine

Table 5—Regression on time constants

estimated independently for a set of arrival rates for single
exponential function. The p-values for the same set of
arrival rates for double exponential function also are calculat-
ed using Equation 9. The transient waiting time is calculated
using Equations 3 and 4; the errors are comparable in both
models. However, the double exponential model offers a
distinct advantage with an improved functionality, since the
time constants are obtained without the need for simula-
tion runs for any patient arrival rate. Simulation only is
necessary for the base case and the critical case.

Transient Behavior
Assuming a constant patient arrival rate during the disas-
ter, the patient waiting time will experience a transient
period until it stabilizes at the steady state. This transient
behavior is obtained from simulation for both Severity 2
and 3 patients. The transient waiting time for Severity 2,
Severity 3, and all patients under the same overall patient
arrival rate for the same hospital are illustrated in Figures
7, 8, and 9. As expected, the transient waiting time for
Severity 3 patients is less than is that for the Severity 2
patients, since the former has a higher priority in general.
The reason that the overall patient waiting time is higher
than the separated waiting time is that there are more inpa-
tients surgeries performed in the former case. In the previ-
ous stage of the simulation (no severity separation), 50% of
the scheduled pre-event inpatients' surgeries still are per-
formed during the disaster. In current stage of the simula-
tion (with severity separation), those pre-disaster scheduled
inpatients' surgeries are performed only when there are no
earthquake patients waiting for the OR.

Similar to the approach used to obtain the transient
behavior, a double exponential equation can be used to fit
the transient waiting time for Severity 2 and 3 patients,
with different time constants t j and x2- The regression
equations of the time constants for Severity 2 and 3
patients have the same parametric form as the waiting time
equations noted before. The R2 values for these regressions
are provided in Table 5. The quadratic fittings are satisfactory.

Capacity Estimation of the Hospital
For both Severity 2 and Severity 3 patients, the model given
by Equation 8 can be used in combination with Equation 2
to estimate hospital capacity. Assuming the maximum allow-
able waiting time for Severity 2 patients is Tm2, then from
Equation 2, in steady state, this waiting time corresponds to

Paul © 2006 Prehospital and Disaster Medicine

Figure 10—Capacity (for a hospital with 500 beds, 15
ORs, 1,200 efficiency index) without travel time alpha
changes at 44,000 minutes from 0.165 to 0.248

a maximum patient arrival rate ( .̂m2) given by km2 =
Qn(Tm2) - a/b. Assuming the current waiting time Tr2(t) to
be a steady-state waiting time for a certain patient arrival rate
^s2, this arrival rate can be calculated as k$2 = (kn(Tr2) -
a/b. The available capacity is equal to the difference
between the maximum capacity and the used capacity:

(Equation 10)
Where:

C = the available capacity; and
At = the length of time
The same approach can be used to obtain capacity for

Severity 3 patients.

Significance of Prehospital Transport Time
As far as the waiting time for the patient is concerned, the
prehospital time was found to be inconsequential. If the
prehospital transport time was so high as to change the
patient from a Severity 1 to Severity 2 or 3, it would affect
the waiting time considerably, since a is an important fac-
tor. The change of a patient from Severity 2 to 3 does not
have any effect. Transport times so high as to change the
patient from Severity 1 to Severity 2 or 3 occurs rarely
because the survivability time of Type 1 is 390 minutes
while Type 2 and Type 3 is 270 and 80 minutes respective-
ly. The transport time does not affect the waiting time. The
survivability times are updated and are no longer are 390,
270, or 80 minutes, as assumed earlier and the maximum
waiting time available for a patient is less. Therefore, the
capacity available at the hospital is lower when the effect
of the patients' travel time from the point they are picked
up to the point they are brought into the hospital is considered.

The new capacity could be found out using the follow-
ing equation:

C = (Xm2new - \2) x At (11)
Where:

m2new * * m2 >' ' '

(x = mean of prehospital transport time.

An Illustrative Example
Consider a hospital with 100 beds, five ORs, and 1,200 effi-
ciency. Suppose the patient mix in a time transient period
(tl) beginning from the point the earthquake strikes
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Figure 11—Waiting time (for a hospital with 500 beds,
15 ORs, 1,200 efficiency index) without travel time alpha
changes at 44,000 minutes from 0.165 to 0.248

Paul © 2006 Prehospital and Disaster Medicine

Figure 13—Waiting time (for a hospital with 500 beds,
15 ORs, 1,200 efficiency index) with travel time 30 min,
alpha changes at 44,000 minutes from 0.165 to 0.248

Paul © 2006 Prehospital and Disaster Medicine

Figure 12—Capacity (for a hospital with 500 beds, 15
ORs, i,200 efficiency index) with travel time 30 min,
alpha changes at 44,000 minutes from 0.165 to 0.248

Paul © 2006 Prehospital and Disaster Medicine

Figure 14—Capacity (for a hospital with 500 beds, 15
ORs, 1,200 efficiency index) with travel time 50 min,
alpha changes at 44,000 minutes from 0.165 to 0.248

(30,240 minutes) to 44,400 minutes is 0.165, and for the
rest of transient period, the patient mix is 0.248. This sce-
nario has been simulated twice. Once with a travel time dis-
tribution of N (30,10) and once without the consideration
of travel time to study the effect of both patient mix and
travel time. Assuming a normal distribution, the travel time
data generated by simulation which is <0 or extremely large,
unrealistic values were not considered. The results showed
that due to the change in the patient mix there was consid-
erable change in waiting time and capacity of the patients as
illustrated in Figures 10, 11, and 12. The travel time does
not have an effect on the waiting time of the patients, but it
affects the capacity that is available with the hospital. This
is reinforced further by considering another scenario with
travel distribution of N(50,10).This is due primarily to the
fact that the maximum available survivability times with the
patients are less because travel time is now updated includ-
ing the effect of travel time. The survivability times now
available are not 270 and 80 minutes for Severity 2 and

Severity 3 patients thereby the capacities available with hos-
pital is reduced per Equation 11 (Figures 13 and 14).

Conclusion
In this research, a high-fidelity hospital operations tran-
sient model was developed by using a generic simulation
model approach with a set of meta-models. The results
show that a double exponential model with parameters
estimated by regression gives satisfactory representation of
the transient operations in the hospitals. This work demon-
strated the following significance:

1. The meta-models for hospital transient operations
are capable of representing any hospital in a disaster
situation, indicating the validity of the proposed
generic approach to hospital modeling;

2. The model gives greater priority to severely injured
patients thereby the total patient waiting time con-
sidering the patient survivability times reduced and
effective and more efficient use of hospital resources
can be accomplished;
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3. The model can predict the patient waiting times for
any patient mix, and thereby, the routing of patients
can be done effectively in order to receive medical
attention as soon as possible; and

4. The method allows real-time capacity estimation for
all of the hospitals in the disaster region, with mini-
mal computational requirements. Since simulation
runs are made off-line, this has overcome the weak-
ness of conventional simulation for which long exe-
cutions prohibit real-time applications.

In the development of double exponential functions,
Equation 9 shows that ln(a) is directly proportional to the
arrival rates. This clearly indicates that any errors in the
estimation of patient arrival rate have a considerable effect

on the estimated capacity. However, the estimation of
arrival rate is not straightforward since the rate keeps
changing in a disaster event. Therefore, estimation of
arrival rates in a real-time model must be addressed in
future work. The effect of facility damage on the hospital
functioning also should be addressed in the future work.
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