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The interaction between the wall and the core region of turbulent channels is
studied using direct numerical simulations at friction Reynolds number Reτ ≈ 630.
In these simulations the near-wall energy cycle is effectively removed, replacing
the smooth-walled boundary conditions by prescribed velocity disturbances with
non-zero Reynolds stress at the walls. The profiles of the first- and second-order
moments of the velocity are similar to those over rough surfaces, and the effect of
the boundary condition on the mean velocity profile is described using the equivalent
sand roughness. Other effects of the disturbances on the flow are essentially limited to
a layer near the wall whose height is proportional to a length scale defined in terms of
the additional Reynolds stress. The spectra in this roughness sublayer are dominated
by the wavenumber of the velocity disturbances and by its harmonics. The wall
forcing extracts energy from the flow, while the normal equilibrium between turbulent
energy production and dissipation is restored in the overlap region. It is shown that
the structure and the dynamics of the turbulence outside the roughness sublayer
remain virtually unchanged, regardless of the nature of the wall. The detached eddies
of the core region only depend on the mean shear, which is not modified beyond
the roughness sublayer by the wall disturbances. On the other hand, the large scales
that are correlated across the whole channel scale with ULOG = uτκ

−1 log(Reτ ), both
in smooth- and in rough-walled flows. This velocity scale can be interpreted as a
measure of the velocity difference across the log layer, and it is used to modify the
scaling proposed and validated by del Álamo et al. (J. Fluid Mech., vol. 500, 2004, p.
135) for smooth-walled flows.

1. Introduction
Wall-bounded turbulent flows have been thoroughly studied in the past decade,

with special emphasis on flows over smooth walls. In the last few years increasing
attention has been paid to the study of rough walls, which are commonly encountered
not only in some industrial applications but also in the vast majority of geophysical
flows. There are also theoretical aspects of rough-walled flows which might be
useful for the understanding of the physics of the wall region, in particular its
interaction with the outer flow. Direct numerical simulations (DNS) of non-physical
flow configurations have been very useful in the study of inner-outer interactions,
such as in the autonomous channel of Jiménez, del Álamo & Flores (2004). From
this point of view, the study of rough-walled flows can be understood as the study of
a core region without the structures of the smooth wall.
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From the experiments of Nikuradse (1933) it is known that the main effect of
roughness is a decrease in the mean velocity profile, which is constant outside the
immediate vicinity of the wall. This leads to the modified logarithmic law

U+ = κ−1 log y+ + A+ − �U+ = κ−1 log y/ks + 8.5, (1.1)

where U is the mean streamwise velocity and y is the wall distance. Variables with a
+ superscript are expressed in wall units, using the friction velocity uτ and the viscous
length ν/uτ . The Kármán constant is κ and A is the intercept constant, and they are
usually taken as κ = 0.41 and A+ = 5.2 for smooth channels. The effect of the surface
roughness on the mean velocity profile is accounted for by the roughness function
�U+, or by the equivalent sand roughness k+

s , introduced by Schlichting (1936). This
velocity decrease is generated in the wall region, and the mean velocity gradient
remains unchanged in the logarithmic and outer regions. Also, due to the nature of
the rough wall, there is an uncertainty in the position of the origin for y. Thom (1971)
and Jackson (1981) show that a reasonable choice is the mean momentum absorption
plane, obtained as the centroid of the drag profile on the roughness. Other methods
for computing the origin of y, based on the assumption that there is a logarithmic
layer in the mean velocity profile, are reported by Raupach, Antonia & Rajagopalan
(1991).

The classical theory is based on the ‘Townsend hypothesis’, that states that outside
the roughness sublayer the turbulent motions at sufficiently high Reynolds number
are independent of the wall roughness and of viscosity (Perry & Abell 1977; Raupach
et al. 1991). This implies that, apart from the effect of the roughness on the mean
velocity, no other differences between smooth- and rough-walled flows should be
encountered.

As reported in the recent review by Jiménez (2004), this theory has been challenged
during the past decade, and is still a subject of discussion. For instance, the experiments
of Krogstad, Antonia & Browne (1992) in a boundary layer over a mesh-screen wall
show important differences between the smooth- and the rough-walled cases in the
outer region. The wall-normal velocity fluctuations are enhanced across the whole
thickness of the boundary layer in the rough case, indicating that the active scales
are modified everywhere. Krogstad & Antonia (1994) find that these modifications
are associated with changes in the streamwise correlation length of all the velocity
components, around half the size for the structures over rough walls that for those
over smooth walls.

In a later paper Krogstad & Antonia (1999) compare the mesh-screen and the
smooth wall with a surface roughened with circular rods. This new rough surface
also produces modifications in the turbulent structures of the outer region. In both
cases, the differences in the velocity fluctuations are accompanied by differences in
the Q2 and Q4 quadrant contributions to the Reynolds stresses, with increased sweep
events in the rough-walled cases. A comparison of the spectra from the rough-walled
cases with the smooth-walled ones shows differences for the v-spectrum and for the
uv-cospectrum, while the u-spectrum compares well.

Similar results are published by Djenidi, Elavarasan & Antonia (1999) for a d-type
roughness on a boundary layer. They conclude that the effects of the surface condition
are not confined to the inner region of the flow. The experiments of Poggi, Porporato &
Ridolfi (2003) in turbulent channels indicate that the roughness decreases the levels of
anisotropy and intermittency in the inner region. They suggest that the changes in the
inner region modify the flow in such a way that the effects of the roughness are also
present in the core region. Simulations in non-symmetric channels, with roughness
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Wall disturbance effects on turbulent channel flows 359

elements only in one wall, also show important departures from the smooth-wall
behaviour that extends to the centre of the channel (Leonardi et al. 2003; Bhaganagar
& Kim 2003; Orlandi, Leonardi & Tuzi 2003), although it is unclear whether this is
due to the roughness or to the asymmetry.

On the other hand, other experiments over rough-walled boundary layers show
excellent agreement with smooth-walled data in the outer region. Ligrani & Moffat
(1986) show good collapse in the streamwise velocity fluctuations, although some
anomalous scaling is reported in the other two velocity components. They also check
that the smooth- and rough-walled streamwise spectra collapse in the overlap region,
supporting the findings of Perry & Abell (1977) in pipes. Keirbulck et al. (2002)
show velocity fluctuations profiles collapsing with smooth-walled data in the outer
region, although the wall-normal velocity is affected by the roughness over up to 40%
of the boundary layer thickness. The turbulent production and dissipation profiles
are quite similar across the whole layer, while the wall-normal energy flux is very
different for the rough and the smooth cases. Flack, Schultz & Shapiro (2005) report
Reynolds stresses, quadrant analysis and velocity triple products collapsing with the
smooth-walled data, within the experimental uncertainty, for rough-walled flows with
δ � ks .

A recent study in turbulent channels by Bakken et al. (2005), using their own
experimental data and the DNS results of Ashrafian, Andersson & Manhart (2004),
supports the idea that the wall roughness modifies the velocity fluctuation profiles
only within the roughness sublayer, although some uncertainty exists about further
effects within the outer region. The authors speculate that turbulent channel flows
over rough walls satisfy the similarity hypothesis of Townsend but that the same may
not be true for boundary layers.

The present work aims to clarify how the outer turbulent flow is modified by the
near-wall region, simulating the effect of the surface roughness with a distribution
of velocities on the wall that replaces the non-slip and impermeability boundary
conditions. The numerical setup and the boundary conditions are presented in § 2.
The effect of this artificial roughness on the rest of the flow is discussed in § 3 using
one-point statistics. The flow around the disturbances is characterized in § 4, and a
spectral analysis of the effect of the roughness in the outer flow is conducted in § 5,
emphasizing the effect of the wall disturbances on the largest scales of the outer
region. Conclusions are offered in § 6.

2. Numerical experiment
The present direct numerical simulation integrates the Navier–Stokes equations in

the form of two evolution problems for the wall-normal vorticity ωy and the Laplacian
of the wall-normal velocity ∇2v. The time integration is performed using a third-order
Runge–Kutta scheme with implicit viscous terms, as in Kim, Moin & Moser (1987).
The spatial discretization is pseudospectral, with dealiased Fourier expansions for
the streamwise (x) and spanwise (z) directions, and a compact finite differences
scheme in the wall-normal direction (y). The periodicities of the computational box
in the wall-parallel directions are Lx and Lz, while h is the half-height of the channel.
We denote by u and w the streamwise and spanwise velocity fluctuations, and by W

the mean spanwise velocity.
The numerical scheme for the first derivative in the y-direction is a fourth-order

spectral-like compact finite differences one (Lele 1992) based on a five-point stencil
in a uniform mesh, which is analytically mapped to the actual stretched mesh of
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the simulation. The coefficients of the scheme are computed using two consistency
conditions, and two extra conditions provided by the minimization of the L2 norm
of the difference between the eigenvalues iα and iα̃ of the exact and discretized
derivatives, in the range 0 < α�x < π. The resulting scheme has quite good resolution
properties; the standard five-point eighth-order compact finite differences scheme
resolves up to 61% of the numerical wavenumbers with less than 1% of error, while
the modified scheme resolves up to 74% with the same accuracy.

For the two points closest to the wall we use compact finite differences schemes
with three-point stencils. A third-order scheme with a non-centred stencil is used for
the point at the wall, and the next one uses a standard fourth-order centred scheme.
It was found that improving the order of the scheme at the wall above the order of
the scheme at the centre of the channel led to numerical instabilities, in agreement
with the results of Kwok, Moser & Jiménez (2001). These authors also show that
boundary schemes one order lower than the interior scheme are adequate to ensure
global convergence consistent with the order of the interior scheme.

For reasons of numerical efficiency, the scheme for the second derivative, required
to solve the Helmholtz equation for the viscous terms, is directly computed in
the stretched mesh, and only the consistency conditions are used to compute the
coefficients of the scheme. As for the first derivative, a five-point stencil is used, with
non-centred stencils at the walls. The resulting scheme has sixth-order accuracy.

The non-slip and impermeability boundary conditions for the velocity at the walls
are replaced by prescribed zero-mean-value perturbation velocities. These velocities
are characterized by the amplitudes and the streamwise and spanwise wavelengths (Λx

and Λz) of the single Fourier mode being forced. When only the wall-normal velocity
component is disturbed, a fairly small effect on the flow is achieved, with �U+ = 4.6
when the intensity of the wall-normal velocity disturbance is v′+

w = 0.72 (throughout
this paper, the subindex w denotes variables evaluated at y = 0, the prime stands
for root-mean-square averaging and 〈〉 stands for averaging both in time and in the
two homogeneous directions). When the streamwise and the wall-normal velocities
are forced with the same phase, so that the Reynolds stresses component 〈uv〉w �= 0,
a much stronger effect on the flow is obtained. For instance, u′+

w = −v′+
w = 0.83

leads to �U+ = 8.7. Hence, two distinct forcings are used in this paper, both having
〈uv〉w �= 0 and 〈uw〉w = 〈vw〉w = 0. The first one has u′

w �= 0, v′
w �= 0, w′

w = 0 and
will generally be represented in the figures with open symbols. The second forcing
has u′

w = v′
w = w′

w �= 0, and will be represented with solid symbols. In this case, w is
shifted in x by Λx/2 with respect to u and v, so that the imposed velocity disturbances
are non-symmetric and the flow just upstream of vw > 0 goes to the left, while the
flow downstream goes to the right.

These boundary conditions are quite different from those proposed by Orlandi et al.
(2003), where an instantaneous velocity plane extracted from a full DNS simulation
was used as boundary condition in one wall of the perturbed DNS. The advantages
of the present approach are essentially the fuller control of the boundary condition
and an easier parameterization of the artificial roughness. Both walls are forced in
our case to obtain a symmetric configuration with a well-defined centre, where the
turbulent structures can be compared with those of smooth channels.

3. One-point statistics
The parameters of our numerical experiments are presented in table 1. Two different

box sizes are used: simulation run numbers with upper-case letters denote big boxes,
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Reτ Lx/h �x+ �y+
c �y+

w u′+
w v′+

w (ω′
x)

+
w Λ+

x �U+ δy+ k+
s k+ h/k Λx/k

r1 556 4π 10.2 7.0 0.8 0.94 1.13 1.19 71 7.1 −2.6 67 6.9 81 10.3
r2 631 4π 11.6 8.0 0.9 0.83 0.83 1.12 220 8.7 −11.2 128 15.5 41 14.2
R2 632 8π 11.6 8.0 0.9 0.83 0.83 1.12 221 8.7 −11.7 129 15.5 41 14.2
r3 674 4π 12.4 8.6 1.0 0.67 0.67 1.03 529 9.6 −20.7 207 24.4 28 21.7
S0 547 8π 13.4 6.7 	1 0 0 0.26

Table 1. Numerical simulation parameters. Reτ = uτh/ν is the friction Reynolds number. Lx

and Lz = Lx/2 are the streamwise and spanwise lengths of the computational box. The mesh
resolution after dealiasing is �x, �z = �x/2. The wall-normal mesh resolution is �yc at the
centre of the channel and �yw at the wall. u′

w and v′
w are the wall forcing intensities, (ω′

x)w
is the streamwise vorticity intensity at the wall, Λx and Λz = Λx/2 are the streamwise and
spanwise wavelengths of the forcing. �U and δy are the velocity decrease and the wall-normal
shift, obtained from a logarithmic law adjustment. ks is the equivalent sand roughness and k
is a characteristic length of the forcing, defined in § 4.

Lx ×Lz = 8πh×4πh, and lower-case letters denote smaller ones, Lx ×Lz = 4πh×2πh.
The cheaper small-box cases are performed to investigate the effects of different
forcings on the O(y) active scales of the outer flow. It is shown by del Álamo et al.
(2004) that DNS with these box lengths are able to accurately represent most of the
active scales of the turbulence, but do not contain the very large scales of the flow.
Therefore, a large-box simulation R2 is used to study the effects of the mid-intensity
forcing on these scales. The results from these four wall-disturbed simulations are
compared with a DNS of a smooth-walled turbulent channel in a large box performed
by del Álamo & Jiménez (2003), which is also included in table 1 as case S0. This
numerical experiment has friction Reynolds number comparable to that of the forced
cases.

In the present simulations the method proposed by Thom (1971) to estimate the
position of the wall is not applicable, and both the wall-normal shift δy+ and the
roughness function �U+ are obtained by a least-square fit of the mean velocity profile
to the logarithmic law (1.1) in the region between y+ = 50 and y = 0.2h. The exact
value of the Kármán constant used in the fitting produces variations in �U+, which
are of about 15% when κ is varied in the range 0.38 − 0.42. The position of the
wall also varies with κ , but in all cases δy+ ≈ O(10). The values presented in table 1
are obtained for κ = 0.41. The equivalent sand roughness k+

s of the disturbed cases
corresponds to the fully rough regime, except for r1 which may be classified as
transitional. All the computed δy+ are small compared with k+

s and with Reτ . A new
wall-normal coordinate

ȳ = y + δy (1 − y/h) (3.1)

is defined to expand the numerical wall-normal coordinate y from the interval [0, 2h]
to [δy, 2h − δy]. It is interesting to note that δy is negative for all cases, which means
that the effective wall (ȳ = 0) is above the plane in which the disturbances are injected
into the flow (y = 0). In the smooth case S0 we have ȳ = y.

The mean streamwise velocity profiles are presented in figure 1(a) expressed in
wall units, and in velocity defect form in figure 1(b). Both figures are consistent with
previous results obtained over rough walls in experiments (Bakken et al. 2005; Poggi
et al. 2003) and in numerical simulations (Ashrafian et al. 2004; Leonardi et al. 2003;
Orlandi et al. 2003). Only small deviations from the smooth-walled velocity defect
law are observed in figure 1(b). Similar differences were observed by del Álamo et al.
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Figure 1. (a) Mean streamwise velocity. (b) Streamwise velocity defect law, Uc = U (y = h).
, S0; �, r1; �, r2; �, R2; �, r3.

(2004) when comparing smooth channels with different box sizes. They suggested that
their discrepancies could be related to contributions from large scales to the mean
flow, an argument that may also be valid for the present results.

Although not obvious from the figure, ∂U/∂y at the wall in case r1 is roughly
zero, which indicates that the mean flow above the disturbances is separated, with
∂U+/∂y+|w = −0.07 and min(U+) = −0.01. This is due to the high value of v′

w

employed in this case. Similar locally separated flows are found by Jiménez et al.
(2001) in porous channels when the porosity coefficient exceeded a certain threshold.

For the case r3 a secondary flow (not shown) is observed in the spanwise direction,
with W (y) < 0.1U (y) everywhere, a maximum value of |W+| = 0.3 at y+ = 40, and
zero mass flux when integrated across the full height of the channel.

The u′ profile in the wall region is presented in figure 2(a). The intensity of the
near-wall peak decreases as the roughness function increases, and the same is true
for the off-wall peak of the streamwise vorticity intensity ω′

x in figure 2(b). In both
cases, the attenuation of the peak is due to the shortening of the spectra, which will
be discussed in § 5. The maximum value of ω′+

x is always at y = 0. In the smooth case
this is due to the interaction of the wall with the transverse velocities created by the
quasi-streamwise vortices (Kim et al. 1987). In the disturbed cases, that component
is probably also present, but a much larger contribution comes from the forcing
itself (see table 1). The off-wall peaks of u′ and ω′

x are indicators for the near-wall
streaks and for the quasi-streamwise vortices. In smooth channels those structures
are involved in the self-sustaining near-wall energy cycle described by Jiménez &
Pinelli (1999), which is responsible at the present Reτ for roughly 35% of the total
energy production in the channel. The damping of those peaks in figures 2(a) and
2(b) suggests that the cycle is perturbed in case r1, strongly perturbed in r2 and R2,
and essentially destroyed in r3.

Those changes are also reflected in the ratio of the production (Π) to the dissipation
(ε), shown in figure 2(c). In the smooth-walled case there is a production peak at
ȳ+ ∼ 20, and a slightly dissipative layer in 40 < ȳ+ < 100. As the roughness function
increases, this peak decreases and the dissipative region disappears. There is a new
peak of Π/ε just above the wall which is due to the additional Reynolds stress
introduced by the forcing, and which has been highlighted in the figure with a dashed
line. In the case R2 both peaks form the two ends of a plateau, but for r3 the
new peak dominates and the old one has essentially disappeared. In all cases the
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Figure 2. Near-wall behaviour. (a) Intensities of the streamwise velocity fluctuations and
(b) of the streamwise vorticity. (c) Ratio of turbulent energy production to dissipation.
(d) Turbulent energy flux, defined in (3.2). , S0; �, r1; �, r2; �, R2; �, r3.

dissipation at the wall is much larger than the production, and the wall acts a net
energy sink.

Figure 2(d) presents the energy flux Φ , computed by evaluating each term of

Φ =
1

2

〈
u2

i v
〉

+ 〈vp〉 − ν

2

∂2

∂y2

〈
u2

i

〉
, (3.2)

where the subindex implies a summation for all the velocity components, and p is
the pressure fluctuation. In smooth-walled flows, part of the energy produced around
ȳ+ ∼ 20 is exported towards the centre of the channel (Φ > 0), to be dissipated by
the background turbulence, while the rest is exported towards the wall (Φ < 0), where
it is absorbed by the viscosity. The maximum of Φ near ȳ+ = 40 is compensated by
the extra dissipation shown in figure 2(c) at that level. For the disturbed cases, the
energy also flows both towards the centre and towards the wall, but the maximum at
ȳ+ = 40 progressively disappears, together with the dissipative layer.

The energy structure in the near-wall layer looks very different in the smooth and
in the disturbed cases, and it is clear that in the latter the canonical cycle of the
smooth-walled channel has been severely perturbed. It is therefore significant that
far from the wall all the variables tend to their smooth values. The comparison is
extended to the whole channel in figure 3. Except near the wall all the cases agree.

Specially significant is the energy flux. There is in all cases a region where Π/ε ≈ 1,
which suggests the formation of an equilibrium overlap layer. That is a local property
of the turbulence at that wall distance, consistent with the usual arguments for a
logarithmic law. Those arguments only require that Φ should be constant across that
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Figure 3. Turbulent statistics in the outer region. (a) Intensity of the streamwise velocity
fluctuations and (b) of the wall-normal and spanwise velocity fluctuations. (c) Ratio of
turbulent energy production to dissipation. (d) Turbulent energy flux, defined in (3.2). ,
S0; �, r1; �, r2; �, R2; �, r3.

region, but they say nothing about its actual value. In order to investigate whether
this value is fixed by the wall, by the outer region or by the log layer itself, we
can compare Φ for flows with different wall regions (smooth and rough walls) and
for flows with different outer regions (channels and boundary layers). As Φ is not
always available in experiments, we will also use 〈u2v〉, which in (3.2) accounts for
roughly one half of Φ . The collapse shown in figure 3(d) and the results reported by
Bakken et al. (2005) in channels and Flack et al. (2005) in boundary layers suggest
that the energy flux in the overlap region is not imposed by the wall. On the other
hand, Jiménez & Simens (2000) report that 〈u2v〉+ collapses in the overlap region for
turbulent channels and for boundary layers. This evidence suggests that the level of
Φ+ ≈ 0.3 should be intrinsic to the log layer, instead of dependent on its boundary
conditions.

It is also interesting in figure 3(b) that the transverse intensities v′ and w′ increase
near the wall as the roughness increases, even as ω′

x decreases. Examination of their
spectra shows that the extra energy is essentially isotropic in the wall-parallel plane,
and therefore unrelated to the usual vortices found over smooth walls.

The collapse of the velocity fluctuation intensities, of the ratio of the production
to the dissipation, and of the energy flux in the outer region agrees with most of the
literature comparing flows over smooth and rough walls, as already mentioned in the
introduction. It however disagrees with Krogstad et al. (1992), where the high growth
rate of the boundary layer thickness may introduce distortions in the wall-normal
mean velocity component. Orlandi et al. (2003) also find a different behaviour in
channels with only one rough wall, but their mean profiles are asymmetric, and the
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Figure 4. Advection velocities in the outer region. �c+
ω computed for all wavenumbers,

plotted as a function of the wall distance (a) in wall units and (b) normalized with h. ,
S0; �, r1; �, R2; �, r3.

additional shear introduced by the difference in wall friction between the smooth and
the rough wall is not negligible at moderate Reynolds numbers. That extra shear may
modify the structures in the core region of the channel, as reported in asymmetric
channels by Hanjalić & Launder (1972).

As expected, the results from cases r2 and R2 are almost indistinguishable in figures
2 and 3, and only R2 will be used from now on. The good agreement between the
two boxes confirms that the 4πh × 2πh boxes contain most of the active scales in the
turbulent channel flow.

We can also analyse the effect of the wall on the advection velocity of the u

structures, which corresponds to that of ωy in the limit of elongated structures. The
method used here to compute the advection velocity was previously used by Jiménez
et al. (2004), and is based on the equation satisfied by a simple wave,

Im(ϕ̂∗ · ∂t ϕ̂) = −kx(ϕ̂
∗ · ϕ̂) c, (3.3)

where c is the phase velocity, ϕ̂ is the corresponding Fourier mode, kx is the streamwise
wavenumber and the asterisk indicates complex conjugation. This equation only holds
for a single Fourier mode. For larger sets of wavenumbers it can be generalized by
averaging the spectral quantities on both sides of (3.3), so that the advection velocity
of ωy is defined as

cω = −
Im〈ω̂∗

y · ∂t ω̂y〉Ω

〈kxω̂∗
y · ω̂y〉Ω

= U + �cω, (3.4)

where 〈〉Ω implies that the average is taken over all the wavenumbers in the Fourier
domain Ω . Note that the term �cω contains the nonlinear advection and viscous
contributions, but not the mean velocity U . Therefore, �cω describes the interaction
of ωy with the mean flow, and is a first-order indicator of the dynamics.

A comparison of (3.4) with the more usual definition of advection velocity given by
Wills (1964) is documented in del Álamo et al. (2006a). On the other hand, since the
same definition is used here for both the rough- and the smooth-walled simulations,
the exact relationship of cω with the advection velocity of Wills (1964) is not critical
for the purposes of this section.

Figure 4 presents the distribution of �c+
ω with respect to the wall distance, computed

over the whole wavenumber domain. Figure 4(a) shows that near the wall the
distribution of �c+

ω is very different in the four cases. The smooth-walled channel has
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higher �c+
ω at the wall than the disturbed cases, due to its higher ∂U/∂y|w , and also

because of the negative contribution to �c+
ω of all the structures which are essentially

attached to the wall forcing. The negative peak in S0 around ȳ+ ≈ 30 is damped in
R2 and r3, as a consequence of the interruption of the near-wall cycle in the latter. In
the transitional case r1 this peak remains roughly unchanged, and the more intense
negative peak below it is again due to the structures attached to the wall forcing.

Despite the big differences observed near the wall, the disturbed cases tend to the
smooth-walled values as ȳ+ increases, and figure 4(b) shows that they compare well for
ȳ > 0.2h. This suggests that to a first approximation the dynamics of the outer region
is not modified by the wall. This result is consistent with the advection velocities of
u computed by Sabot, Saleh & Comte-Bellot (1977) in rough- and smooth-walled
pipes, using space-time correlations for the large-streamwise-separation limit.

4. Box-filtered flow fields
In § 3 we have seen that the present forcing is able to strongly modify the near-wall

region of a smooth-walled channel, essentially destroying its energy cycle. In fact,
the flow just above the wall is very complex, with locally separated regions (u < 0)
attached to the areas being blown (vw > 0), and high velocity gradients over the regions
under suction (vw < 0). Because of that inhomogeneity, plane-averaged quantities
are not adequate to study the flow features near the wall, while the instantaneous
realizations are always hard to interpret. Hence, we compute the averaged flow in
boxes of size Λx × Λz/2 × h containing a forcing cell, which consists of a single
blowing and a single suction. This box averaging is performed using a Fourier filter
that retains only those modes which are conserved by the group of translations in
physical space that keeps the forcing invariant, but excluding the uniform (0, 0) mode.
Note that strict time averaging of the velocity fluctuations, without the homogeneity
assumption, would lead us to a flow field composed of these averaged boxes. This is
true provided that the forcing does not develop subharmonical perturbations before
breaking in fully developed turbulence, which is confirmed by the spectral analysis.

We denote with the subindex B the variables averaged in this way. They only
contain the fluctuations that are associated with fixed positions relative to the wall
forcing. It is possible to derive an equation from them, by time averaging the Navier–
Stokes equations for the velocity fluctuations. In the resulting equations, and for wall
distances y ∼ Λx where U � uτ � uB , the advection by the mean velocity and
the pressure term are dominant, while the advection due to uB and the Reynolds
stresses produced by the remaining velocity fluctuations are negligible. This leads to
the linearized Rayleigh equation, whose solution for y ∼ Λx decays as

uB ∼ exp(−
√

K2
x + K2

z y) = exp(−2π
√

5y/Λx), (4.1)

where Kx = 2π/Λx and Kz = 2π/Λz are the wavenumbers of the forcing. Note that,
in the present simulations with Λx = 2Λz, there is no difference in using Λx or
(K2

x + K2
z )

−1/2, except for a constant factor.
Figure 5(a) shows (uB)′+ as a function of the wall distance normalized with the

wavelength Λx of the forcing. Near the wall, (uB)′+ accounts for most of u′, but it tends
to zero as y increases. The ground level of (uB)′+ ≈ 10−3 for y > 0.6Λx is consistent
with the expected uncertainty due to the limited number of forcing cells used for the
statistics, which is 5 × 104 − 5 × 105 for the 150 available fields. Nevertheless, the
statistics are good enough to observe the predicted exponential decay.
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Figure 5. Streamwise velocity fluctuations near the wall, (uB )′+ from box-averaged flow fields
(lines), and u′+

F from filtered spectra (symbols). (a) Wall distances normalized with Λx . �, and
, r1; �, and , R2; �, and , r3. The dotted straight line is (4.1). (b) Wall

distances normalized with k, defined in (4.2). �, r1; �, R2; �, r3; , S0 using the filter and
the value of k calculated for r1; the dashed vertical line is ȳ = 6k.

Similar exponential decays are also observed for the other two velocities and for
all the components of the vorticity vector. However, the tangential Reynolds stress
〈uBvB〉 of the rough cases does not collapse either with y+ or with y/Λx or with y/h.
Hence, we define a new length scale

k = −
∫ h

0

〈uBvB〉+ dy, (4.2)

that corresponds to the height at which the full tangential Reynolds stress u2
τ would

exert the same moment as the actual 〈uBvB〉 distribution. This definition is similar to
the method proposed by Jackson (1981) to calculate the origin for y, defined as the
position at which a uniform stress would exert the same moment on the flow as the
real rough wall. It is interesting that in the present cases k is roughly equal to the maxi-
mum height of the separated flow regions of the box-averaged fields (uB < 0), located
above the areas being blown. The wavelength Λx and k are not proportional, as can
be observed in the last column of table 1. In fact, k is not only dependent on Λx ,
but also on the other parameters of the forcing and on the Reynolds number of
the flow. However, if we assume that (4.1) applies for the whole wall region with
(uB)′

w = −(vB)′
w = uτ , and that uB and vB are in phase, we can integrate (4.2) to get

Λx

k
≈ 2π

√
5. (4.3)

This crude estimate of k gives values which are of the same order as those in table 1.
Figure 5(a) also shows u′+

F , which is the square root of the sum of the filtered
spectra, where the filter is the one defined at the beginning of the section. Note that
u′

F
2 contains both (uB)′2 and the incoherent contribution of the velocity in the forced

modes. Therefore, u′
F agrees with (uB)′ near the wall, and decays with y/Λx until

the slope of u′+
F changes. The wall distance at which the change occurs does not

scale with Λx , as can be observed in the symbols of figure 5(a). On the other hand,
when u′+

F is plotted as a function of y/k in figure 5(b), the change in the slope takes
place at about y ∼ 6k for the three rough cases. In the layer below 6k, limited by
the dashed line in the figure, the non-homogeneous contribution from the forcing
dominates the background-filtered turbulence, and thus it can be interpreted as the
roughness sublayer associated with the disturbed boundary condition. For reference,
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Figure 6. Premultiplied spectra of the streamwise velocity, normalized with u2
τ . (a) At a fixed

wall distance ȳ = 0.5h. The contours are 1/3 and 2/3 of the maximum of S0. (b) Wall-normal
distribution of the spectra, summed for all spanwise wavelengths and premultiplied by the
streamwise wavenumber. The contours are 1/8, 1/4 and 1/2 of the maximum of the smooth
case. , S0; �, r1; �, R2; �, r3.

figure 5(b) also includes the energy contained in case S0 computed with the filter from
case r1. The wall-normal distance is also normalized with the value of k obtained for
r1. The collapse of u′+

F from r1 and S0 supports that turbulence is not affected by the
boundary condition outside the roughness sublayer.

This roughness sublayer substitutes the buffer region of smooth walls, and it is
between it and the outer region where the overlap region is located, 6k < y < 0.2h.
In this region the tangential Reynolds stress is almost constant, and we can apply the
same arguments used for the logarithmic region of smooth-walled flows.

5. Spectral analysis
More details about the influence of the disturbances in the channel flow can be

extracted from spectral analysis. Figure 6(a) shows the premultiplied spectrum of
the streamwise velocity fluctuations in the core region for the disturbed and for the
smooth-walled cases, at ȳ/h = 0.5. The collapse is excellent, except for the longest
wavelengths, supporting the hypothesis that the effect of the wall disturbances is
confined to the roughness sublayer. Even better collapse is found for the other two
velocity components, in which the large-scale modes do not contain energy. The minor
differences found in the smallest scales are due to the differences in the Reynolds
numbers, as this region of the spectrum collapses when the wavelengths are expressed
in wall units.

When we check the wall-normal distribution of the streamwise spectrum of u

(figure 6b), we observe that the situation presented in figure 6(a) holds for most
of the channel, with good agreement between the smooth and the rough cases
for ȳ/h ≈ 0.2–1. As expected, strong differences are observed at wall distances
corresponding to the buffer region over smooth walls, with the streaks becoming
shorter and eventually disappearing as the roughness function increases, in agreement
with the results presented in figure 2. In the disturbed cases, the narrow peaks
located at λx < h contain around 13% of the energy in the roughness sublayer, and
correspond to the wavenumber of the forcing and to its harmonics. The total energy
contained in these modes is u′2

F , discussed in § 4. The other two velocity components
and the uv-cospectrum (not shown) for the rough cases also agree with the smooth
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Figure 7. Correlation coefficients for zero spanwise separation. (a) ρuu, (b) ρvv . The contours
correspond to 0.1, 0.2, 0.3, 0.6, 0.9. , S0; , R2.

channel in the outer region. The spectra presented in figure 6 are consistent with
the agreement in the outer region between the smooth- and rough-walled velocity
fluctuation intensities presented in figure 3.

These results contradict those reported by Krogstad et al. (1992), Krogstad &
Antonia (1994) and Krogstad & Antonia (1999) in boundary layers. In their
experiments, the roughness strongly affects the wall-normal velocity through the
whole layer, and the correlation lengths in the streamwise direction for u and v

are twice as long for the smooth-walled case as for the rough-walled one at all
heights. Note that, although the spectrum is the Fourier transform of the correlation,
separation and wavelengths have different meanings, and it is not possible to directly
compare spectra and correlations. Therefore, to check for the change in the correlation
lengths in the present simulations, figure 7 shows the correlation coefficients ρuu and
ρvv , which are defined as

ρrs(�x, �z, ȳ, ȳ0) =
〈r(x, ȳ, z, t)s(x + �x, ȳ0, z + �z, t)〉

r ′(ȳ)s ′(ȳ0)
. (5.1)

In the above equation �x, �z are the separations in the homogeneous directions,
ȳ, ȳ0 are the wall distances and r, s are the corresponding velocity components. The
reference wall distance used in the figure is ȳ0 = 0.16h, as in Krogstad & Antonia
(1994). There are large differences in the wall region between S0 and R2, both in ρuu

and in ρvv , located upstream from the reference location and at wall distances and
streamwise separations that roughly correspond with the near-wall streaks. There are
also smaller differences for ȳ > 0.2h, which are clearer for the largest separations of
ρuu. However, these differences do not account for the large changes in the correlation
length documented by Krogstad & Antonia (1994), except in the wall region. When
the same plots are drawn for ȳ0 = 0.5h (not shown), the contours of the correlation
coefficients for S0 and R2 coincide better, although some differences are still observed
for the longest separations.

In figure 7(b) we can observe that the blocking effect of the smooth wall on v is
relaxed for the rough-walled case, and the contours of ρvv in R2 are closer to the wall
than those in S0.
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Figure 8. (a) Correlation height Huu, as defined in (5.2). The contours correspond to 1/2 and
3/4, increasing from left to right. The grey patch corresponds to 1/3 of the maximum of the
premultiplied streamwise velocity spectra of case S0, at ȳ = 0.5h. (b) Energy contained in the
global modes, 6h < λx < 24h and λz > h. (c) �c+

ω computed for λz > h, see (3.4). The contours,
from top to bottom correspond to �c+

ω = −1, 0, 1. In (a–c) , S0; �, r1; �, R2; �, r3.
In (b), × is 1.15 q+

R2. (d) Structure function F , defined in (5.3), computed for 6h < λx < 24h

and λz > h. , Reτ ≈ 2000 (Hoyas & Jiménez 2006); , Reτ ≈ 950 (del Álamo et al.
2004); , Reτ ≈ 550 (S0); �, Reτ ≈ 630 (R2).

5.1. Global modes

The differences observed in figure 7(a) between S0 and R2 in the outer region for long
separations are consistent with those observed in the streamwise velocity spectrum.
Note that in figure 6(a) there is an energy peak for S0 for λx > 10h at λz ∼ 2h,
which is not visible in R2, suggesting that the very long scales are affected by the
wall disturbances. In fact, very large structures in turbulent channels are known to
be correlated from the wall up to the centre of the channel, as shown by Bullock,
Cooper & Abernathy (1978) and by del Álamo & Jiménez (2003), and it is not
surprising that they are modified everywhere in response to changes at the wall.
These global modes are also present in the disturbed cases. This is demonstrated in
figure 8(a), where the correlation height Huu of the streamwise velocity,

H 2
uu(λx, λz) =

∫ h

0

∫ h

0

Cuu(λx, λz, y, y0) dy dy0, (5.2)

is plotted as a function of the streamwise and spanwise wavelengths. The correlation
coefficient Cuu between individual Fourier modes is the modulus of the Fourier
transform of the spatial correlation ρuu defined in (5.1). The four cases agree well in
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figure 8(a), in particular the two large boxes S0 and R2. The global modes, defined
as those for which Huu > 0.75h, are roughly located in λx > 6h and λz > h.

In figure 8(b) we have represented the energies qS0 and qR2 contained in the modes
with streamwise wavelengths in the range 6h < λx < 24h and spanwise wavelengths
in the range λz > h. We do not include the energy of the two longest wavelengths
of the simulation to avoid effects coming from the long-wavelength truncation of
the spectra. For the same reason, only the cases in the long boxes R2 and S0 are
considered. In the figure, the energies normalized with u2

τ do not collapse, and the
small peak at ȳ ≈ 0.05h in q+

S0, which is related to contributions from the streaks to
the global modes, is not present in q+

R2. However, for ȳ > 0.1h the shape of the global
modes intensities is the same for S0 and R2, and their differences can be accounted
by a constant factor, q+

S0 ≈ 1.15q+
R2, as can be observed in the extra line of figure 8(b).

The reason why the differences between q+
S0 and q+

R2 are not observed in the
streamwise velocity fluctuations presented in figure 3(a) is because their effect is weak
for the present Reτ . The fraction of the total energy at each wall distance carried by
the global modes is less than 25% for the present Reynolds numbers. Therefore, the
difference shown in figure 8 corresponds to less than 4% of the total energy.

Figure 8(c) shows the λx–y distribution of the advection velocities �c+
ω defined in

(3.4), averaged over those modes with λz > h. They compare well, especially for the
two cases computed on large boxes, suggesting that the dynamics of the global modes
are essentially the same over smooth and rough walls.

In figure 8(d) we see another indicator that the differences in the structure of the
global modes are a matter of intensity. This figure shows the structure function

F =
−Re〈ûv̂∗〉Ω√
〈ûû∗〉Ω 〈v̂v̂∗〉Ω

, (5.3)

where the Fourier domain Ω is 6h < λx < 24h and λz > h. Only data from long
computational boxes are included in the figure, as well as two extra numerical
experiments of turbulent channels with smooth walls at Reτ = 950 (del Álamo et al.
2004) and Reτ = 2000 (Hoyas & Jiménez 2006).

The disturbed and the smooth-walled cases compare well, especially for S0 and
R2 outside the wall region. Any variations seem to be connected with the Reynolds
numbers of the different smooth-walled cases. The collapse again supports the idea
that the wall does not modify the structure and the dynamics of the global modes. The
high value of F for most of the channel implies that u and v are strongly correlated
for long streamwise wavelengths, and therefore the global modes are very efficient in
generating Reynolds stresses (del Álamo & Jiménez 2001).

According to del Álamo et al. (2004), the proper scale for the energy in the global
modes in turbulent flows over smooth walls is U 2

c , because they are created by stirring
the mean velocity profile all across the channel height. However, figure 8(b) shows
that this scaling fails for our disturbed case, because the ratio of the energy in the
global modes of S0 and R2 is much smaller than the actual ratio of their centreline
velocities. The same happens with the mixed scaling (uτUc) of DeGraaff & Eaton
(2000).

At this point there are two possibilities: either the velocity scale of the global modes
depends on the roughness or it does not. Unfortunately, we do not have enough data
to analyse this question directly. However, the scaling of the global modes is also
eventually felt in the intensity of the streamwise velocity fluctuations as the Reynolds
number increases, and there are more experimental intensities than spectral data
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Figure 9. (a) Streamwise velocity fluctuations at ȳ = 0.3h as a function of (U+
c )2. (b) Difference

between U+
c and the ad hoc velocity scale U+

∗ for rough-walled flows. (c) Streamwise velocity
fluctuations at ȳ = 0.3h as a function of (U+

LOG)2. Open symbols denote rough-walled flows,
and closed symbols denote smooth-walled flows. �, channels from Ashrafian et al. (2004),
Bakken et al. (2005) and Comte-Bellot (1965); �, pipes from Perry & Abell (1977) and Perry
et al. (1986); ×, superpipe from Morrison et al. (2004); �, present channels, del Álamo et al.
(2004) and Hoyas & Jiménez (2006). In (a), , is (5.5). In (b), , (5.6). In (c), ,
(u′+)2 = 1.2 + 5.5 × 10−3 (U+

LOG)2 and , (u′+)2 = 2.5 + 2 × 10−2(U+(0.2h) − U+(50ν/uτ ))
2.

in the literature. Note that rough-walled flows are very sensitive indicators for any
anomalous scaling of the fluctuations, because the range of Uc is larger than in
smooth-walled flows. We will limit ourself to turbulent flows in channels and pipes,
as the structure of the outer region for external flows might be different.

Following del Álamo et al. (2004), the intensity of the streamwise velocity
fluctuations when ȳ/h � 0.2 should have the form

u′2 ∼ log2(h/ȳ)u2
τ + f (ȳ/h)U 2

0 . (5.4)

It has two components: one coming from the active eddies, proportional to u2
τ , and

another one proportional to the square of the characteristic velocity of the global
modes, U0. The proposal of del Álamo et al. (2004) is that U0 = Uc, a possibility
that is explored in figure 9(a), where we have plotted (u′+)2 at a given wall distance
ȳ/h = 0.3 for several pipes and channels. We can see a relatively good collapse of
the smooth-walled data along the dashed line corresponding to the linear law

(u′+)2 = 0.94 + 3.7 × 10−3 (U+
c )2, (5.5)
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which is a particular case of (5.4) with U0 = Uc, except for the single unexplained
data set from Morrison et al. (2004). As expected, the different rough-walled cases do
not collapse with the same law, and their streamwise velocity fluctuation intensities
are generally higher than those expected from their centreline velocities.

We therefore work backwards and define U∗ as the velocity scale that collapses
each rough-walled data point of figure 9(a) onto (5.5), and plot in figure 9(b) the
values of U+

∗ − U+
c as a function of the equivalent sand roughness. The data collapse

around the line

U+
∗ − U+

c = κ−1 log(k+
s ) + A+ − 8.5 = �U+. (5.6)

This suggests that ULOG = uτκ
−1 log(Reτ ), which can be interpreted as a measure of

the velocity jump across the logarithmic layer, might be a better velocity scale for the
global modes than Uc. We test this scaling in figure 9(c), where we can observe that
the rough- and smooth-walled data now compare much better. Note that while U∗
is computed ad hoc for each data point of figure 9(a), ULOG is computed a priori for
figure 9(c). Similar results are obtained for other wall distances in the range ȳ/h > 0.2.
Since for smooth-walled flows U+

c − U+
LOG is constant to a first-order approximation,

using U0 = ULOG instead of U0 = Uc only introduces a small square-root correction
to the law given by del Álamo et al. (2004). This correction is not observable when
comparing the collapse of smooth-walled data over the limited range of Uc in fig-
ures 9(a) and 9(c).

Note that, depending on the two limits assumed for the logarithmic layer, we could
have added a constant to our definition of ULOG. Unfortunately, the scatter of the data
is too high to distinguish between reasonable values for that constant. For example,
the solid line in figure 9(c) corresponds to the least-square fit of the data to the
velocity jump between y+ = 50 and y/h = 0.2, according to our definition of the
log layer given in § 3. It can be observed in the figure that, for the available range of
Reynolds numbers, this fit works as well as ULOG. Accurate measurements at higher
Reynolds numbers are needed to evaluate that constant.

A similar conclusion was reached in del Álamo et al. (2004), where it was found
that to distinguish between two different scales Reτ would have to be higher than 108.
Note on the other hand, that the collapse with ULOG as opposed to Uc is unambiguous,
because there are big differences between both quantities for rough and smooth walls.
All that can be said is that u′ does not scale exclusively on uτ , and figures 9(a) and
9(c) give strong evidence that the other velocity scale is much closer to ULOG than
to Uc.

6. Conclusions
We have studied the effect of the boundary condition at the wall on the outer region

of turbulent channel flows. The non-slip and impermeability boundary conditions
that are natural to smooth walls have been replaced by a single-harmonic velocity
disturbance with non-zero tangential Reynolds stresses at the wall. Three different
forcings have been explored, in order to understand the effect of the different
parameters characterizing the perturbations.

We have shown that the main effect of the wall disturbances on the flow is the
modification of the mean streamwise velocity gradient in the wall region, resulting
in a constant velocity decrease across the whole channel. Also, the wall region in
the disturbed channels is completely different to that over smooth walls. The streaks
and the quasi-streamwise vortices are shortened, and consequently the intensities of
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the streamwise velocity fluctuations and of the streamwise vorticity decrease. On the
other hand, the wall-normal and spanwise velocity fluctuations are enhanced by the
disturbances. This increase is related to structures which are essentially isotropic in
the wall-parallel plane, and which add little to the streamwise vorticity intensity. All
of those are consequences of the disruption of the near-wall energy cycle by the
disturbances at the wall, as is indicated by the reduction of the peak of energy flux
from the walls towards the centre of the channel in the disturbed cases. The ratio of
production to dissipation and the energy flux shows not only that the disturbances
interrupt the near-wall energy cycle, but also that the introduced Reynolds stress
generates additional energy that is mostly absorbed by the wall.

Since some of those changes are typically encountered in turbulent flows over rough
walls, we have interpreted the present boundary condition as a method for simulating
the effect of the roughness without having to deal with the details of the flow around
the roughness elements, as previously suggested by Jiménez (2004). Hence, we have
characterized the different wall forcings by their equivalent sand roughness. Three of
the cases correspond to the fully rough regime, while the remaining one is transitional.

We have analysed the flow over individual forcing cells by computing the averaged
flow field around a single disturbance. The characteristic length scale for the
decaying of the velocity disturbances is the forcing wavelength, but the tangential
Reynolds stress has its own characteristic length scale, k. The height of the layer
where the intensity of the forcing and its harmonics overrides the background
turbulence is roughly 6k. This layer can be interpreted as a roughness sublayer,
which in rough-walled flows plays the same role as the buffer layer over smooth
walls.

Special attention has been paid to the effect of our wall disturbances on the
outer flow. Using one-point statistics we have shown that the smooth-wall values are
recovered in the disturbed cases when ȳ+ increases, and across the whole outer region.
The spectral analysis and the advection velocities have shown that the structure and
the dynamics of the detached scales of the core region in the present simulations are
not affected by the perturbations imposed at the walls. This conclusion is coherent
with the idea that the detached eddies are controlled by the local mean shear, which is
only modified within the roughness sublayer. This is also consistent with the physical
model proposed by del Álamo et al. (2006b) for the logarithmic region, with a cluster
of vortices developing a low-velocity wake due to the effect of the mean shear. While
in the smooth-walled case the process is triggered by the bursting of the near-wall
cycle, over rough walls it might be triggered by the disturbances at the wall. The
fact that the same result is obtained for three different forcings, with very different
wavelengths and intensities, even when the near-wall energy cycle of smooth walls is
effectively destroyed, strongly supports the insensitiveness of the detached scales to
the boundary condition, and its extension to real rough-walled flows.

We have also seen that the dynamics of the larger scales of the flow are essentially
the same over the forced and smooth walls They are global modes, in the sense that
they are correlated across the whole channel. In smooth-walled flows, del Álamo et al.
(2004) showed that they scale with the centreline velocity Uc, and that therefore the
square of the velocity fluctuations increase with U 2

c for a given wall distance. We have
shown that this scaling does not work for rough-walled flows, and we have proposed a
new velocity scale ULOG = uτκ

−1 log(Reτ ) for the global modes. As shown in figure 9(c),
the modified scaling collapses the streamwise velocity fluctuations regardless of the
nature of the wall. ULOG can be interpreted as a measure of the velocity difference
across the logarithmic layer.
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The present work suggests that the outer flow region is fairly independent of the
wall layer, even if the opposite is not true (del Álamo & Jiménez 2003; Hoyas &
Jiménez 2006). Even in rough-walled boundary layers it could be expected that the
detached eddies remain unchanged, at least if the mean shear does. On the other
hand, the effect of the roughness on the largest scales of boundary layers and of
channels might be different. While the effect of the roughness on the global modes
is symmetric in channels, in boundary layers only the wall is modified, and the free
stream remains unchanged.

Finally, higher Reynolds numbers are needed to analyse the effect of the wall on
the overlap region, although some of the results presented in this paper, such as the
constant energy flux discussed in § 3, suggest that the effect of the wall is also weak
in that region.

This work was supported in part by the Spanish CICYT, under grant DPI2003-
03434. The computational resources provided by the CIEMAT in Madrid, by the
CEPBA and by the BSC in Barcelona are gratefully acknowledged.

REFERENCES
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Nikuradse, J. 1933 Strömungsgesetze in Rauhen Rohren. VDI-Forsch. 361, Engl. transl. Laws of
flow in rough pipes. NACA TM 1292, 1950.

Orlandi, P., Leonardi, S. & Tuzi, R. 2003 Direct numerical simulations of turbulent channel flow
with wall velocity disturbances. Phys. Fluids. 15, 3587–3601.

Perry, A. E. & Abell, C. J. 1977 Asymptotic similarity of turbulence structures in smooth- and
rough-walled pipes. J. Fluid Mech. 79, 785–799.

Perry, A. E., Henbest, S. & Chong, M. S. 1986 A theoretical and experimental study of wall
turbulence. J. Fluid Mech. 119, 163–199.

Poggi, D., Porporato, A. & Ridolfi, L. 2003 Analysis of the small-scale structure of turbulence
on smooth and rough walls. Phys. Fluids 15, 35–46.

Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers.
Appl. Mech. Rev. 44, 1–25.

Sabot, J., Saleh, I. & Comte-Bellot, G. 1977 Effects of roughness on the intermittent maintenance
of reynolds shear stress in pipe flow. Phys. Fluids 20, 150–155.

Schlichting, H. 1936 Experimentelle untersuchungen zum rauhigkeitsproblem. Ing. Archiv 7, 1–36,
Engl. transl. Experimental investigation of the problem of surface roughness. NACA TM 823,
1937.

Thom, A. S. 1971 Momentum absorption by vegetation. Q. J. R. Met. Soc. 97, 414–428.

Wills, J. A. B. 1964 On convection velocities in turbulent shear flows. J. Fluid Mech. 20, 417–432.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

15
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006001534

