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Quasi-geostrophy against the wall
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Coasts are obstructions to the classical derivation of continuously stratified quasi-
geostrophic equations, due to possible resonances between slow internal coastally
trapped Kelvin waves and anticyclones. Deremble et al. (Ocean Model., vol. 119,
2017, pp. 1–12) proposed a coupled model between a quasi-geostrophic interior
and boundary-layer Kelvin-wave dynamics. We revisit the derivation of this model,
paying particular attention to conservation laws. We find that quasi-geostrophic energy
is conserved, despite the existence of Kelvin-wave shocks in the boundary layer. The
effect of those shocks is to change the global distribution of potential vorticity, and,
consequently, the interior flow structure. In that respect, we show that there is an
active control of the boundary region on the interior flow.
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1. Introduction

Quasi-geostrophic models play a prominent role in our understanding of midlatitude
atmospheric and oceanic dynamics (Vallis 2017). They describe the slow evolution of
geostrophically balanced motion, filtering out the fast dynamics of inertia–gravity
waves. Yet, in a series of recent papers, Dewar and collaborators showed that
geostrophically balanced motion in continuously stratified fluid may interact with slow
internal Kelvin waves trapped along a lateral wall, and this is an obstruction to the
classical derivation of quasi-geostrophic equations: Dewar & Hogg (2010) identified
a mechanism of potential vorticity injection in interior flows through the formation of
Kelvin-wave shocks; Dewar, Berloff & Hogg (2011) addressed the relevance of this
process within the oceanic energy cycle; Hogg et al. (2011) deciphered how and when
Kelvin-wave shocks are generated by an initially geostrophic flow, following previous
work on rotating hydraulics (Pratt & Whitehead 2007). Building upon these results,
Deremble, Johnson & Dewar (2017) proposed a coupled model between interior
quasi-geostrophic dynamics and a boundary-layer equation describing nonlinear
Kelvin-wave dynamics. The so-called Deremble–Johnson–Dewar model captured the

† Email address for correspondence: antoine.venaille@ens-lyon.fr

c© The Author(s), 2020. Published by Cambridge University Press 894 R1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

28
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/jfm-rapids
https://orcid.org/0000-0002-5803-1753
mailto:antoine.venaille@ens-lyon.fr
https://doi.org/10.1017/jfm.2020.287


A. Venaille

generation of cyclones by shocks following the impact of an anticyclone on a coast.
This mechanism of potential vorticity generation by shocks bears similarities with
rip-current formation in the surf zone (Peregrine 1998; Bühler 2000), albeit at a
different scale. The main difference here is that Kelvin-wave shocks only produce
cyclones. Deremble et al. (2017) emphasized the key role of this boundary-layer
dynamics in shaping the interior flow properties close to the wall. They also found
via numerical simulations that this process acts as a significant sink of energy, but
without providing scaling with respect to the Rossby number, the small parameter of
the asymptotic model.

The aim of this paper is to clarify how global conservation laws of standard,
unbounded quasi-geostrophic models are affected by the presence of a coast, by
revisiting the derivation of Deremble et al. (2017). The paper is organised as
follows: we introduce in the second section the hydrostatic, rotating Boussinesq
equations, and we explain why the presence of a wall makes the derivation of
quasi-geostrophic equations difficult. Starting from the multiple-layer shallow-water
model with sufficiently thin layer thickness, a new derivation of the Deremble–
Johnson–Dewar model is proposed in the third section, paying particular attention
to mass conservation, energy conservation and a local model for potential vorticity
injection by shocks. We end in the fourth section with a discussion on symmetries
and on possible geophysical applications.

2. Boussinesq syllabus

2.1. Hydrostatic Boussinesq dynamics on the f -plane
Our starting point is the 3-D Boussinesq, hydrostatic equations with traditional
approximation for the Coriolis force (Vallis 2017). This is a standard model for
geophysical flows, including the effect of rotation and stratification through the
Coriolis parameter f (twice the projection of the planet rotation rate on the local
vertical axis) and the buoyancy frequency N. Calling L and H the typical horizontal
and vertical length scales of the flow, respectively, with typical velocity U, the
Boussinesq dynamics admits three non-dimensional parameters: the aspect ratio, the
Rossby number and the Burger number, defined as

α ≡
H
L
, Ro≡

U
Lf
, Bu≡

(
NH
fL

)2

. (2.1a−c)

The hydrostatic limit corresponds to α� 1. The hydrostatic Boussinesq system is

∂xu+ ∂yv + ∂zw= 0, (2.2)
0=−∂zp+ b, (2.3)

Ro(∂t + u∂x + v∂y +w∂z)u=−∂xp+ v, (2.4)
Ro(∂t + u∂x + v∂y +w∂z)v =−∂yp− u, (2.5)

Ro(∂t + u∂x + v∂y +w∂z)b=−Buw. (2.6)

The field b is the perturbation buoyancy corresponding to rescaled density anomalies
around the stable stratification. To simplify the discussion, we consider the case where
f and N are constant.

2.2. Plane waves
We first consider a case without boundary, and look for solutions of the hydrostatic
Boussinesq equations linearized around a state of rest. Eigenmodes are on the form
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FIGURE 1. Dispersion relation of hydrostatic Boussinesq model linearized around a state
of rest, adapted from Zeitlin (2018). (a) Unbounded case, kz fixed. There is a frequency
gap 1ω= f between the inertia–gravity wave band and the (flat) geostrophic wave band.
(b) Coastal case (wall at x= 0), kz fixed. The dispersion relation for varying values of kx
is projected in (ky, ω)-plane. The magenta line corresponds to coastally trapped internal
Kelvin waves. (c) Coastal case, kz > 0. The blue surface at the top represents the bottom
boundary of the inertia–gravity wave band. The magenta surface corresponds to the Kelvin-
wave dispersion relation. When kz tends to ∞ for a given value of ky, the Kelvin-wave
dispersion relation tends to the flat geostrophic band. This is an obstruction to the classical
derivation of quasi-geostrophic equations.

eiωt−ikxx−ikyy−ikzz, and the problem admits three wave bands with dispersion relations

ω=±
1

Ro

√
1+

Bu
k2

z

(k2
x + k2

y), ω= 0. (2.7a,b)

For a given kz, we recover the dispersion relation of shallow-water waves with
celerity c = N/|kz|, see figure 1. The zero-frequency wave band corresponds to
geostrophic modes, for which the pressure force balances the Coriolis force. The
non-zero frequency bands correspond to hydrostatic, internal inertia–gravity waves.
Geostrophic modes and inertia–gravity wave modes are separated by a frequency gap
of width Ro−1. The existence of this gap is central to the classical derivation of the
quasi-geostrophic model.

2.3. Unbounded quasi-geostrophic dynamics
The dynamics of geostrophic modes can be decoupled from the dynamics of internal
gravity wave modes in the small Rossby number limit Ro � 1. This amounts to
considering a wide frequency gap limit between (slow) geostrophic and (fast) internal
inertia–gravity wave modes. The quasi-geostrophic model describes the slow dynamics
of the geostrophic mode. It is derived through an asymptotic expansion, with a small
parameter given by the Rossby number Ro� 1, for a fixed Burger number Bu ∼ 1
(Vallis 2017). This last condition means that typical horizontal flow structures L are
of the order of an intrinsic length scale named the Rossby radius of deformation
NH/f .

2.4. Internal coastal Kelvin waves
The presence of a lateral wall allows for the along-wall propagation of a new class
of waves trapped in the across-wall direction, with frequencies filling the frequency
gap between inertia–gravity waves and geostrophic modes. Those are the celebrated
internal coastal Kelvin waves. Their salient features are derived from the hydrostatic

894 R1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

28
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.287


A. Venaille

Boussinesq model linearized around a state of rest, in the presence of a lateral
(vertical) wall along the y-direction. We take the wall at x = 0 and consider the
flow taking place in the region x > 0, with impermeability boundary condition at
the wall: u(0, y, z, t) = 0. Eigenmodes are of the form g(x)eiωt−ikyy−ikzz with g(x) to
be determined. There are two classes of eigenmodes. First, the bulk modes, with
g(x)= sin(kxx) and with the same dispersion relation as in the unbounded case (2.7).
Second, an additional branch of boundary modes that correspond to internal coastal
Kelvin waves, satisfying geostrophic balance in the along-wall direction with vanishing
velocity in the across-wall direction:

v = ∂xp, with ∂xxp=−Bu−1∂zz p, u= 0. (2.8a,b)

Those modes have several features that will play a central role in the derivation of
a model coupling interior and boundary dynamics: they are trapped along the wall,
unidirectional and propagate as non-rotating hydrostatic internal gravity waves:

g(x)= e−x/l, l=
Bu1/2

|kz|
, ω=−

Bu1/2

Ro
ky

|kz|
. (2.9a−c)

Both the trapping length scale and the phase speed vanish for large vertical
wavenumbers.

We readily see on the dispersion relation plotted in figure 1 that the presence of a
new branch of Kelvin wave modes filling the frequency gap is an obstruction to the
classical derivation of continuously stratified quasi-geostrophic dynamics: whatever the
value of the horizontal wavenumber kx and the value of the frequency ω, there is a
value of vertical wavenumber kz such that a coastal wave exists. This means that one
cannot dismiss the presence of coastal waves when performing the standard multiple-
scale expansions leading to quasi-geostrophic dynamics.

Let us consider a Kelvin wave with wavenumber ky ∼ 1 and frequency ω.
Interactions between this wave and geostrophic modes having a typical eddy turnover
time L/U∼ 1, occurring when ω∼1. Substituting this scaling into (2.9), and assuming
Bu∼ 1, leads to 1/kz ∼ Ro and l∼ Ro (with dimensions, this gives 1/k∗z ∼ RoH and
l∗ ∼ RoL). To conclude, the linear analysis offers important physical insights on
possible coupling between the bulk (interior) geostrophic modes and the boundary
(coastally trapped) Kelvin waves in the limit of vanishing Rossby numbers, with three
properties that will be essential features of the Deremble–Johnson–Dewar model:

(i) The interactions involve internal Kelvin waves having a vertical wavelength that
scales linearly with the Rossby number, and being confined in a boundary layer
with a thickness that also scales linearly with the Rossby numbers.

(ii) For all the coastal Kelvin waves, the across-wall velocity u is identically zero.
This property will hold at lowest order in the amplitude of the wave for
a superposition of coastally trapped modes interacting nonlinearly, since the
nonlinear term in the evolution of u is proportional to u.

(iii) Since there is only one coastally trapped mode for a given value of (ky, kz), the
boundary-layer dynamics that describes the nonlinear evolution of these coastally
trapped waves will be governed by a 2-D equation in the (y, z)-plane.

3. Coupling a quasi-geostrophic interior to Kelvin-wave dynamics

We now revisit the derivation of the Deremble–Johnson–Dewar model that couples
an interior quasi-geostrophic flow to boundary-layer Kelvin-wave dynamics in the
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limit Ro→ 0 with Bu∼ 1. While their derivation was performed in the continuously
stratified case with isopycnal coordinates, our starting point is the multiple-layer
shallow water. This is the natural discretization of isopycnal hydrostatic Boussinesq
equations, keeping track of the layerwise potential vorticity conservation. From a
practical point of view, this makes direct connections with numerical simulations
that deal with discretized models. From a fundamental or pedagogical perspective,
this makes possible a direct application of previous results on rotating shallow-water
hydraulics (Pratt & Whitehead 2007; Zeitlin 2018). The continuous case in density
coordinates is recovered in the limit of vanishing layer thickness.

The multiple-layer shallow-water model is written as a triplet of dynamical
equations for each layer i (with i increasing upward) with depth independent
horizontal velocity ui = (ui, vi) and thickness h(1+ δηi):

Ro(∂t + ui · ∇)ui =−∂xpi + vi, (3.1)
Ro(∂t + ui · ∇)vi =−∂ypi − ui, (3.2)

(∂t + ui · ∇)δηi =−(1+ δηi)∇ · ui, (3.3)

which express momentum conservation and mass conservation, respectively. Interface
thickness variations and pressure fields are related through hydrostatic balance (see
appendix A):

δηi =−
Ro
Bu

pi+1 − 2pi + pi−1

(δz)2
, δz=

h
H
, (3.4)

with a constant density jump 1ρ/ρ0 between adjacent layers, such that g1ρ/(ρ0h)=
N2. Realistic configurations would also require specific equations for the upper and
lower layers (interpreted as upper and lower boundary conditions in the continuous
limit); we focus here on internal layers to simplify the discussion, assuming that the
domain is unbounded in the vertical (the layers are then indexed by i∈Z). The mean
interface thickness must be chosen sufficiently thin to allow for possible resonances
between interior geostrophic modes and boundary Kelvin waves identified by the
linear analysis performed in § 2: h = O(Ro). Note that for a finite-depth ocean, this
would require N ∼ 1/Ro layers.

As in § 2, the flow domain takes place in a semi-infinite horizontal domain, with
fields vanishing at infinity and an impermeability constraint at the wall:

ui(0, y, t)= 0. (3.5)

We assume that the initial flow satisfies quasi-geostrophic scaling, with horizontal
scale, vertical scale and velocities of order 1, and interface height variations of order
Ro, corresponding to vertical pressure variation between adjacent layers scaling as δz.
The strategy is to divide the domain into an interior region satisfying standard quasi-
geostrophic equations, and a boundary layer with typical thickness scaling as Ro.

3.1. Quasi-geostrophic dynamics in the interior
The interior dynamics is derived from (3.1) to (3.4) following standard procedure
based on asymptotic expansion in a low Ro limit (Vallis 2017), with the ansatz

[ui, pi] = [u
g
i,0, pg

i,0] + Ro[ug
i,1, pg

i,1] +O(Ro2). (3.6)

We also assume that typical vertical variations of the pressure fields (up to order 1)
between adjacent layers is of order δz, consistent with the assumption of an initial
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condition satisfying quasi-geostrophic scaling. According to (3.4), interior interface
height variations scale linearly with Ro.

(i) At order 0, one gets geostrophic balance, and hydrostatic balance still holds:

ug
i,0 = (−∂yψi, ∂xψi), ψi ≡ pg

i,0, η
g
i,0 =−

1
Bu

pg
i+1,0 − 2pg

i,0 + pg
i−1,0

δz2
. (3.7a,b)

(ii) At order 1, we recover quasi-geostrophic dynamics:

∂tq
g
i + ug

i,0 · ∇qg
i = 0, qg

i ≡∇
2ψi + Bu−1(δz)−2(ψi+1 − 2ψi +ψi). (3.8)

At this stage, one cannot integrate the dynamics in (3.8) for two reasons, both of them
related with potential vorticity inversion: (i) the boundary condition for ψ at the wall
remains unknown; (ii) one cannot rule out a source of vorticity within the boundary
layer that would affect the streamfunction outside the boundary layer. To address those
two issues, it is necessary to examine Kelvin-wave boundary-layer dynamics.

3.2. Kelvin-wave dynamics in the boundary layer
According to the analysis of linearized hydrostatic Boussinesq dynamics in § 2, the
Kelvin-wave boundary-layer dynamics is expected to be confined in a region of size
Ro away from the wall, with vertical variations of the fields taking place over a
distance Ro. This motivates the following change of variable:

X =
x

Ro
, δZ =

δz
Ro
. (3.9a,b)

The velocity and pressure fields in the boundary layer are decomposed as follows:

vi = v
b
i (X, y, t)+ vg

i,0|x=0(y, t)+ Rovg
i,1|x=0(y, t)+ RoX∂xv

g
i,0|x=0(y, t)+O(Ro2), (3.10)

ui = ub
i (X, y, t)+ ug

i,0|x=0(y, t)+ Roug
i,1|x=0(y, t)+ RoX∂xu

g
i,0|x=0(y, t)+O(Ro2), (3.11)

pi = pb
i (X, y, t)+ pg

i,0|x=0(y, t)+ Ropg
i,1|x=0(y, t)+ RoX∂xp

g
i,0|x=0(y, t)+O(Ro2). (3.12)

The matching condition between inner (index ‘b’ for boundary) and outer (index g for
interior quasi-geostrophic) solution is

lim
X→+∞

[ub
i , v

b
i , pb

i ] = [0, 0, 0]. (3.13)

The boundary fields are also expanded as

[ub
i , pb

i ] = [u
b
i,0, pb

i,0] + Ro[ub
i,1, pb

i,1] +O(Ro2), (3.14)

and it will be convenient to decompose the total velocity and pressure fields as

[ui, pi] = [ui,0, pi,0] + Ro[ui,1, pi,1] +O(Ro2). (3.15)

The fields [ui,0, pi,0] and [ui,1, pi,1] include the trace of the interior field in the
boundary layer regions as defined in (3.10)–(3.12).

Special care must be taken to evaluate the different terms in the expansion of
interface height variations δηi defined in (3.4). Indeed, we have assumed that vertical
variations of interior pressure between adjacent layers scale as δz, and, based on
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linear analysis, we anticipated that vertical variations of boundary pressure between
adjacent layers scale as δZ. Thus, the interface height variations can be expressed as

δηi = δηi,0 +O(Ro), δηi,0 =−
1

Bu
pb

i+1,1 − 2pb
i,1 + pb

i−1,1

(δZ)2
. (3.16)

Now that we have introduced the ansatz for the solution in the boundary layer, we
write down the rescaled dynamical equations. Momentum equations read

Ro(∂t + Ro−1ui∂X + vi∂y)ui =−Ro−1∂Xpi + vi, (3.17)
Ro(∂t + Ro−1ui∂X + vi∂y)vi =−∂ypi − ui. (3.18)

It will be convenient to use potential vorticity as a third dynamical equation:

(∂t + Ro−1ui∂X + vi∂y)qi = 0, qi =
1+ ζi

1+ δηi
, ζi ≡ ∂Xvi − Ro∂yui. (3.19)

Consistent with the assumption of an initial condition satisfying quasi-geostrophic
scaling, material conservation of potential vorticity for a fluid particle with initial
relative vorticity ζ

(t=0)
i ∼ Ro and initial interface thickness variation δη

(t=0)
i ∼ Ro can

be recast as
ζi − δηi =O(Ro). (3.20)

We substitute the ansatz (3.10)–(3.12), (3.6), (3.14) in the rescaled dynamical
system (3.17), (3.18), (3.20) and collect terms at each order with respect to Ro.

(i) At order −1, the momentum equation in X-direction yields

∂Xpi,0 = 0. (3.21)

(ii) At order 0, the momentum and potential vorticity equations yield, respectively,

ui,0∂Xui,0 =−∂Xpi,1 + vi,0, (3.22)
ui,0∂Xvi,0 =−∂ypi,0 − ui,0, (3.23)

∂Xvi,0 − δηi,0 = 0. (3.24)

Differentiating (3.23) by X and using (3.21) leads to ∂X(ui,0(∂Xvi,0 + 1)) = 0.
Using the impermeability condition (3.5) leads then to ui,0(∂Xvi,0 + 1) = 0 for
all X. The case ∂Xvi = −1 corresponds to a vanishing interface thickness, i.e.
1+ δηi,0=0, according to (3.24). This may occur along shock lines. From now on,
we describe the flow dynamics away from these singularities. This corresponds
to the second case, ui,0(X, y, t)= 0. Using the matching condition (3.13), we find
an impermeability condition for the geostrophic (interior) velocity field, and a
vanishing across-wall velocity in the boundary layer:

ug
i,0|x=0 = 0, ub

i,0(X, y, t)= 0. (3.25a,b)

Equation (3.23) is now further simplified as ∂ypi,0 = 0. Using this equation
together with (3.21) and the matching condition (3.13) yields

pb
i,0 = 0, pg

i,0|x=0(y, t)=ψi,wall(t). (3.26a,b)
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The second equality is the standard impermeability condition for quasi-
geostrophic flows along a wall. The value of ψi,wall will be determined using
layerwise global mass conservation later on. Finally, equations (3.22) and (3.24)
simplify to

vb
i,0 = ∂Xpb

i,1,
∂2

∂X2
pb

i,1 =−
1

Bu
pb

i+1,1 − 2pb
i,1 + pb

i−1,1

(δZ)2
. (3.27a,b)

This shows that the triplet of boundary-layer fields [ub
i,0, pb

i,0] satisfies the
polarization relation of coastal Kelvin waves, as in (2.8). The boundary fields
are then fully prescribed by the amplitude of vb

i at the boundary X = 0. Their
dynamics is obtained at next order.

(iii) At order 1, the momentum equation in the y-direction evaluated at the wall yields

at X = 0 : ∂tvi,0 + ∂y
(

1
2v

2
i,0 + pi,1

)
= 0. (3.28)

We have used ui(0, y, t) = 0 and the order-1 impermeability constraint.
Equation (3.28) can be recast as a dynamical evolution for vb

i,0(0, y, t) =
vi,0(0, y, t)− v

g
i,0(0, y, t), assuming that geostrophic fields are known. Noticing that

∂ypi,1|X=0 = ∂ypb
i,1|X=0(y, t), the combination of (3.27) with (3.28) and boundary

condition (3.13) provides the system of equations derived in Deremble et al.
(2017).

3.3. Potential vorticity production by shallow-water shocks
Dewar & Hogg (2010), Hogg et al. (2011) and Deremble et al. (2017) showed that
the boundary-layer dynamics leads to shocks and the concomitant creation of cyclonic
vorticity. Based on global conservation of circulation, Deremble et al. (2017) proposed
a model for the feedback of these shocks on the interior quasi-geostrophic dynamics.
We propose here a more local justification of their model, relying on the theory of
rotating shallow-water shocks (Peregrine 1998; Pratt & Whitehead 2007; Zeitlin 2018).

A shallow-water shock line, in the X-direction indexed by s in layer i and located
at y= ys,i(t) is associated with a jump of the Bernoulli potential across the shock, see
e.g. Zeitlin (2018):

[Bi] ≡ Bi(X, y+s,i)− Bi(X, y−s,i), Bi(X, y±s,i)≡
u2

i (X, y±s,i)
2

+ pi(X, y±s,i). (3.29)

When the value of [Bi] varies along the shock, in the X-direction, there is a jump of
potential vorticity across the shock (Zeitlin 2018):

[qi] ≡ qi(X, y+s,i)− qi(X, y−s,i)= Ro−1 ∂X([Bi] − ẏs,i[vi])

hi(vi − ẏs,i)
, (3.30)

where [vi] = vi(X, y+s,i, t) − vi(X, y−s,i, t) is the velocity jump across the shock, ẏs,i ≡

dys,i/dt is the shock velocity and hi(vi − ẏs,i) is the mass flux through the shock for
an observer moving with the shock. This mass flux is conserved across the shock,
with [hi(vi − ẏs,i)] = 0. The combination of a potential vorticity jump and a constant
mass flux through the shock implies a net production of potential vorticity per unit
time and per unit shock length, see e.g. Zeitlin (2018). The total amount of potential
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vorticity production at y= ys,i in the boundary-layer region is thus∫
+∞

0
dX∂X([Bi] − ẏs,i[vi])= ẏs,i[vi]X=0 − [Bi]X=0, (3.31)

where the right-hand side is evaluated at (X = 0, y= ys,i). We have used the fact that
there is no shock in the (quasi-geostrophic) interior, for X→+∞.

The net production of potential vorticity in the boundary layer contradicts our
assumption of materially conserved potential vorticity used to derive the Kelvin-wave
dynamics in the boundary layer. One way to have a self-consistent model taking into
account the local inviscid production of vorticity at y = ys,i is to substitute in (3.8)
the total amount of potential vorticity of (3.31), at a distance x=

√
Ro much greater

than the boundary layer of size Ro, while remaining asymptotically close to the wall:

∂tq
g
i + ug

i · ∇qg
i = δ(x−

√
Ro)δ(y− ys,i)(ẏs,i[vi]X=0 − [Bi]X=0). (3.32)

This infinitesimal shift of potential vorticity production from the boundary layer
to the interior region is the only phenomenological step of the model derivation.
It is motivated by numerical simulations showing production of cyclones through
the detachment of boundary layers close to the shock location in primitive equation
models (Deremble et al. 2017). This can also be interpreted as the continuous version
of the discrete numerical algorithm used by Deremble et al. (2017) to simulate their
coupled reduced model: for a given grid size, the location of the source term at
x =
√

Ro guarantees that potential vorticity injection occurs within the cell adjacent
to the wall in the limit Ro→ 0.

To be consistent with this procedure of potential vorticity injection in the interior
following the formation of shocks in the boundary, the total circulation in the
boundary regions must be left invariant, which, assuming that it is initially zero,
implies

Γi = Γ
g

i , with Γi ≡−

∫
+∞

−∞

dyvi,0, Γ
g

i ≡−

∫
+∞

−∞

dyvg
i,0. (3.33)

3.4. Mass conservation, quasi-geostrophic circulation and final set of equations
The full dynamical system coupling boundary dynamics with quasi-geostrophic interior
is yet not closed, as one still must determine the value of ψi,wall introduced in (3.26).
This is settled by using layerwise global mass conservation:

〈δηi〉 = 0, with 〈δηi〉 ≡

∫
+∞

0
dx
∫
+∞

−∞

dyδηi. (3.34)

The difficulty with respect to classical quasi-geostrophic models is that variations
of mass in the boundary layers are of the same order as variations of mass in the
interior. Despite this subtlety, the use of (3.33) allows us to recover the constraint
(see appendix B):

〈ψi+1 +ψi−1 − 2ψi〉 = 0. (3.35)

The set of boundary values ψi,wall is deduced from the set of constraints in (3.35),
following standard procedure (McWilliams 1977). Let us note that (3.35) implies
instantaneous adjustment of the mass in each interior layer. The reason is that
we assumed previously that quasi-geostrophic motion has typical vertical scale of
order 1 (size H in dimensional units), and that Kelvin waves associated with vertical
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variations of order 1 are filtered out in the asymptotic expansion. Note that our
phenomenological procedure of potential vorticity injection is such that structures
of vertical size much smaller than H can be formed in the interior, depending on
shock properties in the boundary layer. This injection procedure induces, therefore, an
inconsistency with respect to the initial hypothesis on the size of interior flows. By
applying mass conservation (3.35), we continue to assume instantaneous adjustment
for those smaller scale structures in the interior. Possible resonances between slow
Kelvin-wave dynamics and interior quasi-geostrophic flow are still taken into account
through the boundary-layer equation (3.28).

Finally, the full coupled system is given by potential vorticity advection in (3.32)
and Kelvin-wave dynamics in (3.28). The interior velocity field is obtained by
inversion of the quasi-geostrophic potential vorticity field defined in (3.8), using
the lateral boundary conditions in (3.26) and the constraints of (3.35). Kelvin-wave
dynamics in (3.28) depends on the geostrophic interior field evaluated at the boundary;
in turn, equation (3.28) is used to find shock locations and evaluate the corresponding
velocity and Bernoulli potential jumps appearing in the right-hand side of (3.32), and
defined in (3.29). Thus, the knowledge of potential vorticity production is bound
to the knowledge of Bernoulli potential jumps across shocks in the boundary-layer
dynamics. We have until now not explained how to determine the actual value of
such Bernoulli potential jumps. In the case of a one-layer shallow-water model, one
just needs to apply standard local mass and momentum conservation across the shock.
However, the problem is indeterminate in the case of multiple-layer shallow-water
flows, and no universal rule exists (Zeitlin 2018). One then needs either to introduce
additional phenomenological assumptions on the shock behaviour, or to bypass this
issue by regularizing the boundary Kelvin-wave dynamics with dissipative terms.
In the latter case, the Bernoulli potential jumps are estimated numerically across
quasi-shocks that are defined at locations where gradients exceed a given threshold;
this is the approach followed in Deremble et al. (2017), who introduced viscous
dissipation in (3.28).

3.5. Conservation of quasi-geostrophic energy
Let us now consider the case of a finite-depth ocean with N layers of thickness h, such
that Nh= 1, with a rigid lid approximation (at layer i=N) and flat bottom boundary
condition (at layer i = 1). The dynamics is the same as in the case of an infinite
number of layers, with two additional constraints related to upper and lower boundary
conditions, namely ψN+1=ψN and ψ0=ψ1, respectively. The quasi-geostrophic energy
is defined as

Eg
≡

h
2

N∑
i=1

〈
(∇ψi)

2
+

1
Bu

(
ψi −ψi−1

δz

)2
〉
. (3.36)

We assume the presence of ni shocks in each layer i. The shocks are indexed by
(s, i) with 1 6 s 6 ni. Their location in the y-direction is denoted ys,i(t), and the
corresponding potential vorticity injection rate is γs,i ≡ ẏs,i[vi] − [Bi], see (3.32). The
temporal evolution of quasi-geostrophic energy is computed by using the dynamical
equation (3.32), the definition of quasi-geostrophic potential vorticity in (3.8), as well
as the definition of circulation in (3.33) and mass conservation in (3.35):

d
dt

Eg
= h

N∑
i=1

(
−ψi,wall

dΓ g
i

dt
+

ni∑
s=1

γs,iψi(
√

Ro, ys,i, t)

)
,

d
dt
Γ

g
i =

ni∑
s=1

γs,i. (3.37a,b)
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Following the conventions used for the asymptotic analysis, the initial energy and the
initial circulations are of order 1; according to this asymptotic analysis, the potential
vorticity injection rate γs,i is also of order 1. Using hN∼1 and ψi(

√
Ro, ys,i)=ψi,wall+√

Ro∂xψ |0,ys,i + o(
√

Ro), we find that the total quasi-geostrophic energy vanishes in
the limit Ro → 0. We conclude that quasi-geostrophic energy is conserved, unless
the asymptotic approach fails in such a way that γs,i scales as 1/

√
Ro. This result

does not contradict the observation of enhanced dissipation in the presence of a coast
(Deremble et al. 2017); it just suggests that the amplitude of enhanced dissipation
should tend to zero with Ro, so that the corresponding energy sink in the actual
ocean would be a finite-Ro effect. It will be interesting to investigate how enhanced
dissipation actually scales with Ro in numerical models.

4. Discussion and conclusion

We have revisited the derivation of the Deremble–Johnson–Dewar model coupling
interior continuously stratified quasi-geostrophic fluid to a boundary layer with
low-frequency Kelvin-wave dynamics. The boundary layer thickness scales linearly
with the Rossby number, and the dynamics inside this layer is described by a
two-dimensional dynamical equation at the wall. This wall dynamics leads to
shocks. Our contribution is to clarify the matching condition between interior and
boundary dynamics through mass conservation and shock properties, and to show
that quasi-geostrophic energy is conserved: shocks are an inviscid sink of energy, but
those sinks are confined in a narrow boundary layer whose width scales linearly with
Ro, so that their net contribution vanishes in the small Ro limit.

The original set of hydrostatic Boussinesq equations on the f -plane breaks
time-reversal symmetry. The symmetry breaking parameter is the Rossby number
Ro. The quasi-geostrophic model on the unbounded f -plane is derived in the limit
Ro→ 0. The Rossby number is not a parameter of this reduced model. Time-reversal
symmetry is thus recovered in f -plane quasi-geostrophic equations. The addition
of a wall allows for the propagation of unidirectional Kelvin waves that bring
back broken time-reversal symmetry into continuously stratified quasi-geostrophic
dynamics. This broken symmetry manifests itself in the interior flow as the formation
of quasi-geostrophic cyclones along the coast by Kelvin-wave shocks: just as surface
boundary layers favour cyclonic structures (Roullet & Klein 2010), lateral Kelvin
boundary layers break cyclone-anticyclone symmetry.

Cyclones injected at the boundary start to impact the anticyclonic interior flow
when the vertically integrated interior anticyclonic circulations become of the same
order as the total amount of injected potential vorticity. Since injection takes place
over a vertical scale of order Ro with a circulation production rate of order 1, the
interaction time can be estimated as Tint ∼ Ro−1. The validity of the model in this
long-time limit remains to be proven: shocks inject in the interior cyclonic structures
with vertical size of order Ro, which seems to contradict the initial assumption of
quasi-geostrophic structures with order-1 vertical variations (scale H in dimensional
units). At a phenomenological level, one could argue that inverse cascade and
barotropization processes organize the initially shallow cyclones into deeper ones.

This paper focused on inviscid dynamics and thus left aside the role of viscous
boundary layers. In two-dimensional turbulence, the detachment of these layers may
lead to dissipative structures (Nguyen Van Yen et al. 2018), and drastically change
the interior vorticity dynamics (Roullet & McWilliams 2014). The role of viscous
boundary layers in continuously stratified rotating flows remains to be addressed.
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While quasi-geostrophic energy remains a conserved quantity at lowest order in
Ro, boundary-layer Kelvin-wave dynamics plays an active role on the interior flow
patterns, through the injection of cyclonic vorticity close to the coast. This could
be a key aspect of oceanic western boundary currents detachment (Deremble et al.
2017). The f -plane coastal problem can also be interpreted as a toy model for
the dynamics of equatorial planetary flows with symmetric temperature fields. The
Deremble–Johnson–Dewar mechanism could offer in this framework an explanation
for the generation of intense equatorial cyclonic dipolar structures. Such patterns are
an essential feature of Madden–Julian oscillations (Rostami & Zeitlin 2019). For this
reason, we think that the Deremble–Johnson–Dewar mechanism for the production of
submesoscale oceanic structures also deserves attention in the context of equatorial
atmospheric flows.
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Appendix A. Hydrostatic relations for multiple-layer models

We consider an ocean model with N fluid layers. The layers are indexed in the
upward direction by i, with 1 6 i 6 N. We assume a constant atmospheric pressure
Pa above the upper layer i=N. The total pressure fields, the thickness fields and the
density fields in each layer are denoted Pi(x, y, z, t), hi(x, y, t), ρi = ρ0 + (N − i)1ρ,
respectively. The interface elevation relative to a rest state and the interface depth
between layers i and i + 1 are denoted ηi+0.5 and zi+0.5, respectively. In dimensional
units, interface height elevations, interface depth and interface thickness are related
through

zi+0.5 = (i−N)h+ ηi+0.5, hi = h(1+ δηi), δηi ≡
ηi+0.5 − ηi−0.5

h
. (A 1a−c)

The pressure is deduced from hydrostatic balance:

Pi − Pa = gρi(zi+0.5 − z)+
N∑

j=i+1

gρjhj. (A 2)

For 1< i<N, a straightforward computation yields

Pi+1 − 2Pi − Pi−1 =−gh1ρ(δηi + 1). (A 3)

We now introduce the rescaled dynamical pressure pi≡ (Pi/(ρ0UfL))+Fi(z). This field
is defined in each layer up to a function of z, since only its horizontal gradient matters
in the dynamics. We choose the gauge function Fi(z) in such a way as to cancel
the constant term in the right-hand side of (A 3). Recalling that g1ρh/(ρ0fUL) =
(h/H)2Bu/Ro, we obtain (3.4). This relation holds whatever the scaling of N and h
with Ro.
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Appendix B. Global mass conservation

Global conservation of mass in each layer i is expressed in (3.34). We decompose
the integral in the x-direction as a boundary term and an interior term:∫

+∞

0
dxδη=

∫ Ro3/4

0
dxδη+

∫
+∞

Ro3/4
dxδη. (B 1)

Changing variable in the first integral with X = x/Ro and considering the small Ro
limit yields, at order Ro:∫

+∞

0
dX
∫
+∞

−∞

dyδηi,0 +

∫
+∞

0
dx
∫
+∞

−∞

dyδηg
i,1 = 0, (B 2)

where δηi,0 is the order-0 interface height variation in the boundary region and δηg
i,1 is

the order-1 interior geostrophic interface height variation defined in (3.7). Variations
of mass in the boundary layers are of the same order as in the interior since interface
height variation δη scales as Ro over a region of size 1 in the quasi-geostrophic
region, while δη scales as 1 over a region of size Ro in the boundary layer. Using
the expression of ηg

i,0 in (3.7), substituting (3.24) in (B 2), mass conservation reads∫
+∞

0
dx
∫
+∞

−∞

dy(ψi+1 +ψi−1 − 2ψi)= Buδz2
∫
+∞

0
dX
∫
+∞

−∞

dy∂Xvi,0. (B 3)

Using vi,0(+∞, y, t)= v
g
i,0(0, y, t), the definition of circulations Γi, Γ

g
i in (3.33) and the

notation 〈ψi〉 =
∫
+∞

0 dx
∫
+∞

−∞
dyψi, integration of the right-hand side in (B 3) yields

〈ψi+1 +ψi−1 − 2ψi〉 = Buδz2(Γi − Γ
g

i ). (B 4)

The mass constraint in (3.35) follows from the equality Γi = Γ
g

i .
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